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ABSTRACT 

Most safety performance analysis employs cross-sectional and time-series datasets, posing an 

important challenge to safety performance and crash modification analysis. The traditional safety 

model analysis paradigm relying on observed data only allows relative comparisons between 

analysis methods and is unable to establish how well the methods mimic the true underlying crash 

generation process. Assumptions are made about the data, but whether the assumptions truly 

characterize the safety data generation in the real world remains unknown. To address this issue, 

this thesis proposes the generation of realistic artificial data (RAD). In developing a prototype 

RAD generator for crash data, we mimic the process of crash occurrence, simulating daily traffic 

patterns and evaluating each trip for crash risk. For each crash, details such as crash location, crash 

type, and crash severity are also generated. As part of the artificial data generation, this thesis also 

proposes a framework for employing naturalistic driving study (NDS) data to understand and 

predict crash risk at a disaggregate trip level. This framework proposes a case-control study design 

for understanding trip level crash risk. The study also conducts a comparison of different case to 

control ratios and finds the model parameters estimated with these control ratios are reasonably 

similar. A multi-level random parameters binary logit model was estimated where multiple forms 

of unobserved variables were tested. This model was calibrated by modifying the constant 

parameter to generate a population conforming risk model, and then tested on a hold-out sample 

of data records. This thesis contributes to safety research through the development of a prototype 

RAD generator for traffic crash data, which will lead to new information about the underlying 

causes of crashes and ways to make roadways safer. 
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CHAPTER 1: INTRODUCTION 

Given the significant emotional, economic, and social costs of traffic crashes, “Vision 

Zero”, a movement in which communities set a goal to eliminate traffic fatalities and severe 

injuries within a specified timeframe, has been conceptualized (Vision Zero Network, 2021). 

Several urban regions - including Orlando, Tampa, New York City, Chicago, Austin, Denver, and 

Los Angeles - have committed to meeting the goals of the Vision Zero movement (Vision Zero 

Network, 2021). A major component of achieving Vision Zero goals includes developing 

statistical and econometric models to understand the underlying causes of crashes and to identify 

strategies for crash prevention and crash consequence mitigation.  

Traditional safety research can be broadly classified along two directions – crash frequency 

and severity analysis. The first direction of research focuses on understanding the factors 

contributing to the number of crashes on a facility type in a specific time-period (Lord & 

Mannering, 2010; Yasmin & Eluru, 2016; Bhowmik, Rahman, Yasmin, & Eluru, 2021). The 

second direction of research examines factors affecting crash consequence (usually injury severity) 

conditional on the occurrence of a crash (Yasmin & Eluru, 2013; Marcoux, Yasmin, Eluru, & 

Rahman, 2018; Kabli, Bhowmik, & Eluru, 2020). The evolution of the safety field along these two 

primary research directions is based on how crash data is typically recorded –compiled by police 

or medical professionals. Traditional crash data has been instrumental in understanding the 

influence of various factors drawn from driver demographics, vehicle characteristics, roadway 

characteristics, crash characteristics, environmental factors on crash frequency and severity. 

However, the data does not allow us to examine the underlying cause of crash. Additionally, when 

crash frequency and severity are modeled, they are modeled using one dataset, allowing a 
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comparison between analysis methods, but not an understanding of the underlying crash generation 

process. Crash frequency models simply aggregate the crashes on a facility and are useful to 

examine the role of roadway environment in affecting crashes. On the other hand, the crash 

severity models focus on the crash consequence without having any information on the trip that 

resulted in the crash. As previously stated, this limitation is mainly a consequence of the absence 

of such detailed trip data.  

The paradigm of crash data collection however can potentially undergo a significant 

change with the advent of Naturalistic Driving Studies (NDS).  Naturalistic driving data is obtained 

from drivers willing to participate in a data collection exercise through a host of sensors that are 

placed in vehicles recording driver behavior (such as on-task behavior, eye movement) and their 

actions (such as speed, acceleration) in real time. The first large scale NDS was conducted in the 

Northern Virginia and Washington D.C. area monitoring 100 cars for about a year (Dingus, et al., 

2006). More recently, another naturalistic driving study titled the Second Strategic Highway 

Research Program (SHRP2) was conducted, with over 3,500 participants from six data collection 

sites across the United States, recording 1,951 crashes and 6,956 near-crashes (Antin, et al., 2019). 

The ability to record trips involving crashes alongside those that do not include crashes allows 

researchers to compare driver behaviors and environmental factors in crash and non-crash trips 

and identify those factors that are more frequent in crash trips. The NDS data allows for 

understanding the underlying timeline of the crash and account for driver behavior (as opposed to 

simply focusing on driver demographics). Thus, using NDS data, in theory, analysts can 

understand crash occurrence (yes/no at a trip level) and crash consequence (for trips involved in a 
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crash) as a disaggregate event. However, while NDS data is useful in understanding the underlying 

cause of a crash, it still can’t be used to understand the underlying process of crash generation. 

To understand the underlying crash generation process, it would be useful if crash models 

could be tested on a large number of datasets. While real data cannot do this, artificial data could 

be a solution. Dr. Ezra Hauer proposed “one way to address this issue is to generate an artificial 

dataset i.e. to synthesize the data by making assumptions about the underlying crash generation 

process” (Bonneson & Ivan, 2013). This dataset, also known as Realistic Artificial Data (RAD), 

would allow researchers to test their models against multiple generated datasets. RAD generation 

has been used in multiple different fields. In medical science, synthetic data has been generated to 

simulate cancer survival data to evaluate parametric and non-parametric models (Gamel & Vogel, 

1997). Synthetic data has also been used to generate time series data using only a small amount of 

ground truth data (Dahmen & Cook, 2019). In data science, artificial data has been generated to 

evaluate the performance of data mining procedures (Scott & Wilkins, 1999), evaluating frequent 

episode mining approaches employed for recovering sequential patterns (Zimmermann, 2012), and 

monotone ordinal data sets have been generated to be used in multi-attribute ordinal problems 

