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ABSTRACT

Convolutional Neural Networks (CNNs) have been at the frontier of the revolution within the field

of computer vision. Since the advent of AlexNet in 2012, neural networks with CNN architectures

have surpassed human-level capabilities for many cognitive tasks. As the neural networks are

integrated in many safety critical applications such as autonomous vehicles, it is critical that they

are robust and resilient to errors. Unfortunately, it has recently been observed that deep neural

network models are susceptible to adversarial perturbations which are imperceptible to human

vision. In this thesis, we propose a solution to defend neural networks against white box adversarial

attacks. The proposed defense is based on activation pattern analysis in the frequency domain. The

technique is evaluated and compared with state-of-the-art techniques on the CIFAR-10 dataset.
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NOTATION

x : Original Image

xadv : Adversarial Image

f : Classifier

y : Label of image x

f(x) : Output logits

ypred : Predicted label of the model

yadv : Output label for adversarial image

ε : Perturbation budget

||.||p : Lp norm

L(): Cross-entropy loss function

∇xL(): Gradient of loss with respect to the input image

KL(): Kullback Leibler divergence

x



CHAPTER 1: INTRODUCTION

The field of Computer Vision has seen significant improvements in the past 2 decades across variety

of tasks [Deng et al., 2009]. Most of these improvements have been led by the Convolutional

Neural Network(CNN) architecture. CNNs have also exceeded human performance in some of the

tasks. This progress and applications of CNNs is not only limited to the academia. CNN based

models have also been used by the industry to solve similar Computer Vision problems on a much

larger scale like autonomous driving. Some of these real-world applications require extreme safety

critical systems. It has been long assumed that due its good empirical performance CNNs are safe-

to-deploy in wild. However, since past few years this assumption has come under a scrutiny. These

otherwise accurate models fail miserably when the input is perturbed smartly. These perturbations

are so small in the pixel values that it’s almost imperceptible to us humans and yet the CNNs fail

to predict the same output.

These almost invisible perturbations are called adversarial attacks. This perturbation is added to

the original image to create the adversarial image. One such example of adversarial image is shown

in Figure 1.1. The adversarial image in the Figure 1.1b has a l∞ distance of 8/255 which means

the maximum perturbation to original value for any pixel is 8. These adversarial image under a Lp

norm xadvp of an input image x can be mathematically defined as follows.

∃xadvp : argmax(f(x)) 6= argmax(f(xadvp )) ∧ ||xadv − x||p ≤ ε (1.1)

where f(x) is output logits of a Neural Network and argmax(f(x)) will give us the predicted

label ypred. This definition can be applied to other Machine Learning models but in this work

we’re only focused on the Neural Network models applied at test time. Also, adversarial attacks
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(a) (b)

Figure 1.1: Example of image and its adversarial counterpart from ImageNet dataset [Deng et al.,
2009]. The image in (a) was correctly classified by ResNet50 [He et al., 2016] as “Tiger”. How-
ever, image in (b) was classified as “Egyptian Cat” by the same network.

do not necessarily have to be inside a hyper-sphere around an input image. It can also be an

image for which humans can classify it as “None” class but the model outputs a label with high

confidence. However, we’re only concerned with the adversarial examples defined in Equation 1.1.

They’re called the ε-adversarial examples and we’ll refer to them simply as adversarial examples.

Finding an adversarial example around a given input sample using Equation 1.1 is intractable since

there can be infinite points inside the ε-radius hyper-sphere around the sample. To resolve this a

lot of the literature use a surrogate loss function to generate the adversarial example as follows.

xadvp = argmax
x′

L(f(x′), y), ||x′ − x||p ≤ ε (1.2)

Equation 1.2 tries to find a sample inside the hyper-sphere around the original sample which max-

imize the cross-entropy loss of the model. This approximation to the Equation 1.1 works really

well in practice. Since the introduction of Adversarial examples in [Szegedy et al., 2014], a lot of

defense methods have been proposed. However, these defenses have been shown to be at odds with
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the natural accuracy [Zhang et al., 2019]. There have been a large array of research already done to

explain why these phenomena happens. One such interesting work was presented in [Wang et al.,

2020] which talks about the importance of lower and higher frequency components in generaliza-

tion of CNN models.

