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ABSTRACT

Atmospheric retrieval is the inverse modeling method where atmospheric properties are constrained

based on measured spectra. Due to the low signal-to-noise ratios of exoplanet observations, exo-

planetary retrieval codes pair a radiative transfer (RT) simulator with a Bayesian statistical frame-

work in order to characterize the distribution of atmospheric parameters that could explain the

observations (the posterior distribution). This requires on the order of 106 RT model evaluations,

which requires hours to days of compute time depending on model complexity. In this work, I

investigate atmospheric retrieval methods and apply them to observations of hot Jupiters. Chapter

2 presents a set of RT and retrieval tests to validate the Bayesian Atmospheric Radiative Transfer

(BART) retrieval code and applies BART to the emission spectrum of HD 189733 b. Chapter 3

investigates the dayside atmosphere of WASP-12b and resolves a tension in the literature over its

composition. Chapter 4 introduces a machine learning direct retrieval framework which spawns

virtual machines, generates spectra, trains neural networks, and performs atmospheric retrievals

using trained neural networks. Chapter 5 builds on this and presents a machine learning indirect

retrieval method, where the retrieval is performed using a neural network surrogate model for RT

within a Bayesian framework, and compares it with BART. Chapter 6 utilizes the neural network

surrogate modeling approach for thermochemical equilibrium chemistry models and compares it

with other equilibrium estimation methods. Appendices address retrieval errors induced by choice

of wavenumber gridding for opacity-sampling RT schemes, neural network model selection, the

effects of data set size on neural network training, and the accuracy of Bayesian frameworks used

for atmospheric retrieval.
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CHAPTER 1: INTRODUCTION

Over the past few decades, the number of confirmed exoplanets has ballooned to over 5000 (NASA

Exoplanet Archive) thanks to planet-hunting instruments and missions like the High-Accuracy Ra-

dial velocity Planetary Searcher, Kepler, and the Transiting Exoplanet Survey Satellite (Mayor

et al. 2003, Borucki et al. 2010, Ricker et al. 2015). Yet, the atmospheres of most of these exoplan-

ets remain a mystery. The vast majority of exoplanets are unable to be resolved separately from the

host star, preventing a direct measurement of their emission spectra. Around 900 exoplanets have

been detected via the radial velocity (RV) method, where the presence of an exoplanet is deter-

mined from the Doppler shift it induces on the stellar emission lines as it orbits the star. However,

RV does not offer meaningful constraints on the atmospheric properties of the exoplanet, as it is

only sensitive to the planet’s mass and period. While some exoplanets have been detected via other

methods like microlensing and timing variations, over 75% of confirmed exoplanets transit their

host star, enabling not only their discovery, but also the potential for characterizing their atmo-

sphere. Even so, of the nearly 4000 transiting exoplanets, only a small fraction have been observed

over enough wavelength bands to provide meaningful constraints on their atmospheres.

As an exoplanet transits in front of its host star with respect to the observer (“primary transit”),

the measured flux from the host star is reduced based on the relative size of the planet to the star.

Some of the starlight is filtered through planet’s atmosphere, where it is absorbed by the molecules

present. This causes variations in the measured reduction in flux with respect to wavelength, which

translates to variations in the apparent radius of the planet with respect to wavelength. These
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variations provide the data necessary to infer some of the atmospheric properties via the inverse

modeling technique known as atmospheric retrieval (see review by Madhusudhan 2018). However,

due to the starlight’s path through the limb of the atmosphere, the atmosphere appears optically

thick at all but the lowest pressures, which provides an incomplete view of how the temperature

and molecular abundances vary with altitude (de Wit & Seager 2013).

A subset of these transiting exoplanets can be characterized in greater detail by current instru-

mentation. As a transiting planet orbits the star, some appear to pass behind the star from the

perspective of the observer (“secondary eclipse”). This results in a minute reduction in the total

measured flux of the system, which corresponds to the emission of the planet. Thus, by computing

the difference between the flux out of and during eclipse, the planet’s emission spectrum can be

inferred.

More detailed techniques to retrieve exoplanet atmospheres have been demonstrated in the past

decade. Two-dimensional maps of the limb or dayside of an exoplanet can be inferred based on

transit or eclipse measurements during ingress and egress (e.g., Majeau et al. 2012). Additionally,

by observing the planet throughout its entire orbit, the resulting phase curve data can be used to

infer longitudinal variations in the atmospheric properties (e.g., de Wit et al. 2012). However, at

present, this is only possible for the hottest and largest exoplanets, which emit more radiation than

smaller, cooler objects.
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1.1 Atmospheric Retrieval

The radiative transfer (RT) equation describes how radiation is scattered, absorbed, and emitted

as it interacts with some medium, like a planet’s atmosphere (Goody & Yung 1995). Using the

RT equation under certain assumptions, a given set of atmospheric conditions can be used to de-

terministically calculate the corresponding spectrum. In theory, an infinite resolution spectrum

would correspond exactly to some underlying atmospheric model parameters. In practice, the

finite resolution of instruments, especially the low spectral resolutions of current exoplanet ob-

servations, coupled with the spectrum’s uncertainties induce uncertainties in the retrieved model

parameters, resulting in a distribution of possibilities for each parameter. Consequently, this de-

generacy problem requires exoplanet retrieval algorithms to combine a RT code with a Bayesian

statistics framework in order to characterize that posterior distribution (Madhusudhan 2018).

Exoplanet retrieval codes typically employ either a Markov chain Monte Carlo (MCMC; e.g., ter

Braak 2006, ter Braak & Vrugt 2008, Vrugt & ter Braak 2011, Foreman-Mackey et al. 2013) or

nested sampling (NS; e.g., Feroz & Hobson 2008, Feroz et al. 2009, Handley et al. 2015, Speagle

2020, Buchner 2021) algorithm for the Bayesian framework and usually require on the order of

hours to days of compute time, depending on the complexity of the RT forward model. MCMC

and NS approximate the posterior through different means. MCMC randomly explores the phase

space, probabilistically accepting steps according to the calculated χ2 between the model and the

observed data; by repeating this for many iterations (typically on the order of 106 for exoplanet

retrievals), the distribution of accepted steps converges to the posterior. On the other hand, NS

seeds the space with N live points by making random draws from the prior and calculating the

corresponding likelihoods (related to χ2, as in MCMC). Then, it iteratively draws a new point

from the prior, calculates the likelihood, and, if it is greater than the lowest likelihood among the

N live points, then the new point replaces that lowest-likelihood point. In this way, the set of
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live points will slowly approach the maximum likelihood, at which point the problem has been

solved. Then, the set of discarded points and their associated weights can be transformed into the

posterior distribution. While NS typically requires around an order of magnitude fewer likelihood

evaluations than MCMC, NS algorithms can introduce significant overhead for certain problems,

such as those with multi-modal posteriors.

Despite many exoplanet-focused RT and retrieval codes in the literature (e.g., Madhusudhan &

Seager 2009, 2010, Madhusudhan et al. 2011, Benneke & Seager 2012, Line et al. 2013, Barstow

et al. 2017, Oreshenko et al. 2017, Wakeford et al. 2017, Al-Refaie et al. 2021), detailed valida-

tion of these codes is lacking. Barstow et al. (2020) introduced the first set of synthetic exoplanet

retrieval comparisons between three retrieval codes. They demonstrated that different RT/retrieval

codes could both produce and retrieve numerically similar spectra. While they publicly released

the forward spectra produced by their codes, they do not offer their code, the inputs (e.g., detailed

atmospheric models), nor the numerical retrieval results, which could be helpful to diagnose dif-

ferences between codes. As future RT and retrieval codes are developed to include more complex

physics, it is imperative that a standardized set of RT and retrieval tests exists in order to ensure

they are performing the correct calculations, analogous to the tests of Held & Suarez (1994) for

general circulation models. In Chapter 2, I present such a test suite and apply it to the Bayesian At-

mospheric Radiative Transfer (BART) retrieval code (Harrington et al. 2022, Cubillos et al. 2022,

Blecic et al. 2022).
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1.2 Machine Learning

Machine learning (ML) describes a class of computational algorithms that determines relationships

within a given data set. Within ML, the subfield known as deep learning (Goodfellow et al. 2016)

utilizes neural networks, a type of ML model that consists of a hierarchy of layers. Each layer,

which consists of nodes, performs a weighted transformation of its inputs. Except for the final

output layer, the output of one layer serves as input for the next layer. Through this sequence of

transformations, the neural network is able to approximate the task at hand.

Neural networks begin with no knowledge of the task at hand; they must be trained on a data

set to learn the task, that is, the weights between each connected node must be tuned in order to

solve the problem. Training a neural network on a data set with inputs that correspond to some

outputs (supervised learning) involves an iterative approach, where the network predicts outputs

for some inputs, the predicted outputs are compared to the known true outputs via some error

metric (the loss), and the network’s weights are adjusted based on the magnitude of that error

(backpropagation; Rumelhart et al. 1986). Through these adjustments, the neural network becomes

progressively better at its task, until further training reduces the model’s generality (overfitting the

training data).
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Common applications of neural networks include image classification (e.g., Krizhevsky et al. 2012,

Simonyan & Zisserman 2015, Szegedy et al. 2015, He et al. 2016, Huang et al. 2017), speech

recognition (e.g., Chorowski et al. 2014, Amodei et al. 2016, Chan et al. 2016, Xiong et al. 2016),

and language translation (e.g., Cho et al. 2014, Bahdanau et al. 2015, Ranzato et al. 2016, Sennrich

et al. 2016, Wu et al. 2016). More relevant to exoplanet retrievals, neural networks can perform

complex regression tasks, such as emulating a code that simulates some complex process. After

an upfront compute cost to train the neural network, the resulting emulator offers a significant

reduction in compute time compared to the simulator code (Cranmer et al. 2019, Munk et al. 2019,

Kasim et al. 2021).

Recently, a number of groups have applied ML methods to the problem of atmospheric retrieval.

Márquez-Neila et al. (2018) used a random forest of regression trees to retrieve on WASP-12b’s

transmission spectrum and found results generally consistent with traditional Bayesian approaches

in the literature. Zingales & Waldmann (2018) presented a deep convolutional generative adver-

sarial network that could retrieve atmospheric parameters via inpainting (filling in missing val-

ues); they also found results consistent with a traditional Bayesian retrieval. Waldmann & Griffith

(2019) used a convolutional neural network to map Saturn’s features. We introduced plan-net in

Cobb et al. (2019), which used an ensemble of neural networks to retrieve parameter distributions.

However, while these and other applications can achieve results similar to traditional Bayesian re-

trievals, their output distributions do not exactly match and can significantly differ. They sacrifice

the accuracy of a Bayesian framework for the speed of ML. Hayes et al. (2020) stands out from

these other approaches, as they use a k-means clustering to inform the phase space for the Bayesian

inference, though their approach does not offer as drastic of a reduction in compute cost as other

ML approaches. In Chapter 5, I present a new approach to ML retrieval which utilizes a neural

network as a surrogate model for RT, thereby circumventing the challenges associated with ML

retrieval while achieving closer agreement with traditional Bayesian methods.
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1.2.1 Dissertation Overview

In this work, I validated the open-source BART retrieval code (Harrington et al. 2022, Cubillos

et al. 2022, Blecic et al. 2022), analyzed the emission spectra of hot Jupiters using BART, in-

vestigated machine learning applications to reduce the compute time of retrievals, and compared

the efficiency of Bayesian posterior sampling algorithms in the context of atmospheric retrieval.

In Chapter 2, I introduce a suite of tests for RT and retrieval codes called BARTTEST, use it to

validate BART, and apply BART to the emission spectrum of HD 189733 b. In Chapter 3, I inves-

tigate a discrepancy in the literature over the atmospheric composition of WASP-12b and present

a detailed analysis of its emission spectra. In Chapter 4, I present an analysis pipeline to generate

terrestrial exoplanetary spectra and train neural networks with dropout to directly retrieve their

atmospheric properties. In Chapter 5, I present a neural network surrogate modeling approach

to atmospheric retrieval which maintains the Bayesian framework and compare its performance

and accuracy to the classical approach. Chapter 6 uses the aforementioned surrogate modeling

approach to approximate thermochemical equilibrium of hot Jupiter atmospheres and compares

its performance and accuracy to other equilibrium estimation methods. Appendices address errors

in synthetic retrievals (Appendix A), performing a model grid search (Appendix B), data set size

considerations when training neural network surrogate models (Appendix C), and the accuracy of

Bayesian frameworks used for atmospheric retrieval (Appendix D).
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I wish to make a note that all of the work presented here is collaborative in nature, as is typical

across the hard sciences. While the first page of each chapter provides a list of coauthors who

contributed to that work, Chapter 2 and Appendix A deserve additional clarification. That chapter

and appendix contain the text that I led in the associated publication. This work’s Section 2.1

and Section 2.2 correspond to Sections 6 and 7 from Harrington et al. (2022), while this work’s

Appendix A corresponds to Appendix D from Harrington et al. (2022). They are reproduced

exactly and hence do not follow the typical paper format found in the other chapters of this work.
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Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,

Y. 2014, in Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP) (Doha, Qatar: Association for Computational Linguistics), 1724–1734

9



Chorowski, J., Bahdanau, D., Cho, K., & Bengio, Y. 2014, in NIPS 2014 Workshop on Deep

Learning, December 2014

Cobb, A. D., Himes, M. D., Soboczenski, F., Zorzan, S., O’Beirne, M. D., Günes, Baydin, A., Gal,
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2.1 Tests and BARTTEST

At the level required for most retrievals, calculating RT is sufficiently complicated that one cannot

verify the correctness of efficient codes by inspection. Codes calculating it are, therefore, subject

to numerous types of errors (“bugs”), including subtle changes of values that produce plots that

look correct, but are wrong. We have thus developed BARTTEST, an independent package of

quantitative and qualitative tests for both RT and retrieval codes. This section presents an initial

set of tests, using transit and BART as the first test subjects.

BARTTEST has four kinds of tests: analytic RT, comparison RT, synthetic retrieval, and real-data

retrieval. The analytic and synthetic tests quantitatively assess correctness against known results.

Several tests developed to catch file-reading and data-combining bugs also appear in the analytic

group. The comparison and real-data retrieval tests compare complex, real-world calculations

among multiple codes. The reliability of these tests depends on the strength of the consensus result.

The analytic RT tests can be useful in diagnosing differences between results if a comparison test

does not match the consensus.

Given the number of variables and setup parameters, this text focuses on general description

and important points. The transit and BART configuration files for each test appear in the

BARTTEST package as a reference for users to configure their own RT and retrieval codes to run

these tests. The version of BARTTEST described here appears in the compendium. These de-

tailed configurations and their meanings in our codes are the official versions of these tests,

not the high-level descriptions in this paper. Others performing these tests should thus configure

their codes to mimic the configurations, including the specific line lists, wavelengths computed,

layer boundaries, thermal profile, included species, etc. For retrievals, it is important to use the

same observations and uncertainties, even if better results appear in the literature in the future.
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We encourage RT- and retrieval-code authors to validate their codes with BARTTEST’s analytic

tests, to contribute their results to build the consensus for comparison tests, and to add new tests,

especially to handle calculations not yet found in transit or BART, such as those involving

hazes and clouds. For example, in Section 2.1.2.1, we compare transit to the hot-Jupiter cases

of Barstow et al. (2020). Results and new tests may be submitted via pull requests at the code’s

development repository on GitHub.

Table 2.1 summarizes the tests. Subsequent subsections expand on some of them and define termi-

nology in the table.

2.1.1 Analytic RT Tests

Our simple RT code, miniRT, performs BARTTEST’s analytic calculations for eclipse geometry

(Equation (14)–(18) of BART2). Written in Python, its goal is verifiability by inspection, not effi-

ciency. It follows how a human thinks about RT. Additional BARTTEST routines accept the output

of the code being tested in human-readable form, compare these to the output from miniRT, and

make comparison plots.

Many tests use a set of fictional gases with line lists constructed to facilitate the tests (see Table

2.2). Otherwise, these gases behave like the common molecules given in the table. To make

mathematical confirmation straightforward, there is no continuum opacity in most tests, and there

are just a few lines in each list.
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Table 2.1: Summary of Tests

Name Purpose Atmospheric Composition Notes
Radiative-Transfer Analytic Tests

f01oneline Location, width, shape,
and strength of a single,
known line.

One layer of LG1 at ∼40 mbar, rest
CG1 (see Table 2.2).

Calculating the line shape in trans-
mission is nontrivial, so that case is
not tested.

f02fewline Combination of multiple,
separate lines from one
molecule.

Same as f01oneline, but with
LG2.

f03multiline Combination of lines from
multiple molecules and
line lists.

Three layers each have a different
gas with three lines (LG2, LG3,
LG4). Others have a gas with no
lines (CG1).

f04broadening Broadening line shape
in opacity, isolating the
broadening calculation
from the radiation integral.

One layer of LG1, rest CG3. This test produces an opacity table
sampled every 0.005 cm−1 over a
short range, in addition to an inten-
sity spectrum. All other tests pro-
duce only intensity spectra.

f05abundance (Near) linear relationship
between abundance and
line depth at low optical
depth.

Based on f01oneline, but abun-
dance varies in 10 steps uniformly
from 10−4 – 10−3, with CG1 filling
in.

LG1 trades off against CG1 to keep
line broadening constant. Line is
optically thin for near-linear ab-
sorption increase.

f06blending Line blending from differ-
ent molecules in the same
layer.

The ∼9 mbar layer has 1% LG1,
9% LG2, and 90% CG1; others
have 85% CG1 and 15% CG2.

Two lines in LG1 and LG2 are
∼0.04 cm−1 apart at ∼2.29 µm.
The wavenumber sampling interval
is 0.005 cm−1.

f07multicia Multiple CIA
sources, similar to
f03multiline.

Uniform 85% H2, 15% He. 10−98%
LG1, if code requires a line list.
CIA line lists.

One of the following: No CIAs,
H2-He CIAs, both H2-H2 and H2-
He CIAs (some codes may also re-
quire LG1).
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f08isothermal Background emission and
emission-absorption can-
cellation for the isothermal
case.

Uniform composition of 60% H2,
10% each CO, CO2, CH4, & H2O,
using their full line lists, but no
CIAs. Constant background and at-
mosphere temperatures.

Full line lists for all species. Re-
sult is a Planck spectrum. Uses just
Sharp & Burrows (2007) gases, as
some codes only have these, but
users may configure many more.
Not offered in transmission, as re-
sult is not a Planck spectrum.

Radiative-Transfer Comparison Tests
c01hjcleariso Forward model of cloud-

less HD 189733 b-like
planet.

Isothermal T (p) profile in emission
& transmission. Mean temperature
∼1100 K. Full line lists for CH4,
CO, CO2, H2O, NH3, and H2. H2-
H2 & H2-He CIAs.

Test of all code features on realistic
cases. Validated by comparison to
others.

c02hjclearnoinv Forward model of cloud-
less HD 189733 b-like
planet.

Same as c01hjcleariso, ex-
cept noninverted T (p) profile in
emission & transmission.

Same.

c03hjclearinv Forward model of cloud-
less HD 189733 b-like
planet.

Same as c01hjcleariso, ex-
cept inverted T (p) profile in emis-
sion & transmission.

Same.

c04hjcleariso-
BarstowEtal

Forward model of cloud-
less HD 189733 b-like
planet.

Follows models of Barstow et al.
(2020). Includes some CO-only
models (1.0 R�, 1.0 MJ, 1.0
RJ,mean

∗, 0.85 H2:0.15 He. 10
ppmv CO at 1500 K; 100 ppmv
CO at 1000 K and 1500 K) and
Model 0 (0.781 R�, 1.162 MJ,
1.138 RJ,mean

∗, 0.85 H2:0.15 He,
1500 K, 300 ppmv H2O, 350 ppmv
CO).

Same.
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c05hjcloudiso-
BarstowEtal

Forward model of cloudy
HD 189733 b-like planet.

Follows Model 1 of Barstow et al.
(2020) (0.781 R�, 1.162 MJ, 1.138
RJ,mean

∗, 0.85 H2:0.15 He, 1500
K, 300 ppmv H2O, 350 ppmv CO,
clouddeck at 10 mbar).

Same.

Name Purpose Data Notes
Retrieval Synthetic Tests

s01hjcleariso Can we retrieve what we
put in?

Model from c01hjcleariso.

s02hjclearnoinv Same. Model from c02hjclearnoinv.
s03hjclearinv Same. Model from c03hjclearinv.
s04hjcleariso-
BarstowEtal

Same. Model 0 from
c04hjclearisoBarstowEtal.

s05hjcloudiso-
BarstowEtal

Same. Model 1 from
c05hjcloudisoBarstowEtal.

Retrieval Real-Data Test
r01hd189733b Reality check Photometry: Spitzer IRAC chan-

nels 1-4, IRS 16 µm, MIPS 24 µm.
Spectra: Spitzer IRS, HST NIC-
MOS G206 grism.1

Multiple reductions of these data
exist. Tests must use the same
eclipse depths and uncertainties as
BARTTEST to be accurate com-
parisons.

1 IRAC is the InfraRed Array Camera. IRS is the InfraRed Spectrograph. MIPS is the Multi-
band Imaging Photometer for Spitzer. HST is the Hubble Space Telescope. NICMOS is the Near
Infrared Camera and Multi-Object Spectrograph.
∗ Barstow et al. (2020) reports the planetary radii in terms of the volumetric mean radius of Jupiter
(69,911 km), rather than the IAU-defined value of RJ(71,492 km, Prša et al. 2016). For codes that
use the IAU value, the radii must be converted accordingly.



Table 2.2: Test Line Lists and Fictitious Test Gases

Name1 Like2 # of lines λ
CG1 H2 0
CG2 He 0
CG3 N2 0
LG1 H2O 1 2.28919
LG2 CH4 3 2.28921, 2.15, 3.20
LG3 CO 3 2.38, 2.50, 2.54
LG4 CO2 3 2.86, 3.02, 3.78

1 CG = Clear Gas, LG = Line Gas.
2 Properties (mass, isotopes, etc.) same as this molecule, except line list.

All tests have an emission (eclipse geometry) version. BARTTEST includes transmission (transit

geometry) cases only where it makes sense. For example, in f01oneline, the emission case is

simply the product of the line strength, a Voigt curve, density, and layer thickness, which verifies

by inspection. The transmission case entails calculating the slanted path length through the single

layer of LG1 of rays at multiple altitudes, calculating the optical depth and transmission as above,

multiplying by 2πr, where r is layer distance from the planet center, and integrating over altitude.

Further, the slant path may hit the layer twice or only partially. This loses the inspection-level

simplicity of the emission case and combines these calculations with the Voigt function, making

the test less diagnostic. Broadening is the same calculation for eclipse and transit geometries, so

well-written codes will have one routine for it and will not require two tests. The transmission case

for test f05abundance would require assessing a linear change in τ = 1 altitude, where τ is

optical depth, which has the issues outlined above and also requires many tightly spaced layers.

Next, we expand on selected tests.
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2.1.1.1 f04broadening: Line Broadening

At least theoretically, spectral lines broaden into Voigt profiles, V . These are the convolution of

Gaussian (G) and Lorentzian (L) functions. The Gaussian derives from Doppler broadening due to

the Maxwell-Boltzmann distribution of velocities in a gas. The Lorentzian derives from Heisenberg

uncertainty in the transition energy due to short state lifetimes, especially at high pressures and

temperatures. As a function of wavenumber, ν:

G(ν;σ) =
1

σ
√

2π
e−ν

2/2σ2

, (2.1)

L(ν; γ) =
γ

π(ν2 + γ2)
, (2.2)

where σ and γ are the Gaussian width and Lorentzian half width, respectively (see BART2 for a

more detailed description).

The Voigt profile can be constructed from the Faddeeva function:

w(z) =
i

π

∫ ∞
−∞

e−η
2

z − η
dη (2.3)

z =
ν + iγ

σ
√

2
(2.4)

η =
ν ′

σ
√

2
(2.5)

w(z) =
i

π

∫ ∞
−∞

e
−ν′2

2σ2(
ν+iγ

σ
√

2
− ν′

σ
√

2

) dν ′

σ
√

2
(2.6)

=
i

π

∫ ∞
−∞

e
−ν′2

2σ2 (ν − iγ − ν ′)
(ν − ν ′)2 + γ2

dν ′ (2.7)
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Figure 2.1: Comparison of transit line shape to miniRT’s Faddeeva function for that case (test
f04broadening). Here and throughout, the axes (horizontal, in this case) may state a constant
offset, for clarity.

Taking the real part of the Faddeeva function, one obtains the Voigt function:

Re[w(z)]

σ
√

2π
=

γ

σ
√

2π3

∫ ∞
−∞

e
−ν′2

2σ2

(ν − ν ′)2 + γ2
dν ′ (2.8)

=

∫ ∞
−∞

G(ν ′;σ)L(ν − ν ′; γ)dν ′ (2.9)

= V (ν;σ, γ) (2.10)
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SciPy (Virtanen et al. 2020) offers a Python binding to a fast C implementation of w(z),

scipy.special.wofz(). BARTTEST uses this binding to compare to transit, which

uses an approximation of this function, described by Pierluissi (1977).

Before building an opacity table, transit creates a pre-calculated table of Voigt profiles for

a range of σ and γ values. When broadening each molecular line, transit uses the profile

with the closest parameters. This approach avoids needing to calculate a Voigt profile for each

line, which becomes computationally expensive for extensive line lists (e.g., ExoMol). For each

molecule, transit computes the opacity table at the pressures and wavenumbers specified in the

atmospheric configuration file and over a grid of temperatures.

When calculating an emission or transmission spectrum for a planet, it interpolates in the opacity

table (if specified) to the temperature of each atmospheric layer. These approximations sharply

reduce transit’s run time. The f04broadening test assesses their combined effect on accu-

racy. This test uses the default temperature sampling interval (100 K) and a grid of Voigt profiles

over 60 σ and 60 γ values. The atmospheric layer containing the line-producing species has a

temperature of 1442.58 K and a pressure of 0.33516 bar. With a difference of >42 K to the closest

temperature in the opacity grid, this considers a case with (almost) the largest possible interpolation

error. Transit differs from BARTTEST by <0.1% (Figure 2.1).

At extremely high spectral resolution or at long wavelengths, one must configure transit’s pre-

calculated Voigt table to ensure sufficient accuracy, which can be assessed by running a modified

version of this test (set the resolution/wavelength range, move the fake line to that location).
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2.1.1.2 f05abundance: Varying Abundance

This tripwire test relies on the property that, in the optically thin regime (optical depth τ � 1), the

fraction of the interior (blackbody) radiation absorbed, A, scales nearly linearly with the optical

depth, since the linear term dominates in its Taylor-series expansion,

A = 1− F

F0

= 1− e−τ ≈ 1−
∞∑
n=0

(−τ)n

n!
≈ τ − τ 2

2
+
τ 3

6
− . . . , (2.11)
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Figure 2.2: Spectra produced by transit for the eleven cases in the f05abundance test: the
reference spectrum with no line, and the ten spectra with 0.01% to 0.1% LG1 in steps of 0.01%.
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where F is transmitted flux and F0 is interior flux. τ is linearly dependent on the density, which

is proportional to the abundance. For two spectra of a gas with lower and higher abundance, each

frequency channel should closely obey

f =
F0 − Fh
F0 − Fl

, (2.12)

where F0 is the spectral flux without any lines, Fl is the flux in the low-abundance spectrum, Fh is

the flux in the high-abundance spectrum, and f is the abundance ratio.

We test this using a non-inverted atmospheric model uniformly composed of 0.00% - 0.10% LG1,

with the remainder CG1 (any CG species will do). The abundance of LG1 varies in steps of

0.01%. The 0.00 abundance case is F0, the planetary interior blackbody without the LG1 spectral

line. Taking Fl as the 0.01% abundance spectrum and starting Fh with the 0.02% case, f takes

on the integers 2–10. Figure 2.2 shows the results of transit. Table 2.3 shows the output of

BARTTEST.

Table 2.3: Varying Abundance Test

Abundance f 1 vs. 0.01% case
0.02% 1.999784
0.03% 2.999535
0.04% 3.999005
0.05% 4.998531
0.06% 5.997734
0.07% 6.996982
0.08% 7.995986
0.09% 8.994910
0.1% 9.993651
1 Factor difference in line depth
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2.1.1.3 f08isothermal: Isothermal Atmosphere

This tripwire test recognizes that, without scattering, line emission and absorption are equal in any

optically thick, isothermal gas mixture. The mixture thus emits as a blackbody. The atmosphere

for f08isothermal has many molecules uniformly present in all layers and a full line list

for all of the species present. This should produce a blackbody emission spectrum peaking at

the wavenumber corresponding to the atmospheric model’s temperature, according to Wien’s law.