(Potharst, Ben-David, & van Wezel, 2009). In education, simulated data has been used to assess 

methods for evaluating school performance (Bifulco & Bretschneider, 2001). In ecology, data 

generation has been used to generate realistic plant species distributions using direct and indirect 

gradients to evaluate statistical methods (Austin, Belbin, Meyers, Doherty, & Luoto, 2006). In 

information technology, realistic artificial testing datasets have been generated based on real data 

for use in research (Syahaneim, et al., 2016) and for evaluating information analytics applications 

(Whiting, Haack, & Varley, 2008). In traffic safety, simulated data has been used in simulating 
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roadway intersections (Salim, Loke, Rakotonirainy, & Krishnaswamy, 2007), daily travel patterns 

(Ye & Lord, 2011), traffic crash data (Geedipally, Lord, & Dhavala, 2012; Cummings, McKnight, 

& Weiss, 2003), traffic crash sites (Lord & Kuo, 2012), traffic crash severity (Eluru, 2013), and 

crash modification factors (Wu, Lord, & Zou, 2015). In travel behavior research, generated data 

has been used to simulate a host of discrete choice models (Bhat, 2003; Bhat, Castro, & Khan, 

2013; Paez & Scott, 2007; Bhat, Sener, & Eluru, 2010; Bhat & Sidharthan, 2011; Pinjari & Bhat, 

2010; Ferdous, Eluru, Bhat, & Meloni, 2010).  

From our review of earlier literature, the RAD frameworks considered are consistently 

single level frameworks, i.e. the underlying decision process consists of only one layer of 

decisions. To elaborate, in modeling crash occurrence, earlier research has related the crash 

occurrence to roadway geometry and traffic volume under pre-specified assumptions of what 

variables will influence crash occurrence (say AADT and lane width). The proposed research 

effort will be the first effort that will attempt the development of RAD datasets using a multi-

layered decision process. Thus, it is expected to be challenging. Drawing on the earlier literature 

on RAD, the goal of this thesis is the development and implementation of a prototype RAD 

generator that mimics the true process of crash occurrence to generate a list of traffic crashes (and 

crash characteristics) to be used for safety model analysis. The development of a realistic data for 

the aforementioned framework requires substantial data processing across multiple safety datasets 

and is beyond the scope of a MS thesis. Hence, the current thesis has two objectives. First, we 

develop a software prototype development for all modules with place holder models to be 

estimated later. Second, using NDS data, we develop an innovative framework for crash risk at a 
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trip level. The prototype RAD framework proposed and tested can enhance the current state of the 

art in RAD generation across various domains. 

Thesis Structure 

 The remainder of this thesis is organized as follows. Chapter 2 discusses the development 

and testing of the disaggregate prototype RAD generator for simulating traffic crashes and 

subsequent crash characteristics. Chapter 3 discusses the development of a multi-level random 

parameter binary logit model using NDS data to predict crash risk. Chapter 4 presents the 

conclusions and recommendations based on the empirical results of the study. 
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CHAPTER 2: DEVELOPMENT OF A DISAGGREGATE REALISTIC 

ARTIFICIAL DATA (RAD) GENERATOR FOR TRAFFIC CRASHES 

RAD Conceptual Framework 

As the first part of this study, a disaggregate prototype RAD generator was developed to 

simulate traffic crashes at a trip level. This generator was designed to resemble the true process of 

crash occurrence, as part of a trip from an origin to a destination. It considers a series of trips that 

simulate daily traffic patterns, evaluating each trip’s risk profile based on trip level factors, 

demographic characteristics, roadway facility attributes, and vehicle attributes. Once a crash is 

determined to occur (within a stochastic framework), crash characteristics are generated including 

crash location, crash type and crash severity. This list of trips in which a crash occurs, along with 

their generated crash characteristics, are provided as output to the user. The full conceptual 

framework for crash generation is shown in Figure 1. 

 
Figure 1: Crash Generation Conceptual Framework 

 

Prototype RAD Generator Development 

 As described earlier, the development of a realistic data for safety analysis requires 

substantial data processing across multiple safety datasets. Hence, we focus on a prototype RAD 

with place holder models to test the software developed for RAD generation. The prototype RAD 

begins with a trip level file with details on trip data (such as travel distance, and overall trip level 

segment characteristics) and driver demographics (such as age and gender). The final desired 

Trip

No Crash

Crash
Crash 

Location
Crash Type

Crash 
Severity
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output is a list of crashes with crash details simulated by the RAD generator. This RAD generator 

hypothesized comprised of four modules – crash risk, crash location, crash type, and crash severity. 

The first module, crash risk, uses a binary logit model to determine if a crash occurs during a 

specified trip. For those trips where a crash occurs, the second module determines the location of 

the crash. Using the trip path as input and trip segments as the alternatives, a multinomial logit 

model is used to determine the segment of the trip where the crash occurs. The third module then 

determines the type of crash that occurs. Using a list of crash types as alternatives (such as rear-

end, sideswipe, head-on, single vehicle, or non-motorized), a multinomial logit model is used to 

determine the type of crash that occurs. The fourth and final model determines the severity of the 

crash using an ordered logit model. For crash severity we use the KABCO crash injury severity 

model defined by The Federal Highway Administration (FHWA) (FHWA, 2011) which has five 

categories of crash injury severity: fatal (K), incapacitating injury (A), non-incapacitating injury 

(B), possible injury (C), and no injury (O). As trip records are processed, a subset of these trips is 

selected to be involved in a crash and the subsequent crash characteristics are generated for these 

trips. It is important to recognize that the sequence of the crash characteristic generation is 

important as the variable generated can be employed as independent variable in downstream 

variable generation.  

RAD Generator Testing 

The prototype software is developed with appropriate econometric model systems with 

assumed model parameters.  For the crash risk module, the assumed model is shown in Table 1. 