Motivated by this we present an end-to-end pipeline to train a robust model by selecting only some

frequencies for image classification. The frequency selection is done using the method described

in [Xu et al., 2020] by creating attention map over the frequency spectrum. We combine that

method with Adversarial Training described in [Zhang et al., 2019] to achieve a robust model. The

goal of this work is to shed some light on the frequency aspect of the images to explain robust

generalization.
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CHAPTER 2: LITERATURE REVIEW

According to [Chakraborty et al., 2018] there can be different types of adversarial attacks depend-

ing on the threat surface. In this work we will only focus on the attacks that are applied on the

inference after the model is trained. The very first works which kicked off the adversarial at-

tacks field were presented in [Szegedy et al., 2014, Biggio et al., 2013]. Although these methods

were computationally expensive to generate the adversarial attacks. Soon Goodfellow et al. [2015]

presented a method called FGSM which generated the adversarial attacks quickly. They also pre-

sented Adversarial Training by using the adversarial examples to train the model more robustly.

Since then a lot of attacks and defenses have been proposed by the community. To overcome

FGSM’s less effectiveness, iterative attacks like Projected Gradient Descent [Madry et al., 2018]

and Basic Iterative Method [Kurakin et al., 2017] were presented. These attacks that require ac-

cess to the model’s parameters to perform the backward pass are called white box. In real life

application an adversary might not have access to the weights. However, it was shown in [Szegedy

et al., 2014, Goodfellow et al., 2015] that these samples can be generated on one model and can

be transferred to other model. This transferable property of the attacks paves way to the black box

methods.

There have been number of defenses approaches proposed by the community to defend the models

against these attacks. One of the most effective attacks is the adversarial training introduced in

[Goodfellow et al., 2015] uses the adversarial samples from attacks in training to train a robust

model. Every white box attack can be used to train a more robust model and more sophisticated

attacks like PGD can arguably generate more robust models. Another effective defense method

called Randomized Smoothing was shown theoretically to guarantee robustness against adversarial

attacks by [Cohen et al., 2019]. Randomized Smoothing based methods add random noise to input

image and takes the maximum of all classifier decisions to give final decision. There have also
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been some methods proposed in [Dhillon et al., 2018] which adds stochasticity to the model to

defend against adversarial attacks. Although it was shown by [Athalye et al., 2018] that stochastic

methods like this can be defeated by taking the expected gradient over random gradients sampled

by adding noise. Recently, some work have been done to create robust models which are inspired

from human perception like the ones presented in [Reddy et al., 2020, Dapello et al., 2020]. Both

of these methods are very recent have shown promising results. Some researchers like [Xiao et al.,

2019] have also proposed modification in the activation functions to increase robustness.

Some of these adversarial defenses are really effective against strong adversarial attacks. However,

they have also shown to reduce the natural accuracy - accuracy on natural images. [Zhang et al.,

2019] showed theoretically that robust accuracy is at odds with the natural accuracy. They also

proposed a method to achieve the best trade-off. Historically speaking newer defenses are later

broken by stronger attacks and stronger attacks can be defended against by even better methods.

But to better defend it and end the cycle we also need to look at the underlying reason which causes

this phenomena to occur.

There have been great deal of study to explain the existence of these adversarial examples. With

the help of topology [Shafahi et al., 2019] recently proved a lower bound on probability of adver-

sarial example’s existence which shows that they can not be completely avoided. There’s also an

ongoing debate about the hypothesis that one explanation of these adversarial example is the fact

that Neural Networks, as opposed to humans, focus more on the texture of the object rather than

the shape. This hypothesis was presented by [Brendel and Bethge, 2019, Hermann and Lampinen,

2020] initially. Another explanation was presented by [Szegedy et al., 2014] who showed that

Neural Networks have high Local Lipschitzness which can be one of the cause for the existence

of the adversarial examples. Recently, [Wang et al., 2020] showed the effect high(HFC) and low

frequency components(LFC) have on a Neural Network’s generalization on image classification

task. According to their work Naturally trained Neural Networks relies on HFCs to make decision.
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If there’s an alteration in the HFC it won’t be visible to the human eye but the Neural Network will

change its decision. Their work has been the primary motivation for our research presented here.
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CHAPTER 3: METHOD

Our method utilizes DCTNet architecture [Xu et al., 2020] and TRADES algorithm [Zhang et al.,

2019] to adversarially train a model in end-to-end fashion which selects frequencies based on input

to maximize the robust accuracy. In this chapter we have described the crucial components of the

method.