Deviations may arise from approximations or precision issues in the code. Figure 2.3 shows the

theoretical Planck function plotted over transit’s result.

2.1.2 Comparison RT Test

To avoid aggregating working parts into an erroneous whole, one must validate the entire RT

calculation. As the complexity is too great to verify reliably by inspection, c01hjcleariso,

c02hjclearnoinv, and c03hjclearinv are tests inspired by the HD 189733 system. The

strength of these tests rests on the number of participating codes, so we invite the community to

perform these calculations in their own codes and to submit the results for inclusion in BARTTEST.

It is important to identify the sources of any differences without assuming that the tested codes are

correct, as there is no assurance that several codes do not all share the same bug. With such honest

testing, as the group of tested codes grows, so the likelihood of a groupthink bug decreases. The

comparison of many codes implementing a single model also shows the range of outputs due to

modeling approaches and assumptions, even with identical inputs.
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Our model planet resembles HD 189733 b. Tests must adopt the stellar radius of 0.756 solar radii,

stellar temperature of 5000 K, planetary radius of 1.138 RJ(Torres et al. 2008), and planetary

gravity of 2182.73 cm s−2, which corresponds to a mass of 1.14 MJ. The reference pressure

of 0.1 bar corresponds to this planetary radius. Tests must calculate spectra for the wavelength

region between 1 and 11 µm, as the most spectroscopically active species show features in this

region. Tests should calculate both emission intensity spectra (secondary eclipse) and transmission

modulation spectra (primary transit).

The common inputs are the isothermal, inverted, and non-inverted T (p) profiles given in Figure

2.4. Profiles are close to an effective temperature Teff = 1100 K, assuming zero albedo and uniform

day-night distribution. They derive from the temperature-parameterization model of Line et al.

(2013).

2.1.2.1 Barstow et al. (2020) Forward Models

To compare BART with additional peer-reviewed codes, we emulate some of the setups described

in Barstow et al. (2020), which were executed using the NEMESIS (Irwin et al. 2008, Lee et al.

2012), CHIMERA (Line et al. 2013), and TAU-REX (Waldmann et al. 2015b) codes. These codes

utilize the correlated-k method, whereas transit uses a line-by-line approach. (If the user-

selected output resolution is low enough to miss some lines, it is properly called “line sampling”

rather than “line-by-line”, but there is no difference in what the code does. As this is a user choice,

we call it “line-by-line”, below.) Specifically, we emulate the setups for the cloud-free Model

0, cloudy Model 1, and three of the CO-only cases. We summarize these setups in Table 2.1

(see c04hjclearisoBarstowEtal and c05hjcloudisoBarstowEtal), but we direct
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Figure 2.5: Forward spectra for the c04hjclearisoBarstowEtal and
c05hjcloudisoBarstowEtal tests: CO at 1500 K for 10−4 mixing ratio (top left) and 10−5

mixing ratio (top right), CO at 1000 K for 10−4 mixing ratio (middle left), the cloudfree HD
189733 b-inspired Model 0 (middle right) and cloudy Model 1 (bottom left). The plotted residuals
are computed based on the average of the NEMESIS, CHIMERA, and TAU-REX spectra, as in
Barstow et al. (2020).
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readers to Barstow et al. (2020) for more detailed descriptions of the tests and to BARTTEST for

the exact setups. We note that Barstow et al. (2020) report planetary radii in terms of Jupiter’s

mean volumetric radius (RJ,mean, 69,911 km), rather than the IAU-defined value of RJ(71,492 km,

Prša et al. 2016); not properly accounting for this will lead to a vertical offset in the transmission

spectra.

Figure 2.5 shows comparisons between the spectra produced by transit, NEMESIS, CHIMERA,

and TAU-REX. As in Barstow et al. (2020), we bin the CO spectra to steps of 0.01 µm and compute

the residuals with respect to the average of the NEMESIS, CHIMERA, and TAU-REX spectra;

for the Model 0 and 1 cases, we bin according to CHIMERA’s reported wavelengths. In general,

there is close agreement between transit and the other codes. The differences are on the order

of the differences between the other codes, despite transit’s opacity-sampling approach.

2.1.3 Synthetic Retrieval Tests

To test BART retrievals, we used the synthetic planets of the c01hjcleariso,

c02hjclearnoinv, c03hjclearinv, c04hjclearisoBarstowEtal, and

c05hjcloudisoBarstowEtal tests. The tests are called s01hjcleariso,

s02hjclearnoinv, s03hjclearinv, s04hjclearisoBarstowEtal, and

s05hjcloudisoBarstowEtal. We consider both eclipse and transit geometry for each at-

mospheric model, except for the Barstow et al. (2020) cases, which are only in transmission.
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To generate eclipse and transit depths for the s01 – s03 cases, we use 47 channels spanning 2 – 5

µm that have perfect transmission over their spectral ranges. We use relatively high-S/N synthetic

data so that the retrieved credible regions will be relatively small, and thus more likely to expose

small coding errors when compared to inputs. We set uncertainties such that each channel has

S/N = 50 for emission cases and 300 for transmission cases. For stellar emission, we use a K2

solar abundance Kurucz stellar model (Castelli & Kurucz 2003). For the s04 and s05 cases,

we consider each of the simulated spectra by NEMESIS, CHIMERA, and TAU-REX with noise

levels of 60 parts per million.

We include opacities for the species as described in Section 2.1.2. The s01 – s03 retrievals each

have five parameters for the T (p) profile (Line et al. 2013); five for the scaling factors of the log

abundances of H2O, CO, CO2, CH4, and NH3; and, for the transmission cases, a parameter for the

planetary radius at 0.1 bar. The s04 and s05 retrievals have free parameters for the isothermal

temperature, the planetary radius at 10 bar, the log mixing ratios of H2O and CO, and the pressure

corresponding to an opaque cloudtop. All cases feature uniform priors on the model parameters;

parameters that are the logarithm of the true parameter therefore have log-uniform priors.

BART’s results for the s01 – s03 retrievals are similar in some respects (Figures 2.6, 2.7, and

2.8). The retrieved thermal profiles and molecular abundances generally match the inputs in the

regions of the atmospheres probed by these synthetic observations (Figures 2.7 and 2.8, middle

columns). The lower atmospheres are generally poorly constrained, as the spectrum is minimally

influenced by those pressure levels at the wavelengths of the synthetic data. The emission cases

provide better constraints than the transmission cases on the T (p) profile and abundances, as ex-

pected (Griffith 2014, Heng & Kitzmann 2017, Madhusudhan 2018).
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The isothermal emission case’s retrieved abundances and T (p) profile demonstrate the inability to

detect molecular features from an isothermal atmosphere. In the region with sensitivity, the best-fit

thermal profile is isothermal; the inversion seen in the explored thermal profiles corresponds to

regions with negligible or no contribution to the spectrum. We allow for any T (p) profile rather

than enforcing an isothermal condition because it would not be known a priori whether the atmo-

sphere were isothermal. The 1D marginalized posteriors for the molecular abundances are poorly

constrained and tend to favor a log mixing ratio < −4, with significant probability for log mixing

ratios < −8, consistent with a lack of spectral features for an isothermal atmosphere.

Table 2.4 shows the SPEIS, ESS, and posterior accuracies for these retrievals. The large SPEIS

(and small ESS) are due to a combination of factors. We choose the highest SPEIS value among

all chains and all parameters as a conservative estimate; the non-inverted eclipse case has a SPEIS

> 15000, with a median SPEIS of∼2730. Compared to the Barstow et al. (2020) cases and the HD

189733 b retrieval, these SPEIS values are significantly greater. This may be related to a numerical

effect seen in synthetic retrievals tests (see Appendix A).

2.1.3.1 Barstow et al. (2020) Synthetic Retrievals

Figures 2.9 and 2.10 show the best-fit spectra and marginalized posteriors for the retrievals on the

Barstow et al. (2020) synthetic spectra produced by NEMESIS, CHIMERA, and TAU-REX for

Models 0 and 1, respectively, with an uncertainty of 60 ppm. Tables 2.5 and 2.6 summarize the

retrieved credible regions for each of the retrievals. The true parameters are contained within the

95.45% credible regions, with most also being contained within the 68.27% regions.
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Figure 2.6: Best-fit spectra for the six synthetic retrieval tests of s01hjcleariso,
s02hjclearnoinv, and s03hjclearinv: isothermal (top row), non-inverted (middle row),
and inverted (bottom row) atmospheres in transit (left column) and eclipse (right column) geome-
tries. The transmission data look similar for all three cases as they only differ in thermal profiles,
to which transit geometry is generally insensitive.
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Figure 2.7: Comparison between input and retrieved T (p) profiles (left column), the normalized
contribution functions (middle column; Blecic et al. 2022), and best-fit molecular abundances
(right column) for the isothermal (top row), non-inverted (middle row), and inverted (bottom row)
emission cases of the s01hjcleariso, s02hjclearnoinv, and s03hjclearinv tests.
Dark- and light-blue shading in T (p) profile plots designate the 68.27% and 95.45% credible re-
gions. These regions and the median derive from all the fits on a per-pressure-level basis. They
do not follow the functional form of the individual profiles. Few, if any, individual T (p) profiles,
including the best fit, stay confined to these regions, especially where the contribution functions
indicate low sensitivity. BART accurately retrieves the T (p) profile and abundances wherever they
contribute to the spectra.
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Figure 2.8: Same as Figure 2.7, but for transmission cases of the s01hjcleariso,
s02hjclearnoinv, and s03hjclearinv tests. (Recall that low-resolution transmission
spectra are relatively insensitive to temperature structure.)
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Table 2.4: BARTTEST Retrievals: Posterior Accuracy

Test Geometry SPEIS ESS1 Credible Region Uncertainty
68.27% (“1σ”)2 95.45% (“2σ”)2 99.73% (“3σ”)2

s01hjcleariso Eclipse 5131 97 4.65% 2.08% 0.52%
Transit 9204 162 3.62% 1.62% 0.40%

s02hjclearnoinv Eclipse 15506 96 4.68% 2.09% 0.52%
Transit 8129 184 3.40% 1.52% 0.38%

s03hjclearinv Eclipse 14485 103 4.52% 2.02% 0.50%
Transit 4553 329 2.55% 1.14% 0.28%

s04hjcleariso NEMESIS Transit 54 1851 1.08% 0.48% 0.12%
s04hjcleariso CHIMERA Transit 51 980 1.48% 0.66% 0.17%
s04hjcleariso TAU-REX Transit 65 769 1.68% 0.75% 0.19%
s05hjcloudiso NEMESIS Transit 511 978 1.49% 0.67% 0.17%
s05hjcloudiso CHIMERA Transit 412 970 1.49% 0.67% 0.17%
s05hjcloudiso TAU-REX Transit 812 862 1.58% 0.71% 0.18%
r01hd189733b Eclipse 2084 959 1.50% 0.67% 0.17%
1 Computed from the non-burned iterations for each case.
2 Here and in the literature, these credible regions are labeled in analogy to the Gaussian, although they are not,
generally, multiples of the posterior’s standard deviation.



Comparing the reported 1σ credible regions for each retrieval shows minor differences. For most

cases, BART finds narrower credible regions for temperature than the other codes. In the case of

Model 0, the upper bounds of the 1σ temperature regions are consistently just below the known

1500 K temperature, while the true radius falls at the lower bound of the 2σ region of the BART

retrieval on the TAU-REX forward model. For the Model 0 cases, BART favors high cloudtop

pressures, consistent with the absence of clouds; slightly greater radii; and narrower credible re-

gions for CO than the other codes. The CO retrieval on the NEMESIS spectrum falls in the 2σ

region. For H2O in the Model 0 cases, BART finds similar values, but with narrower credible

regions compared to TAU-REX and CHIMERA. For the Model 1 cases, BART favors similar

radii and lower cloudtop pressures. Compared to NEMESIS, BART finds narrower credible re-

gions for CO and H2O when retrieving on TAU-REX and wider credible regions when retrieving

on CHIMERA. Compared to TAU-REX, BART finds a similar amount of H2O but with greater

uncertainty; BART also favors greater CO with similar or slightly smaller uncertainties. Com-

pared to CHIMERA, BART favors greater CO and H2O when retrieving on NEMESIS, similar

CO and less H2O when retrieving on TAU-REX, and generally finds narrower credible regions.

For all cases except NEMESIS on CHIMERA, BART agrees with the other codes at 1σ or less.

The single exception agrees at just greater than 1σ.

Together with the tests in Section 2.1.3, this demonstrates BART’s ability to retrieve parameters

accurately from synthetic data produced by various RT codes.
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Figure 2.9: Summary of retrieval results for the s04hjclearisoBarstowEtal test, which
retrieve on the spectra of Barstow et al. (2020) Model 0 cases with 60 ppm uncertainties. Best-
fit spectra (left column) and marginalized posteriors (right column) for the NEMESIS (top row),
CHIMERA (middle row), and TAU-REX (bottom row) data sets.
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Figure 2.10: Summary of retrieval results for the s05hjcloudisoBarstowEtal test, which
retrieve on the spectra of Barstow et al. (2020) Model 1 cases with 60 ppm uncertainties. Best-
fit spectra (left column) and marginalized posteriors (right column) for the NEMESIS (top row),
CHIMERA (middle row), and TAU-REX (bottom row) data sets.
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Table 2.5: BARTTEST Retrievals, Barstow et al. (2020) Model 0 Cases: Credible Regions

Forward Model T (K) Rp (km) H2O (ppmv) CO (ppmv) log Pcloud
True 1500 79558.718 300 350 n/a

NEMESIS [1455, 1492] [79549, 79588] [265, 369] [548, 1372] [ 0.17, 1.38]
[1440, 1513] [79527, 79608] [223, 436] [325, 2126] [-0.12, 1.50]
[1421, 1531] [79477, 79626] [190, 522] [178, 3476] [-0.40, 1.50]

CHIMERA [1462, 1499] [79551, 79590] [286, 395] [282, 783] [ 0.24, 1.35]
[1443, 1517] [79529, 79610] [242, 469] [153, 1289] [-0.15, 1.49]
[1424, 1540] [79502, 79628] [204, 542] [ 76, 2094] [-0.38, 1.50]

TAU-REX [1457, 1497] [79581, 79621] [260, 365] [228, 670] [ 0.04, 1.17]
[1437, 1516] [79557, 79643] [221, 432] [124, 1084] [-0.18, 1.49]
[1421, 1539] [79471, 79660] [180, 535] [ 62, 1777] [-0.46, 1.50]

For each data set, we report the 68.27%, 95.45%, and 99.73% credible regions, from top to
bottom per model.

Table 2.6: BARTTEST Retrievals, Barstow et al. (2020) Model 1 Cases: Credible Regions

Forward Model T (K) Rp (km) H2O (ppmv) CO (ppmv) log Pcloud
True 1500 79558.718 300 350 -2.0

NEMESIS [1416, 1524] [79122, 79666] [214, 5198] [584, 10750] [-3.13, -1.87]
[1344, 1578] [79019, 80024] [ 82, 7905] [110, 15241] [-3.32, -1.30]
[1270, 1630] [78869, 80204] [ 52, 14246] [ 38, 22065] [-3.55, -1.06]

CHIMERA [1402, 1512] [79221, 79947] [104, 2418] [ 96, 2678] [-2.82, -1.36]
[1342, 1564] [79024, 80086] [ 75, 7096] [ 36, 6925] [-3.22, -1.17]
[1291, 1618] [78865, 80195] [ 52, 13029] [ 11, 9897] [-3.50, -1.03]

TAU-REX [1399, 1520] [79062, 79946] [98, 568] [100, 391] [-3.21, -1.38]
[1330, 1573] [78929, 80088] [69, 1068] [ 24, 891] [-3.43, -1.19]
[1273, 1633] [78774, 80206] [47, 2006] [ 3, 1448] [-3.70, -1.02]

For each data set, we report the 68.27%, 95.45%, and 99.73% credible regions, respectively.
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2.1.4 Real-Data Retrieval Test

In a synthetic test, we may or may not know the answer as we work (e.g., in blind testing), but we

know in principle what could have gone into the test. A test on real data is a full analysis, including

concerns for unknown systematic errors, time variability of the star and planet, the 3D structure of

the atmosphere, physics and chemistry not included in the model, errors and incompleteness in line

lists, and even the unknown existence of background sources within the point-spread function of

the target star. Given the state of exoplanet data today, we chose HD 189733 b, a system with a high

planetary S/N, a relatively large number of observations in the literature, and little controversy over

their interpretation. Those implementing this test for comparison to our result must configure their

codes as we have, in one dimension, without clouds, using the same line lists, and using exactly

the same observations. The value of any comparison test lies in the number of comparisons, so we

reiterate our invitation to those willing to contribute results of their own application of this test.

In designing this test, we must mimic one of the two Bayesian models (discussed more in Section

2.2), by Line et al. (2014) and Waldmann et al. (2015a). Further, we wish the test to be accessible

on a modest computer. We chose to emulate the analysis of Line et al. (2014) with CHIMERA,

for two reasons. First, CHIMERA has been applied more broadly than Waldmann et al. (2015a)’s

TAU-REX. Second, the TAU-REX analysis uses the Yurchenko & Tennyson (2014) CH4 line list,

which is so complete that it exceeds the storage capacity of many modest computers. Although

transit can use this line list either directly or digested into a continuum opacity table and a

separate list of the strongest lines (Cubillos 2017), not all codes can, and the TAU-REX test did not.

Additionally, Hargreaves et al. (2020) showed that ExoMol’s CH4 list does not match laboratory

studies.
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This first test on real data is thus deliberately simple, as appropriate for a test suite, as it ignores

clouds and the largest line lists. More-complete comparisons, with clouds, the ExoMol lists, nu-

merous variations, and comparison to multiple other works, appear in BART2 and BART3. As

this test evaluates whether algorithms consistently fit data not produced by, and unlikely to be fit

perfectly by, their respective underlying RT codes, the metric of success is not χ2 to the data, but

similarity among retrievals.

Of course, as future observations and models improve, it may be desirable to add more complete

tests, with more recent observations, line lists, physics, and code configurations. Given the length

and complexity of the analysis, we present our test, including discussion of the literature for this

planet, in its own section.

2.2 Application to HD 189733 b

Due to both its proximity to Earth and its high S/N, the atmosphere of HD 189733 b has been

extensively studied since its discovery in 2005 (Bouchy et al. 2005). Being one of the most an-

alyzed hot Jupiters to date, HD 189733 b is a prime candidate for a real-data retrieval test using

published secondary-eclipse data. Here we discuss previous retrieval analyses of HD 189733 b

(Madhusudhan & Seager 2009, Lee et al. 2012, Line et al. 2012, Moses et al. 2013, Line et al.

2014, Waldmann et al. 2015a) and BART’s retrieved atmospheric profiles and dayside emission

spectra in the context of these prior analyses.
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At an orbital semimajor axis of 0.0312± 0.00037 AU and with an eccentricity of 0.0041± 0.0025,

it takes 2.21857312± 0.00000076 days for HD 189733 b to orbit its 5052± 16 K, K-type host star

(Triaud et al. 2009, Stassun et al. 2018). In Jovian units, its mass is 1.130 ± 0.025 and its radius

is 1.178 ± 0.023 (Triaud et al. 2009), making its bulk density just over three-quarters of Jupiter’s

(Southworth 2010).

Previous studies on HD 189733 b use data from NICMOS (Swain et al. 2009), IRAC (Charbonneau

et al. 2008, Knutson et al. 2009, Agol et al. 2010, Knutson et al. 2012), IRS (Deming et al. 2006,

Grillmair et al. 2007), and MIPS (Charbonneau et al. 2008, Knutson et al. 2009).

When Madhusudhan & Seager (2009) published the first exoplanet retrieval via a parametric grid

search, they derived that the atmospheric composition of HD 189733 b was high in CO and CO2,

had a moderate abundance of H2O, and had minimal CH4. Further studies by Lee et al. (2012)

and Line et al. (2012) confirm these abundances, though Moses et al. (2013) indicate that the

comparatively large abundance of CO2 is somewhat of an anomaly. Barstow et al. (2014) included

clouds. These studies used optimal estimation rather than a Bayesian sampler. The upper limit

on the CH4 abundances presented by Line et al. (2012) is higher than previous results, such as

Madhusudhan & Seager (2009) and Swain et al. (2009). Line et al. (2014) attribute the discrepancy

to non-Gaussian posterior distributions under Gaussian-assuming optimal estimation.

We adopt the following data set: NICMOS data from Swain et al. (2009), with the 4 shortest-

wavelength channels omitted; IRS data from Grillmair et al. (2008); IRAC 5.8 µm, IRS 16 µm

photometric, and MIPS 24 µm data of Charbonneau et al. (2008); and IRAC 8.0 µm data of Agol

et al. (2010). IRAC 3.6 and 4.5 data are adopted as 0.1533 ± 0.0029% and 0.1886 ± 0.0071%,

consistent with Line et al. (2014).
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While newer data (e.g., the secondary-eclipse measurements of Knutson et al. 2012) and analyses

(e.g., the IRS re-analysis by Todorov et al. 2014) are available, this setup is meant as a real-data

retrieval test to benchmark BART and future retrieval codes. This data set exactly matches that

of Line et al. (2014), allowing a direct comparison of results. We note that Line et al. (2014) cite

the IRS data as coming from Grillmair et al. (2007) but use data from Grillmair et al. (2008). The

IRAC 5.8 µm data are cited as coming from Agol et al. (2010), who did not publish 5.8 µm data.

Rather, they use the 5.8 µm data of Charbonneau et al. (2008). Similarly, the IRAC 3.6 and 4.5 µm

data are cited as Knutson et al. (2012) but the data used do not appear to match any published data

(M. Line, priv. comm.).

The retrieval model has nine free parameters: five for the T (p) profile (Line et al. 2013) and four

scaling factors for the vertically constant log abundances of CO, CO2, CH4, and H2O. All priors

are uniform, with the log parameters therefore having a log-uniform prior. The model atmosphere

has 100 layers spanning 10−8 – 100 bar, evenly spaced in log pressure. We include HITEMP

opacities for CO, CO2, and H2O (Rothman et al. 2010, valid at the temperature of HD 189733

b), and HITRAN opacities for CH4 (Rothman et al. 2013, measured at 296 K with some hot

bands). We also include H2-H2 and H2-He CIAs (Richard et al. 2012). For compatibility with the

initial comparison studies, we do not include opacities for minor species whose abundances are

not sought, although this is a good practice.

We also consider two additional models that are identical in setup except for line lists, to explore

their effect on the retrieval results. To match the setup of Line et al. (2014), one model only

differs for CH4, using the theoretically derived Spherical Top Database System (STDS, Wenger

& Champion 1998) at wavelengths greater than 1.7 µm and HITRAN 2008 (Rothman et al. 2009)

at shorter wavelengths. The other model uses the latest HITEMP CH4 (Hargreaves et al. 2020)

and CO lists as well as ExoMol lists for H2O (Polyansky et al. 2018) and CO2 (Yurchenko et al.

2020) processed via REPACK (Cubillos 2017). While both these fits are better, the setups are more
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Figure 2.11: Retrieval results for HD189733 b (r01hd189733b test). Top left: T (p) profiles
explored by the MCMC (see Figure 2.7). Top right: Normalized contribution functions of filters
(see Figure 2.7). Middle left: Best-fit spectrum. Middle right: Pairwise correlations (marginal-
ized over posterior) for all model parameters. Values are in base-10 logarithm, except for α and β.
Bottom: Trace plots of explored model parameters. The 10 chains are concatenated.
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Table 2.7: Comparison of Fitted Log Abundances for HD 189733 b

Item This
worka,
HHb

This
work,
STDSc

This
work,
EMd

Waldmann
et al.

2015a
Stage-1

Line
et al.
2014e

Lee
et al.

2012f

Line
et al.
2012

Madhusudhan
& Seager

2009g

Swain
et al.
2009g

H2O [-3.1, -2.4] [-3.4, -2.6] [-3.4, -2.7] -3.9 ± 0.2 [-3.5, -2.9] [-4.5, -2.0] [-4.3, -3.5] [-5.0, -3.0] [-5.0, -4.0]
[-3.4, -1.9] [-3.8, -2.2] [-3.7, -2.3]
[-3.6, -1.4] [-4.2, -1.6] [-3.9, -1.8]

CH4 [-4.7, -3.7] [-4.5, -3.9] [-5.1, -4.5] -6.7 ± 0.7 [-5.0, -4.6] < -4.0 < -2.0 < -5.2 < -5.0
[-10.5, -3.1] [-4.8, -3.5] [-5.2, -4.2]
[-12.7, -3.1] [-5.1, -3.1] [-5.5, -3.7]

CO [-6.6, -0.5] [-1.8, -0.5] [-4.8, -0.5] -2.7 ± 1.4 [-4.6, -1.5] n/a [-2.4, -1.4] [-4.0, -2.0] [-4.0, -3.5]
[-12.5, -0.5] [-12.4, -0.5] [-12.5, -0.5] (best fit:
[-12.9, -0.5] [-12.7, -0.5] [-12.9, -0.5] -2.5)

CO2 [-3.3, -2.7] [-2.6, -1.8] [-2.9, -2.3] -3.7 ± 0.5 [-2.9, -2.4] [-3.8, -1.5] [-2.8, -2.2] ∼ -1.2 [-7.0, -6.0]
[-3.7, -2.3] [-2.9, -1.4] [-3.2, -2.0]
[-4.0, -2.0] [-3.2, -0.9] [-3.5, -1.6]

χ2 169.60 139.53 147.54 —h 149.82i — — — —
Red. χ2j 2.98 2.45 2.59 — 2.63 — — — —

a 68.27%, 95.45%, and 99.73% credible regions, stacked vertically.
b Main BARTTEST model, which uses HITRAN 2012 and HITEMP 2010 line lists.

c Same as HH, but using STDS CH4 line list at wavelengths >1.7 µm and HITRAN 2008 at wavelengths <1.7 µm.
d Model using most recent ExoMol line lists for H2O and CO2 and HITEMP line lists for CO and CH4.

e Reported 68.27% interval.
f Possible fit range for ∆χ2/N < 1.0 case, with n/a indicating no constraint.

g Reported range of model abundances.
h Comparing χ2 between different models fitting different data does not tell which model is better, so we do not report the χ2 of

other studies besides Line et al. (2014).
i Calculated from their reported statistic of χ2/Ndata.

j 57 degrees of freedom, though the independence of adjacent spectral channels is questionable if they sense the same molecular
band.
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complex, involving the relatively obscure STDS list and the large ExoMol database. Since none of

these comes close to a perfect spectrum fit, the test in BARTTEST is the simplest of the three, using

just HITRAN 2012 and HITEMP 2010. Those interested in reproducing the STDS and ExoMol

runs can find the relevant lists, setup details, and plots in this article’s electronic compendium (see

below).

Figure 2.11 shows BART’s retrieved results for HD 189733 b. Except for Line et al. (2014), each

of the studies from the literature differs from BART in several fundamental ways, including data,

line lists, and modeling approach. Figure 2.12 and Table 2.7 show the effect of these differences

among the studies.

In the BARTTEST run, except for the IRAC channel 2 data point, the best-fit spectrum qualitatively

agrees with that of Line et al. (2014), and the retrieved abundances agree at 1σ, as shown in Table

2.7 and Figure 2.12. While Line et al. (2014) find no evidence of a thermal inversion, BART favors

a slight inversion in all three models, with retrieved T (p) parameters closely agreeing. Except

for CO2, the retrieved molecular-abundance credible regions for the three models agree at 1σ.

For CO2, the ExoMol model agrees with the BARTTEST and STDS models at 1σ, while the

BARTTEST and STDS models differ by less than 2σ. When restricting BART to non-inverted

thermal profiles, χ2 increases significantly, favoring the inverted model by a maximum likelihood

ratio of 30 – 90, depending on the forward-model gridding (0.1 vs. 1 cm−1, respectively).