In this model, driving during morning or evening peak hours increases the risk of a crash, young 

drivers are at an increased crash risk, senior drivers are at a decreased crash risk, and longer trips 
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incrementally increase crash risk. This model was applied to 2,256,502 trips and resulted in about 

1,100 crashes on average. This is in agreement with the daily number of crashes that occur in 

Florida according to the Florida Highway Safety and Motor Vehicles (Florida Highway Safety and 

Motor Vehicles, 2021), which states that 403,626 crashes occurred in Florida in 2018 (about 1,106 

crashes per day) and 401,868 crashes occurred in Florida in 2019 (about 1,101 crashes per day).  

Table 1: Crash Risk Dummy Model 

Variables Coefficient 

Constant -16.000 

Trip Length 0.001 

Morning Peak (6am-9am) 2.300 

Evening Peak (4pm-7pm) 0.970 

Young Driver (<=20 years old) 0.650 

Senior Driver (>=65 years old) -0.890 

 

 Table 2 shows the model used to test the crash location module. This model considered 

each trip resulting in a crash as input and used a multinomial logit model to determine the road 

segment in the trip path where the crash occurred. The alternative set includes all segments along 

the trip. The average number of segments in a path was 21.8, with a minimum of 1 segment and a 

maximum of 685 segments. In this model, roads with a higher speed had an increased crash risk 

and roads with wider lanes and wider shoulders had a decreased crash risk.  

Table 2: Crash Location Dummy Model 

Variables Coefficient 

Speed 0.1 

Lane Width -0.3 

Shoulder Width -0.1 

 

 The third module uses a multinomial logit model to determine the crash type for each trip 

resulting in a crash. The assumed model used is shown in Table 3. This model used trip duration, 

lane width at crash location, shoulder width at crash location, and driver age to determine if the 
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crash was rear-end, sideswipe, head-on, single vehicle, or non-motorized. The results in Table 4 

show that the expected probability closely matches with the resulting proportions for all crash 

types. Rear-end crashes are the most prevalent at about 40% of crashes, followed by sideswipes at 

about 20%, then head-on and single vehicle crashes at about 15% each, and non-motorized vehicle 

crashes were the least prevalent at about 10% of crashes.  

Table 3: Crash Type Dummy Model 

Variables Rear-end Sideswipe Head-on Single Vehicle Non-motorized 

Constant 0 -0.02 -20.9 -10.3 -7.3 

Duration 0.003 0.002 0.004 0.003 0 

Lane Width 0 0.6 0.22 0.43 2.17 

Shoulder Width 0 0.5 0.01 0.35 0.9 

Age 0 0 0 0 0.09 

 

Table 4: Crash Type Results 

Crash Type Probability Proportion 30 Day Total 30 Day Average 

Rear-end 0.3970 0.4054 13,406 447 

Sideswipe 0.2061 0.2109 6,975 232 

Head-on 0.1429 0.1407 4,653 155 

Single Vehicle 0.1584 0.1577 5,216 174 

Non-motorized 0.0957 0.0852 2,819 94 

Total 1.0000 1.0000 33,069 1102 

  

The fourth and final module uses an ordered logit model to determine crash severity based 

on the KABCO injury scale. The assumed model for crash severity is shown in Table 5. In this 

model, crash severity is influenced by speed and crash type. Higher speeds increase severity, rear-

end crashes decrease severity, and head-on and non-motorized crashes increase severity. The 

results in Table 6 show the proportion of crashes at each severity level, with about 54% of crashes 

with no injury, about 18% of crashes with possible injury, about 10% of crashes with non-

incapacitating injury, about 8% of crashes with incapacitating injury, and about 10% of crashes 

that were fatal. 
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Table 5: Crash Severity Dummy Model 

Propensity Variables Coefficient 

Speed 0.002 

Rear-End Crash -0.1 

Head-On Crash 0.8 

Non-Motorized Crash 0.7 

Threshold between O and C 0.4 

Threshold between C and B 1.2 

Threshold between B and A 1.8 

Threshold between A and K 2.5 

 

Table 6: Crash Severity Results 

Crash Severity Probability Proportion 30 Day Total 30 Day Average 

O 0.5364 0.5368 17,752 592 

C 0.1792 0.1818 6,013 200 

B 0.1031 0.1034 3,418 114 

A 0.0811 0.0786 2,600 87 

K 0.1002 0.0994 3,286 110 

Total 1.0000 1.0000 33,069 1102 

 

 These placeholder models were useful for testing, but to effectively use the prototype RAD 

generator, realistic models are needed. The prototype software works well for the placeholder 

models with adequate variability across different realizations. In Chapter 3 we describe how we 

developed a crash risk binary logit model using naturalistic driving study data which can be applied 

to the first module of the RAD generator.  
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CHAPTER 3: UNDERSTANDING CRASH RISK USING A MULTI-LEVEL 

RANDOM PARAMETER BINARY LOGIT MODEL: APPLICATION TO 

NATURALISTIC DRIVING STUDY DATA1 

Earlier Research 

This chapter presents a framework to employ naturalistic driving study (NDS) data to 

understand and predict crash risk at a disaggregate trip level accommodating for the influence of 

trip characteristics (such as trip distance, trip proportion by speed limit, trip proportion on 

urban/rural facilities) in addition to the traditional crash factors. Our review of earlier research 

focused on two dimensions: (1) studies employing naturalistic driving data to draw insights on 

factors affecting crash occurrence and (2) research methods employed for analysis.  