DCTNet

Figure 3.1: Overview of the DCTNet architecture

DCTNet as defined in Xu et al. [2020] can be applied to any existing CNN architecture that takes

input as images. The overall architecture is shown in Figure 3.1. It takes input image in frequency

domain instead of usual spatial domain. To do so, the original backbone architecture has to be

modified slightly to accommodate the input. We will go over the most important changes of the

DCTNet as opposed to a typical Convolutional Neural Network in this section.

Input Module

The overall flow of the input is shown in Figure 3.2. As described earlier, the model takes input

in frequency domain. To convert from spatial domain of size HxWx3(H: height, W: width) to

frequency domain it uses Discrete Cosine Transform. The reason to choose DCT instead of Fast

Fourier Transform is that FFT introduces complex numbers which increases the computational
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complexity of the model. The module first transforms the RGB input image into YCbCr space and

then computes the DCT of YCbCr image by dividing the image in each Y, Cb and Cr channels into

blocks of size 8x8 and computing 8x8 DCT coefficients for each block. Each of these 64 DCT

coefficients represent a frequency in certain direction. If the YCbCr image is of H ×W × 3 shape

the DCT will have H
8
×W

8
blocks for each channels. Within one block the top left corner coefficient

will represent the weight of the DC component.

Figure 3.2: Overview of input pipeline

Once we have this DCT blocks we rearrange it to represent all same frequency components in the

same channels. So for example, all DC component from each block of Y channel’s DCT will be

grouped together in channel 0, 2nd coefficient from each block of Y channel in channel 1 and so on.

This will be done for each channel from YCbCr so there will be 3× 64 = 192 frequency channels

where first 64 will be for DCT of Y channel, 64-127 for DCT of Cb and 128-191 for DCT of Cr.

An example of this rearrangement module is shown in Figure 3.3. The example given in the figure

is for an input with single channel of size H ×W = 32× 32. Notice as we rearrange the block the

spatial size will change to H
8
× W

8
.

To generate adversarial examples in end-to-end manner we have to generate them on the spatial

domain and the whole module has to be differentiable. In our work we use the torchjpeg mod-

ule[Ehrlich et al., 2020] which computes DCT as described above using PyTorch’s[Paszke et al.,

2019] differentiable operations.
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Figure 3.3: DCT blocks to DCT frequency channels rearrangements

Channel Selection

Once the image is transformed into DCT coefficient channels the DCTNet selects frequencies

dynamically which maximizes the classification performance. The module creates attention maps

using a squeeze-excitation block [Hu et al., 2018] like branch which then samples from Bernoulli

distribution to create attention map using a Gumble Softmax module [Maddison et al., 2017, Jang

et al., 2017, Tucker et al., 2017]. The Gumble Softmax module is used to make the sampling

differentiable. The training also adds a regularization term λ which sums up the attention map to

keep the attention map sparse. The attention map when multiplied with the channels will either

turn a frequency on or off. The module is called the Gate Module in [Xu et al., 2020].

Backbone Modification

The output of the Gate Module is passed on to the ResNet-18 architecture. However, the original

DCTNet architecture from [Xu et al., 2020] modifies the ResNet-18 architecture. The input to the

CNN model after all processing described above becomes H
8
× W

8
× 192. So the DCTNet removes

the first sequence of ’Conv-BatchNorm-ReLU-MaxPool’ layers from backbone as the resolution

is already downsampled. The method selects the input height and width of the RGB image such

9



that the spatial size of the input to the modified backbone is similar to spatial size of the output

of the original backbone’s Maxpool layer. In our work we have worked on CIFAR-10 dataset

[Krizhevsky, 2009].