We demonstrated 1σ agreement between BART and the modern CHIMERA in Section 2.1.3.1,

using synthetic cases. In those tests, the forward model used in the retrieval, or one very similar

to it, generated the test data, so a (near-)perfect match exists in the retrieval phase space. Yet,

despite similar spectra and mostly consistent posteriors, χ2 values in Table 2.7 differ substantially.

The reduced χ2 values are greater than two, indicating model misspecification. Real planets will
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always have physics that are not in any model, in this case including additional opacity sources,

more sophisticated and varied clouds, some reflected stellar spectrum, and 3D temperature and

compositional variation. There are also well known, uncorrected systematics in the NICMOS data

(e.g., Gibson et al. 2011, Crouzet et al. 2012). The error from such misspecification must distribute

somehow among the parameters, but model differences could distribute it differently.

There are some modest model differences. BART’s Bayesian sampler was DEMCzs vs. DEMC

for CHIMERA. All Bayesian methods should converge to the same posterior, within the noise

of random sampling. For example, we find similar results to CHIMERA’s PyMultiNest with our

DEMCzs in Section 2.1.3.1, and these algorithms are less similar than DEMCzs and the DEMC of

Line et al. (2014). So, we do not blame the samplers for the discrepancy among models. BART

uses Kurucz stellar models, while Line et al. (2014) use PHOENIX, but Martins & Coelho (2007)

found that Kurucz and PHOENIX models are comparable in the near infrared for stars with effec-

tive temperatures greater than 4250 K, like HD 189733. The pre-computed opacity grid of Line

et al. 2014 used 20 temperatures ranging 500–3000 K and 20 pressures ranging 20–10−6 bar, while

BART used 25 temperatures spanning 600–3000 K and 100 pressures ranging 100-10−8 bar. This

may explain BART’s slight improvement in reduced χ2 for the STDS case, but not likely the in-

version, as the contribution plots indicate little sensitivity in the extended regions and the pressure

gridding should be sufficient for interpolation in both cases. Priors on thermal-profile parame-

ters differed (uniform vs. Gaussian), which could have kept Line et al. (2014) from finding a χ2

minimum with an inverted profile.

50



The model differences above lead to a χ2 improvement of 10.29 from Line et al. (2014) to our

STDS case, which uses the same line lists, a maximum likelihood ratio of 172. One might expect

even more improvement using the much-more-complete HITEMP and ExoMol line lists. Instead,

χ2 deteriorates to just 2.28 better than Line et al. (2014, maximum likelihood ratio of 3.1). Evi-

dently, the need to distribute the misspecification error dominates the improvement in the modern

line lists.

The next-closest study, and the only other Bayesian approach, used TAU-REX 2’s Stage-1 MCMC

(Waldmann et al. 2015a). With the release of version 3 (Al-Refaie et al. 2021), many new results

from TAU-REX 2’s Stage-1 MCMC are not anticipated, so we have not emulated it directly, but

we can discuss it.

They omit the IRAC 5.8 µm point, which is quite constraining, due to its smaller uncertainties

than the IRS spectrum at those wavelengths. At 10 bar, their uncertainties on T (p) are small (their

Figure 15), despite the data not probing to that depth. This may be due to conditioning T (p).

Our Figure 2.11 and similar plots elsewhere show the lack of contribution from that level and the

resultant broadening of the T (p) credible region there.

They used the CH4 line list of Yurchenko & Tennyson (2014). Its higher limiting temperature

yields many times the lines of the test’s HITRAN list, and thus greater overall opacity. This tends

to reduce the abundance of CH4, and could also reduce other species’ abundances, if CH4 opacity

appeared where there had been none previously. This may explain their usually-lower retrieved

abundances (Table 2.7 and Figure 2.12). BART’s retrieved T (p) profile (all three cases) differs

substantially, with a lower temperature in the upper atmosphere and a lower tropopause pressure

(10−2 vs. 10−1 bar) than TAU-REX’s. Like Line et al. (2014), they also find no inversion.

51



In Table 2.7 and Figure 2.12, we also provide the fitted ranges for pre-Bayesian-retrieval abun-

dances reported by Madhusudhan & Seager (2009), Swain et al. (2009), Lee et al. (2012), and

Line et al. (2012). We find agreement within 3σ for most molecular abundances. BART’s results

differ at 3σ for CO2 and H2O reported by Swain et al. (2009) and CO2 reported by Madhusudhan &

Seager (2009). Like Lee et al. (2012), we similarly find that CO is poorly constrained. In the case

of T (p) profiles, Lee et al. (2012) found the upper atmosphere to be isothermal (∼1100 K) down to

∼0.1 bar. Line et al. (2012) find a variety of potential T (p) profiles, some of which are consistent

with Lee et al. (2012), and some of which are consistent with the results of BART and Line et al.

(2014). The T (p) profiles explored by Madhusudhan & Seager (2009) generally agree with these

other analyses, with the exception of the upper atmosphere, which is cooler. Swain et al. (2009)

did not publish a T (p) profile. These investigations used either a grid search or optimal estimation

rather than a Bayesian method, and they used a different data set from that used here. Both of these

differences could explain discrepancies in retrieved parameters.
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3.1 Abstract

The atmospheric structure of WASP-12b has been hotly contested for years, with disagreements

on the presence of a thermal inversion as well as the carbon-to-oxygen ratio, C/O, due to retrieved

abundances of H2O, CO2, and other included species such as HCN and C2H2. Previously, these

difficult-to-diagnose discrepancies have been attributed to model differences; assumptions in these

models were thought to drive retrievals toward different answers. Here, we show that some of

these differences are independent of model assumptions and are instead due to subtle differences

in the inputs, such as the eclipse depths and line-list databases. We replicate previously published

retrievals and find that the retrieved results are data driven and are mostly unaffected by the addi-

tion of species such as HCN and C2H2. We also propose a new physically motivated model that

takes into consideration the formation of H− via the thermal dissociation of H2O and H2 at the

temperatures reached in the dayside atmosphere of WASP-12b, but the data’s current resolution

does not support its inclusion in the atmospheric model. This study raises the concern that other

exoplanet retrievals may be similarly sensitive to slight changes in the input data.

3.2 Introduction

The thousands of exoplanets discovered to date span a wide range of properties and conditions,

from small, rocky bodies to hot, Jupiter-like gas giants (Batalha 2014, Winn & Fabrycky 2015).

Understanding the compositions of these planets provides real-world tests for atmospheric sim-

ulations and formation theories. Characterizing exoplanetary atmospheres requires an observed

spectrum. Presently, most exoplanets can only be characterized via transit (when the planet moves

in front of its host star, as seen from Earth) measurements. These observations capture starlight
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that has filtered through the exoplanet’s atmosphere at the day–night terminator, imprinting infor-

mation about its composition. For hot exoplanets, its secondary eclipse (when the planet moves

behind the star, as seen from Earth) can be observed, which measures the planet’s thermal emis-

sion. This provides better data than transits to constrain the atmospheric properties (Deming &

Seager 2017).

The inference of atmospheric conditions from observed spectra is known as atmospheric retrieval

(Madhusudhan 2018). For exoplanets, atmospheric retrieval involves the proposal of atmospheric

models from some prior distribution (e.g., uniform or Gaussian), computation of the theoretical

observed spectra, and determination of how well the proposed models explain the observations.

Unlike solar system observations which only require least-squares minimization, a Bayesian ap-

proach is better suited to estimating the uncertainties of exoplanet retrievals due to the high relative

noise levels. The Bayesian sampler explores the parameter space and accepts/rejects new models

with some probability based in part on the goodness of fit. The collection of accepted models

forms the posterior distribution, which informs the range and relative likelihood of values for the

model parameters.

WASP-12b stands out as one of the hottest exoplanets found to date. It orbits an F9V star with

a temperature of 6360±130
140 K at 0.02340±0.00056

0.00050 AU every ∼1.09 days (Hebb et al. 2009, Collins

et al. 2017). With a mass of 1.47±0.076
0.069 MJ and radius of 1.90±0.057

0.055 RJ , its density of 0.0.266±0.015
0.014

g cm−3 is less than a quarter of Jupiter’s density of 1.326 g/cm3. Due to its extreme equilibrium

temperature (>2500 K), it is expected to be in thermochemical equilibrium (Moses 2014).
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WASP-12b has been the target of numerous observations and analyses since its discovery in 2008.

Its secondary eclipse has been observed across the near- and mid-infrared by a variety of instru-

ments, including the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3), Spitzer Space

Telescope Infrared Array Camera (IRAC), Canada-France-Hawaii Telescope (CFHT) Wideband

Imaging Camera (WIC), Michigan-Dartmouth-MIT (MDM) Observatory TIFKAM, and Apache

Point Observatory (APO) Near-Infrared Camera (López-Morales et al. 2010, Campo et al. 2011,

Croll et al. 2011, Zhao et al. 2012, Cowan et al. 2012, Crossfield et al. 2012, Swain et al. 2013,

Föhring et al. 2013). Combinations of these data have been used for retrievals of the dayside

T (p) pressure–temperature profile and molecular abundances by Madhusudhan et al. (2011), Line

et al. (2014), Stevenson et al. (2014), and Oreshenko et al. (2017) to investigate the atmospheric

properties of this highly irradiated hot Jupiter. Madhusudhan et al. (2011) uses less data than the

others due to the limited data at the time of publication. Further, that retrieval occurred before the

discovery of WASP-12’s binary M-dwarf companions, which reduces the measured eclipse depths

(Bergfors et al. 2011, Bechter et al. 2014). As a result, our paper does not thoroughly compare

those results to other investigations.

The results of the Line et al. (2014), Stevenson et al. (2014), and Oreshenko et al. (2017) retrievals

are inconsistent in some respects. When considering CO, CO2, CH4, and H2O, Line et al. (2014)

do not find evidence for a high C/O due to high abundances of CO2 and H2O, while Stevenson

et al. (2014) find a bimodal C/O, both of which have a high abundance of CO2. However, these

analyses find an abundance of CO2 that is greater than both CO and H2O, which has been shown

to be highly improbable in the atmosphere of a planet like WASP-12b (Madhusudhan 2012, Moses

et al. 2013, Heng & Lyons 2016). Line et al. (2014) comment that this is implausible and place an

upper limit of 10−5 on the CO2 mixing ratio; retrievals under this limit drive the H2O mixing ratio

over 100 parts per million, resulting in a more realistic CO2 mixing ratio and maintaining a C/O

near solar. Stevenson et al. (2014) also mention the implausibility of their retrieved CO2 abundance
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and propose the addition of HCN and C2H2 into the retrieval model to solve this problem. These

species have been shown to exist when C/O > 1 (Madhusudhan 2012, Moses et al. 2013) and have

spectral features in Spitzer’s IRAC channel 2; this allows the Bayesian sampler to fit the eclipse

depths in that channel using the added species. Consequently, they retrieve an abundance of CO2

that is less than CO, which is a physically plausible result. This C-rich result is more probable than

their O-rich result by a factor of 670. They exclude an isothermal model at 7σ significance.

Oreshenko et al. (2017) performed retrievals using the same data as Stevenson et al. (2014) and

expands upon that work by including clouds in their model. They find that the cloud compositions

are unconstrained, an expected result considering the degeneracy between cloud composition and

gas mixing ratios at low spectral resolutions. When considering CO, CO2, CH4, and H2O, they

replicate the results of Line et al. (2014) and Stevenson et al. (2014) of an unrealistically high CO2

mixing ratio. In general, they find that their retrieval results are prior dominated. When assuming

Gaussian priors for the C/H and O/H ratios of WASP-12b matching that of its host star (Teske

et al. 2014), the resulting C/O is close to solar. However, when increasing the uncertainties on

the values, C/O > 1 becomes the favored solution, consistent with Madhusudhan et al. (2011).

Including HCN and C2H2 in the model results in an HCN mixing ratio of 10−2 – 10−1, which they

comment is implausible for reasons discussed in Moses et al. (2013); this mixing ratio is over three

orders of magnitude greater than that found in Stevenson et al. (2014). An interesting result of their

retrieval models is the wide range of possible T (p) profiles based on the assumed prior, ranging

from no to strong inversions. However, despite this wide range of possibilities, the resulting spectra

are qualitatively similar.
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A curious difference among the retrieved T (p) profiles of these three investigations is that Line

et al. (2014) find the temperature of the atmosphere to be almost entirely above 3000 K with

the potential for an inversion, while Stevenson et al. (2014) and Oreshenko et al. (2017) find an

upper limit of 3000 K with no inversion. Note that when computing opacities using HITRAN

databases, the available data to calculate partition functions has an upper limit of 3000 K (Laraia

et al. 2011). The CHIMERA code used by Line et al. (2014) probes temperatures above this limit

by assuming that cross sections at temperatures > 3000 K are equal to those at 3000 K (M. Line,

priv. comm.). In general, cross sections will differ between temperatures > 3000 K and 3000 K,

so this assumption is more likely to give misleading results the greater the deviation from 3000 K.

However, extrapolation beyond 3000 K could be even more misleading as there is no guarantee

that it will match the true cross sections. This assumption in CHIMERA could lead to a better

model fit by allowing the code to explore background emission temperatures greater than 3000 K.

Nonetheless, this underscores the need for higher-temperature data to more accurately characterize

planets in this temperature regime.

The temperatures found in these retrievals bring attention to another implicit assumption put into

these models. Retrieval models consider some set of molecules to fit an observed spectrum. Omit-

ting a molecule that is present in the real object will therefore bias the results: Stevenson et al.

(2014) showed that the omission of HCN and C2H2 drives up the inferred CO2 abundance, while

including the additional molecules allows for a more realistic fit. At the temperatures retrieved for

WASP-12b, both H2 and H2O thermally dissociate, forming H (Arcangeli et al. 2018, Kreidberg

et al. 2018, Parmentier et al. 2018). Some H gain an electron from ionized metals, forming H−. To

date, WASP-12b retrieval models have omitted H−, which provides an important continuum opac-

ity source from bound-free and free-free transitions (John 1988), as more thoroughly discussed in

Parmentier et al. (2018) and Arcangeli et al. (2018).
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In this paper, we perform retrievals using the Bayesian Atmospheric Radiative Transfer code

(BART, Harrington et al. 2022, Cubillos et al. 2022, Blecic et al. 2022) matching the setups of

Line et al. (2014) and Stevenson et al. (2014) to investigate the discrepancies in their results, and

we present a new, physically motivated model that includes additional species not considered in

previous investigations. Section 3.3 describes the BART code, and Section 3.4 discusses the setup

for each of the nine models. In Section 3.5, we discuss our results in the context of previous analy-

ses of WASP-12b’s dayside atmosphere. Finally, we draw conclusions from our findings in Section

3.6.

3.3 BART

Our retrieval code, BART (Harrington et al. 2022, Cubillos et al. 2022, Blecic et al. 2022), pairs

the Transit radiative-transfer code (Rojo 2006) with Multi-Core Markov chain Monte Carlo (MC-

cubed, Cubillos et al. 2017), a Bayesian framework. The user specifies a parameter space to be

explored for some model parameters (e.g., the T (p) profile and molecular abundances). Other

inputs include the observational data and its type (e.g., transit or eclipse depths) as well as the

instrument filters associated with each data point. For each proposed atmospheric model, the theo-

retical spectrum is calculated at a high resolution, binned according to the filters, and compared to

the observational data. The abundance profiles begin from a user-specified atmosphere (e.g., uni-

form profiles, or thermochemical equilibrium for a certain T (p) profile), and MCcubed scales the

abundances of the molecules being fit. For credible regions estimated from the posterior, BART

computes the steps per effective independent sample (SPEIS) and effective sample size (ESS) to

estimate the uncertainty in a given credible region, as detailed in Harrington et al. (2022).
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Table 3.1: Summary of Retrieval Models

Characteristic 1 2 3 4 5 6 7 8 9 10 11 12 13
CO X X X X X X X X X X X X X
CO2 X X X X X X X X X X X X X
CH4 X X X X X X X X X X X X X
H2O X X X X X X X X X X X X X
HCN X X X X X X
C2H2 X X X X X X
NH3 X X
TiO X X
H− X X X X X X
e− X X X X X X

Cross sections
> 3000 K X X X X X X X X X X

HST WFC3 G141 Sw13a Sw13 Sw13 St14b St14 St14 St14 Sw13 Sw13 St14 St14 Sw13 St14
APO ARC z’c X X X X X X X X X X X
CFHT WIC Jd X X X X X X X
CFHT WIC Hd X X X X X X X X X X X X X
CFHT WIC Ksd X X X X X X X
MDM Hiltner
TIFKAM Kse X X X X X X

Subaru MOIRCS
NB2315f X X X X X X

Spitzer IRAC ch1 Co12g Co12 Co12 St14 St14 St14 St14 Co12 Co12 St14 St14 Co12 St14
Spitzer IRAC ch2 Co12 (n)i Co12 (e)j Co12 (n) St14 St14 St14 St14 Co12 (n) Co12 (n) St14 St14 Co12 (n) St14
Spitzer IRAC ch3 Ca11h Ca11 Ca11 St14 St14 St14 St14 Ca11 Ca11 St14 St14 Ca11 St14
Spitzer IRAC ch4 Ca11 Ca11 Ca11 St14 St14 St14 St14 Ca11 Ca11 St14 St14 Ca11 St14

a: Swain et al. (2013); b: Stevenson et al. (2014); c: López-Morales et al. (2010), corrected by Crossfield et al. (2012); d: Croll
et al. (2011), corrected by Crossfield et al. (2012); e: Zhao et al. (2012), corrected by Crossfield et al. (2012); f: Crossfield et al.

(2012); g: Cowan et al. (2012), corrected by Crossfield et al. (2012); h: Campo et al. (2011), corrected by Crossfield et al.
(2012); i: ‘null’ hypothesis; j: ‘ellipsoidal’ hypothesis



3.4 Model Configurations

To investigate the previously published retrievals of WASP-12b, we replicate their setups to the

best of BART’s ability, and we expand upon those setups to delve deeper into the nature of the

discrepancies in results. Our nine retrieval models are that of

1. Line et al. (2014) null case,

2. Line et al. (2014) ellipsoidal case,

3. Line et al. (2014) null case plus the data from López-Morales et al. (2010) corrected by

Crossfield et al. (2012),

4. Stevenson et al. (2014) case without HCN and C2H2,

5. Stevenson et al. (2014) case with HCN and C2H2,

6. Stevenson et al. (2014) without HCN and C2H2 with the assumptions of CHIMERA about

cross sections,

7. Stevenson et al. (2014) with HCN and C2H2 mixing ratios fixed to their reported C-rich

best-fit values,

8. Model 3, with H−,

9. Model 8, with HCN and C2H2,

10. Model 6, with H−,

11. Model 10, with HCN and C2H2,

12. Model 3, with NH3, HCN, C2H2, TiO, and H−, and
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13. Model 6, with the molecules of Model 12.

At the time of writing, BART does not have a realistic cloud model, so we do not try to replicate

the Oreshenko et al. (2017) result that finds cloud composition to be unconstrained. Table 3.1

summarizes the setup of each model regarding data sources and molecules besides H, H2, and He.

For this investigation, BART’s only restrictions on the atmospheric models are 1) the sum of molec-

ular abundances must equal 1 for each layer, and 2) the ratio of H2 to He is held constant by adjust-

ing their abundances to satisfy condition 1. For models that do not use CHIMERA’s assumption

about cross sections at T > 3000 K, BART also enforces that the temperature of the atmosphere

must remain within the line-list limits.

The atmospheric models consist of 100 log-spaced layers spanning 10−8 – 100 bar. For radiative-

transfer calculations, only layers above where the optical depth reaches ≥10 are considered. We

assume uniform abundances for the species present, consistent with the previous publications.

Each model has a free parameter for the abundance of each opacity-contributing species, as well as

five free parameters for the T (p) profile (the Planck mean infrared opacity, the ratios of the Planck

mean visible and infrared opacities for two streams, the partition between the two streams, and a

general parameter for albedo/emissivity/energy recirculation; Line et al. 2013). The free parame-

ters for the partition between streams and albedo/emissivity/recirculation have uniform priors; all

other free parameters have log-uniform priors. We do not vary the H− or e− abundances because

previous publications indicate the atmosphere is nearly isothermal at ∼3000 K in the regions with

sensitivity, and the abundances change by only a factor of ∼2 for a change as large as 200 K.

H− and e− are fixed to an abundance of 10−9 and 10−6, respectively, which is roughly consistent

with thermochemical equilibrium at 3000 K (NASA Chemical Equilibrium with Applications code

Gordon & McBride 1994) at pressures probed by the observations. A wide range of values are al-

lowed for each free parameter without consideration of physical plausibility. For this investigation,
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we use the DEMCzs sampling algorithm of ter Braak & Vrugt (2008) because we found that the

DEMC algorithm of ter Braak (2006) occasionally leads to rogue chains that do not converge.

Since DEMCzs only considers the goodness of fit of each proposed model, it can explore both

realistic and unrealistic solutions. The initial samples of parameters for the DEMCzs algorithm are

drawn randomly from a uniform distribution; most of the parameters are the logarithm of the true

parameter, so those true parameters are randomly sampled from a log-uniform space.

We include HITEMP opacities for CO, CO2, and H2O (Rothman et al. 2010), and HITRAN opac-

ities for NH3, C2H2, and HCN (Rothman et al. 2013). Models 1 – 11 use the Rothman et al.

(2013) CH4 line list for consistency with Line et al. (2014). while models 12 and 13 use the new

CH4 HITEMP line list (Hargreaves et al. 2020). TiO opacities are sourced from Schwenke (1998).

We include H2-H2 and H2-He collision-induced absorptions (Richard et al. 2012) as well as H−

bound-free and free-free absorption (John 1988), where appropriate.

Note that Equation 3 of John (1988) does not lead to the correct bound-free opacity values nec-

essary to reproduce Table 1 of John (1988); a factor of 10 for the bound-free cross-sections is

required to obtain agreement. We refer the reader to our compendium for a detailed proof. It is

unclear whether the given equations or table provide the correct opacities. Considering the numer-

ous fitted constants used in the equations, we have chosen to assume that the table is correct, as it

appears to lead to agreement with the H− opacities plotted in Figure 1 of Arcangeli et al. (2018)

and Figure 4 of Parmentier et al. (2018). Additionally, by assuming the greater of the two possibil-

ities, we can assess an upper limit on the impact of H− when retrieving WASP-12b’s atmospheric

properties.
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3.5 Results and Discussion

The accepted T (p) profiles with 1σ and 2σ regions, normalized contribution functions, best-fit

spectrum, and 1D marginalized posteriors are shown for Models 12 and 13 in Figure 3.1 and 3.2,

respectively. The electronic supplement provides additional figures: 2D pairwise posteriors and

trace plots for Models 12 and 13, as well as the corresponding set of six plots for Models 1 – 11.

Table 3.3 contains the best-fit values and 68.27% interval for the retrieved log abundances of each

molecule for all 13 models, the best-fit values and 68.27% interval reported by Line et al. (2014)

for the ‘null’ and ‘ellipsoidal’ cases, the best-fit values reported by Stevenson et al. (2014) for the

C-rich and O-rich cases, and the lower/upper limits on abundances shown in the top of Figure 3

of Oreshenko et al. (2017). We also report the best-fit and 68.27% credible region for C/O for

each case. We have excluded extreme outliers (C/O > 1000) from the density estimation, as they

represent a small percentage of the total models and cause problems for the density estimation

algorithm, and we do not consider HCN or C2H2 when calculating C/O due to the lack of evidence

to support their inclusion in the model. Values of “. . . ” indicates that the model does not contain

that molecule. Table 3.2 lists the SPEIS, ESS, and associated uncertainty in the 68.27% credible

region for each model considered. We also provide a compendium with the data and commands

necessary to reproduce this work; the link is at the end of the text.
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Table 3.2: Summary of Retrieved Credible Region Uncertainties

Model SPEISa ESSb 68.27% Region Uncertainty (%)c

1 1834 517 2.04
2 2276 417 2.27
3 1025 926 1.53
4 953 996 1.47
5 4871 195 3.31
6 1948 487 2.10
7 3463 274 2.80
8 5483 455 2.17
9 6135 407 2.30

10 4673 534 2.01
11 7562 330 2.55
12 3356 327 2.56
13 3359 327 2.56

a: Steps per effective independent sample; the number of iterations needed for a non-correlated
sample.

b: Effective sample size; the number of independent samples.
c: For finite ESS, the approximation to the true posterior induces an uncertainty in any

determined credible region. See Harrington et al. (2022) for details.
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Table 3.3: Retrieved Molecular Log Abundances

Model CO CO2 CH4 H2O HCN C2H2 NH3 TiO C/O
1 -4.4 -2.6 -11.4 -5.4 . . . . . . . . . . . . 0.50

[-10.0, -2.3] [-11.0, -2.2] [-10.5, -2.9] [-4.7, -1.2] . . . . . . . . . . . . [0.00, 4.81]
2 -11.3 -5.2 -2.8 -11.1 . . . . . . . . . . . . 115

[-10.9, -4.7] [-5.6, -3.2] [-9.7, -2.0] [-11.2, -6.6] . . . . . . . . . . . . [0.00, 9.53]
3 -2.0 -1.0 -10.1 -6.6 . . . . . . . . . . . . 0.52

[-9.6, -2.1] [-10.8, -1.4] [-11.2, -4.2] [-5.5, -1.2] . . . . . . . . . . . . [0.00, 4.84
4 -10.4 -5.8 -3.8 -8.6 . . . . . . . . . . . . 52.8

[-13.2, -5.7] [-6.2, -5.0] [-6.6, -2.8] < −7.7 . . . . . . . . . . . . [0.06, 9.86]
5 -6.8 -5.5 -3.5 -8.3 -7.0 -7.1 . . . . . . 52.2

[-10.6, -4.8] [-6.1, -4.9] [-6.1, -2.6] [-10.6, -6.7] [-10.6, -1.4] [-10.0, -4.1] . . . . . . [0.00, 12.4]
6 -5.9 -5.2 -3.2 -8.4 . . . . . . . . . . . . 45.2

[-10.9, -4.6] [-5.5, -4.0] [-5.6, -1.6] [-11.1, -6.6] . . . . . . . . . . . . [0.10, 12.6]
7 -7.8 -5.5 -3.5 -7.2 -6 -5 . . . . . . 50.5

[-11.3, -5.5] [-6.1, -4.9] [-7.3, -2.7] [-10.8, -6.9] fixed fixed . . . . . . [0.04, 23.7]
8 -2.3 -1.0 -5.7 -7.3 . . . . . . . . . . . . 0.51

[-8.2, -1.3] [-10.0, -1.6] [-10.5, -3.4] [-6.8, -1.0] . . . . . . . . . . . . [0.00, 5.72]
9 -2.2 -1.7 -9.4 -8.4 -8.5 -2.8 . . . . . . 0.57

[-10.3, -1.5] [-10.1, -1.3] [-10.2, -2.5] [-6.6, -1.1] [-12.1, -2.4] [-11.9, -3.6] . . . . . . [0.00, 5.64]
10 -6.7 -5.5 -3.7 -10.0 . . . . . . . . . . . . 37.3

[-10.5, -4.9] [-6.1, -4.5] [-5.7, -1.9] [-10.7, -6.5] . . . . . . . . . . . . [0.05, 21.0]
11 -8.4 -5.9 -3.9 -10.9 -10.5 -6.3 . . . . . . 45.9

[-10.8, -5.2] [-6.0, -4.4] [-6.3, -1.9] [-10.4, -6.6] [-11.6, -3.5] [-12.6, -5.3] . . . . . . [0.05, 20.0]
12 -9.5 -2.1 -1.6 -8.0 -9.4 -12.2 -11.5 -8.1 1.94

[-8.3, -2.1] [-9.6, -2.3] [-10.5, -2.5] [-4.5, -1.2] [-11.8, -3.7] [-11.0, -4.9] [-10.6, -4.9] [-10.0, -5.1] [0.00, 5.51]
13 -9.1 -5.2 -4.4 -8.1 -5.4 -6.0 -8.2 -9.8 3.39

[-10.2, -4.8] [-5.8, -4.2] [-6.8, -3.2] [-10.0, -6.0] [-11.2, -3.2] [-12.0, -4.8] [-12.4, -6.4] [-12.3, -8.4] [0.31, 1.43]
L14a,
null

-2.7
[-9.7, -2.0]

-1.2
[-8.1, -1.3]

-8.6
[-10.8, -3.1]

-8.1
[-8.8, -2.3] . . . . . . . . . . . .