Several studies have employed naturalistic data for safety analysis. The most commonly 

employed NDS datasets include 100-Car NDS (Klauer, Dingus, Neale, Sudweeks, & Ramsey, 

2006; Guo & Fang, 2013) or the SHRP2 NDS (Dingus, et al., 2016; Owens, et al., 2018; Huisingh, 

et al., 2019). The dimensions affecting crash /near crash risk examined in these NDS studies 

include various driver behaviors such as driver inattention (Klauer, Dingus, Neale, Sudweeks, & 

Ramsey, 2006; Dingus, et al., 2016), glance behavior (Bärgman, Lisovskaja, Victor, Flannagan, & 

Dozza, 2015), aggressive/risky driving and speeding (Guo & Fang, 2013; Hamzeie, Savolainen, 

& Gates, 2017; Kamrani, Arvin, & Khattak, 2019; Seacrist, et al., 2020) and secondary task 

involvement (Huisingh, et al., 2019). Apart from the two major NDS studies, a small number of 

studies examined role of driver actions in crash/near crash events for commercial drivers (Hickman 

 
1 The contents of this chapter have been previously published in a paper accepted for presentation at the 2022 

Transportation Research Board Annual Meeting. This paper by myself, Dr. Tanmoy Bhowmik, Dr. Shamsunnahar 

Yasmin, and Dr. Naveen Eluru is titled “Understanding Crash Risk using a Multi-Level Random Parameter Binary 

Logit Model: Application to Naturalistic Driving Study Data”. This paper is also under consideration for publication 

in the Transportation Research Record. I contributed to the study conception and design, data collection, model 

estimation and validation, analysis and interpretation of results, and manuscript preparation. 
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& Hanowski, 2012), and influence of behavioral and environmental factors present prior to a crash 

for teenage drivers (Carney, McGehee, Harland, Weiss, & Raby, 2015).  

Analysis of NDS data is conducted using two main types of case-control study designs: (a) 

case-cohort design and (b) case-crossover design (Guo F. , 2019). In the case-cohort design, 

control periods are randomly selected for each driver proportional to their driving time or mileage. 

In the case-crossover design, controls for an event are selected using the same subject to account 

for subject specific confounding factors. The analysis framework for crash/near crash event is the 

logistic regression model. However, to accommodate for the unobserved factors associated with 

the same driver or other common elements, multi-level random parameter logit regression 

approaches are employed. An important element of discussion in case-control study design is the 

ratio of cases and controls. Mittleman et al., (1995) suggested a 1:4 ratio for case-crossover studies. 

Most of the existing literature in safety employ a ratio ranging from 1:1 to 1:10. However, it is 

important that an examination of stable ratio of cases and controls is conducted for each empirical 

context. Furthermore, even if the parameters are unbiased, model estimates from case-control 

studies cannot be used to calculate risk directly without employing corrections for the constant 

(see (Zhang & Kai, 1998) for a detailed discussion). The case-control model outputs can only be 

used to calculate the odds ratio (Mann, 2003). The application of case-control model outputs is 

limited without the constant correction. In summary, the current study develops a case-cohort study 

design for trip level crash risk analysis. We will rigorously examine the impact of control group 

sample size on the variable parameters and identify an appropriate case to control ratio for our 

analysis. The proposed model for the estimation will also accommodate for the presence of any 

unobserved factors on trip level crash risk. It is possible that all the control group records matched 

with the case might have some common unobserved factors influencing crash risk. To 
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accommodate for this potential unobserved heterogeneity, a multi-level random parameters binary 

logit model structure is employed in our analysis. The estimated model system is used to generate 

crash risk for a hold-out sample of data records by correcting the estimated case-cohort model for 

the general trip population.  

In this context, this chapter makes two important contributions to safety literature. First, 

we present a framework to employ NDS data to understand and predict crash risk at a disaggregate 

trip level accommodating for the influence of trip characteristics (such as trip distance, trip 

proportion by speed limit, trip proportion on urban/rural facilities) in addition to the traditional 

crash factors. Second, we employ a rigorous case-control study design for understanding trip level 

crash risk. NDS data collection is not primarily geared towards understanding potential crash 

occurrence and/or severity. Given the rarity of crashes, even an exhaustive exercise as SHRP2 

produced only 1,951 crash events from 5,512,900 trips (Hankey, Perez, & McClafferty, 2016).  

Hence, trips with crashes represent only a small sample of the trips database. A binary outcome 

model of crash risk – whether a trip will result in a crash or not – will be extremely challenging to 

estimate with the small sample share. The sample share challenge observed in the trip level crash 

risk has been documented in transportation safety literature in the context of crash/near crash 

events in naturalistic driving studies (See (Guo F. , 2019) for a detailed review) and real-time crash 

risk models developed in safety literature (Abdel-Aty & Pande, 2007; Xu, Liu, & Wang, 2016). 

The current research will draw on earlier case-control literature in transportation safety to 

customize the case control study design for our analysis.  
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Data Preparation 

The data for our analysis is drawn from the SHRP2 NDS data. The data provided 

information on 1,951 trips that resulted in a crash and a random sample of 1,000,000 trips with no 

crash (from the full sample of 5.5 million trips). The data included trip data (such as start and end 

time, day of week, facility types and speeds, max acceleration and deceleration), driver 

demographics (such as age, gender, education, income, and average annual mileage), crash event 

details (such as location details, collision type, crash severity, driver impairments, and weather). 

The list of variables examined in our study is summarized in Table 7. Among the 1,951 trips 

resulting in a crash, 814 of those crashes were categorized as “low risk tire strike” and were 

excluded from the analysis, leaving 1,137 crashes to be analyzed. After further filtering the data, 

removing trips that had missing driver or trip information, we ended up with 928 trips resulting in 

a crash and 714,579 trips with no crash. 

Case Control Design 

In case-control studies, case outcomes of interest (trips with a crash) are matched with a 

select number of control outcomes (trips without a crash). In our study we adopt the matched case-

control approach. We selected the independent variables driver age, driver gender, and trip 

distance within a 20% margin for our matching exercise. With these criteria, we did not find 

enough controls for a small sample of crash trips. Hence, we restricted our analyses to 914 crash 

trips (cases). For testing different case to control ratios, we create samples with the following case 

to control ratios 1:4, 1:9, 1:14, 1:19 and 1:29.  
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Table 7: Summary of SHRP2 NDS Variables 

Variable Name Variable Description Min. Max. Mean Std. 