The original backbone architecture ResNet-18 for CIFAR-10 is taken from [Phan, 2021]. To match

the spatial shape of the first maxpool layer we resize the original RGB images of CIFAR-10 from

32 × 32 to 128 × 128. This will keep the output shape after the Gate Module as 16 × 16 × 192

which will go to the first residual block of the modified backbone.

TRADES Adversarial Training

To defend Convolutional Neural Networks against adversarial attacks many defenses have been

proposed. The most effective among all these defenses is Adversarial Training. Adversarial Train-

ing uses adversarial images at training time to train the model. This effectively leads the model to

learn weights that are robust against adversarial attacks. AT can be formalised as follows.

w∗ = argmin
w

argmax
x′

L(f(x′), y), ||x′ − x||p ≤ ε (3.1)

The inner loop in Equation 3.1 generates the adversarial example by maximizing the loss and the

outer loop trains on those adversarial examples to minimize the loss. This simple yet effective

training method was first introduced in [Szegedy et al., 2014]. Since then there has been a lot of

improvement made in the AT methods. Stronger attacks can be used to generate more effective

adversarial examples which can be used to train robust models. However, [Zhang et al., 2019]

showed with theory that there’s a trade-off between robust accuracy and the natural accuracy of a

classifier. They also derived a loss to tune the trade-off using a hyperparameter β. The loss function

is shown in Equation 3.2. The KL in the equation represents the Kullback Leibler divergence. The

10



hyperparameter β will control the trade-off between the robust and the natural accuracy of the

model. Higher the value of β higher the robustness and lesser the natural accuracy. We can use

any adversarial attack to generate the xadv which will also affect the robustness of the model.

L(f(x), y) + βKL(f(xadv), f(x)) (3.2)

In this work we have used Projected Gradient Descent(PGD) [Madry et al., 2018] attack to generate

adversarial example at each iteration of the training. The PGD method is an iterative way of

generating the adversarial examples in a robust way to attack the model effectively. Each step in

the iteration is defined as shown in Equation 3.3. The “clip” function in the equation is to clip

the adversarial image’s values in the x + ε where ε is the perturbation budget. The α represents

the steps size in direction of maximum loss. PGD initialize the xadv0 by randomly adding gaussian

noise around the original sample.

xadvt+1 = clip(xadvt + α.sign(∇xL(f(xadvt ), y))) (3.3)

11



CHAPTER 4: EXPERIMENTS

Dataset

The entire model is trained on the CIFAR-10 dataset[Krizhevsky, 2009] which contains 50,000

RGB training images with 32x32 dimension. Each of these images belong to one of the 10 classes.

We resize these images to 146× 146 shape and randomly crop resized image to 128× 128 dimen-

sion.

Adversarial Training

We set the hyperparameters β = 2.0, step size α = 0.007, number of steps as 10 and perturbation

budget ε = 0.031 for TRADES adversarial training based on PGD. To train the model we set the

initial learning rate as 0.01 with Warmup Cosine LR scheduler to update it at each epoch. We train

the model for 200 epochs. The regularization term is λ = 0.1 for the attention module.

Robustness Test

We test our robust model against multiple adversarial attacks which includes FGSM [Goodfellow

et al., 2015], BIM [Kurakin et al., 2017], PGD-20 [Madry et al., 2018], and AutoAttack [Croce

and Hein, 2020b]. Each attacks is described in the following sub-sections. We also describe the

test setup detail which uses these attacks to test the trained model rigorously. In our work we use

the l∞ metric to generate the adversarial attacks.

12



FGSM

The method was proposed in [Goodfellow et al., 2015] to generate adversarial samples in less

time complexity. The method can be formalized as shown in Equation 4.1. It takes step of size ε

in the direction of the derivative of the cross entropy loss to maximize the loss while keeping the

perturbation size below the constraint. The only hyperparameter this method has is the perturbation

budget ε.

xadv = x+ ε.sign(∇xL(f(x), y)) (4.1)

PGD and BIM

Linear methods like FGSM to generate adversarial samples are not really effective. The adversarial

samples generated by them can be easily evaded. To overcome this iterative methods like PGD and

Basic Iterative Method(BIM) [Kurakin et al., 2017] have been proposed. These method work as

described earlier in the section “TRADES Adversarial Training”. The only difference between

PGD and BIM is that PGD initialize xadv0 as adding gaussian noise around the original sample

while BIM doesn’t add any noise. These methods are also sometimes called FGSM-k as it applies

the FGSM attacks iteratively k times. According to [Dong et al., 2020] both of these methods have

negligible difference in terms of attack effectiveness.