0.51
[0.30, 1.00]
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Model CO CO2 CH4 H2O HCN C2H2 NH3 TiO C/O
L14,

ellipsoidal -2.7 -1.0 -9.7 -3.3 . . . . . . . . . . . . 0.50

[-10.3, -2.8] [-1.3, -0.8] [-10.6, -5.1] [-10.0, -3.1] . . . . . . . . . . . . [0.11, 0.22]
St14,
C-rich -3.5 -6.0 -4.1 -6.6 -6.0 -5.0 . . . . . . 1.30

St14,
O-rich -3.3 -4.2 -7.0 -3.3 -7.0 -9.8 . . . . . . 0.50

O17b [-12, -2.5] [-7, -4] [-12, -6] [-12, -6] [-3, -1] [-12, -4] . . . . . . [0.3, 4]
Notes: Models 1 – 13 and the Line et al. (2014) results are given as the best-fit values, followed by the 68.27% credible regions. Stevenson
et al. (2014) results are given as the reported best-fit values. Oreshenko et al. (2017) results are given as the estimated minimum and
maximum of the posteriors from their Figure 3.
a: Line et al. (2014); b: Oreshenko et al. (2017)



For Model 1 (Figure 3.1, figure set panel 1.1), BART’s results generally agree with that of the

‘null’ case of Line et al. (2014). Our best-fit abundances have CO2 > CO, as Line et al. (2014)

find, which, as mentioned previously here and in their paper, is implausible. However, there is

large uncertainty in this result, as indicated by the nearly flat posterior of both CO and CO2. Like

Line et al. (2014), we find that CO and CH4 are unconstrained, according to the flat posteriors,

but we also find that CO2 is unconstrained. Except for CH4, the best-fit values fall within the

68.27% region reported by Line et al. (2014). The T (p) profile 1σ regions overlap, with both

best-fit profiles favoring an inversion.

For Model 2 (Figure 3.1, figure set panel 1.2), BART’s results differ in some respects from the

‘ellipsoidal’ case of Line et al. (2014). Most notably, the T (p) profile 1σ region shows a non-

inverted atmosphere where the upper atmosphere is < 3000 K, whereas Line et al. (2014) find an

inverted atmosphere with the upper atmosphere > 3000 K. However, the normalized contribution

functions indicate minimal sensitivity below a pressure of 10−6 bar; in the best-constrained region

(0.1 – 10 bar), the retrieved T (p) profiles agree. For abundances, the best-fit values disagree, but,

except for CO2, the 68.27% intervals overlap. However, the case of Line et al. (2014) where CO2

has an upper limit agrees more closely with our retrieved interval. It is unclear why BART does

not find the high-CO2 mode found by Line et al. (2014).

The results for Model 3 (Figure 3.1, figure set panel 1.3) in general agree with Model 1. CO,

CO2, and CH4 are similarly unconstrained, while the 68.27% region for H2O overlaps (Table 3.3).

A notable difference is that Model 3 finds a lower minimum for that region. This is likely from

the additional data point of López-Morales et al. (2010) providing an additional constraint on the

background emission.
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BART’s results for Model 4 (Figure 3.1, figure set panel 1.4) in many ways match that of Model

2. The T (p) profile 1σ regions closely match, and the marginalized posteriors exhibit many simi-

larities. Similar to Model 2, BART does not find the unrealistically high CO2 abundance reported

by Stevenson et al. (2014) when retrieving with this setup (Table 3.3). Since the parameter space

for CO2 extended to a log mixing ratio of -1, these models must have been discarded by BART’s

sampler. It is uncertain whether this difference can be attributed to the sampling algorithm, the

opacity sources, or some other difference in the retrieval algorithm. Nevertheless, the best-fit T (p)

profiles of Stevenson et al. (2014) fall within BART’s reported 1σ region where there is sensitivity.

Further, their C-rich best-fit values are within BART’s 68.27% regions for all but CO. Our 68.27%

interval for H2O rules out their O-rich result, which features an H2O abundance of 10−3.3.

The results for Model 5 (Figure 3.1, figure set panel 1.5) mostly agree with the findings of Steven-

son et al. (2014). The C-rich best-fit values for CO2, CH4, H2O, and C2H2 reported by them fall

within BART’s 68.27% regions (Table 3.3). Our 68.27% interval for H2O similarly rules out their

O-rich result. BART finds HCN to be unconstrained. The retrieved T (p) profiles closely match the

results of Model 4 and are therefore consistent with the retrieved T (p) profiles of Stevenson et al.

(2014). The best-fit values and 68.27% region found for Model 5 closely matches the results of

Model 4, which does not include HCN or C2H2. Thus, the inclusion of these additional molecules

only minorly affects the retrieved result.

Model 6 (Figure 3.1, figure set panel 1.6) examines the effect of allowing T (p) profiles with T >

3000 K on Model 4. BART’s results closely match those of Models 4 and 5. The T (p) profile 1σ

regions generally agree, with a general upper limit of ∼3000 K. The marginalized posteriors are

similar, and the 68.27% regions for the molecular abundances closely overlap. This importantly

demonstrates that the eclipse data, not the model assumptions, are driving the result.
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For Model 7 (Figure 3.1, figure set panel 1.7), BART’s results generally agree with those of Model

5. Even with the HCN and C2H2 abundances fixed to the C-rich best-fit values reported by Steven-

son et al. (2014), BART does not favor their reported CO abundance. We suspect that this differ-

ence can be attributed to differences in line lists, though we were unable to ascertain the line lists

used by Stevenson et al. (2014) via private communication to test this hypothesis.

Models 8, 9, and 12 (Figure 3.1, figure set panels 1.8, 1.9, and 1.12), which are equivalent to

Model 3 but with additional opacity sources, bear qualitatively similar results to Model 3. While

the 68% regions may differ slightly, these are largely due to numerical differences in the density

estimation of the marginalized posteriors. Visually, the posteriors are quite similar; CO, CO2,

and CH4 have flat marginalized posteriors, while H2O has a preference for log abundances greater

than -6. In Model 12, the flat posteriors of HCN, C2H2, and NH3 demonstrate that the data are

insensitive to their inclusion. While the log abundance TiO is loosely constrained to be−7.5±2.5,

consistent with thermochemical equilibrium for the retrieved T (p) profile in the regions probed by

the observations, the posterior allows for TiO to be absent from the atmosphere within 2σ.

Similarly, Models 10, 11, and 13 (Figure 3.2; see also figure set panels 1.10, 1.11, and 1.13),

which are equivalent to Model 6 except with additional opacity sources, yield results similar to

Model 6. The resulting thermal profiles agree closely. As with Models 8, 9, and 12, the 68%

regions differ slightly due to the density estimation algorithm, though the marginalized posteriors

are qualitatively similar to Model 6. That is, CO tends to favor smaller values, CO2 is tightly

constrained within an order of magnitude from 10−5, CH4 features a constraint about 10−3 but

could also be absent from the atmosphere (the posterior has a non-negligible tail), and H2O has an

upper limit of around 10−4. For Model 13, BART finds upper limits of 10−2 for NH3 and 10−6 for

TiO.
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Figure 3.1: BART results for Model 12, which uses the data set of Line et al. (2014) with the
additional data point from López-Morales et al. (2010). Top left: T (p) profiles explored by the
Markov chain Monte Carlo (MCMC). Red line denotes the best-fit T (p) profile, the black line
denotes the median T (p) profile, and the dark and light blue regions indicate the 1σ and 2σ regions,
respectively. Top right: normalized contribution functions. Bottom left: best-fit spectrum. Bottom
right: marginalized posteriors. BART favors a mostly isothermal T (p) profile around 3000 K.
Of the molecules considered, only H2O is constrained (log abundance > −6). While the log
abundance of TiO features a bump near −8, the non-negligible tail at lesser abundances indicates
the possibility that TiO is not present in the atmosphere.
(The complete figure set (13 images) is available.)
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Figure 3.2: Same as Figure 3.1, except for Model 13, which uses the data set of Stevenson et al.
(2014). Like Model 12, BART favors a nearly isothermal T (p) profile in the regions probed by the
observations. Contrary to Model 12, H2O features an upper limit around −4 for its log abundance,
CO2 is constrained to a log abundance of −7 − −3, CH4 shows evidence of a log abundance
around −5−−4 (though features a non-negligible tail at lesser abundances, indicating it may not
be present in the atmosphere), and CO favors log abundances around −10 − −6. Like Model 12,
the posterior for TiO indicates an upper limit on the log abundance of around −5−−4, and there
is similarly no evidence for HCN or C2H2.
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As Models 8 and 10, 9 and 11, and 12 and 13 bear identical setups/assumptions aside from the

eclipse depths, the differences between them are thus solely attributable to the data. Both data

sets favor a ∼3000 K atmosphere in the regions probed by the observations, as evidenced by the

normalized contribution functions. However, their retrieved abundances, and by extension the

inferred C/O, are incompatible. The data set of Models 8, 9, and 12 yields evidence of a high water

abundance and possibly TiO in thermochemical equilibrium, with no evidence of other molecules,

while the data set of Models 10, 11, and 13 constrain CO2 and CH4, with upper limits for CO

and H2O. None of the data sets considered offer meaningful constraints on HCN, C2H2, or NH3.

Despite the theoretical expectation that H− plays an important role in the atmosphere of hot Jupiters

like WASP-12b (Parmentier et al. 2018), its inclusion does not make a significant difference in the

retrieval results (Figure 3.3).

Our results are broadly consistent with those of Oreshenko et al. (2017), except for HCN (Table

3.3). In general, the models using the Line et al. (2014) data favor an atmosphere that is isothermal

or has an inversion, whereas the models using the Stevenson et al. (2014) data favor an atmosphere

that has no inversion. Lothringer et al. (2018) show that thermal inversions are likely for this

planet class even without VO or TiO. While the results using the Line et al. (2014) ‘null’ data set

are consistent with this finding, it is important to consider that these results also favor a high H2O

abundance, which is inconsistent with the expected thermal dissociation of H2O. While the Line

et al. (2014) ‘ellipsoidal’ case favors a low H2O abundance, it does not show strong evidence of a

thermal inversion and more closely matches the results of Stevenson et al. (2014).

Over the reported 68.27% credible regions, the C/O for these models can take a wide range of

values. However, they do not indicate that C/O�1. Rather, it is due to a combination of reasons.

For one, the DEMCzs sampler is free to explore the parameter space without regard for C/O. For

example, in the case of Model 4, the best-fit C/O value is 52.8, which is noticeably different than

the 68.27% region; this is a product of a high best-fit abundance of CH4 and low best-fit abundance
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Figure 3.3: Comparison of the retrieved H2O marginalized posteriors for the models using the Line
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3) and those with H− (8, 9, 12) indicates that the inclusion of H− does not significantly affect the
retrieved H2O abundance.
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of H2O, which provides a better statistical fit than models with more reasonable C/O values. Ad-

ditionally, thermal dissociation of H2O would lead to the formation of O (Parmentier et al. 2018),

causing an apparent increase in the measurable C/O but not the true C/O. There are also other

oxygen-bearing species not considered here, particularly condensates at the limb (Wakeford et al.

2017), that would contribute to C/O, if included in the model. However, Oreshenko et al. (2017)

demonstrated that the cloud composition is degenerate with gas mixing ratios; higher-resolution

data is necessary to explore a model with various species of condensates.

Typically, when considering multiple models, the Bayes factor of each model is compared to

choose the ‘best’ model. In this investigation, however, this would be erroneous: the 13 mod-

els presented do not use the same data sets, and they are not competing for the ‘best’ model.

Rather, the models demonstrate that the retrieval results are data driven and independent of the

model selected. Consequently, we do not compute the Bayes factor as it would be a misleading

metric. We emphasize that the results show that the previous retrieval analyses of Line et al. (2014)

and Stevenson et al. (2014) are consistent, when considering the data set used in each investiga-

tion. Follow-up observations are required to determine which data set, if either, represents the true

nature of WASP-12b.
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3.6 Conclusions

In general, we are able to reproduce the published results of Line et al. (2014), Stevenson et al.

(2014), and Oreshenko et al. (2017) using BART. We confirm the finding of Stevenson et al. (2014)

that excludes an isothermal profile when mimicking their setup. By following the model assump-

tion of Line et al. (2014) allowing temperatures above 3000 K with the Stevenson et al. (2014)

data, the range of possible T (p) profiles expands to include inverted profiles but still favors a non-

inverted atmosphere. Note that an inverted profile is expected for ultra-hot Jupiters like WASP-12b

(Lothringer et al. 2018).

We find that current data does not support the inclusion of HCN, C2H2, H−, e−, NH3, and TiO, as

they do not significantly affect the posterior. As new telescopes in the near future provide higher

quality data, these molecules should be reconsidered, as in this investigation, to determine if they

inform the results.

Some aspects were unable to be reproduced, namely, the unrealistically high CO2 abundances

reported in the Line et al. (2014) ‘ellipsoidal’ case and the Stevenson et al. (2014) case without

HCN or C2H2, and the unrealistically high HCN abundance reported by Oreshenko et al. (2017).

While we suspect this discrepancy is due to differences in the retrieval model, further investigation

is necessary to definitively determine the origin.
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We have demonstrated that differences in eclipse depth data sets primarily drive the differences

between the results of Line et al. (2014) and Stevenson et al. (2014), with more subtle differences

likely attributable to the retrieval model and input data sources (e.g., line lists). Many of the eclipse

depths come from the same set of observations but are analyzed using different reduction pipelines.

Our study shows that subtle differences in the reduction pipelines used (e.g., the binning of WFC3

spectra into discrete channels) can drive radically different results. This emphasizes the need for

standard data sets to be used for benchmarking photometry and spectroscopy reduction pipelines.

The conflicting results of previous publications highlight the complexities of retrieval modeling and

the importance of clearly communicating model assumptions. This will be especially important as

retrieval models become more sophisticated with the introduction of more complicated techniques

such as 3D modeling and machine learning (Márquez-Neila et al. 2018, Zingales & Waldmann

2018, Waldmann & Griffith 2019, Cobb et al. 2019). Transparency allows for published analyses

to be easily reproduced by others and encourages quicker resolution of conflicting results, which

can lead to better work in the field.

Future retrieval studies should use multiple binnings of the same data to explore whether the re-

trievals are consistent across different binnings of the data, including the unbinned data. This

requires that data analyses publish unbinned spectra to support future retrieval studies. Retrieval

results dependent on the binning, such as those shown here, indicate the need for higher quality

spectroscopic data. A comprehensive retrieval analysis of WASP-12b with additional data from fu-

ture flagship observatories, such as the James Webb Space Telescope, will provide deeper insight

into the nature of this extreme exoplanet.

The Reproducible Research Compendium for this work is available for download1.

1Available at https://doi.org/10.5281/zenodo.5777204.
Note: the compendium is 16.5 GB compressed and 34 GB uncompressed.
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4.1 Abstract

Over the past decade, the field of exoplanets has shifted from their detection to the characterization

of their atmospheres. Atmospheric retrieval, the inverse modeling technique used to determine

an atmosphere’s temperature and composition, is both time-consuming and compute-intensive, re-

quiring complex algorithms that generate thousands to millions of atmospheric models, compare

the model to the observational data, and build a posterior distribution that gives the most proba-

ble value and uncertainty for each model parameter. For rocky, terrestrial planets, the retrieved

atmospheric composition can give insight into the surface fluxes of gaseous species necessary to

maintain the stability of that atmosphere, which may in turn provide insight into the geological

and/or biological processes active on the planet. These atmospheres contain many molecules,

some of which are biosignatures, or molecules indicative of biological activity. Runtimes of tradi-

tional retrieval models scale with the number of model parameters, so as more and more molecular

species are considered, runtimes can become prohibitively long. Machine learning (ML) offers a

unique way to reduce the time to perform a retrieval by orders of magnitude, given a sufficient data

set to train with. Here we present the Intelligent exoplaNet Atmospheric RetrievAl (INARA) code,

the first ML retrieval model for rocky, terrestrial exoplanets, and a data set of 3,000,000 spectra of

synthetic rocky exoplanets generated using the NASA Planetary Spectrum Generator.
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4.2 Background

The study of exoplanets is based on two approaches: direct and indirect detection. Direct methods

rely on the use of sensors observing a signal emitted by the planet surface and atmosphere, while

indirect methods rely on the effect that the planet’s presence exerts on its host star. Among indirect

observations, the transit method is one of the most promising; it consists of detecting stellar signal

variations due to the transit of the planet as it passes in front of the star as viewed by the observer.

This allows for direct measurement of the apparent planetary radius as a function of wavelength.

Information related to the atmospheric structure and composition of the planet can be deduced from

this apparent radius variability as the molecular species present in the atmosphere at the day-night

terminator absorb differing amounts of stellar flux at particular wavelengths (Crossfield 2015).

Another observation technique uses a coronagraph to suppress the stellar emission such that di-

rect imaging of the exoplanet is possible (Fujii et al. 2018). While the transit method directly

measures planetary radius to infer atmospheric composition, coronagraphic observations directly

measure the emission from the planet, which is a combination of reflection of host star emission

and emission from either the surface of the planet (rocky bodies) or the deep atmosphere (gaseous

bodies). This measured emission is due to the atmospheric composition and, to a greater extent

for hot, gaseous bodies, the temperature structure. With enough measurements across a broad

wavelength range, the atmospheric composition and temperature structure can be determined with

some degree of uncertainty; this process is known as atmospheric retrieval (Madhusudhan 2018).
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Figure 4.1: Schematic overview of the problem. Planetary spectra are a product of the pressure–
temperature profile and atmospheric composition of an exoplanet. The atmospheric composition is
influenced by gas fluxes resulting from geological processes, biological processes, or a combina-
tion of the two. Biological activity may be able to be determined based on the inferred atmospheric
composition, after potential geologic contributions have been ruled out. If biology is present, we
can potentially determine the metabolisms occurring on the exoplanet.
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By determining the atmospheric composition of a rocky/terrestrial exoplanet, we are then able to

begin the process of deducing whether or not life may exist on an exoplanet. This is because the

atmospheric composition (and ultimately the planetary spectrum we observe) of an exoplanet may

be influenced by gas fluxes from biological sources (as outlined in Figure 4.1).

To date, the bulk of retrieval methods consist of assuming an atmosphere with a set of molecules at

a particular pressure–temperature profile, generating the spectrum resulting from this atmosphere

(forward model), binning the spectrum according to the instruments and filters used to observe the

exoplanet, and comparing the result to the measured data. This is repeated thousands to millions

of times over some large parameter space, typically using a Bayesian method such as Markov

chain Monte Carlo (MCMC; ter Braak & Vrugt 2008) or nested sampling (Skilling 2004) to yield

a posterior distribution. While these methods can find constraints on molecular abundances or the

pressure–temperature profile, they are time-consuming and require significant computational re-

sources to do so.

In previous studies, random forests (Márquez-Neila et al. 2018) and generative adversarial net-

works (GANs; Zingales & Waldmann 2018) have been used to perform atmospheric retrievals

with ML. These two approaches, however, were limited to atmospheric retrievals of hot Jupiters

with four or fewer molecular species considered. Furthermore, they only consider isothermal tem-

perature profiles (although in reality these planets have non-isothermal temperature structures),

and their spectra are constrained to low resolutions. Thus, there are significant improvements that

can be made for ML retrieval models.

91



4.3 Methods

4.3.1 Tools, Compute and Software Environment

We used Python as our main programming language to develop INARA in combination with

PyTorch, an optimized ML library for deep learning utilizing both GPUs and CPUs. In addition,

we also used TensorFlow, Keras, and Scikit-Learn via Jupyter notebooks to eval-

uate specific models and their performance. The NASA Goddard Planetary Spectrum Generator

(PSG; Villanueva et al. 2018) was the core of our spectrum generation coupled with pypsg, a

Python package to generate input parameters for PSG. INARA utilizes pypsg to send models

to PSG for spectra generation.

INARA can be run for data generation, ML model training and model inference. The code runs

locally on a system depending on installed software requirements1 or in form of a Docker con-

tainer. The latter option requires no installation of software dependencies or ML frameworks as

the container can be deployed to run on all Docker-supported operating systems.

A version of NASA’s PSG was transferred to Google Cloud and is now available to be instanti-

ated as a Virtual Machine (VM) on the cloud platform. INARA can instantiate multiple such PSG

instances via a single Python command2. Figure 4.2 displays the described software landscape.

1An environment YAML Ain’t Markup Language (YML) file is available at the INARA GitLab repository
2See the documentation at https://gitlab.com/frontierdevelopmentlab/astrobiology/inara
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Figure 4.2: Overview of the entire implementation landscape. Once instantiated as a Docker
container in the cloud, INARA communicates with a designated PSG VM to generate the data
and store it in the cloud. INARA Docker containers are then able to read the data back in for ML
training and inference purposes.

Figure 4.3: Structure of the instantiated INARA docker container and PSG VMs that act as nodes
connected to the cloud storage.
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Google Cloud also served as the main computational platform for data generation, model train-

ing and inference. Via Google Cloud, we were able to instantiate ∼2000 VMs (groups of 16

INARA instances connected to one PSG node) for data generation. Figure 4.3 presents an overview

of the data generation architecture. Although currently configured for Google Cloud, INARA

can be used in combination with any cloud computing system.

INARA stores the generated data in blob form on Google Cloud and reads the data on-the-fly

back into INARA for ML purposes. Trained ML models and predictions are also saved automati-

cally to the cloud.

4.3.2 Generation of Planetary Spectra via NASA Goddard’s Planetary Spectrum Generator

In order to train our ML models, we first had to generate a data set encompassing a large parameter

space. We utilized PSG to generate spectra based on a given planetary system model. In this

section, we describe our choices for the parameter space considered by our model.

4.3.2.1 System Parameters

We consider F, G, K, and M main sequence stars. Kurucz stellar models are used for G, K, and

M types, while F types are simulated as a blackbody as PSG lacks an F-type model at the time of

data generation. Stellar radii and temperatures are randomly selected from uniform ranges based

on Boyajian et al. (2012) and Boyajian et al. (2013). The semi-major axis of the planet is randomly

selected from that of an optimistically-habitable Venus to an optimistically-habitable Mars scaled

according to the host star’s radius and temperature, as defined in Kopparapu et al. (2013). The

distance of the system is randomly selected from 1.3 to 15 pc for coronagraphic observations (F,
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G, and K types) and from 5 to 25 pc for transit observations (M types). These ranges were chosen

for observational reasons. For the minima, the closest exoplanet is Proxima Centauri b at 1.3 pc

(coronagraphic), and detectors will saturate quickly at 5 pc if staring at the target (transit). For the

maxima, noise necessitates many hours of observations, reducing the likelihood that rocky worlds

will be studied at these distances given there are likely better targets at closer distances.

Observations are simulated using a 15 m space telescope with a resolution of 1900 covering 0.2

to 2 µm with low read noise (1 e−/pixel) and dark current (0.001 e−/s). The coronagraph’s inner

working angle is 2 λ/D. These are based on the LUVOIR-A design concept but with a much higher

resolution to allow the use of both high- and low-resolution data for experimentation.

Simulated observations have similar noise characteristics; the nominal observations are 8 hours on

Earth at 5 pc when it is at its greatest separation from the Sun for coronagraphic observations, and 8

hours on TRAPPIST-1e, which is at a distance of 12.1 pc, for transit observations. The observing

times are modified by the squared distance ratio, such that a planet at twice the distance of the

nominal case will be observed for four times longer. We also simulate the spectra out to 640 µm

to provide a ground-truth spectrum across a wide wavelength range which may be used for other

investigations beyond what is considered here.
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4.3.2.2 Planetary Parameters

Planetary radii are randomly selected from a uniform range spanning 0.5 to 1.6 R⊕due to planets

with radii >1.6 R⊕containing a significant gas mass fraction (Rogers 2015). Planetary masses

are determined using the mass-radius relation of Sotin et al. (2007) with a random uniform ± 2%

factor to account for model inaccuracies. Using a rough approximation of the ‘cosmic shoreline’

model of Zahnle & Catling (2017), we throw out any planet that is likely unable to hold onto an

atmosphere. We draw the surface pressure from a truncated normal distribution bound by 0.1 and

90 bars with a mean of 1 bar and a standard deviation of 2.5 bars. The pressure–temperature profile

is determined from the parameterized formulation of Line et al. (2013). Four of these parameters,

which govern the shape of the profile, are selected from a random log-uniform distribution, while

the fifth, which shifts the profile in temperature, is selected from a truncated normal distribution.

The ranges for these parameters were chosen such that a planet in an Earth-like orbit can vary in

temperature by a few hundred Kelvin. As a result, both Earth-like planets and frozen Mars-like

planets are within our parameter space. Our hottest case results in temperatures slightly below

that of Venus. We allow the tropopause to vary between 0.023 and 0.23 bars due to the finding of

Robinson & Catling (2014) that the planets in the solar system all have a tropopause around 0.1

bars.

We consider 12 molecules: H2O, CO2, O2, N2, CH4, N2O , CO, O3, SO2, NH3, C2H6, and NO2.

Table 4.1 summarizes the upper bound on the random uniform distribution used to draw a value

for each molecule. Following the selection of these values, they are normalized such that they sum

to 1; this yields the molar mixing ratio of each gas. As a result, it is possible for some of the trace

species to exceed their “upper limit” if a high value is generated for the trace gas and low values

are generated for the main constituents (CO2, O2, N2). Our upper limits (some of which may seem
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unrealistic) were selected to encapsulate as many atmospheres as possible while also restricting

the parameter space to cases that are more likely for terrestrial planets. CO2 and N2 have been ob-

served in excess of 90% in atmospheres in the solar system, hence their upper limits. O2 is unlikely

to exist at such high abundances but does exist at a substantial amount in Earth’s atmosphere; thus,

we assume a large amount to allow for a wide range of possibilities. On Earth, H2O content in the

air can be a few percent in tropical regions; we allow for up to 10% to allow for conditions slightly

more extreme than those found on Earth. O3, a photochemical product of O2, has been shown to

be at most ∼1% the amount of O2 in prebiotic Earth-like atmospheres (Domagal-Goldman et al.

2014). We impose a similar limit for C2H6 as it is a photochemical product of CH4. N2O can act

as a strong biosignature in certain situations, such as that of Earth, but must be considered in the

context of the host star and the absence of gases indicative of abiotic N2O production (Schwieter-

man et al. 2018). The upper limits on other trace gases are arbitrarily determined to cover many

cases for thin atmospheres.

All gases begin with a uniform vertical abundance profile; H2O and NH3 are modified by calculat-

ing the saturation vapor pressure (SVP) at each layer in the atmospheric model and assuming that

all excess vapor pressure condenses out into clouds. The SVPs are calculated using the Antoine

equation using the available NIST data; H2O covers a range of 255.9 to 573 K, and NH3 covers a

range of 164 to 371.5 K. For an Earth-like planet, this method leads to the abundance of H2O de-

creasing as altitude increases up to some cold trap, above which clouds no longer form. While the

cloud mixing ratios are calculated, clouds are ignored in our simulations due to the computational

burden, as even poor modeling efforts increase computational time by a factor of ∼50.
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Table 4.1: Upper limits on random uniform distribution draw for each molecule

Molecule H2O CO2 O2 N2 CH4 N2O CO O3 SO2 NH3 C2H6 NO2

Upper limit 0.1 1.0 1.0 1.0 0.1 0.02 0.02 0.01*O2 0.02 0.01 0.01*CH4 2e-5

4.3.3 Data Set INARA DS1

The generated data set (INARA DS1) has three million planetary spectra that consist of a 1-

dimensional numerical data vector per planetary spectrum with a total length of 15,346. Table

4.2 shows the content of each index in a vector. The data files (CSV) encompass four vectors per

file (∼750,000 files in total). The data set is also provided in numpy standard binary file format

(NPY) for faster access.