Dev. 

Driver Demographics 

Age 16-19 Driver age is between 16 and 19 0 1 0.023 0.151 

Age 20-24 Driver age is between 20 and 24 0 1 0.064 0.245 

Age 25-29 Driver age is between 25 and 29 0 1 0.081 0.273 

Age > 74 Driver age is greater than 74 0 1 0.074 0.263 

Avg. annual miles 

< 10,000 

Driver average annual mileage of 

less than 10,000 mi/yr  
0 1 0.229 0.420 

Avg. annual miles 

> 25,000 

Driver average annual mileage of 

greater than 25,000 mi/yr  
0 1 0.134 0.341 

Years driving Number of years driving 0 74 33.132 17.732 

Full-time worker If full time worker, 1, else, 0 0 1 0.480 0.500 

Part-time worker If part time worker, 1, else, 0 0 1 0.190 0.392 

Gender 1 if male, 0 if female 0 1 0.490 0.500 

Previous Crash 
1 if driver has been in a crash in 

the last 3 years, 0 otherwise 
0 1 0.260 0.439 

Trip Variables 

Distance 

Straight line distance between the 

start point and the end point of the 

trip 

0 577.135 7.531 14.869 

Percent Rural 
Percentage of the trip on rural 

roads 
0 100 10.497 19.566 

Percent Urban 
Percentage of the trip on urban 

roads 
0 100 54.985 28.534 

Percent < 30 mph 
Percentage of the trip where the 

speed was < 30 mph 
0 1 0.388 0.313 

Percent > 70 mph 
Percentage of the trip where the 

speed was > 70 mph 
0 1 0.018 0.089 

Mean MPH 
Mean speed of the vehicle in mph 

over the full trip 
0 88.487 28.630 12.276 

Max MPH 
Maximum speed of the vehicle in 

mph 
0 93.206 46.879 17.558 

Max acceleration 
Maximum longitudinal 

acceleration value during the trip 
-1.367 3.210 0.287 0.096 

Max deceleration 
Maximum longitudinal 

deceleration value during the trip 
-3.466 0.620 -0.325 0.111 

Max lateral accel. 
Maximum lateral acceleration 

value during the trip 
-0.238 3.483 0.381 0.131 

Max turn rate Maximum turn rate turing the trip 344.057 399.990 26.673 10.216 
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Empirical Analysis 

Parameter Variation Across Various Samples 

The first part of our model development exercise was focused on parameter variability 

across the various samples. The binary logistic model was estimated for the largest sample testing 

several variable specifications based on the variables described in the data preparation section. 

After a final specification was obtained for the 1:29 sample, the specification was estimated across 

all other samples. A summary of the model estimates across all control samples is presented in 

Table 8. A cursory examination of the parameters indicates reasonable agreement across all 

samples. The reader would note that the constant parameter across all models varies substantially. 

The variation across the constant parameter reflects the case to control sample share in the sample. 

Therefore, as the case to control ratio reduces, a reduction in the magnitude of the constant 

parameter is observed. While this is quite encouraging, the visual comparison does not indicate if 

the difference across parameters for all the samples is within statistically acceptable levels.  

Table 8: Crash Risk Estimates 
Parameters 1:4 Ratio 1:9 Ratio 1:14 Ratio 1:19 Ratio 1:29 Ratio 

Constant 
-1.589 

(0.174) 

-2.390 

(0.164) 

-2.816 

(0.160) 

-3.144 

(0.159) 

-3.533 

(0.152) 

Trip Variables 

% Trip < 30 mph 
0.383 

(0.191) 

0.352* 

(0.180) 

0.3414* 

(0.176) 

0.363 

(0.176) 

0.429 

(0.167) 

% Trip > 70 mph 
-0.792 

(0.375) 

-0.621* 

(0.348) 

-0.606* 

(0.337) 

-0.698 

(0.336) 

-0.004** 

(0.004) 

Ln(Distance + 1) 
0.170 

(0.057) 

0.144 

(0.053) 

0.149 

(0.052) 

0.153 

(0.052) 

0.103 

(0.049) 

% Trip on urban roads 
-0.005 

(0.001) 

-0.005 

(0.001) 

-0.005 

(0.001) 

-0.005 

(0.001) 

-0.005 

(0.001) 

Driver Demographics 

Drives < 10,000 mi/yr 
0.384 

(0.081) 

0.384 

(0.076) 

0.398 

(0.075) 

0.398 

(0.074) 

0.386 

(0.073) 

Drives > 25,000 mi/yr 
0.362 

(0.121) 

0.388 

(0.114) 

0.364 

(0.111) 

0.372 

(0.110) 

0.326 

(0.109) 

Full-time worker 
-0.257 

(0.082) 

-0.178 

(0.078) 

-0.204 

(0.076) 

-0.196 

(0.076) 

-0.199 

(0.075) 
*   Variable insignificant at 95% significance level; ** Variable insignificant at 90% significance level 
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To compare the parameters across the models, we employ the 1:29 control sample as the 

benchmark and evaluate if the parameters for other models are statistically different relative to this 

sample. Towards making the comparison, a revised Wald test statistic relative to the 1:29 sample 

is generated as follows: 

Parameter test statistic = 𝑎𝑏𝑠 [
(𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟−𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘)

√𝑆𝐸𝑠𝑎𝑚𝑝𝑙𝑒
2+𝑆𝐸𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2
] 

 