AutoAttack

The biggest issue with most of the attacks used is that they have a lot of hyperparameters that

need to be chosen carefully. Sometimes these choice can give a wrong idea of robustness of the

13



model. To deal with this issue authors in [Croce and Hein, 2020b] proposed a hyperparameter

free version of the iterative attacks. It is one of the strongest attack in existence. The attack uses

ensemble of 4 underlying attacks: APGD-CE, APGD-DLR, FAB [Croce and Hein, 2020a], and

Square Attack [Andriushchenko et al., 2020]. The first 2 attacks are modified version of PGD to

make it parameter free. APGD-DLR uses a novel Difference of Logits Ratio loss function inplace

of a typical Cross Entropy loss.

Evaluation and Results

To compare the trained model with TRADES we tested it against PGD and AutoAttack attacks.

For PGD the iterations were set as 20, α = 0.003 and ε = 8/255. The results are shown in table

Table 4.1. One thing to note here is that since our method used ResNet-18 as the backbone, we

picked the results from Table 4 of the [Zhang et al., 2019] to make a fair comparison. However, we

couldn’t find the results for robust accuracy using ResNet-18 based TRADES against AutoAttack.

The AutoAttack result in the table is from the [Croce et al., 2020]. The model used in that is the

popular WideResNet-34 model [Zagoruyko and Komodakis, 2016]. As shown in the table the to

get the same robust accuracy the natural accuracy of our method drops to 80%.

We also performed another experiment against FGSM and BIM attacks to see the robust accuracy

of our method against different perturbation budgets. The budget was set to be (1-8, 16, 32)/255.

We plot its robust accuracy against ε in Figure 4.1. As we can see the our DCT based method with

Adversarial Training does better than same method without the TRADES adversarial training.

These experiments shows the effectiveness of the model trained. However, the main goal of this

work is not to get the state-of-the-art robustness but rather see what frequencies are used to achieve

the robustness. The average attention maps of frequency selection module are shown in Figure 4.2

and Figure 4.3 for the naturally trained and adversarially trained models respectively. The maps

14



(a) (b)

Figure 4.1: Results for our DCT based model with and without TRADES training against FGSM
attack in (a) and BIM attack in (b) for different perturbation budget.

(a) (b) (c)

Figure 4.2: This figures show the frequency selection attention map averaged over test set for
the naturally trained DCT based model. Figure (a), (b) and (c) are for Y, Cb and Cr components
respectively.

show that for the Y map, which represents the image information in grey scale, the robust model

lets the lowest frequency pass only 75% of the time while the naturally trained model lets it pass

96% time. The robust model gives a little higher weight to other lower frequencies too. Another

surprising thing to note is that the robust model turns on the Cb channel’s lowest frequnecy with

86% probability which just represent the color information.

We believe that the robustness and natural accuracy tradeoff can still be optimized with proper

hyperparameter fine-tuning.
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(a) (b) (c)

Figure 4.3: This figures show the frequency selection attention map averaged over test set for
the DCT based model trained with TRADES AT. Figure (a), (b) and (c) are for Y, Cb and Cr
components respectively.

Table 4.1: Robustness comparison with [Zhang et al., 2019]

Models
Threat Model TRADES+DCT DCT TRADES

Clean 80 84 89
PGD-20 37 1 37

AutoAttack 41 0 53
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CHAPTER 5: CONCLUSION

In this thesis, we demonstrated and end-to-end pipeline which trains a robust CNN model by

creating a frequency filter. This model was rigorously evaluated against some adversarial strong

attacks. The results presented here are competitive to other robust models. The pipeline also gave

us insight into the importance of the frequency spectrum using Discrete Cosine Transform. From

results we can see that the lowest 3-4 frequencies which contains the highest information should

be almost equally important to train a robust model rather than the lowest only.
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