Table 4.2: Structure of the data vector and its contents

Position Content
0 Stellar Type
1 Stellar Temperature
2 Stellar Radius
3 Distance from Earth to the planetary system
4 Semi-major axis of the exoplanet
5 Radius of the exoplanet
6 Density of the exoplanet
7 Surface pressure of exoplanet
8 – 12 Parameters to describe the pressure–temperature profile
13 Surface temperature of the planet
14 – 25 Molar mixing ratio of each molecular species (H2O, CO2,

O2, N2, CH4, N2O, CO, O3, SO2, NH3, C2H6, and NO2)
26 Average molecular weight of the atmosphere
27 Surface albedo of the exoplanet

28 – 15,373 (15,346 in total) Wavelengths of spectral data (µm)
15,374 – 30,719 (15,346 in total) Total (star + planet) observed spectrum (erg/s/cm2)
30,720 – 46065 (15,346 in total) Noise model
46,066 – 61411 (15,346 in total) Stellar spectrum
61,412 – 76757 (15,346 in total) Planetary spectrum
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4.3.4 Machine Learning

Machine learning is a subdomain of artificial intelligence (AI) and the science of building algo-

rithms that allow computer systems to act autonomously without being explicitly programmed.

During the last decade, a new wave of interest in machine learning in the form of deep learning

(Goodfellow et al. 2016) and advances in computer vision (Krizhevsky et al. 2012) and natural lan-

guage processing (Graves et al. 2013) have provided us with accurate search algorithms, advances

in self-driving cars, speech recognition and synthesis, and new ways of detecting diseases. Super-

vised learning, an area within ML, aims to minimise a loss function or in other words the error E

between the known values x = (x1, x2, x3, ..., xn) and the predicted values x̄ = (x̄1, x̄2, x̄3, ..., x̄n)

as displayed in:

ETr(x̄i, xi) (4.1)

INARA is positioned in the supervised learning domain as we know our input parameters xi that

we used to generate the planetary spectra via PSG. The spectra then contain the atmospheric

abundances oi that are used for training the ML models and which combined form our data set

NTr+V+Ts = {xi, oi}. N consists the subsets Tr (100,000 data points) used for training, the vali-

dation set V (10,000 data points) and the test set Ts (7,710 data points).

We define our retrieval model, fθ, as function that can accurately infer the parameters xi for a given

observation oi:

xi = fθ(oi) (4.2)
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This function is a deep neural network containing many parameters θ, which are learned by defin-

ing the training error ETr, which we minimise by optimising the parameters through backpropoga-

tion:

ETr =
Tr∑
i=1

E(x̄i = fθ(oi), xi) (4.3)

To avoid overfitting and limiting the generalizability of our model, we used validation steps during

training to monitor model performance. We employed early stopping with a buffer of 15 hits before

our training would automatically stop. This means each validation step checks if the training loss

decreases. If it increases 15 times in row our training would stop.

EV =
V∑
i=1

E(x̄i = fθ(oi), xi) (4.4)

4.3.4.1 Model evaluation & experiments

Once we generated the data, we performed a model grid search in order to determine the best per-

forming ML model architecture. We started by applying a linear regression model to see initial

model performance before moving to feed-forward networks in several configurations (i.e., differ-

ent number of neurons in layers) and convolutional neural networks (CNNs) (e.g. Figure 4.4). A

CNN utilizes layers and filters that compress the data on each convolution to local features (LeCun

et al. 1998). In addition the model grid search also included modifications on different activation

functions as well as some hyper parameter tuning.
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We tested over 68 combinations of different architectures, learning rates (from 0.0001 to 0.01),

activation functions (Tanh, Softmax ReLU, ELU, Linear), and optimization algorithms (ADAM,

SGD, ADAdelta, RMSProp) toward the selection of a model with good performance (see Section

4.4). We evaluated model performance by considering the loss value at the end of training. Each

model used 100,000 planets for learning (Tr), 10,000 for validation (V ), and 7,710 for testing

(Ts). The model training was set to 64 epochs (how many times the ML algorithm has seen the

entire data set for training) for all evaluated training runs.

4.3.4.2 Producing predictive distributions over abundances by using the Monte Carlo dropout

approximation

Dropout is a common regularization technique in neural networks to prevent overfitting and allow

for a more generalizable model (Hinton et al. 2012). However, it has recently been shown that

applying dropout at both training and test time is equivalent to making a variational approximation

to the posterior distribution over the network weights (Gal & Ghahramani 2016). Each dropout

mask removes a certain proportion, p, of NN weight connections by setting them to zero during

a forward pass. Therefore, multiple forward passes with different dropout masks for the same in-

put gives a set of predictive samples that build a predictive distribution. Through implementing

dropout both at training and test time, we are effectively sampling from the posterior over weights

of the network. This distribution over the weights enables us to approximate a predictive distribu-

tion over the abundances for each planet, which we represent as the output samples of the network

for a given input. Figure 4.6 shows the mean prediction compared to the true value for each planet

in the test set, and Figure 4.7 show a predictive distribution resulting from dropout for a specific

test planet.
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4.4 Results

As mentioned above, we trained a ML retrieval model on 117,710 model planets, with 100,000

for training (Tr), 10,000 for validation (V ), and 7,710 for testing (Ts). We limited our data

generation to coronagraphic observations in the interest of our available resources and time. We

explored a variety of model architectures ranging in complexity from linear regression and feed-

forward neural networks to convolutional neural networks (CNNs). We present results from the

best performing model, a 1D CNN with the following configuration: Conv1d(64) - Tanh - MaxPool

- Conv1d(64) - ReLU - MaxPool - Conv1d(128) - ReLU - MaxPool - Conv1d(256) - ReLU -

FC(256) - ReLU - FC(12) - training loss (0.42) - validation loss (0.49) - 64 epochs. The validation

loss (orange line in Figure 4.5) compared to the training loss allows to ensure that the model is not

trained to overfit to the limited data set at hand and thus maintain a generalized solution.

4.4.1 INARA Performance

We use the model described in the previous section to predict the parameters of 1,000 planetary

spectra. The results of these predictions for H2O, CO2, O2, N2 and CH4 are shown in Figure 4.6,

where each dot represents the average of 600 runs of our model with dropout, for each of the 1000

predicted planetary parameters.

A perfect correlation is represented by the red diagonal line, and the spread of the predictions about

this line indicate the accuracy. Note, however, that dropout produces a predictive distribution, so

the true value may still fall within the predicted distribution despite disagreement between the

mean prediction and the true value. Errors are summarized in Table 4.3. Low mean squared error

(MSE) values indicate better predictions of the true value.
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Figure 4.4: Evaluated ML architectures. We started with a simple linear regression (single layer),
a standard feed forward and a convolutional neural network. Model grid search was led evaluating
learning rates of 0.0001, 0.001 and 0.01, ADAM, SGD, ADAdelta and RMSProp optimizers, and
as activation functions Tanh, Softmax, ReLU and linear. Once we found a reasonably performing
model we selected the model used for further steps.

Figure 4.5: Available and used data in ML phases (left) and model architecture (on the right). Loss
plot over the 64 epochs, with details on the relation between train and validation loss function.
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Figure 4.6: INARA prediction performance for the logarithm of the normalized abundance of H2O,
CO2, O2, N2 and CH4 across 1000 test planets. We normalize values by subtracting the mean and
dividing by the standard deviation across all planets. Each dot is the average of 600 runs with
dropout for a single planet. Predicted vs. true values are plotted, with the diagonal line indicating
perfect correspondence.
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Figure 4.7: Detailed results of INARA in predicting one random planet’s values for H2O and
CH4. The distribution is obtained by 600 predictions with dropout where nodes were randomly
removed from the network. The black lines represent INARA’s median prediction, and the red
lines and star represent, respectively, the real value in the dimension of H2O and CH4, and in the
two-dimensional space with one molecule per axis.

Table 4.3: Reported error for five retrieved molecules

Error H2O CO2 O2 N2 CH4

MSE 3.43e-4 1.02e-2 7.00e-3 2.05e-2 1.93e-4

±2σ 2.28e-3 3.53e-2 2.59e-2 5.21e-2 1.07e-3
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Figure 4.8: Detailed results of INARA in predicting one random planet’s values for H2O, CO2,
O2, N2, and CH4. The distribution is obtained by 600 predictions with dropout where nodes were
randomly removed from the network. Plots along the top-left to bottom-right diagonal show the
histogram of the predictive distribution for each molecule. The red line represents the true value,
and the black lines represent INARA’s median prediction. Plots above the diagonal show the scatter
plot of predictions for pairs of molecules. Plots below the diagonal show the 2-D histograms of
these scatter plots for each combination of molecules. The red star represents the true value, and
the black cross represents INARA’s median prediction.
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Figure 4.9: Same as Figure 4.8, but zoomed in around each distribution.
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Figure 4.10: Same as Figure 4.8, but for all 12 molecules considered in the atmospheric model.
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A more detailed representation of INARA’s results is presented in Figure 4.7, which shows the

predictive distributions for CH4 and H2O for a random planet among those simulated. Note that

the true value, indicated by the red star in the bottom-left plot and the red line in the top-left and

bottom-right plots, falls within the predictive distribution for both parameters. For results for more

than two molecules, see Figures 4.8, 4.9, and 4.10.

4.4.2 Links to Code Repositories

The entire developed code palette is available open source at the Frontier Development Lab GitLab

repository3 in the astrobiology section. This includes but is not limited to:

• pypsg Python interface for PSG

https://gitlab.com/frontierdevelopmentlab/astrobiology/pypsg

• INARA Intelligent exoplaNet Atmospheric RetrievAl

https://gitlab.com/frontierdevelopmentlab/astrobiology/inara

• Data set INARA DS1 3+ million planetary models in numpy (NPY) and comma-separated

values (CSV) format.

Currently hosted on Google Cloud; public release scheduled for 2022 via the NASA Exo-

planet Archive

The INARA repository also provides Jupyter Notebooks for data exploration, model training and

predictions. This includes the notebook that was used to produce the results presented in this

document.

3https://gitlab.com/frontierdevelopmentlab
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4.5 Discussion

INARA accurately performs an atmospheric retrieval from an observed planetary spectrum in a

matter of seconds. This outperforms the traditional approaches by several orders of magnitude.

Other existing ML approaches provide comparable performance, but they are limited to a much

narrower set of parameter and atmospheric molecules (see Table 4.4).

Table 4.4: Comparison of atmospheric retrieval methods

Method CPU Time # of Molecules Retrieved

Traditional Hundreds of hours User-specified

ExoGAN1 Minutes 4

HELA2 Seconds 3

INARA Seconds 12

1 Zingales & Waldmann (2018)

2 Márquez-Neila et al. (2018)

Our present data set is the largest collection of rocky exoplanet spectra to date. The analytical

temperature–pressure profile we adopted (see Section 4.3.2) allows the prediction of those param-

eters as well. While the simulated observed spectra span 0.2 to 2 µm, our model still managed to

predict the abundance of N2 remarkably well despite it having no substantial features in that range,

highlighting the versatility and the power of ML to deduce relationships from data.
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The adoption of Monte Carlo dropout (Gal & Ghahramani 2016) in our machine learning model

provides a predictive distribution (see Fig. 5), which is comparable to the posterior distributions

yielded by traditional, Bayesian approaches. This is the first time this technique has been applied

to atmospheric retrievals. Further investigation is necessary to determine how this predictive dis-

tribution compares to the posterior distributions of traditional methods.

While we obtained good results with our CNN model, chosen because of the high dimensionality

and interrelatedness of our data set, our search for the best model is incomplete. CNNs appear to

be more efficient at learning features related to molecules than other neural network architectures,

however a thorough exploration of different neural network architectures is desirable.

Considering the MSE values in Table 4.3, the standard deviation is rather high for molecules with

convoluted features in the 0.2 to 2 µm range considered. We attribute this to the limited data set

used for the present results, and we except the standard deviation to minimize once the model is

trained on the complete data set.

Our model is a proof-of-concept approach for our data set. A more detailed data set (i.e., in terms

of wavelength, self-consistency, and the presence of clouds/hazes) could be used with INARA to

generate more reliable and informative models.
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4.6 Future Work

There are several opportunities for future work, outlined below.

In the near future it is planned to (1) train, validate, and test the ML model on the entire data set of

3 million planets; (2) release the data set through a browsable website; and (3) release the software

pipeline with a user-friendly interface.

In the medium-term it is planned to (1) evaluate the generated atmospheres for self-consistency; (2)

determine atmospheric gas fluxes from the concentrations retrieved using INARA; (3) determine

sources of gas fluxes and the possibility of life within the generated planetary spectra; (4) generate

an additional data set of planetary spectra which include the effects of clouds and hazes; and (5)

train, validate and test ML model on the generated cloudy/hazy spectra. Our architecture could

also be applied to other classes of planets such as hot Jupiters given a sufficient data set.

The generated data set can also be used for planning and designing future telescopes in the search

of extraterrestrial life (e.g., determining the lowest resolution of spectral observations needed at

various S/N ratios to still be able to deconvolve spectral components). Additionally, it is possible

to host a Kaggle4 competition using our data set to see the best ML model that the community can

come up with to perform atmospheric retrievals; we are currently exploring this possibility with

Google Cloud.

4http://www.kaggle.com
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A further opportunity to validate our model is to retrieve on the Virtual Planetary Laboratory spec-

tra of solar system planets and compare the results to the known atmospheric compositions. We

will consider these cases once we have trained the model on the complete data set.

We have also generated a spectrum of a cloud-free Earth-like exoplanet (Earth’s pressure–temperature

and vertical abundance profiles) using PSG. This will be used as a test case for our model trained

on our full data set to explore how the model performs on cases that are similar to the generated

data set but have differences in the temperature structure and abundance profiles.

4.7 Conclusions

Here we have shown that ML can expedite atmospheric retrievals and perform well for rocky, ter-

restrial exoplanets when considering many molecules. Our ML retrieval model for rocky planets

is the first of its kind, and it is the first neural network retrieval model that generates predictive

distributions to mimic the traditional, Bayesian approaches to this problem.

We have provided INARA a ML training and testing framework which is able to make use of and

write data in the cloud as well as read/write generated models. The software architecture is mod-

ular and flexible, making it a good resource for various ML approaches. With an alternative data

generation module, INARA can be easily applied to other scientific topics.
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Our work here is a proof of concept to highlight the advances that ML can enable in the physical

sciences. The techniques employed here can be extended to numerous other applications where

there is some time-consuming modeling process that has only one set of outputs for a given set of

inputs. The application of ML to these processes stands to revolutionize how scientists approach

these problems.
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5.1 Abstract

Atmospheric retrieval determines the properties of an atmosphere based on its measured spectrum.

The low signal-to-noise ratios of exoplanet observations require a Bayesian approach to determine

posterior probability distributions of each model parameter, given observed spectra. This infer-

ence is computationally expensive, as it requires many executions of a costly radiative transfer

(RT) simulation for each set of sampled model parameters. Machine learning (ML) has recently

been shown to provide a significant reduction in runtime for retrievals, mainly by training inverse

ML models that predict parameter distributions, given observed spectra, albeit with reduced pos-

terior accuracy. Here we present a novel approach to retrieval by training a forward ML surrogate

model that predicts spectra given model parameters, providing a fast approximate RT simulation

that can be used in a conventional Bayesian retrieval framework without significant loss of ac-

curacy. We demonstrate our method on the emission spectrum of HD 189733 b and find good

agreement with a traditional retrieval from the Bayesian Atmospheric Radiative Transfer (BART)

code (Bhattacharyya coefficients of 0.9843–0.9972, with a mean of 0.9925, between 1D marginal-

ized posteriors). This accuracy comes while still offering significant speed enhancements over

traditional RT, albeit not as much as ML methods with lower posterior accuracy. Our method is

∼ 9× faster per parallel chain than BART when run on an AMD EPYC 7402P central processing

unit (CPU). Neural-network computation using an NVIDIA Titan Xp graphics processing unit is

90–180× faster per chain than BART on that CPU.
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5.2 Introduction

Over the past decades, exoplanet studies have expanded from their detection to include charac-

terization of their atmospheres via retrieval (see reviews by Seager & Deming 2010, Deming &

Seager 2017). Retrieval is the inverse modeling technique whereby forward models of a planet’s

spectrum are compared to observational data in order to constrain the model parameters (Mad-

husudhan 2018). These typically include the shape of the thermal profile, abundances of species,

and condensate properties. While some solar system objects can be characterized with simpler

approaches (such as Levenberg–Marquardt minimization) due to their high signal-to-noise ratios

(e.g., Koskinen et al. 2016), retrieval on noisy exoplanet spectra require Bayesian methods to pro-

vide a distribution of models that can explain the observed data. The posterior distribution resulting

from a Bayesian retrieval places limits on each model parameter (within some range, an upper or

lower limit, or equally probable for all values considered), informing the statistical significance of

the result.

Bayesian retrieval methods involve evaluating thousands to millions of spectra, integrating over

the observational bandpasses, and comparing to observations. Depending on model complexity,

this requires hundreds to thousands of parallelizable compute hours, resulting in hours to days of

runtime. Calculating the model spectra by solving the radiative transfer (RT) equation takes the

vast majority of compute time.

Machine learning (ML) encompasses algorithms that learn representations of and uncover rela-

tionships within a collection of data samples. Deep learning (Goodfellow et al. 2016) is a subfield

of ML that is based on neural networks, which are highly flexible differentiable functions that can

be fit to data. Neural networks can classify images (e.g., Krizhevsky et al. 2012, Simonyan &

Zisserman 2015, Szegedy et al. 2015, He et al. 2016, Huang et al. 2017), recognize speech (e.g.,

Chorowski et al. 2014, Amodei et al. 2016, Chan et al. 2016, Xiong et al. 2016), and translate
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between languages (e.g., Cho et al. 2014, Bahdanau et al. 2015, Ranzato et al. 2016, Sennrich et al.

2016, Wu et al. 2016). Neural networks consist of a hierarchy of layers that contain nodes perform-

ing weighted (non)linear transformations of their inputs, through a series of hidden layers, to the

desired output. For example, for a retrieval, one might have the input layer receive the observed

spectrum, hidden layers extract features, and the output layer predict the underlying atmospheric

parameters. Neural-network training conventionally uses gradient-based optimization, iteratively

adjusting the weights of the connections between nodes to minimize the error between the neural

network’s prediction and the desired output (Rumelhart et al. 1986).

Recent applications of ML to atmospheric retrieval reduced compute time from hundreds of hours

to minutes or less. Márquez-Neila et al. (2018) presented a random forest of regression trees

to build predictive distributions comparable to the posterior distributions of traditional Bayesian

retrievals. Zingales & Waldmann (2018) utilized a generative adversarial network (GAN; Good-

fellow et al. 2014) to retrieve distributions for model parameters. Waldmann & Griffith (2019)

used a convolutional neural network (CNN) to map spatial and spectral features across Saturn.

In Cobb et al. (2019), we introduced plan-net, an ensemble of Bayesian neural networks that

uses parameter correlations to inform the uncertainty on retrieved parameters. Hayes et al. (2019)

demonstrated a new approach to ML retrieval by applying k-means clustering to a principal com-

ponent analysis of the observed spectrum to inform a standard Bayesian retrieval. Johnsen &

Marley (2019) showed that a dense neural network can provide quick estimations of atmospheric

properties.

While these approaches are promising, all except Hayes et al. (2019) suffer from a common defi-

ciency: the reduction in computational time is accompanied by a reduction in posterior accuracy

because they make significant approximations when performing Bayesian inference. For ML to

become an integral part of atmospheric retrieval, the accuracy of the posterior approximation must

be preserved.
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The solution lies in simulation-based inference methods (Cranmer et al. 2019). While directly

using a simulator (e.g., RT code) requires a consistent amount of compute time for each new in-

ference (e.g., retrieval), surrogate models that emulate the simulator (e.g, neural networks) allow

new data to be quickly evaluated after an upfront computational cost to train the surrogate (Kasim

et al. 2021, Munk et al. 2019). ML- and simulation-based inference approaches have been success-

fully applied to a variety of tasks ranging from quantum chemistry (Gilmer et al. 2017) to particle

physics (Brehmer et al. 2018, Baydin et al. 2019), resulting in significant reductions in compute

cost with minimal loss in accuracy. Similar approaches have been used by the Earth science com-

munity to reduce the computational burden of forward modeling of spectra, retrieval of surface

conditions, and atmospheric correction (e.g., Atzberger 2004, Garcia-Cuesta et al. 2009, Rivera

et al. 2015, Verrelst et al. 2015, Gmez-Dans et al. 2016, Verrelst et al. 2016, Verrelst et al. 2017,

Chernetskiy et al. 2018, Yin et al. 2018, Vicent et al. 2018, Bue et al. 2019).

Here we present a novel application of this approach to retrieval, which uses a neural-network

model of RT within a Bayesian framework, apply it to the emission spectrum of HD 189733 b,

and compare the results to a classical retrieval using the RT code that trained the surrogate model.

Our general method is to (1) generate a data set over some parameter space, (2) train a surrogate

forward model on the generated data, and (3) infer the inverse process via a Bayesian sampler

(Figure 5.1). Our approach circumvents the existing limitations of ML retrieval methods, which

seek to directly learn the inverse process, by learning the forward, deterministic process (RT)

and using the simulator surrogate in a standard inference pipeline. This approach preserves the

accuracy of the Bayesian inference and, while slower than direct ML retrieval, is still much faster

than computing RT.

In Section 5.3, we describe our approach in detail as well as introduce the software packages that

implement the method. Section 5.4 discusses the results. Finally, Section 5.5 presents conclusions.
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Figure 5.1: Schematic diagram of our inverse modeling method, color-coded based on the scope
of our software packages. MARGE (Section 5.3.3.1) generates a data set based on a deterministic,
forward process (e.g., RT) and trains a surrogate model to approximate that process. Using the
trained surrogate, HOMER (Section 5.3.3.2) infers the inverse process (e.g., atmospheric retrieval)
by simulating many forward models and comparing them to the target data (e.g., an observed
spectrum) in a Bayesian framework.
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5.3 Methods

5.3.1 Model Training

To train a neural network for our approach (Figure 5.1), we generate a data set of spectra using

the Bayesian Atmospheric Radiative Transfer (BART) code (Harrington et al. 2022, Cubillos et al.

2022, Blecic et al. 2022).

The atmospheric models consist of 100 log-uniform layers spanning pressures from 10−8 to 100

bar, and we assume that the planet radius corresponds to a pressure of 0.1 bar. We use the five-

parameter temperature–pressure profile, T (p), parameterization of Line et al. (2013): κ, the Planck

mean infrared opacity; γ1 and γ2, the ratios of the Planck mean visible and infrared opacities for

each of two streams; α, which controls the contribution of the two streams; and β, which represents

albedo, emissivity, and energy recirculation. We allow the radius (Rp), mass (Mp), and semimajor

axis (a, adjusts the temperature at the top of the atmosphere due to stellar irradiation) of the planet

to vary to encompass a range of hot Jupiters. We also include a free parameter for each of the

uniform vertical abundance profiles of H2O, CO2, CO, and CH4.

We allow a wide range of values without regard for physical plausibility, except by enforcing that

(1) the H2/He ratio remains constant, (2) the total relative abundances of molecules in the atmo-

sphere equals 1, and (3) the T (p) profile does not exceed the temperature range of the line lists. For

example, this could lead to models with H2O at conditions where it dissociates (Arcangeli et al.

2018), though in the case of HD 189733 b, such models would be rejected with a high probability

due to a poor fit. We note that these are not fundamental constraints of our approach; other con-

straints (e.g., enforcing thermochemical equilibrium, keeping elemental ratios within some range)

may be used when generating the data set to train the surrogate model.
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Table 5.1: Forward Model Parameter Space

Parameter Minimum Maximum
log κ -5.0 1.0
log γ1 -2.0 2.0
log γ2 -1.3 1.3
α 0.0 1.0
β 0.7 1.3
Rp (RJ ) 0.8 1.5
Mp (MJ ) 0.8 1.5
a (AU) 0.2 0.4
log H2O -13 -0.5
log CO2 -13 -0.5
log CO -13 -0.5
log CH4 -13 -0.5

For opacities, we use HITEMP for H2O, CO, and CO2 (Goorvitch 1994, Tashkun et al. 2003,

Barber et al. 2006, Rothman et al. 2010), HITRAN for CH4 (Niederer et al. 2008, Boudon et al.

2010, Nikitin et al. 2010, 2011, Brown et al. 2013, Campargue et al. 2013, Daumont et al. 2013,

Niederer et al. 2013, Nikitin et al. 2013, Rothman et al. 2013), and collision-induced absorptions

of H2–H2 and H2–He (Borysow et al. 2001, Borysow 2002, Abel et al. 2012, Richard et al. 2012).

While there are newer line lists available with a greater number of lines (e.g., Hargreaves et al.

2020), these tests are meant to demonstrate consistency between neural-network-based and non-

ML retrievals; we therefore use the setup described in Harrington et al. (2022), which uses this set

of line lists to compare with previous studies. As our approach learns RT from a data set of spectra,

it is not tied to any specific line lists.
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To train our neural-network surrogate model, we generate 3,458,432 spectra, which are subdivided

into 2,446,784 spectra (∼70%) for training, 689,536 spectra (∼20%) for validation, and 322,112

specra (∼10%) for testing (for considerations about data set size, see Appendix C). Model param-

eters come from the uniform distribution bound by the limits listed in Table 5.1. Each spectrum

spans 280–7100 cm−1 at a resolution of 1.0 cm−1 and corresponds to the planet’s emitted flux in

erg s−1 cm−1.

When processing the BART inputs/outputs for our neural network, we simplify the neural-network

inputs by transforming the planet mass into the surface gravity, because this is a factor in the

integration to calculate the spectrum. We assume a host star of radius 0.756 R� with a temperature

of 5000 K to calculate the T (p) profiles; because β acts as a scaling factor on the related term (Eq.

15 of Line et al. 2013), it can compensate for different stellar fluxes.

We normalize the input and output data by (1) taking the logarithm of the output spectra, (2) stan-

dardizing the inputs and (log) outputs by subtracting the training mean and dividing by the training

standard deviation, and (3) scaling the standardized inputs and outputs to be in the range [-1, 1].

The neural network’s input layer corresponds to the 12 inputs described above, with surface gravity

replacing planetary mass. The hidden layers consist of Conv1d(256)L(0.05) – Dense(4096)L(0.05)

– Dense(4096)L(0.05) – Dense(4096)L(0.05) – Dense(4096)L(0.05). Conv1d(n) indicates a 1D

convolutional layer with n feature maps and a kernel size of 3. L(m) indicates a leaky rectified

linear unit (ReLU) activation function with slope m for x < 0. The dense output layer has 6821

nodes, corresponding to the emitted spectrum over the defined wavenumber grid, with a ReLU

activation function. For details on our model selection process, see Appendix B.
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We train with a batch size of 64 using a mean-squared-error loss function, the Adam optimizer,

and early stopping with a patience of 30 epochs based on the validation loss. We employ a cyclical

learning rate that increases from 8× 10−6 to 5× 10−3 over 4 epochs, then decreases over the same

window. After each complete cycle (8 epochs), the maximum learning rate decays by half the

difference between the maximum and minimum learning rates (triangular2 policy, Smith 2015).

The boundaries were chosen according to the method described in Smith (2015), except that we

consider the loss instead of accuracy (see Appendix B for details). To evaluate the model’s per-

formance, we compute the root-mean-squared error (RMSE; comparable to the standard deviation

of the differences between the predicted and true values) and the coefficient of determination (R2;

measures the linear correlation between the predicted and true values) between the data and the

predictions, both for the full high-resolution output and the band-integrated spectra corresponding

to the observations of HD 189733 b.

5.3.2 Retrieval

Following the setup of Harrington et al. (2022), we perform a retrieval of the dayside atmosphere

of HD 189733 b based on the measurements by the Hubble Space Telescope Near Infrared Camera

MultiObject Spectrograph (Swain et al. 2009); Spitzer Space Telescope Infrared Spectrograph (IRS

Grillmair et al. 2008); Spitzer InfraRed Array Camera (IRAC) channels 1 and 2 values of 0.1533±

0.0029% and 0.1886± 0.0071% (M. Line, priv. comm.); IRAC channel 3, IRS 16 µm photometry,

and Multiband Imaging Photometer for Spitzer (Charbonneau et al. 2008); and IRAC channel 4

(Agol et al. 2010). We use a K2 solar-abundance Kurucz stellar model for the host star’s emission

(Castelli & Kurucz 2003). Using the differential evolution Markov chain with snooker updating
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algorithm of ter Braak & Vrugt (2008), 2,500,000 iterations are spread across 10 parallel chains,

with a burn-in of 50,000 iterations per chain. When retrieving, we fix the semimajor axis to 0.031

au and the planetary radius and gravity at 0.1 bar to 1.138 RJ and 2187.762 cm s−2, respectively.