If the parameter test statistic computed is higher than the 90% t-statistic, the result would indicate 

significant difference across the parameters. Employing the above test statistic computation, 

revised t-statistics for all the parameters across all sample are computed. Figure 2 provides a box 

plot summary of the variations across samples for all parameters. The figure clearly highlights the 

range of the test statistic across all the parameters is quite narrow and exceeds the 90% significance 

only for one parameter. The parameter for “percentage of the trip at speeds greater than 70 mph” 

presents a range higher than the 90% confidence value of 1.65. This was not surprising given the 

variable was only marginally significant in the 1:29 control sample. We still retained the variable 

as it was intuitive. Given the stability across all samples, we selected the 1:9 control sample for 

further analysis and discussion.  
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Figure 2: Test Statistics (t-statistics) for Parameter Estimates Across Samples for each Variable 

 

Methodological Framework 

Employing the 1:9 sample, a multi-level random parameters binary logit model was 

estimated. A brief mathematical description of the multi-level random parameters model follows: 

Let 𝑞(𝑞 = 1,2,3, … … … . . 𝑚; 𝑀 = 10) represents the index for different samples for each 

stratum 𝑖 (each case-control panel of 10 records).  With this notation, the formulation takes the 

following familiar form: 

𝑣𝑖𝑞
∗ = {(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖𝑞} , 𝑣𝑖𝑞 = 1, 𝑖𝑓 𝑣𝑖𝑞

∗  > 0; 𝑣𝑖𝑞 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        (1) 

 

where, 𝑣𝑖𝑞
∗  represents the propensity for crash occurrence for sample 𝑞  in stratum 𝑖;  𝑣𝑖𝑞

∗  𝑖𝑠 1 if 

sample specific to a given stratum indicates crash and 0 other wise. 𝓏𝑖𝑞 is a vector attributes 

associated with sample 𝑞 in stratum 𝑖 and 𝛼 is the vector of corresponding mean effects. 𝛾𝑖𝑞 is a 

vector of unobserved factors affecting probability of crash occurrence. 𝜀𝑖𝑞 is an idiosyncratic error 
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term assumed to be identically and independently standard logistic distributed. 𝜚𝑖𝑞 is a vector of 

unobserved effects specific to stratum 𝑖. As highlighted earlier, within each stratum 𝑖,   we matched 

1 crash with 9 non-crash samples based on some similar characteristics including driver age, driver 

gender, and trip distance within a 20% margin. Therefore, there will be some  common unobserved 

factors across the samples, and we capture such correlation using 𝜚𝑖𝑞. Further, as we used 20% 

margin for trip distance to match crash: non-crash, it is quite possible that the correlation across 

the samples might vary based on this margin. To be specific, sample with lower trip distance 

margin (let’s say 0-5%) might exhibit stronger correlation in comparison to the sample with higher 

margins (like 20%). Hence, as opposed to fixing the correlation, we allow it to vary across samples 

by parameterizing the 𝜚𝑖𝑞 term as a function of trip distance margin as follows: 

𝜚𝑖𝑞 = 𝛽 + 𝜂 ∗ 𝑡𝑟𝑖𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑟𝑔𝑖𝑛                                     (2) 

 

where, 𝛽 (constant) and 𝜂 are vectors of unknown parameters to be estimated. In estimating the 

model, it is necessary to specify the structure for the unobserved vectors 𝛾 𝑎𝑛𝑑  𝜚 represented by 

Ω. In this paper, it is assumed that these elements are drawn from independent normal distribution: 

Ω~𝑁(0, (𝜋′2
, 𝛷2 )). Thus, the equation system for modeling the probability of crash takes the 

following form (conditional on Ω): 

𝑃𝑖𝑞 = 𝑝((𝑣𝑖𝑞
∗ )|(Ω) =  

𝑒𝑥𝑝{(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖𝑞}

1 + 𝑒𝑥𝑝{(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖𝑞}
                                                             (3) 

 

The corresponding probability for non-crash is computed as  

 

𝑄𝑖𝑞 = 1 − 𝑃𝑖𝑞                                                                                                                                              (4) 

 

Further, conditional on Ω, the joint probability 𝐿𝑖 for each stratum 𝑖 can be expressed as: 

 

𝐿𝑖 = ∫ [∏{(𝑃𝑖𝑞)
𝑣𝑖𝑞

𝑀

𝑞=1

∗ (𝑄𝑖𝑞)
(1−𝑣𝑖𝑞)

}] 𝑓(Ω)𝑑Ω                                                                                 (5) 
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As the integral defined in Equation (5) cannot be analytically estimated, we employ the 

maximum simulated estimation approach. The simulation technique approximates the likelihood 

function in Equation (5) by computing the 𝐿𝑖 for each stratum 𝑖 at different realizations drawn 

from a normal distribution, and averaging it over the different realizations (see (Eluru & Bhat, 

2007) for detail). For instance, if 𝐷𝐿𝑖 is the realization of the likelihood function in the cth draw (c 

= 1, 2, …, C), then the simulated log-likelihood function is as follows: 

𝐿𝐿 = ∑ 𝐿𝑛 (
1

𝐶
∑(𝐷𝐿𝑖)

𝐶

𝑐=1

) (6)    

The parameters to be estimated in the model are: 𝛼, 𝛾, 𝜚, 𝛽, 𝜂, 𝜋 𝑎𝑛𝑑 𝛷 . To estimate the 

proposed model, we apply Quasi-Monte Carlo simulation techniques based on the scrambled 

Halton sequence with C set to 150 (see (Eluru, Bhat, & Hensher, A mixed generalized ordered 

response midel for examining pedestrian and bicyclist injury severity level in traffic crashes, 2008; 

Bhat, Quasi-random maximumsimulated likelihood estimation of the mixed multinomial logit 

model, 2001) for examples of Quasi-Monte Carlo approaches in literature). We tested the model 

with higher C values and found the model estimation was stable. We estimate this model using 

GAUSS matrix programming language.  
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Model Results 

The model estimates are presented in Table 9. A discussion of the model results follows. 