The remaining neural-network input parameters are allowed to freely vary over the entire training

space.

We compute the Bhattacharyya coefficient (Bhattacharyya 1943, Aherne et al. 1998) to compare

the similarity of 1D marginalized posteriors, where a value of 0 indicates no overlap and a value of

1 indicates identical distributions. We choose this metric over others, such as the Kullback-Leibler

divergence, because it is both intuitive to understand and defined for all distributions, even those

that do not overlap.

For this investigation, we focus on a neural network as a faster replacement for an RT code for

retrieval; we therefore only compare the results of BART and the neural-network approximation.

For a discussion of these results in the context of previous retrievals of HD 189733 b’s dayside

atmosphere, see Harrington et al. (2022).

5.3.3 Software

We have developed two Python packages for this investigation. Both are open-source software,

with full documentation, under the Reproducible Research Software License1. We encourage users

to contribute to the code via pull requests on Github.

1https://planets.ucf.edu/resources/reproducible-research/software-license/

127

https://planets.ucf.edu/resources/reproducible-research/software-license/


5.3.3.1 MARGE

The Machine learning Algorithm for Radiative transfer of Generated Exoplanets2 (MARGE, Fig-

ure 5.1) (1) generates a data set based on a user-supplied function, (2) processes the generated data

using a user-supplied function, and (3) trains, validates, and tests a user-specified neural-network

architecture on a data set. The software package allows independent execution of any of the three

modes, enabling a wide range of applications beyond exoplanet retrieval.

MARGE’s design allows it to be applied to any deterministic model. For 1D data (such as spectra),

MARGE’s desired format is NumPy binary (.npy) files of 2D arrays, where each row corresponds

to a single case. Each row is a data vector of the input parameters followed by the output data

(e.g., spectrum). MARGE currently includes data-generation and -processing functions for BART

as well as a data-processing function for the pypsg3 Python interface (Soboczenski et al. 2018)

for the NASA Planetary Spectrum Generator (Villanueva et al. 2018). We encourage users to

contribute code via pull request to handle the processing of the inputs/outputs of other software

packages.

We implement neural-network model training in Keras (version 2.2.4, Chollet et al. 2015), using a

Tensorflow (version 1.13.1, Abadi et al. 2016) backend. MARGE enables early stopping by default

to prevent overfitting, and the user can halt or resume training. MARGE allows for cyclical learn-

ing rates for more efficient training (Smith 2015, see also Appendix B). Users specify the model

architecture details and the data location, and the software handles the data normalization, train-

ing, validation, and testing. MARGE preprocesses the data into Tensorflow’s TFRecords format

for efficient handling. Users have multiple options when preprocessing the data, which include

taking the logarithm of the inputs and/or outputs, standardizing the data according to its mean and

2MARGE is available at https://github.com/exosports/marge
3https://gitlab.com/frontierdevelopmentlab/astrobiology/pypsg
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standard deviation, and/or scaling the data to be within a specified range. The mean and standard

deviation of the data set are computed using Welford’s method (Welford 1962) to avoid the need to

load the entire data set into memory at once. MARGE computes the RMSE and R2 for predictions

on the validation and test sets to evaluate model performance; these metrics can optionally be cal-

culated over integrated filter bandpasses. Finally, users may specify cases from the test set to plot

the predicted and true spectra, with residuals (e.g., Figure 5.2).

5.3.3.2 HOMER

The Helper Of My Eternal Retrievals4 (HOMER) utilizes a MARGE-trained model to infer the un-

derlying inputs corresponding to some observed outputs (Figure 5.1). For its Bayesian framework,

HOMER uses a Python wrapper for Markov chain and nested-sampling algorithms. The user spec-

ifies data, uncertainties, observational filters, a parameter space, and a few related inputs, which

are passed to the Bayesian sampler to perform the inference. If available, a graphics processing

unit (GPU) calculates neural-network predictions, though the central processing unit (CPU) can do

this at the cost of increased runtime. For each iteration of the Bayesian inference, the trained neu-

ral network predicts on the proposed input parameters, which are modified as necessary (descale,

denormalize, divide by the stellar spectrum, unit conversions, and/or integrated over bandpasses).

4HOMER is available at https://github.com/exosports/homer
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HOMER produces plots of the best-fit spectrum, 1D marginalized posteriors, 2D pairwise posteri-

ors, and parameter history traces. The best-fit spectrum plot contains the data (with observational

bandpasses indicated by uncertainties in x) and, if the DataSketches5 library is installed, the 1σ,

2σ, and 3σ spectra. We use the streaming quantiles method of Karnin et al. (2016) as implemented

in DataSketches to compute the 1-2-3σ spectra. This approach avoids needing to load all of the

evaluated models at once, which could exceed system memory.

HOMER calculates the steps per effective independent sample (SPEIS) and effective sample size

(ESS) as described in Harrington et al. (2022). Markov chains make small, correlated steps; while

a chain may perform 100,000 iterations, if it takes 5000 steps to materialize a completely inde-

pendent sample (steps per effective independent sample, SPEIS), then there have only been 20

effective samples. SPEIS is calculated from the autocorrelation function of each parameter for

each chain; as a conservative estimate, we use the highest SPEIS value when calculating the ESS

of the Bayesian inference to ensure we do not underestimate credible region uncertainties. By

rearranging Equation 1 of Harrington et al. (2022), an uncertainty sĈ can be calculated on a given

credible region Ĉ based on the ESS:

sĈ ≈

√
Ĉ(1− Ĉ)

ESS
(5.1)

For example, if the ESS is 20, then the determined 68.27% credible region is actually the 68.27

± 10% credible region; running the inference for more iterations would increase the ESS and

accordingly decrease the uncertainty on that credible region.

For easy comparison with other retrieval results, HOMER can overplot the 1D and 2D posteriors

for multiple retrievals (e.g., Figure 5.3) and compute the Bhattacharyya coefficients between the

1D posteriors.

5https://datasketches.apache.org/
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Table 5.2: Model Evaluation: High-resolution Spectra

Metric Min. Median Mean Max.
Norm. RMSE 0.00153 0.00224 0.00247 0.01040
Norm. R2 0.99999 1.00000 1.00000 1.00000
Denorm. R2 0.99885 0.99993 0.99990 0.99997
Notes. RMSE and R2 are calculated for each of the 6821 outputs corresponding to the
wavenumber grid of 280–7100 cm−1 with a resolution of 1.0 cm−1. For conciseness, we
present statistics about these values. The R2 values are slightly less than 1, but they round to
1 at the reported precision.

5.4 Results and Discussion

The normalized RMSE, normalized R2, and denormalized R2 metrics for the MARGE-trained

model on the test set for the high-resolution and band-integrated spectra are detailed in Tables 5.2

and 5.3, respectively. The normalized RMSE �1 and R2∼1 indicate an accurate model for RT

over the parameter space. Rather than waiting for early stopping to engage, we manually stopped

training at 130 epochs because there was an insignificant improvement in the loss for dozens of

epochs. For considerations on how this affects model performance, see Appendix C.

Figure 5.2 shows example comparisons between the spectra predicted by MARGE and true spec-

tra calculated by BART. While residuals tend to be around a few percent, they generally fluctu-

ate around 0; when band-integrated over the observational filters, these errors usually cancel, as

shown by the lower normalized RMSE and higher denormalized R2 metrics (Tables 5.2 and 5.3).

We observe that in some cases, there are regions where the spectrum is consistently over- or un-

derestimated by a few percent (e.g., the top-left panel of Figure 5.2 around 4250 cm−1), thereby

introducing error in the band-integrated value. However, the small deviations appear to have only

a minor effect on this retrieval’s result; see Section 5.4.1 for considerations when retrieving at high

spectral resolutions or in cases where a traditional retrieval result is not available for comparison.
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Table 5.3: Model Evaluation: Band-integrated Spectra

Metric Min. Median Mean Max.
Norm. RMSE 0.00123 0.00147 0.00148 0.00183
Norm. R2 1.00000 1.00000 1.00000 1.00000
Denorm. R2 0.99995 0.99997 0.99997 0.99998
Notes. Same as Table 5.2, except integrated over the 66 bandpasses corresponding to the
referenced observations of HD 189733 b.
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Figure 5.2: Four comparisons of planetary emission spectra predicted by MARGE and calculated
by BART. The smoothed curves use a Savitzky–Golay filter with a third-order polynomial across
a window of 101 elements (100 cm−1). The purple color arises due to a detailed match between
the red and blue spectra at high resolution. For the residuals, a black line is plotted at 0 to show
regions where the neural network consistently over- or underpredicts the spectrum. A histogram of
the high-resolution residuals appears to the right of the residual scatter plot, where the x-axis shows
the probability density function (PDF) for the range of residual percentages. Top left: case with
T (p) profile that increases in temperature with altitude, with H2O and CO2 emission lines. Top
right: case with T (p) profile that decreases in temperature with altitude, with absorption primarily
due to CH4 and H2O. Bottom left: cases with T (p) profile that has an inversion around 0.1 bar,
with CH4, CO, and CO2 absorption and emission features. Bottom right: case with T (p) profile
that is nearly isothermal at the pressures with sensitivity.
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When applying HOMER to the emission spectrum of HD 189733 b, the results are consistent

with BART. The retrieved T (p) profiles (bottom-left panel Figure 5.3) agree in the regions probed

by the observations (<1 bar, bottom-right panel Figure 5.3) and only begin to deviate deeper in

the atmosphere, where little to no signal is measured according to the contribution functions. By

nature, HOMER cannot calculate contribution functions, as the MARGE model does not solve RT.

While they could be included for each case in the training set, this would require significantly more

compute resources. Computing the contribution functions for the single best-fit case using the RT

code that trained MARGE more efficiently uses compute resources.

Table 5.4 compares HOMER’s retrieved 68.27% (“1σ”), 95.45% (“2σ”), and 99.73% (“3σ”) cred-

ible regions with BART’s retrieved credible regions. All regions closely agree, with differences

attributable to a combination of uncertainty from a finite ESS and the neural network’s imperfect

nature (Figure 5.3, top-right panel). For CO, both BART and HOMER favor large abundances,

though BART finds a greater probability for log abundances ≥ −2 (Figure 5.3, top-right panel).

Despite this, the credible regions agree (Table 5.4). Similarly, HOMER favors lower values for γ1

and α, though the resulting thermal profiles agree (Figure 5.3, bottom-left panel).

Table 5.5 compares the SPEIS, ESS values, and associated uncertainties in the 1σ, 2σ, and 3σ

credible regions for HOMER and BART. HOMER yields an SPEIS that is less than BART’s,

attributable to the conservative estimate of SPEIS as being the greatest among all chains and pa-

rameters. The highest SPEIS values fluctuate between runs, though the median SPEIS remains

relatively constant. HOMER’s median SPEIS of 627 and BART’S 615 better reflect the close

agreement between the two retrievals. The Bhattacharyya coefficients between the 1D marginal-

ized posteriors of HOMER and BART indicate agreement in the range 0.9843–0.9972, with a mean

of 0.9925 (Table 5.6).
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Table 5.4: Retrieved Credible Regions

Parameter Code 68.27% 95.45% 99.73%
log κ HOMER [-1.63, -1.06] [-1.84, -0.71] [-2.07, -0.33]

BART [-1.58, -1.09] [-1.81, -0.79] [-1.99, -0.46]
log γ1 HOMER [-1.98, -1.65] [-1.99, -1.34] [-1.99, -1.06]

BART [-1.98, -1.62] [-2.00, -1.33] [-2.00, -1.07]
log γ2 HOMER [0.34, 0.77] [0.21, 1.10] [ 0.11, 1.29]

BART [0.35, 0.73] [0.21, 1.02] [-0.07, 1.30]
α HOMER [0.07, 0.39] [0.03, 0.60] [0.01, 0.74]

BART [0.11, 0.42] [0.06, 0.60] [0.02, 0.74]
β HOMER [1.01, 1.07] [0.99, 1.12] [0.96, 1.15]

BART [1.01, 1.06] [0.99, 1.10] [0.97, 1.15]
log H2O HOMER [-3.11, -2.37] [-3.37, -1.82] [-3.70, -1.27]

BART [-3.12, -2.44] [-3.37, -1.92] [-3.63, -1.41]
log CO2 HOMER [-3.39, -2.73] [-3.78, -2.36] [-4.26, -2.01]

BART [-3.33, -2.71] [-3.66, -2.32] [-4.05, -2.03]
log CO HOMER [-6.89, -0.51] [-12.02, -0.51] [-12.90, -0.51]

BART [-6.60, -0.50] [-12.55, -0.50] [-12.90, -0.50]
log CH4 HOMER [-5.16, -3.53] [-10.25, -3.20 [-12.95, -3.12]

BART [-4.71, -3.67] [-10.53, -3.14] [-12.73, -3.07]

Table 5.5: Credible Region Accuracy

Code SPEIS ESS 1σ Uncertainty 2σ Uncertainty 3σ Uncertainty
HOMER 1668 1199 1.34% 0.60% 0.15%
BART 2084 959 1.50% 0.67% 0.17%
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Table 5.6: Bhattacharyya Coefficients

Parameter Value
κ 0.9948
γ1 0.9972
γ2 0.9950
α 0.9909
β 0.9879
H2O 0.9968
CO2 0.9968
CO 0.9888
CH4 0.9843
Mean 0.9925

5.4.1 Limitations

HOMER’s accuracy is, by nature, bound by the accuracy of the neural-network model. Model

inaccuracies may slightly bias the results, as seen in the minor differences between the posteriors of

HOMER and BART. In our application, this discrepancy does not significantly affect the scientific

conclusions at the spectral resolution of these observations for the current neural-network accuracy.

However, this does not necessarily hold for all cases. It is possible that at higher resolutions this

neural network’s minor inaccuracies can drive the Bayesian sampler to radically different results.

While in theory MARGE works for any spectral resolution, users will need to carefully select the

model architecture to ensure that it can accurately model the spectra over the desired phase space.

In situations lacking a physics-based retrieval to compare with, we advise testing to ensure that

forward models are reasonably accurate over the retrieval’s phase space, as some regions may not

be sufficiently sampled for accurate predictions.
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Figure 5.3: Comparisons between HOMER and BART posteriors. Top left: best-fit spectrum of
HOMER, with 1σ, 2σ, and 3σ regions. Top right: normalized probability density functions of
the 2D marginalized pairwise posteriors retrieved for HD 189733 b, with the 1D marginalized
posteriors along the diagonal. The purple color arises from the close match between HOMER
and BART. Bottom left: posterior median, 1σ from the median, and 2σ from the median T (p)
profile. In the regions with sensitivity, HOMER closely matches BART, with a slightly greater
uncertainty. Bottom right: normalized contribution functions, which show the pressure range
each filter probes, for the best-fit BART model.
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5.4.2 Compute Cost

The performance differences between HOMER and BART highlight HOMER’s computational

benefits. For a single Markov chain iteration, BART requires around 1.8 seconds per parallel chain

on an AMD EPYC 7402P CPU, and multiple chains parallelize linearly across CPUs. By compari-

son, a single iteration with HOMER on the same CPU — which includes preprocessing (e.g., input

normalization), prediction, post-processing (e.g., output denormalization, scaling according to the

stellar spectrum), and band-integration — requires just ∼ 0.2 s for any number of chains fewer

than 32. For a single chain, this is thus a ∼ 9× speedup. In our setup, we considered 10 parallel

chains, translating to a∼ 90× speedup for the function evaluated at each step of the Markov chain.

Using an NVIDIA Titan Xp for predictions, the model evaluations at each Markov chain step re-

quire 0.01–0.02 seconds, a 10–20× speedup over predictions with the aforementioned CPU and,

when using 10 parallel chains, a 900–1800× speedup over the same function evaluation in BART.

We note that if BART were capable of utilizing a GPU, this speedup factor would be much less.

Further investigation is necessary to determine whether HOMER offers speed improvements over

a GPU-accelerated RT code. Nevertheless, the CPU results emphasize the speed improvements

of our approach; the significant reduction in compute time enables retrievals to be executed on an

average laptop. We note that the memory footprints for both approaches were comparable, though

the parameters of each approach can strongly affect the required memory.

Here, the upfront compute cost to generate a data set and train a MARGE model is greater than the

time to execute a single BART retrieval. In our example, we generated around 1.5–2× the num-

ber of spectra typically computed during a BART retrieval with small credible region uncertainties,

plus a few dozen hours to train the neural network. However, additional retrievals within the trained

parameter space execute in around 30 minutes on our GPU (less when neglecting to compute spec-

tral quantiles). Thus, when carrying out even two retrievals within some shared phase space, the
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compute cost of MARGE+HOMER is less than two classical retrievals. In certain circumstances,

such as where the radius and mass of the planet do not need to be varied (e.g., retrievals on dif-

ferent data sets of the same exoplanet), the number of spectra required to approximate the phase

space accurately would be less than in our example, which may lead to MARGE+HOMER requir-

ing less compute time than a single BART retrieval. Beyond the scope of retrieval, this approach

could also provide a benefit to situations where it is advantageous to trade one set of computing

resources for another. For example, spaceflight missions may be limited by thermal, power, and/or

on-board computational resources; it may be advantageous to increase the total compute time, if it

can decrease the power, thermal, and/or on-board computing required for the calculation.

Another benefit of our approach is that the compute-cost scaling is less than linear: increasing

from 10 to 256 chains results in just a ∼ 12.5×increase in compute cost per iteration when using

a GPU, compared to 25.6× as much for BART. Additional chains enable faster exploration of the

parameter space, and, if executed for the same number of iterations per chain, increases the ESS,

which reduces the uncertainty in the bounds of credible regions (Harrington et al. 2022). Thus,

the combination of MARGE and HOMER saves valuable compute resources when performing

retrievals and reduces total runtime when performing multiple retrievals.

5.5 Conclusions

This paper presents a novel technique for ML retrieval that uses a neural-network model of RT

within a Bayesian framework to reduce the runtime of a retrieval. Our open-source codes, MARGE

and HOMER, provide the community with an easy-to-use implementation of this approach, and

they are readily applicable to any forward model and its inversion — not strictly BART or even

RT. They are available on Github with full user documentation.
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Our method enables fast retrievals that are consistent with algorithms that solve the RT equation.

The approach circumvents limitations of current ML retrieval models by using an RT surrogate

in place of the RT code found in classical retrieval algorithms, thereby preserving the accuracy of

the Bayesian inference. Like BART, MARGE and HOMER work at both the low resolutions of

Spitzer and the high spectral resolutions of advanced ground-based spectrographs.

On our hardware, HOMER reduces the runtime of each MCMC iteration by ∼ 9× per parallel

chain using a CPU and 90–180× per chain using a GPU, compared to BART. For the case of HD

189733 b, the Bhattacharyya coefficients of the 1D marginalized posteriors of BART and HOMER

are >0.984, indicating a close match. This reduction in compute time enables using more realistic

(and computationally expensive) RT models, such as those including scattering and condensates.

Additionally, 3D retrievals with ∼200 cells could be completed in a matter of days.

Our approach is particularly well suited to planning studies for future observations, telescopes,

and instruments, like the James Webb Space Telescope and the Large UltraViolet Optical InfraRed

Surveyor (e.g., Rocchetto et al. 2016, Feng et al. 2018). Using a single MARGE model trained

over the desired parameter space, HOMER can perform dozens to hundreds of retrievals in the

time it takes to run a single retrieval with an RT solver.

More generally, our technique and tools can be applied to problems beyond the scope of this

investigation. MARGE provides a generalized method to train a neural network to model any

deterministic process, while HOMER uses a MARGE-trained model to infer the inverse process.

MARGE models could be trained for cloud/haze formation or photochemistry within general cir-

culation models, for example. MARGE and HOMER could also be used to map gravitationally

lensed galaxies (e.g., Perreault Levasseur et al. 2017).
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With the plethora of ML retrieval algorithms that have emerged in recent years, standard data sets

should be created and used for benchmarking. Ideally, such a data set would cover a wide range of

wavelengths at high resolution and include all available opacity sources, scattering, clouds/hazes,

and, in the case of terrestrial planets, surface properties. This would allow easy comparisons among

current and future ML retrieval codes.

The Reproducible Research Compendium for this work is available for download6. It includes all

of the code, configuration files, data, and plots used in support of this work.
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Munk, A., Ścibior, A., Baydin, A. G., Stewart, A., Fernlund, G., Poursartip, A., & Wood, F. 2019,

arXiv preprint arXiv:1910.11950

Niederer, H.-M., Albert, S., Bauerecker, S., Boudon, V., Champion, J.-P., & Quack, M. 2008,

CHIMIA International Journal for Chemistry, 62, 273

Niederer, H.-M., Wang, X.-G., Carrington, T., Albert, S., Bauerecker, S., Boudon, V., & Quack, M.

2013, Journal of Molecular Spectroscopy, 291, 33 , methane spectroscopy and its applications

to planetary atmospheres, including the Earth’s

Nikitin, A., Brown, L., Sung, K., Rey, M., Tyuterev, V., Smith, M., & Mantz, A. 2013, Journal of

Quantitative Spectroscopy and Radiative Transfer, 114, 1

Nikitin, A., Daumont, L., Thomas, X., Rgalia, L., Rey, M., Tyuterev, V., & Brown, L. 2011, Journal

of Molecular Spectroscopy, 268, 93 , philip R. Bunker and A. Robert W. McKellar

Nikitin, A., Lyulin, O., Mikhailenko, S., Perevalov, V., Filippov, N., Grigoriev, I., Morino, I.,

Yokota, T., Kumazawa, R., & Watanabe, T. 2010, Journal of Quantitative Spectroscopy and

Radiative Transfer, 111, 2211 , xVIth Symposium on High Resolution Molecular Spectroscopy

(HighRus-2009)

Perreault Levasseur, L., Hezaveh, Y. D., & Wechsler, R. H. 2017, ApJ, 850, L7

147



Ranzato, M., Chopra, S., Auli, M., & Zaremba, W. 2016, in 4th International Conference on

Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track

Proceedings, ed. Y. Bengio & Y. LeCun

Richard, C., Gordon, I., Rothman, L., Abel, M., Frommhold, L., Gustafsson, M., Hartmann, J.-

M., Hermans, C., Lafferty, W., Orton, G., Smith, K., & Tran, H. 2012, Journal of Quantitative

Spectroscopy and Radiative Transfer, 113, 1276 , three Leaders in Spectroscopy

Rivera, J., Verrelst, J., Gmez-Dans, J., Muoz-Mar, J., Moreno, J., & Camps-Valls, G. 2015, Remote

Sensing, 7, 93479370

Rocchetto, M., Waldmann, I. P., Venot, O., Lagage, P. O., & Tinetti, G. 2016, ApJ, 833, 120

Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M.,

Bizzocchi, L., Boudon, V., Brown, L. R., et al. 2013, J. Quant. Spec. Radiat. Transf., 130, 4

Rothman, L. S., Gordon, I. E., Barber, R. J., Dothe, H., Gamache, R. R., Goldman, A., Perevalov,

V. I., Tashkun, S. A., & Tennyson, J. 2010, J. Quant. Spec. Radiat. Transf., 111, 2139

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, Nature, 323, 533

Seager, S. & Deming, D. 2010, ARA&A, 48, 631

Sennrich, R., Haddow, B., & Birch, A. 2016, in Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers) (Berlin, Germany: Associ-

ation for Computational Linguistics), 1715–1725

Simonyan, K. & Zisserman, A. 2015, in International Conference on Learning Representations

Smith, L. N. 2015, arXiv e-prints, arXiv:1506.01186

148



Soboczenski, F., Himes, M. D., O’Beirne, M. D., Zorzan, S., Gunes Baydin, A., Cobb, A. D.,

Gal, Y., Angerhausen, D., Mascaro, M., Arney, G. N., & Domagal-Goldman, S. D. 2018, arXiv

e-prints, arXiv:1811.03390

Swain, M. R., Vasisht, G., Tinetti, G., Bouwman, J., Chen, P., Yung, Y., Deming, D., & Deroo, P.

2009, ApJ, 690, L114

Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V., & Rabinovich, A. 2015, in 2015 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 1–9

Tashkun, S., Perevalov, V., Teffo, J.-L., Bykov, A., & Lavrentieva, N. 2003, Journal of Quantitative

Spectroscopy and Radiative Transfer, 82, 165 , the HITRAN Molecular Spectroscopic Database:

Edition of 2000 Including Updates of 2001.

ter Braak, C. J. F. & Vrugt, J. A. 2008, Statistics and Computing, 18, 435

Verrelst, J., Dethier, S., Rivera, J. P., Munoz-Mari, J., Camps-Valls, G., & Moreno, J. 2016, IEEE

Geoscience and Remote Sensing Letters, 13, 1012

Verrelst, J., Rivera, J. P., Gmez-Dans, J., Camps-Valls, G., & Moreno, J. 2015, in 2015 IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), 633–636

Verrelst, J., Rivera Caicedo, J., Muoz-Mar, J., Camps-Valls, G., & Moreno, J. 2017, Remote Sens-

ing, 9, 927

Vicent, J., Verrelst, J., Rivera-Caicedo, J. P., Sabater, N., Muoz-Mar, J., Camps-Valls, G., &

Moreno, J. 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, 11, 4918

Villanueva, G. L., Smith, M. D., Protopapa, S., Faggi, S., & Mandell, A. M. 2018,

J. Quant. Spec. Radiat. Transf., 217, 86

149



Waldmann, I. P. & Griffith, C. A. 2019, Nature Astronomy, 3, 620

Welford, B. P. 1962, Technometrics, 4, 419

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao,

Q., Macherey, K., et al. 2016, arXiv preprint arXiv:1609.08144

Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D., & Zweig, G. 2016,

IEEE/ACM Transactions on Audio, Speech, and Language Processing, PP

Yin, F., Gomez-Dans, J., & Lewis, P. 2018, in 2018 IEEE International Geoscience and Remote

Sensing Symposium (IGARSS), 1804–1807

Zingales, T. & Waldmann, I. P. 2018, AJ, 156, 268

150



CHAPTER 6: TOWARDS 3D RETRIEVAL OF EXOPLANET

ATMOSPHERES: ASSESSING THERMOCHEMICAL EQUILIBRIUM

ESTIMATION METHODS

Michael D. Himes1, Joseph Harrington2

1 Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL
32816, USA
2 Planetary Sciences Group, Department of Physics and Florida Space Institute, University of
Central Florida, Orlando, FL 32816, USA

In preparation for submission to The Planetary Science Journal.

151



6.1 Abstract

Characterizing exoplanetary atmospheres via Bayesian retrievals requires assuming some chem-

istry model, such as thermochemical equilibrium or constant-with-altitude abundances. The higher-

resolution data offered by upcoming telescopes enables more complex chemistry models within

retrieval frameworks. Yet, many chemistry codes that model more complex processes like verti-

cal transport are computationally expensive, and directly incorporating them into a 1D retrieval

model can result in prohibitively long execution times. Additionally, phase curve observations

with upcoming telescopes motivate 2D and 3D retrieval models, further exacerbating the lengthy

runtime for retrieval frameworks with complex chemistry models. Here, we compare thermochem-

ical equilibrium approximation methods based on their speed and accuracy with respect to a Gibbs

energy-minimization code. We find that, while all methods offer orders of magnitude reductions

in computational cost, neural network surrogate models perform more accurately than the other

approaches considered, achieving a median absolute dex error < 0.03 for the phase space consid-

ered. Our findings suggest that more complex and computationally expensive chemistry models

could be incorporated into retrieval models via this surrogate modeling approach.

6.2 Introduction

Improvements in signal-to-noise ratio and spectral resolution of exoplanet observations, such as

those offered by the James Webb Space Telescope (JWST), motivate and enable the use of more

sophisticated models to characterize exoplanetary atmospheres via retrieval (see review by Mad-

husudhan 2018). Early retrieval studies made simplifying assumptions about atmospheric chem-

istry, such as gas abundances that were constant with altitude or by scaling equilibrium profiles

calculated assuming solar metallicity (e.g., Madhusudhan & Seager 2009, Line et al. 2014). Later,
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as new data began to offer a more detailed picture of exoplanet atmospheres, groups incorporated

more complex chemistry models into retrieval frameworks, such as equilibrium abundances for

sub- and super-solar metallicites (e.g., Oreshenko et al. 2017). Many exoplanet atmospheres are

likely in disequilibrium (Moses et al. 2011, Line & Yung 2013, Moses et al. 2013b, Venot et al.

2015, Roudier et al. 2021). Stevenson et al. (2010) presented the first detection of disequilibrium

chemistry in an exoplanet atmosphere, finding CH4 depleted relative to thermochemical equilib-

rium calculations. Other more recent studies considering disequilibrium processes, such as pho-

tochemistry and vertical quenching, have found evidence of disequilibrium in multiple hot Jupiter

atmospheres (e.g., Mollière et al. 2020, Kawashima & Min 2021, Roudier et al. 2021). While

these recent studies still find some equilibrium models consistent with the data, JWST will pro-

vide sufficient precision to more definitively differentiate between equilibrium and disequilibrium

atmospheres (Blumenthal et al. 2018).

Both the more detailed measurements of JWST and future telescopes as well as recent results from

1D retrieval studies motivate more complex retrieval models. While the findings of Blecic et al.

(2017) show that 1D retrieval models can recover a thermal profile comparable to the 3D structure’s

arithmetic average, Caldas et al. (2019) and Pluriel et al. (2022) found biases in the retrieved gas

abundances. A more complete understanding of the atmospheric chemistry thus requires a 2D

or 3D model to properly capture longitudinal variations. Yet, that increase in dimensionality is

tied to an increase in computational cost. With 1D retrievals requiring on the order of 105–106

forward model evaluations (Madhusudhan 2018), the difference of one second per forward model

evaluation adds up to days of computing time, and higher-dimensional models will multiply this

further. While any chemistry model could be incorporated into a retrieval framework, the lengthy

execution time of many models would be prohibitive.
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Recently, Himes et al. (2022) presented a new machine learning approach to atmospheric retrieval,

where the radiative transfer forward model is replaced with a neural network (NN) surrogate model.

They found that this approach achieves similar quantitative results as the classical approach, but

at a fraction of the computational cost. Similar results have been reported for other scientific

problems using similar approaches (e.g., Gilmer et al. 2017, Brehmer et al. 2018, Baydin et al.

2019, Munk et al. 2019, Kasim et al. 2021).

In this study, we compare thermochemical equilibrium estimation methods and consider their ap-

plicability to 3D retrieval based on runtime and accuracy. In Section 6.3, we describe the analytical,

interpolation-based, and NN-based models considered and detail our methodology. In Section 6.4,

we present and discuss the results. Finally, we draw conclusions in Section 6.5.

6.3 Methods

We utilize four equilibrium estimation methods: minimization of the Gibbs free energy via the

Thermochemical Equilibrium Abundances (TEA) code (Blecic et al. 2016); the analytical approx-

imation for equilibrium used in the Reliable Analytic Thermochemical Equilibrium (RATE) code

(Cubillos et al. 2019); interpolation within a grid of models produced by TEA; and a surrogate

model based on an NN trained on data produced by TEA.

154



6.3.1 Equilibrium via Gibbs Energy Minimization

Blecic et al. (2016) presented the open-source TEA code, which calculates thermochemical equi-

librium via minimizing the Gibbs free energy in a Lagrangian optimization framework. They

demonstrate that TEA reproduces the results of other thermochemical equilibrium implementa-

tions when utilizing the same thermodynamic data. Here, we use TEA to calculate the “ground

truth” data to compare with the other methods as well as the data set used for interpolation and NN

surrogate model training. For more details on TEA’s implementation and validation, see Blecic

et al. (2016).

6.3.2 Equilibrium via Analytical Formulae

Cubillos et al. (2019) presented the open-source RATE code, an analytical formalism to approxi-

mate thermochemical equilibrium, which built upon and resolved the instability issues present in

the formalism of Heng et al. (2016), Heng & Lyons (2016), and Heng & Tsai (2016). They de-

termined that the RATE approximation is valid over a parameter space of roughly 200–2000 K,

10−8–103 bar, and 10−3–102× solar elemental abundances. These stability improvements enable

broad application to arbitrary combinations of parameters within this phase space, such as those

considered in a Bayesian retrieval on optical and/or infrared spectra of most observed exoplanetary

atmospheres. For more details on their approach, see Cubillos et al. (2019).
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Table 6.1: TEA Model Grid Parameters

Parameter Minimum Maximum Number of bins
log pressure -8 3 100
log temperature 2.305 3.778 80
log C/H -6.57 -0.57 21
log N/H -7.17 -1.17 21
log O/H -6.31 -0.31 21

6.3.3 Equilibrium via Interpolation

We generate a grid of 74,088,000 points based on pressure, temperature, C/H, N/H, and O/H; the

parameter minima, maxima, and number of uniformly log-spaced bins are given in Table 6.1. We

consider the same molecules as Cubillos et al. (2019), with the addition of helium: H2O, CO, CH4,

CO2, HCN, C2H2, C2H4, NH3, N2, H2, H, and He. This enables direct applicability of the models

to gas-giant atmospheres.

We consider linear and inverse-distance weighting (IDW) interpolation. For IDW, we calculate the

Euclidean distance between the logarithm of the inputs, and we vary the exponent on the inverse

distance, p, between 1 and 40. To interpolate, we consider the n nearest neighbors along each axis,

where n can vary between 1 and 4. In the interest of the ability to scale the considered models to

higher dimensionalities, we do not consider spline interpolation due to longer runtimes than TEA

in this setup, likely attributable to the inability to hold this data set in cached memory. Similarly,

we do not consider radial basis function interpolation due to the amount of memory required for

the necessary N ×M ×M matrices, where N is the number of dimensions and M is the number of

data points. For this problem’s dimensionality, using with a data set of 100,000 points — around

∼ 0.13% of the total TEA data set considered here — would require around 372.5 GB of memory

to calculate the radial basis functions in double precision.
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6.3.4 Equilibrium via NN-based Surrogate Model

Himes et al. (2022) presented a NN-based surrogate modeling method along with a software pack-

age, MARGE, that implements the technique. Here, we use MARGE to approximate TEA.

We use two different data sets to train the NN models: (1) a grid of TEA models like described in

the previous section but with only 40 temperatures and 11 elemental abundance ratios (5,324,000

total grid points), and (2) a set of models whose inputs were randomly drawn from uniform dis-

tributions. For (1), we randomly split the grid of TEA models into training, validation, and test

sets, which contain 70%, 20%, and 10% of the total data, respectively. For (2), we make 125,000

random draws of temperatures, C/H, N/H, and O/H from uniform distributions with boundaries

defined in Table 6.1. Each of those cases are computed over the log-uniform grid of pressures

defined in Table 6.1, producing a total of 12,500,000 combinations of the 5 free parameters. We

randomly split these cases such that 64%, 16%, and 20% of the cases are in the training, validation,

and test sets, respectively.

Using these data sets, we train four NN models. NN1 is trained for 864 epochs on the grid of TEA

models. NN2 is trained for 750 epochs on the random data. NN3 is trained for 500 epochs on

the random data, but sized to match the gridded data set. NN4 is trained for 500 epochs on the

combination of both the grid of TEA models as well as the random data. As in Himes et al. (2022),

we find that the models indefinitely improve by minutia and therefore choose to stop training after

the above numbers of epochs, as further training offers minimal practical improvement.

Each data case is comprised of the 5 input parameters given in Table 6.1 and the corresponding 12

output gas abundances. We pre-process the data by (1) logarithmically scaling inputs and outputs,

(2) standardizing according to the training set mean and standard deviation, and (3) scaling the

data to be within [-1, 1] based on the training set extrema.
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The NN model consists of an input layer with 5 nodes corresponding to the 5 input parameters;

a 1D convolutional layer with a kernel size of 3 and 256 feature maps, which uses a rectified

linear unit (“ReLU”) activation function; 3 dense layers with 4096 nodes, each of which use ReLU

activation functions; and an output dense layer with 12 nodes corresponding to the output gas

abundances. This architecture was selected through an extensive model grid search. We train

using a batch size of 1024, the mean-squared-error loss on the validation set, the Adam optimizer,

and the triangular2 learning rate policy (Smith 2015, Himes et al. 2022) with a learning rate

cycle of 12 epochs and range determined from the range test (see Appendix A of Himes et al.

2022).

In training the model to predict equilibrium abundances for a given pressure, temperature, C/H,

N/H, and O/H, this NN surrogate model can be applied to arbitrary pressure–temperature profiles,

and the elemental abundance ratios are not required to be uniform. To apply this NN surrogate

model to some pressure–temperature profile with some assumed elemental abundance ratios, we

normalize the inputs as described above, make the predictions, and denormalize the outputs. We

convolve each denormalized output gas abundance profile with a 1D Gaussian filter with a kernel

standard deviation of 1 index (∼0.11 dex, in log-pressure) to smooth out minor model inaccura-

cies, as Himes et al. (2022) found that the residuals for RT NN surrogate models were typically

distributed about 0.
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6.3.5 Performance Assessment

We treat TEA as the control to compare the other approaches against. We assess each non-TEA

model by computing (1) the root-mean-square error (RMSE), coefficient of determination (R2),

and absolute dex difference over a grid of temperatures, pressures, metallicities, and C/O, and (2)

the factor speedup compared to TEA. For (1), we use a grid similar to that used in Cubillos et al.

(2019), except with the temperature and metallicity grids shifted by a half cell. This results in

metallicities spanning −1.5 – 2.5 dex and temperatures spanning 221 – 5485 K. We also consider

the original grid used in Cubillos et al. (2019) to test the NN performance at the edge of the phase

space.

6.4 Results & Discussion

Table 6.2 summarizes the median RMSE, median R2, median absolute dex error, and speedup

factor relative to TEA for the considered models over the grid of test cases. Note that for this

setup, TEA required roughly 11.7±1 seconds to estimate equilibrium at a given temperature, C/H,

N/H, and O/H over the 100 pressures considered. In general, we find that all of the considered

models offer orders of magnitude reductions in computational cost compared to TEA, while still

accurately approximating TEA over many regions of the phase space. Figures 6.1 – 6.12 visualize

the model errors, as in Cubillos et al. (2019) but with a different grid of metallicities. Overall, we

find that the NNs more accurately approximate TEA than the other models over the phase space

considered. Visually, the results of NN2, NN3, and NN4 look similar; consequently, we omit NN4

from the figures here, though they are available in the online compendium (see Section 6.5).
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Though the best linear interpolation model achieves the lowest median absolute dex error, its

RMSE and R2 indicate it to be less accurate than the best IDW interpolation model as well as

most of the NNs. This is confirmed via the mean absolute dex errors: the best linear model’s av-

erage error is about 0.38 dex, while the worst of the NN models features an average error of about

0.33 dex (NN2 and NN3 are even less, around 0.13 dex). Thus, while the linear model performs

well in many cases (as indicated by the low median dex error), the cases where it is inaccurate

results in significant relative errors (as indicated by the greater average dex error). This is con-

firmed by inspecting the error plots, as the model performs accurately in many regions but features

significant errors for carbon- and oxygen-bearing species for C/O= 0.9.

Based on the calculated metrics, the best-performing linear and IDW interpolation models are

comparable. While linear interpolation is generally faster than IDW and achieves a lower median

absolute dex error, IDW achieves a lower median RMSE and slightly higher median R2. Despite

this, both models achieve similar average absolute dex errors of ∼0.38. Table 6.3 details the

performance of the other linear interpolation models considered in this investigation, while Table

6.4 details the performance of the other IDW interpolation models considered. For simple linear

interpolation, we find that increasing the grid density leads to improved model performance, as

expected. For IDW, we generally find that the value of the exponent is anti-correlated with the

absolute dex error. However, at large values for the exponent, overflow can occur when the tested

point is near one of the grid nodes. We also find that, for a given exponent, the average absolute

dex error is typically minimized when considering the 2 nearest neighbors along each axis. While

considering only the nearest neighbor along each axis performs equivalently or only slightly worse

than the n = 2 case, considering 3 or more of the nearest neighbors along each axis performs
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significantly worse than in the n = 2 case. This is consistent with intuition: at n = 1, the

interpolated result assumes the behavior is linear from the closest points, while at n = 2 the

interpolated result factors in the behavior of the closest points both above and below the target

parameters. For n > 2, the additional neighboring points are farther away and therefore less likely

to follow a linear relation with respect to the point of interest, resulting in reduced accuracy.

While RATE achieves a greater speedup factor than the NNs, it is less accurate than those NNs, as

indicated by the other performance metrics. Additionally, the speedup factors are computed for the

NN using the central processing unit (CPU); on our machine, using an Nvidia Titan Xp graphics

processing unit (GPU) resulted in a∼4× speedup compared to using the AMD EPYC 7402P CPU,

nearly matching RATE’s speedup factor. Further, when computing the speedup factors, we only

considered the computation time of the NN for a single atmospheric model (100 pressure layers),

which utilizes only a fraction of the GPU’s resources. For applications where multiple atmospheric

models can be calculated in parallel (e.g., a Bayesian retrieval with N parallel chains, or a multi-

dimensional retrieval model), the NNs offer further speedup improvements, as their computational

time scales less than linearly (Himes et al. 2022).

Among the NN models, we find that NN3 performs best, with NN2 and NN4 not far behind. NN1,

which was trained on gridded data alone, performs worst among the NN models. Visually, NN1’s

error plots feature topography similar to the interpolation error plots. For example, in Figure 6.1, at

C/O = 0.9, the interpolation plots feature a region in the temperature–pressure space with signifi-

cant error. However, its errors in these regimes are generally less than the interpolation approaches

despite being trained on a data grid ∼7% the size of the grid used for interpolation. These simi-

lar topographies suggest that the model grid is undersampled in this region. As C/O approaches

1, oxygen-dominated chemistry gives way to carbon-dominated chemistry (Madhusudhan 2012,

Moses et al. 2013a). Thus, it is likely that the model error in this regime is due to nonlinear

changes in the chemical abundances, preventing the linear model from capturing it accurately.

161



This is supported by the fact that the species lacking carbon and oxygen do not display this topog-

raphy (Figures 6.8, 6.9, 6.10, 6.11, 6.12), while all carbon- and oxygen-bearing species bear this

topography at varying magnitudes (Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7). Similarly, NN1’s poorer

performance at M/H = 2.5 compared to the other NNs is likely also attributable to undersampling

in that regime.

The other NNs, which were trained on random data, do not feature this topography. NN3 was

trained on a data set with ∼7% of the number of cases in the gridded data set used by the interpo-

lation methods. Despite the same training data size as NN1 and training for fewer epochs, NN3

outperforms NN1 according to the performance metrics. This suggests that NN surrogate models

more efficiently learn a problem when the training data is randomly generated, rather than gener-

ated on a fixed gridding. NN4 utilized both NN1’s gridded data and NN3’s random data—the most

data out of any of the NN models. NN3 and NN4 were trained for the same number of epochs, yet

despite the additional data considered by NN4 (which led to a greater number of training iterations

than NN3), NN4 performs worse than both NN2 and NN3. NN4’s performance falls between NN1

and NN2, which, together with NN1’s performance, suggests that the gridded data force the NN

towards a solution that, while optimal for that data, does not properly generalize to approximate

thermochemical equilibrium in all regimes. Future studies should examine this in more detail to

determine the optimal approach to generating data to train NN surrogate models.

We additionally considered the NN’s performance at the edge of the phase space; Figure 6.13

shows NN2’s and RATE’s predictions for the grid considered in Cubillos et al. (2019) for H2O and

CH4. We find that, unsurprisingly, its accuracy diminishes near the edges of the phase space. At

the metallicity extrema (3 orders of magnitude above and below solar metallicity), the NN’s error

increases significantly, especially at the C/O extrema. By comparison, RATE’s accuracy atZ = −3

is more or less consistent with less extreme metallicities, though it too becomes inaccurate at Z =

3, as reported in Cubillos et al. (2019). We attribute the NN’s behavior to its training data set: when
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Table 6.2: Model Performance Comparison

Model RMSE R2 Dex Speedup Factor
RATE 1.3386 0.9302 0.1002 891
Linear 1.1131 0.9821 0.0037 8330
IDW 0.8314 0.9879 0.0696 2691
NN1 1.4942 0.9613 0.0316 206
NN2 0.4872 0.9967 0.0250 207
NN3 0.4390 0.9973 0.0280 207
NN4 0.6343 0.9950 0.0258 205
Notes. Here we present only the best-performing linear
and IDW interpolation models. For each model listed, we
present only the median RMSE, R2, and absolute dex error
for conciseness. For the full data, see the RRC download
link at the end of Section 6.5. Note also that the speedup
factors for the NNs are calculated for a single atmosphere
using the CPU; multiple atmospheric models could be cal-
culated simultaneously and/or a GPU could be used for cal-
culations, increasing the speedup factor.

making random draws from the phase space, few samples will have multiple parameters at extrema

(e.g., both Z = 3 and C/O = 0.1), resulting in reduced accuracy in that regime. Of course, this

can be resolved by generating data over a larger phase space than needed or preferentially drawing

samples that are in these regions, thus ensuring the NN can accurately predict thermochemical

equilibrium in the regime of interest.
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Table 6.3: Linear Interpolation Model Performance Comparison

Number of
tempera-
tures

Number of
elemental
abun-
dances

RMSE R2 Dex Speedup Factor

40 11 1.4937 0.9623 0.0251 8434
80 11 1.4719 0.9641 0.0127 8518
80 21 1.1131 0.9821 0.0037 8332
Notes. For each model listed, we present only the median RMSE,
R2, and absolute dex error for conciseness. For the full data, see the
RRC download link at the end of Section 6.5.
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Table 6.4: IDW Model Performance Comparison

Exponent Neighbors
per axis

RMSE R2 Dex Speedup Factor

1 1 1.1341 0.9830 0.0706 15190
2 1 1.0780 0.9799 0.0619 15250
2 2 1.0795 0.9802 0.0650 2763
2 3 5.6737 0.3177 0.0809 886
3 1 1.0068 0.9803 0.0650 15000
5 1 0.8495 0.9840 0.0780 14920
5 2 0.8502 0.9839 0.0722 2716
5 3 5.6693 0.3243 0.0767 841
5 4 7.5990 -0.0859 0.0993 299
10 1 0.8301 0.9884 0.0781 14930
10 2 0.8194 0.9886 0.0721 2188
10 3 5.6713 0.3345 0.0741 835
10 4 7.6006 -0.0631 0.0996 299
20 1 0.8405 0.9877 0.0761 15160
20 2 0.8322 0.9879 0.0687 2710
20 3 5.6721 0.3344 0.0717 871
30 1 0.8392 0.9877 0.0761 15020
30 2 0.8314 0.9879 0.0696 2691
30 3 5.6721 0.3343 0.0748 868
40 1 0.8380 0.9876 0.0756 13680
40 2 0.8316 0.9878 0.0719 2689
Notes. For each model listed, we present only the median RMSE,
R2, and absolute dex error for conciseness. For the full data, see the
RRC download link at the end of Section 6.5.
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Figure 6.1: Performance comparison between the various models and TEA for H2O. The black
shading indicates regimes where the log abundance is ≤ −10. Top left: RATE. Top right: Best-
performing linear interpolation model. Middle left: Best-performing IDW interpolation model.
Middle right: NN1. Bottom left: NN2. Bottom right: NN3.
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Figure 6.2: As in Figure 6.1, but for CO.
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Figure 6.3: As in Figure 6.1, but for CH4.

168



102

10 3

10 8

Pr
es

su
re

 (b
ar

)

C/O = 0.1 C/O = 0.55 C/O = 0.9

[M
/H

] =
 

1.
5

C/O = 5

0
10%
50%
100%
10×

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

CO2 CO2 CO2

[M
/H

] =
 0

.5 CO2

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

[M
/H

] =
 1

.5

300 1000 5000
Temperature (K)

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

[M
/H

] =
 2

.5

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

C/O = 0.1 C/O = 0.55 C/O = 0.9

[M
/H

] =
 

1.
5

C/O = 5

0
10%
50%
100%
10×

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

CO2 CO2 CO2

[M
/H

] =
 0

.5 CO2

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

[M
/H

] =
 1

.5

300 1000 5000
Temperature (K)

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

[M
/H

] =
 2

.5

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

C/O = 0.1 C/O = 0.55 C/O = 0.9

[M
/H

] =
 

1.
5

C/O = 5

0
10%
50%
100%
10×

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

CO2 CO2 CO2

[M
/H

] =
 0

.5 CO2

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

[M
/H

] =
 1

.5

300 1000 5000
Temperature (K)

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

[M
/H

] =
 2

.5

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

C/O = 0.1 C/O = 0.55 C/O = 0.9

[M
/H

] =
 

1.
5

C/O = 5

0
10%
50%
100%
10×

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

CO2 CO2 CO2

[M
/H

] =
 0

.5 CO2

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

[M
/H

] =
 1

.5

300 1000 5000
Temperature (K)

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

[M
/H

] =
 2

.5

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

C/O = 0.1 C/O = 0.55 C/O = 0.9

[M
/H

] =
 

1.
5

C/O = 5

0
10%
50%
100%
10×

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

CO2 CO2 CO2

[M
/H

] =
 0

.5 CO2

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

[M
/H

] =
 1

.5

300 1000 5000
Temperature (K)

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

[M
/H

] =
 2

.5

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

C/O = 0.1 C/O = 0.55 C/O = 0.9

[M
/H

] =
 

1.
5

C/O = 5

0
10%
50%
100%
10×

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

CO2 CO2 CO2

[M
/H

] =
 0

.5 CO2

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

[M
/H

] =
 1

.5

300 1000 5000
Temperature (K)

102

10 3

10 8

Pr
es

su
re

 (b
ar

)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

300 1000 5000
Temperature (K)

[M
/H

] =
 2

.5

Figure 6.4: As in Figure 6.1, but for CO2.
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Figure 6.5: As in Figure 6.1, but for HCN.
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Figure 6.6: As in Figure 6.1, but for C2H2.
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Figure 6.7: As in Figure 6.1, but for C2H4.
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Figure 6.8: As in Figure 6.1, but for NH3.
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Figure 6.9: As in Figure 6.1, but for N2.
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Figure 6.10: As in Figure 6.1, but for H2.
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Figure 6.11: As in Figure 6.1, but for H.
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Figure 6.12: As in Figure 6.1, but for He.
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Figure 6.13: As in Figure 6.1, but using the grid of Cubillos et al. (2019) to illustrate NN inaccu-
racies at phase space extrema. While RATE (left column) performs accurately at a metallicity of
−3, predictions using NN3 (right column) for this metallicity feature significant error in certain
pressure–temperature regions. Note that the RATE plots differ from those in Cubillos et al. (2019)
as we additionally consider helium in this investigation, which adjusts the relative abundances and
therefore the relative errors.
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6.5 Conclusions

In this study, we presented a comparison between thermochemical equilibrium estimation methods.

We found that NN surrogate models outperform both interpolation approaches considered here as

well as the analytical approximation of Cubillos et al. (2019), which is based on the formalism of

Heng et al. (2016), Heng & Lyons (2016), and Heng & Tsai (2016). However, all approaches offer

orders of magnitude reductions in computational cost compared to the Gibbs energy minimization

implemented in TEA (Blecic et al. 2016). In the context of 2D and 3D atmospheric retrieval mod-

els, our results suggest that these thermochemical equilibrium estimation methods could run fast

enough and perform accurately enough to be used in place of a Gibbs-minimization method for

thermochemical equilibrium. More generally, these fast approximation approaches enable compu-

tationally expensive chemistry models to be utilized within retrieval models.

When comparing NN models, we found that the NNs trained on randomly-generated data outper-

formed those that were trained on a grid of models, even when the number of random data cases

matched the number of cases in the model grid. Our results show that those NNs trained on ran-

dom data outperform the considered interpolation methods even when the random data set size is

∼7% of the size of the interpolation data set. We also found that training on a combination of

gridded and random data results in a less accurate NN than training on only the random data, even

when trained for more iterations. While this suggests that gridded data is less effective at training

NNs compared to random data, a future study that more thoroughly investigates this behavior is

necessary to determine this definitively.
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While the NNs performed accurately over most of the phase space, their accuracies significantly

decrease near the edge of the phase space. Future investigations that seek to train comprehensive

NN surrogate models should keep this in mind when generating data, as the trained surrogate

model may not be valid at the extrema of the phase space. To account for this, we recommend

generating data over a slightly larger phase space than required. For situations where physical

limits prevent expanding the phase space, it may be helpful to force some of the random data to

occur at the extrema, that is, fixing one or more parameters to extrema and randomly generating the

other parameters. A future study should investigate this in detail to determine how best to handle

this situation.

The Reproducible Research Compendium for this work is available for download.1
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APPENDIX A: RETRIEVAL ERRORS DUE TO WAVENUMBER

SAMPLING GRID MISMATCH
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[This appendix is attached to the published manuscript that contains Chapter 2. It is Appendix D

in the official publication.]

When performing the synthetic retrievals described in Section 2.1.3, we observed a numerical

effect that can bias the Bayesian sampler towards slightly incorrect answers when the forward

and retrieval models use differing wavenumber grids. Here we describe this effect and how to

minimize it. We note that this error most strongly manifests when the RT code that produced the

synthetic spectrum matches the RT code used when retrieving on the synthetic spectrum, and the

error appears to be negligible when retrieving on real data at current resolutions.

Line-by-line calculations necessitate a discrete sampling of the resulting spectrum. Yet, spectra are

continuous, and this discrete sampling will therefore introduce error when, e.g., band integrating

a spectrum during a retrieval. At commonly-used grid samplings (e.g., 1.0 cm−1) for current- and

next-generation telescope resolutions, these errors can drive the Bayesian sampler to an incorrect

part of the phase space.

We consider forward models with 4 different grid spacings: 0.025, 0.1, 0.25, and 1.0 cm−1. For

each grid spacing, we also consider a horizontal shift of all values by ∼0.09 cm−1. Figure A.1

shows that, for the 0.25 and 1.0 cm−1 griddings, there is disagreement in the 2.5 – 3.5 and>4.5 µm

regions. By comparison, when only considering the 0.025 and 0.1 cm−1 griddings, the differences

tend to be comparable to the width of the plotted lines.
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We further investigate this effect by simulating a spectrum at 0.1 cm−1, band integrating according

to some filters, and retrieving with wavenumber grids that only differ in their spacing. The retrieval

models use grid spacings of 0.1, 0.25, 0.5, and 1.0 cm−1. We ensure that all wavenumbers in the

retrieval model grids exactly overlap with wavenumbers from the forward model grid. Figure

A.2 shows that choosing coarser griddings than that of the forward model leads to a reduction in

accuracy: the 0.1 cm−1 gridding recovers all of the parameters within 1σ, while the 0.25 and 0.5

cm−1 griddings recovering most parameters at >1σ. The 1.0 cm−1 gridding entirely misses 4 out

of the 5 parameters.

This effect would be expected to be most pronounced in the case where the same RT code is used

for the forward and retrieval models, since the retrieval RT model can, in theory, exactly match

the forward RT model. To test whether this effect arises when the forward and retrieval RT codes

differ, we ran the Barstow et al. (2020) cases at two different resolutions (0.1 and 1.0 cm−1, Figure

A.3). The inferred temperatures and radii are generally insensitive to the grid selection, though

the retrieved molecular abundances only slightly overlap, with the lower/upper credible region

boundaries varying by around an order of magnitude. On the other hand, when retrieving using the

real data of HD 189733 b at the aforementioned grid resolutions, we find only minor differences

(Figure A.4). The posterior of thermal profiles (calculated via the κ, γ1, and β parameters) are

nearly identical, and H2O and CO2 are essentially unaffected. CO and CH4 are minorly affected,

with the coarser grid preferring slightly higher CO and lower CH4 abundances. These minor

differences are not significant enough to change the interpretation of the results in the case of

current-resolution data for HD 189733 b. However, the numerical effect described in this section

may manifest in real-data retrievals as resolution improves.
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Figure A.1: Example of the effect of wavenumber griddings when band integrating spectra. Left:
0.025, 0.1, 0.25, and 1.0 cm−1 griddings. Right: 0.025 and 0.1 cm−1 griddings from the left plot.
All spectra are computed using identical setups except for the wavenumber gridding. The gridding
of the spectra computed with a maximum wavelength of 11 µm is offset by ∼0.09 cm−1 compared
to the spectra with a maximum wavelength of 10 µm. Note the model spread in the 2.5 – 3.5
and > 4.5 µm regions of the left plot. By comparison, the right plot shows little spread in the
band-integrated spectra.
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Figure A.2: Retrieved 1D marginalized posterior distributions for each molecule considered in the
synthetic retrieval. The forward model was computed using a 0.1 cm−1 grid, while the retrieval
models were computed using 0.1 (top left), 0.25 (top right), 0.5 (bottom left), and 1.0 (bottom
right) cm−1 grids. Note that only the 0.1 cm−1 grid correctly retrieves the underlying parameters
within 1σ; as the gridding becomes coarser, the accuracy decreases, with the 1.0 cm−1 gridding
entirely missing 4 out of 5 of the parameters.
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Figure A.3: Comparison of retrieved posteriors for the three indicated Barstow et al. (2020) model 0 spectra at two different
wavenumber grid resolutions. While the retrieved temperatures and radii are generally unaffected, the molecular abundances are
more sensitive to the grid resolution.
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Figure A.4: Comparison of retrieved posteriors for HD 189733 b at two different wavenumber grid
resolutions. In general, the posteriors match; only CO and CH4 show minor differences, though
they are not significant enough to affect conclusions drawn from the posterior.
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APPENDIX B: DETERMINING MODEL ARCHITECTURE
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[This appendix is attached to the published manuscript that contains Chapter 5. It is Appendix A

in the official publication.]