 

Table 9: Multi-Level Random Parameters Binary Logit Model Results 

Parameters Estimate (std. err.) T-Statistic 

Constant -2.589 (0.179) -14.493 

Trip Variables 

% Trip < 30 mph 0.515 (0.196) 2.631 

% Trip > 70 mph -0.525 (0.425)** -1.236 

Ln(Distance + 1) 0.194 (0.059) 3.295 

% Trip on urban roads -0.005 (0.002) -3.428 

Driver Demographics 

Drives < 10,000 mi/yr 0.457 (0.088) 5.197 

Drives > 25,000 mi/yr 0.466 (0.141) 3.310 

Full-time worker -3.340 (2.193)* -1.523 

Full-time worker random effect 3.634 (1.777) 2.045 
*   Variable insignificant at 95% significance level; ** Variable insignificant at 85% significance level 

Trip level characteristics 

The trip distance parameter was calculated as the natural log of the straight-line distance 

of the trip plus one. As the distance increases the crash risk associated also increases, highlighting 

that increased exposure to driving results in an increased risk of a crash. The percentage of trip in 

a speed category was tested in the model and offered interesting results. We employed the 

percentage of trip between 30 and 70 mph as the base category. The parameter results indicate that 

as the percentage of the trip under 30 mph increases, the risk associated with a trip resulting in a 

crash increases. On the other hand, when the percentage of trip over 70 mph increases, the crash 

risk for the trip reduces. The reader would note that the percentages by speed categories are likely 

to interact and hence determining the net magnitude of the variable impact is not straightforward. 

In the model we considered rural and other roads as the base category and found that as the 

proportion of a trip on urban roads increases, the risk of a crash decreases. The result could be 

highlighting potential driver alertness in urban conditions as traffic conflicts are expected.  
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Driver characteristics 

We also examined driver annual mileage as a predictor of crash risk. The variable was 

categorized into 3 groups and the 10,000 to 25,000 range was considered as the base. The model 

estimates indicate that drivers in the lower range (<10,000) and the higher range (>25,000) are at 

a higher risk relative to the drivers in the normal range (10,000 – 25,000). It is also interesting to 

note that the magnitude of the impacts for lower and higher mileage ranges are reasonably close. 

We examined if the employment status had an impact on crash risk. The model parameter for full-

time worker indicates these drivers are less at risk compared to others.  

Panel and Random effects 

The model estimation process considered multiple forms of unobserved variables. These 

include: (a) common unobserved effects for each case-control panel of 10 records, (b) common 

unobserved factors affecting the error margin in the trip distance variable, and (c) random effects 

for all independent variables. Among these parameters tested only one random effect parameter 

offered statistically significant result. The result related to full-time worker offered a significant 

variation indicating that while full-time workers are likely to experience a lower crash risk on 

average there is substantial variation in the actual reduction. In fact, the result indicates that among 

full-time drivers, about 82.1% of the time, the crash risk associated will be lower while for the 

remaining 17.9% of the time crash risk can increase.  

Model Application  

In order for this model to be applied, corrections would need to be made to the constant to 

match the actual crash to no crash ratio in the general trip population. In the study we tested crash 

to no crash ratios of 1:4, 1:9, 1:14, 1:19, and 1:29, but for the full dataset the crash to no crash ratio 

was 1:4,850. In order to calculate this, we adjusted the constant for random effect model so that 
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the probability of a crash would match the 1:4,850 ratio of 0.0002. The resulting calibrated model 

parameter for the constant was -8.5527. This model was then tested on a sample dataset of 4,500 

randomly selected non-crash trips that had not been used in previous modeling and 500 randomly 

selected crash trips. A comparison of the results for the original and calibrated models is shown in 

Table 10. The results in Table 10 clearly indicate that the calibrated model captures the true ratio 

of crash to no crash trips.  

Table 10: Comparison of Model Predictions for Crash and No Crash Testing Datasets 

 
Original Random Effect 

Model 

Calibrated Random Effect 

Model 

Probability of crash using 500 

crash trip testing set 
0.0534 0.0002 

Probability of no crash using 

4,500 no crash  trip testing set 
0.9466 0.9998 

 

Conclusion 

Traditional crash data has been instrumental in understanding the influence of various 

factors drawn from driver demographics, vehicle characteristics, roadway characteristics, crash 

characteristics, environmental factors on crash frequency and severity. However, we still have 

challenges to truly understand the underlying cause of the crash as several important information 

including characteristics of the trip (trip proportion on different facilities: speed limit, roadway 

functional class), behavior (like eye movement) and action of the driver (actual speed of the 

vehicle) at the time of crash are often missing from the dataset. To that extent, the current research 

effort adopted the Second Strategic Highway Research Program (SHRP2) naturalistic driving 

study data (NDS), a detailed database recording real time information for both crash and non-crash 

trips, to understand and predict the risk of crash occurrence at the finest resolution (trip level). As 

opposed to focusing on driver demographics, the NDS data allows us to truly understand the 

underlying timeline of the crash and account for driver behavior in the event of the crash. However, 
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a limitation associated with NDS data is its’ rarity in crash sample relative to non-crash samples 

(<0.01 %). Estimating a binary outcome model for such rarity will be extremely challenging. 

Hence, the current study employs a rigorous case-control study design for understanding trip level 

crash risk. 

For the case-control design, trips with a crash are matched with non-crash trips based on 

three common matching variables including driver age, driver gender, and trip distance within a 

20% margin. Further, we vary the number of controls in the case-control design starting from 4 to 

29 (to be specific, 1:4, 1:9, 1:14, 1:19 and 1:29) and conduct a revised Wald test statistic test to 

check for the parameter consistency across the samples. Specifically, we employ the 1:29 control 

sample as the population benchmark and evaluate if the parameters for other models are 

statistically different or not. The result clearly highlights the stability in parameter estimates across 

the samples and hence, we restrict to the 1:9 case-control ratio for further analysis. In particular, 

employing the 1:9 sample, a multi-level random parameters binary logit model was estimated 

while considering a comprehensive list of factors including trip characteristics (like day of week, 

facility types, max acceleration and deceleration), driver demographics (age, gender, income) and 

crash level factors (location, collision type, driver impairments, and weather). The model findings 

clearly illustrate the significant impact of several variables on the crash risk propensity including 

trip distance, trip proportion of different speed limit roads and facilities, driver’s driving 

characteristics and employment status. Further, the proposed model also accommodates for the 

presence of several unobserved factors on trip level crash risk with respect to correlation and 

random effects. However, we only find one random effect parameter offered statistically 

significant result for the full-time worker variable. The result indicates that among drivers 

employed full time, about 82.1% of the time, the crash risk associated with a trip will be lower 
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while for the remaining 17.9% of the time crash risk associated with a trip can increase. The 

analysis is further augmented by conducting a prediction exercise on a hold-out sample of data 

records that is not used for model estimation. However, prior to generating the prediction, we 

calibrate the constant of the model to generate a population conforming crash risk model. Findings 

from the prediction exercise further reinforces the applicability of the model.  

The study is not without limitations. The case-control design adopted in the study focused 

on matching the crashes with non-crashes based on three common attributes. However, there is 

scope to create multiple case-control designs considering different set of common factors such as, 

trip spend on different facilities (rural/urban), trip spend on different speed limit and other 

exogenous variables. It will be really interesting to see if the result varies across these different 

experimental designs. Exploring these characterizations is an avenue for future research. Finally, 

recent advances in rare event literature to study skewed outcome contexts is also an avenue of 

research to address potential bias in binary logit model estimation for skewed samples (see (King 

& Zeng, 2001; Calabrese & Osmetti, 2013; Agarwal, Narasimhan, Kalyanakrishnan, & Agarwal, 

2014)).  
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CHAPTER 4: CONCLUSION 

The traditional analysis paradigm relying on observed data only allows relative 

comparisons between analysis methods and is unable to establish how well the methods mimic the 

true underlying crash generation process - often unobserved or known only partially with various 

degrees of uncertainty. At the same time, existing data sources and availability of data for model 

calibration and validation pose an important challenge to safety performance and crash 

modification analysis. Most safety performance analysis employs cross-sectional and time-series 

datasets. Assumptions are made about the data, but whether the assumptions truly characterize the 

safety data generation in real world remains unknown. To address this issue, this thesis proposes 

the generation of an artificial dataset based on a stochastic but well-defined data generation 

process. As part of the artificial data generation, this thesis also proposes a framework for 

employing NDS data to understand and predict crash risk at a disaggregate trip level.  

 In this thesis we first propose a conceptual framework for realistic crash data generation 

that mimics the true process of crash occurrence. A series of trips simulate daily traffic patterns, 

and each trip is evaluated for crash risk. Once a crash is established to occur, crash details such as 

crash location, crash type, and crash severity are generated. Given the complexity and data 

processing challenges with generating models, the software was coded assuming place holder 

models for crash risk, crash location, crash type, and crash severity. As a second part of my thesis, 

we propose a framework for predicting crash risk (first module) using NDS data. This framework 

proposes a case-control study design for understanding trip level crash risk, matching crash and 

non-crash trips based on driver age, driver gender, and trip distance within a 20% margin. In this 

study we vary the number of controls, conducting a revised Wald test statistic test on control 

samples of 1:4, 1:9, 1:14, 1:19, and 1:29, employing the 1:29 control sample as the benchmark. 
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Since there is stability in parameter estimates across the samples, the 1:9 sample is used in 

estimating a multi-level random parameters binary logit model. In estimating the model, several 

variables were found to have a significant impact on crash risk propensity, including trip distance, 

trip proportion of different speed limit roads and facilities, driver’s driving characteristics and 

employment status. In developing this model, multiple forms of unobserved variables were also 

tested, including common unobserved effects for each case-control panel, common unobserved 

factors affecting the error margin in the trip distance variable, and random effects for all 

independent variables. However, the only random effect parameter that offered statistically 

significant results was for the full-time worker variable, indicating that among drivers employed 

full time, about 82.1% of the time, the crash risk associated with a trip will be lower while for the 

remaining 17.9% of the time crash risk associated with a trip can increase. This model was 

calibrated by modifying the constant parameter to generate a population conforming risk model, 

and then tested on a hold-out sample of data records.  

 This thesis contributes to safety research through the development of a prototype RAD 

generator for traffic crash data, which will lead to new information about the underlying causes of 

crashes and ways to make our roadways safer. In future research, realistic models for other 

modules will need to be developed and then embedded within the prototype simulator.  
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APPENDIX A:  

CRASH GENERATION PYTHON CODE 
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# Generate list of crashes for the number of days requested 

# Input:  Number of days to test, list of trips, dictionary of crash risk model coefficients 

#            (int, list[Dictionary], Dictionary) 

# Output: List of crashes for each day tested 

#              (list[list[Dictionary]]) 

def generate_crashes(numRuns, tripsList, crashCoeff): 

         

    # Create list of list of crashes to output 

    crashList = [[] for i in range(numRuns)] 

         

    # For each day tested 

    for i in range(numRuns): 

     

        # Set random seed for crashes 

        random.seed(100000+i) 

         

        # For each trip in list of trips 

        for record in tripsList: 

 

            # Generate random number between 0 and 1 

            rand = random.random() 

             

# Determine utility value of trip 

         record["util"] = util.util_calc(crashCoeff, record) 

 

            # Calculate probability of no crash based on trip data  

            prob = 1 – (1 / (1 + math.exp(-(record["util"])))) 

             

            # If rand is greater than crash probability, crash; else, no crash 

            if rand > prob: 

                crash = 1 

            else: 

                crash = 0 

                 

            # If crash, add record to crash list 

            if crash: 

                crashRecord = record.copy() 

                crashList[i].append(crashRecord) 

 

    # Return list of crashes 

    return crashList 
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APPENDIX B:  

IRB WAIVER 
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