To select an ideal neural-network architecture, a grid search must be carried out. This includes

varying the types of hidden layers, number of hidden layers, number of nodes per layer, activation

functions for each hidden layer, the parameter(s) for each activation function, and the learning rate.

We carried out a grid search by training each model on a subset of the total data set (171,456

training, 66,432 validation) for 20 epochs using a batch size of 64. We considered 3–5 dense and

convolutional+pooling hidden layers; 64–4096 nodes; rectified linear unit (ReLU), leaky ReLU,

exponential linear unit (ELU), hyperbolic tangent (tanh), and sigmoid activation functions. The

convolutional layers use a kernel size of 3, and pooling layers use a size of 2. We consider four

learning rate policies: (1) a cyclical rate ranging from 8 ×10−6 – 5 ×10−3 where the maximum is

reduced by half of the difference with the minimum every 8 epochs, (2) as before but ranging from

10−5 – 10−3, (3) a constant learning rate of 10−5, and (4) a constant 10−3. Policies 3 and 4 are only

considered for models that do not include tanh or sigmoid activations.

Table B.1 presents the minimum validation loss for each architecture considered. There is some

randomness to the minimum validation loss due to the shuffling of the training data, so models with

comparable minimum validation losses can be considered equivalent in performance. We chose to

perform a more exhaustive grid search than is typical to emphasize certain points that can guide

future investigations.

In general, we find that models with 4+ hidden layers with ReLU, leaky ReLU, and ELU activa-

tions achieve the lowest validation loss for this problem. The best-performing models all have a

1D convolutional layer as the first hidden layer, while the worst-performing models use tanh or

sigmoid activations. Additional layers generally lead to reductions in the loss. Cases where this

does not occur can be attributed to the learning rate policy (e.g., models 25–27, LR1 vs. LR2),
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highlighting the importance of properly selecting the policy (described below). Minor variations

(e.g., models 28–30 LR1) can be attributed to training randomness. ReLU and leaky ReLU ac-

tivations tend to have similar performance; leaky ReLU with a small parameter tends to perform

equivalently or better than ReLU (e.g., models 32 and 33). While these results point to deep

architectures as optimal configurations for this application of ML RT, tests varying the spectral

resolution, wavelength range, etc. are necessary to definitively confirm if such variations change

the optimal architecture(s). A future investigation should consider this in more detail.

Based on this grid search, we selected model 40. While a similar architecture with ELU activations

performed equivalently (model 37), it took longer to train per epoch. Additionally, we found that

the retrieval accuracy did not significantly change below some threshold validation loss (see Ap-

pendix C), so training time is a more important consideration than minor differences in minimum

validation loss.

Our results show that, when the learning rate range is properly chosen, cyclical learning rates out-

perform constant learning rates, confirming the findings of Smith (2015) for this particular prob-

lem. Select models do not follow this trend (e.g., models 31, 35, 38), which is likely attributable

to the small number of epochs considered in this grid search.
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Figure B.1: Example of a range test. The learning rate begins at a value too small to make no-
ticeable changes to the weights of the model. At a learning rate of ∼ 4 × 10−4, the loss begins to
decrease, indicating that the model has begun learning. However, at a learning rate∼ 5×10−3, the
loss begins to behave erratically, and it becomes very large at a learning rate of 10−2. From this,
a learning rate policy varying between 6 × 10−4 and 4 × 10−3 would likely perform well for this
architecture.
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Table B.1: Model Grid Search, 20 Epochs

# Hidden Layers Min. Val. Loss (×105)
LR1∗ LR2† LR3‡ LR4§

1 D(512)aRb–D(512)R–D(512)R 17.4 43.8 491 19.2
2 D(1024)R–D(1024)R–D(1024)R 9.61 24.6 291 12.3
3 D(2048)R–D(2048)R–D(2048)R 7.60 13.3 179 8.28
4 D(4096)R–D(4096)R–D(4096)R 8.56 7.17 106 6.54
5 D(512)R–D(512)R–D(512)R–D(512)R 13.0 31.3 382 16.2
6 D(512)Sc–D(512)S–D(512)S–D(512)S 68.0 951 — —
7 D(512)Td–D(512)T–D(512)T–D(512)T 487 47.0 — —
8 D(512)S–D(1024)S–D(2048)S–D(4096)S 48.5 932 — —
9 D(512)T–D(1024)T–D(2048)T–D(4096)T 1390 68.8 — —

10 D(1024)R–D(1024)R–D(1024)R–D(1024)R 8.43 16.8 238 10.1
11 D(2048)R–D(2048)R–D(2048)R–D(2048)R 7.46 9.13 125 8.01
12 D(4096)R–D(4096)R–D(4096)R–D(4096)R 8.23 5.05 62.5 6.14
13 D(4096)S–D(4096)S–D(4096)S–D(4096)S 1350 197 — —
14 D(4096)T–D(4096)T–D(4096)T–D(4096)T 1740 46.0 — —
15 D(4096)E(0.05)e–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 220 5.10 64.6 5.55
16 D(4096)E(0.1)–D(4096)E(0.1)–D(4096)E(0.1)–D(4096)E(0.1) 227 5.03 70.3 5.93
17 D(4096)E(0.15)–D(4096)E(0.15)–D(4096)E(0.15)–D(4096)E(0.15) 206 5.13 74.5 7.13
18 D(4096)E(0.2)–D(4096)E(0.2)–D(4096)E(0.2)–D(4096)E(0.2) 238 5.39 81.7 6.18
19 D(4096)L(0.05)f–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)R 7.32 5.21 67.2 7.33
20 D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 232 4.96 65.5 6.82
21 D(4096)L(0.1)–D(4096)L(0.1)–D(4096)L(0.1)–D(4096)L(0.1) 270 5.09 72.2 6.13
22 C(64)gE(0.05)–Mh(2)–D(4096)E(0.05)–D(4096)E(0.05) 5.89 9.69 123 6.34
23 C(64)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 4.71 5.67 70.6 4.43
24 C(64)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 4.76 4.58 51.7 5.79
25 C(64)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05) 6.06 9.61 118 6.41
26 C(64)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.55 5.56 71.5 4.71
27 C(64)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 149 4.57 49.3 4.24
28 C(128)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05) 5.94 8.49 105 5.04
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# Hidden Layers Min. Val. Loss (×105)
LR1∗ LR2† LR3‡ LR4§

29 C(128)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 4.77 5.19 63.5 4.40
30 C(128)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 5.46 4.29 45.6 4.88
31 C(128)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05) 5.99 8.62 105 5.18
32 C(128)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)R 5.34 5.18 61.1 5.86
33 C(128)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.48 5.18 61.1 4.61
34 C(128)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.23 4.28 44.9 4.86
35 C(256)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05) 6.46 8.18 93.0 5.05
36 C(256)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 5.40 4.98 56.5 5.12
37 C(256)E(0.05)–M(2)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05)–D(4096)E(0.05) 5.98 4.08 41.4 5.28
38 C(256)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05) 6.14 7.97 93.6 5.29
39 C(256)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.68 5.00 56.0 5.60
40 C(256)L(0.05)–M(2)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05)–D(4096)L(0.05) 4.32 4.10 41.7 4.94
41 C(256)S–M(2)–D(4096)S–D(4096)S–D(4096)S–D(4096)S 11700 1400 — —
42 C(256)T–M(2)–D(4096)T–D(4096)T–D(4096)T–D(4096)T 11800 49.5 — —
Notes. Models trained for 20 epochs in batches of 64.
∗ Triangular2 learning rate policy ranging from 8× 10−6 – 5× 10−3 with a complete cycle spanning 8 epochs.
† Like LR1, but ranging from 10−5 – 10−3.
‡ Constant learning rate of 10−5.
§ Constant learning rate of 10−3.
a Dense layer with n nodes, D(n)
b ReLU activation
c Sigmoid activation
d tanh activation
e ELU activation E(α), with scaling parameter α
f Leaky ReLU activation L(m), with a slope of m for x < 0
g Convolution1D layer with a kernel size of 3 and n nodes, C(n)
h MaxPooling1D layer M(s), with a pooling size s



In Section 5.3, we note that we make the learning rate policy selection as described in Smith

(2015), except based on the loss instead of the accuracy. Our selection process is to perform a

‘range test’ by training the model over a few epochs using a learning rate policy that constantly

increases from a very small rate (e.g., 10−7) to a large rate (e.g., 10−1). Looking at a plot of loss

vs. learning rate (e.g., Figure B.1), the learning rate range can be deduced based on when the

loss begins decreasing (minimum learning rate) and when the loss begins increasing (maximum

learning rate). In practice, we find more efficient training using a range that is slightly interior to

the extrema determined via the plot. This is analogous to the method described in Smith (2015),

except that it is more straightforward to determine the learning rate boundaries.

B.1 List of References

Smith, L. N. 2015, arXiv e-prints, arXiv:1506.01186
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[This appendix is attached to the published manuscript that contains Chapter 5. It is Appendix B

in the official publication.]

To briefly investigate the effect of data set size for our problem, we consider three models in

addition to that presented in Section 5.3 (“Main”). The additional models are trained on around

25% of the total data set (614,208 training, 171,584 validation, 78,848 testing). Two models were

trained according to the same learning rate policy as described in Section 5.3, for 187 and 500

epochs (“Sub1a” and “Sub1b”, respectively). The third model was trained according to the LR2

learning rate policy described in Appendix B for 500 epochs (“Sub2”). All other setup parameters

(e.g., data normalization) match those described in Section 5.3.

Table C.1 compares the normalized RMSE and denormalized R2 test-set metrics over the high-

resolution spectra, as well as the Bhattacharyya coefficients for the retrieved 1D marginalized

posteriors. Based on the differences between models Sub1a and Sub1b (which only differ in the

number of epochs trained), it can be concluded that manually stopping training once the loss begins

to negligibly change does not have a major effect on the model performance. Models Sub1b and

Sub2 (which only differ in learning rate policies) illustrate the importance of selecting the learning

rate policy. However, both of these effects are negligible compared to those of the data set size:

the differences among models Sub1a, Sub1b, and Sub2 are smaller than the differences between

model Main and Sub2 (the best-performing Sub model). While Main and Sub2 underwent similar

numbers of total training steps, Main outperforms Sub2. These results motivate the generation of

large, comprehensive data sets of spectra to train surrogate RT models, though further research

into how data set size, number of inputs/outputs, and architecture complexity influence model

performance is needed to inform optimal the data set sizes for future investigations.
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Table C.1: Model Comparison

Metric Model Min. Median Mean Max.
Normalized RMSE Main 0.00153 0.00224 0.00247 0.01040

Sub1a 0.00271 0.00373 0.00407 0.01846
Sub1b 0.00264 0.00365 0.00398 0.01679
Sub2 0.00224 0.00331 0.00366 0.01721

Denormalized R2 Main 0.99885 0.99993 0.99990 0.99997
Sub1a 0.99646 0.99980 0.99974 0.99991
Sub1b 0.99696 0.99981 0.99975 0.99992
Sub2 0.99740 0.99983 0.99977 0.99994

Bhattacharyya coeff. Main 0.9843 0.9948 0.9925 0.9972
Sub1a 0.9585 0.9858 0.9853 0.9991
Sub1b 0.8919 0.9933 0.9655 0.9976
Sub2 0.9783 0.9940 0.9918 0.9984

Notes. See text for model descriptions.
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[This appendix is part of a manuscript in preparation for submission.]

D.1 Introduction

Atmospheric retrieval is the inverse modeling process by which an object’s atmospheric proper-

ties are inferred from measured spectra (see review by Madhusudhan 2018). Due to the lack of

spatial resolution as well as low signal-to-noise ratios of exoplanet observations, characterizing ex-

oplanetary atmospheres requires a Bayesian statistical framework to properly infer the collection

of atmospheric models that can explain the data (the posterior distribution). For 1D retrieval mod-

els, this process requires on the order of hours to days of runtime, typically on a multiprocessor

(hours to weeks of compute cost, depending on model complexity).

Markov chain Monte Carlo (MCMC; see review by Hogg & Foreman-Mackey 2018) and nested

sampling (NS; Skilling 2006) are the two most commonly used approaches to Bayesian retrievals

of exoplanet atmospheres (e.g., Benneke & Seager 2013, Line et al. 2014, Lavie et al. 2017, Wake-

ford et al. 2017, Gandhi & Madhusudhan 2018, Barstow et al. 2020, Al-Refaie et al. 2021, Har-

rington et al. 2022, Ardevol Martinez et al. 2022, Himes et al. 2022). Theoretically, each Bayesian

framework will retrieve the same posterior as the number of iterations approaches infinity. While

this is not possible in practice, frameworks achieve an accurate approximation to the posterior

after “enough” iterations have been performed (related to the effective sample size [ESS]; see Har-

rington et al. 2022 for more details). However, for computationally expensive forward models,

“enough” iterations may require an unreasonable amount of compute time. Alternatively, if the

Bayesian sampler is configured poorly, the inference may terminate before the posterior approxi-

mation is sufficiently accurate. Both situations produce numerically incorrect results, yet the end

user may be unaware. A recent study by Ardevol Martinez et al. (2022) reported that ∼ 8% of

their retrievals using MULTINEST (Feroz et al. 2009) yielded results that were > 3σ from the
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truth for one or more parameters. While it is unclear whether this finding is due to the MULTI-

NEST algorithm itself or if it is specific to how they set up MULTINEST (they do not describe

in detail how they configured it), the study more importantly illustrates that seemingly legitimate

results from a Bayesian inference could be incorrect. In exoplanet retrievals on real data, there is

no way to know the ground-truth posterior, and thus it is imperative to characterize and understand

any shortcomings of the Bayesian algorithm of choice.

In this study, we compare 9 Bayesian frameworks using toy problems and real-data retrievals to

determine how their reported ESS relate to the yielded posteriors’ accuracies as well as measure

their relative runtimes to discern which algorithms are most efficient. Section D.2 describes each

of the test problems, each Bayesian framework we consider, and how we apply each framework

to each problem. Section D.3 presents and discusses the frameworks’ results for each problem.

Finally, in Section D.4, we draw conclusions from our results and provide recommendations for

future investigations utilizing Bayesian frameworks.

D.2 Methods

We utilize 3 test problems, described below, to compare the performance of 9 Bayesian frame-

works, summarized in Table D.1. While not an exhaustive list of MCMC and NS implementations,

it includes algorithms commonly used in exoplanet retrievals as well as those used in other areas

of astronomy (e.g., Feroz et al. 2009, Buchner et al. 2014, Handley et al. 2015, Brewer et al. 2016,

Cubillos et al. 2017, Buchner 2019, Barstow et al. 2020, Speagle 2020, Harrington et al. 2022,

Ardevol Martinez et al. 2022, Himes et al. 2022). For tests with known posteriors, we consider

the runtime, whether the algorithm finds all modes, and the mean root-mean-square error of the
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differences between the 1D marginalized posteriors and the corresponding true distributions. For

retrieval tests with unknown posteriors, we consider the runtime and how an algorithm’s yielded

posterior compares to those of the other algorithms considered. Since our focus is on posterior

accuracy, we configure the NS algorithms to prioritize deriving the posterior over deriving the

evidence where possible.

We use the “eggbox” and “log gamma” toy problems described in Buchner (2016) to quantify

each algorithm’s ability to capture multi-modal and long-tailed distributions. While not exoplanet

retrievals, these problems provide insight into regimes where these posterior sampling algorithms

may begin to fail. Additionally, we use a real-data retrieval on HD 189733 b as described in Har-

rington et al. (2022) to consider if differences seen in the toy problems similarly show up when

retrieving on real data. We use the TRANSIT radiative transfer (RT) code (Rojo 2006, Cubillos

et al. 2022) for the forward model in these retrieval tests. This enables direct comparisons with

the results presented in Harrington et al. (2022), eliminating the forward model as a source of dif-

ferences. Rather than repeat the detailed test descriptions here, we direct readers to the respective

references as well as this work’s Reproducible Research Compendium (see link at end of Section

D.4).

For each test, we strive for similar ESS (see Harrington et al. 2022 for MCMC calculation method

and Speagle 2020 for NS calculation method) among the algorithms considered to more easily

compare their results. In some cases, we additionally consider runs with higher ESS, either to

properly solve the problem or to demonstrate the minimal compute cost needed to significantly

improve the ESS. We run the algorithms in parallel where possible, utilizing 10 processors unless

the algorithm requires more than that (DEMC requires twice as many parallel walkers as there

are free parameters). Some algorithms are not considered for all problems due to the required

runtimes.
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Table D.1: Bayesian Frameworks Considered

Code Type References
DNest4 NS Brewer et al. (2011), Brewer & Foreman-Mackey (2018)
dynesty NS Higson et al. (2019), Speagle (2020)
emcee MCMC Goodman & Weare (2010), Foreman-Mackey et al. (2013)
MCcubed’s DEMC MCMC ter Braak (2006), Cubillos et al. (2017)
MCcubed’s DEMC(ZS) MCMC ter Braak & Vrugt (2008), Cubillos et al. (2017)
PolyChordLite NS Handley et al. (2015), Handley et al. (2015)
PyDREAM MCMC Laloy & Vrugt (2012), Shockley et al. (2017)
PyMultiNest NS Feroz et al. (2009), Buchner et al. (2014)
UltraNest NS Buchner (2016, 2019, 2021)
Notes: Some of the provided references describe the algorithm/technique that is implemented
in the code, though they are not necessarily involved in the code’s development.
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D.2.1 Software

For this investigation, we developed the Large-selection Interface for Sampling Algorithms1 (LISA),

an open-source Python package released under the Reproducible Research Software License2.

While not a Bayesian framework itself, LISA functions as a unified interface for the 9 Bayesian

frameworks considered here, enabling users to easily switch between Bayesian frameworks for the

problem of their choice. It offers reasonable defaults if users do not wish to finely tune the infer-

ence parameters, and it includes checks to ensure the inference is set up properly before beginning.

We encourage users to contribute wrappers for additional Bayesian frameworks via pull requests

on Github.

D.3 Results and Discussion

We summarize the results for the eggbox problem in Table D.2; the 2D log gamma problem in

Table D.3; the 10D log gamma problem in Table D.4; and the HD 189733 b retrieval case in Figure

D.1, Figure D.2, and Table D.5.

1https://github.com/exosports/lisa
2https://planets.ucf.edu/resources/reproducible-research/software-license/
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D.3.1 Eggbox Problem

For the eggbox problem, the algorithms can be categorized into 3 groups: (1) those that find all

modes and somewhat characterize the wings of each mode, (2) those that find all modes (or all

except a few at the edge of the phase space) and do not characterize the wings of each mode, and

(3) those that do not solve this problem. We find that MCcubed’s implementations of DEMC and

DEMC(ZS) fall into group 1 and achieve the most accurate posteriors for this problem. DNest4,

PyDREAM, UltraNest, dynesty, PolyChordLite, and PyMultiNest fall into group 2, with the latter

3 achieving the fastest execution. Group 3 only contains emcee for this problem.

Note that this problem represents an extreme case of multimodality; while not typically seen in

1D exoplanet retrievals, it provides insight into the performance trends and limitations of these

algorithms. In terms of performance, DNest4, dynesty, and PolyChordLite feature around a factor

of 2 difference in runtime between the ESS∼ 1000 and ESS∼ 2000 cases, while PyMultiNest and

UltraNest do not see a significant change in runtime between those ESS cases. Despite PyMulti-

Nest’s fast execution time, it misses at least 1 mode at the edge of the phase space regardless of

the ESS. Finding at most 3 of the 18 modes, emcee struggles to solve this problem, whether using

its default “stretch move” sampling strategy of Goodman & Weare (2010) or the same sampling

strategy as MCcubed’s DEMC(ZS) (ter Braak & Vrugt 2008). When using emcee’s default “stretch

move” sampling strategy of Goodman & Weare (2010), we find that it yields a significantly higher

SPEIS compared to the DE and snooker updates. PyDREAM requires significantly more runtime

than all other algorithms considered except emcee, likely attributed to its multi-try approach.
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Table D.2: Performance Comparison: Eggbox Problem

Code ESS Relative runtime factor Finds all 18 modes? Mean RMSE
DNest4 500 4.0 Y 1.095
DNest4 1000 8.6 Y 1.042
DNest4 2000 18.2 Y 1.045
dynesty 500 14.8 Misses 1 mode at PS corner 1.124
dynesty 1000 1.0 Y 1.065
dynesty 2000 2.2 Y 1.042
emcee 500 182 Only finds 2 modes 5.691
emcee 1000 187 Only finds 3 modes 5.036
MCcubed’s DEMC 500 1.6 Y 0.530
MCcubed’s DEMC 1000 2.8 Y 0.514
MCcubed’s DEMC(ZS) 500 9.0 Y 0.529
MCcubed’s DEMC(ZS) 1000 16.8 Y 0.504
PolyChordLite 500 1.2 Misses 2 modes 1.152
PolyChordLite 1000 1.0 Y 1.147
PolyChordLite 2000 2.2 Y 1.120
PyDREAM 500 25.0 Y 1.028
PyDREAM 1000 41.6 Y 1.021
PyMultiNest 500 1.0 Misses 3 modes at PS edges 1.422
PyMultiNest 1000 1.6 Misses 1 mode at PS corner 1.113
PyMultiNest 2000 1.2 Misses 2 modes at PS edges 1.157
UltraNest 500 6.8 Y 1.064
UltraNest 1000 3.0 Y 1.028
UltraNest 2000 3.2 Y 1.025
Notes. The relative runtime factor is computed with respect to the minimum runtime among all runs for this problem.
For the accuracy metric, we calculate the mean of the RMSE between each 1D marginalized posterior distribution
and the known true distribution over the phase space (PS) considered. For emcee, we use the same sampling strat-
egy as MCcubed’s DEMC(ZS) (90% differential evolution updates, 10% snooker updates) because emcee’s default
sampling strategy (the “stretch move” of Goodman & Weare 2010) takes much longer to converge for this problem.



D.3.2 Log Gamma Problems

For the log gamma problems, all considered algorithms correctly identify the 4 modes. We find that

for ESS∼ 500, NS algorithms’ posteriors are less accurate than MCMC algorithms. However, this

is not a shortcoming of NS algorithms; in order to achieve this ESS value, it is necessary to limit

the accuracy of NS algorithms, as typical runs yield ≥ 2000 ESS and more accurate posteriors.

In the 2D case, UltraNest and both of MCcubed’s MCMC algorithms tie for the fastest algorithms,

though in those specific cases the MCMC approaches are more accurate by roughly a factor of 2.

All 4 MCMC approaches are able to achieve a lower mean RMSE at an ESS of 500 than almost

every NS algorithm at any ESS considered. We note that dynesty appears to undersample the wings

in the 3 runs considered; for the highest ESS run, it also undersamples the cores of the distributions.

Utilizing a Gaussian filter as in dynesty’s plotting routines can smooth out the errors and improve

the accuracy, but we present the raw posteriors to more clearly compare the performances of the

algorithms.

In the 10D case, we find that PyMultiNest achieves the best overall performance, requiring mini-

mal runtime while still yielding an accurate result. While UltraNest represents the fastest overall

execution time, that run features significant error; runs which yield a more accurate posterior re-

quire significantly more compute time. Both dynesty and PolyChordLite feature similar runtimes

for a variety of ESS, highlighting the non-linear compute cost associated with some NS implemen-

tations. Among the MCMC algorithms, PyDREAM yields the least runtime, though both DEMC

and DEMC(ZS) achieve more accurate posteriors at both ESS values considered.
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Table D.3: Performance Comparison: 2D Log Gamma Problem

Code ESS Relative runtime factor Mean RMSE
DNest4 500 25.5 0.458
DNest4 1000 52.6 0.301
DNest4 2000 98.2 0.251
dynesty 500 7.0 0.718
dynesty 1000 13.3 0.452
dynesty 2000 15.8 0.658
emcee 500 21.8 0.239
emcee 1000 36.5 0.174
MCcubed’s DEMC 500 1.0 0.275
MCcubed’s DEMC 1000 1.2 0.177
MCcubed’s DEMC(ZS) 500 1.0 0.229
MCcubed’s DEMC(ZS) 1000 1.8 0.178
PolyChordLite 500 3.2 0.915
PolyChordLite 1000 4.7 0.554
PolyChordLite 2000 7.7 0.391
PyDREAM 500 9.7 0.236
PyDREAM 1000 11.8 0.147
PyMultiNest 500 3.5 0.643
PyMultiNest 1000 3.8 0.417
PyMultiNest 2000 4.3 0.280
UltraNest 500 1.0 0.516
UltraNest 1000 1.2 0.455
UltraNest 2000 1.8 0.257
Notes. All algorithms find all modes. The relative runtime factor is com-
puted with respect to the minimum runtime among all runs for this prob-
lem. For the accuracy metric, we calculate the mean of the RMSE between
each 1D marginalized posterior distribution and the known true distribu-
tion over the phase space (PS) considered. For emcee, we use the same
sampling strategy as MCcubed’s DEMC(ZS) (90% differential evolution
updates, 10% snooker updates) because emcee’s default sampling strat-
egy (the “stretch move” of Goodman & Weare 2010) takes much longer
to converge for this problem.
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Table D.4: Performance Comparison: 10D Log Gamma Problem

Code ESS Relative runtime factor Mean RMSE
DNest4 500 4.48 0.991
DNest4 1000 6.43 0.662
DNest4 2000 11.1 0.407
dynesty 500 6.14 1.172
dynesty 1000 6.33 0.679
dynesty 2000 7.56 0.300
MCcubed’s DEMC 500 8.86 0.140
MCcubed’s DEMC 1000 14.2 0.102
MCcubed’s DEMC(ZS) 500 7.62 0.258
MCcubed’s DEMC(ZS) 1000 8.30 0.176
PolyChordLite 500 25.2 3.738
PolyChordLite 1000 31.8 3.138
PolyChordLite 4000 29.7 0.562
PolyChordLite 16000 118 0.247
PyDREAM 500 2.02 0.445
PyDREAM 1000 3.5 0.379
PyMultiNest 500 1.07 1.228
PyMultiNest 1000 1.35 0.687
PyMultiNest 2000 1.24 0.494
UltraNest 500 1.0 1.997
UltraNest 1000 1.47 1.044
UltraNest 3000 77.9 0.325
UltraNest 16000 105 0.129
Notes. All algorithms find all modes. The relative runtime factor is com-
puted with respect to the minimum runtime among all runs for this prob-
lem. For the accuracy metric, we calculate the mean of the RMSE between
each 1D marginalized posterior distribution and the known true distribu-
tion over the phase space (PS) considered. For emcee, we use the same
sampling strategy as MCcubed’s DEMC(ZS) (90% differential evolution
updates, 10% snooker updates) because emcee’s default sampling strat-
egy (the “stretch move” of Goodman & Weare 2010) takes much longer
to converge for this problem.
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D.3.3 HD 189733 b

Figures D.1 and D.2 show comparisons between the 1D marginalized posteriors for HD 189733

b for 7 algorithms. Table D.5 summarizes the ESS and execution times of each algorithm. Note

that we do not consider DNest4 or PolyChordLite as they do not easily parallelize TRANSIT’s

execution method. We also note that the relative runtime factors are not necessarily representative

of these algorithms for all exoplanet retrievals but rather only represent their performances when

used to parallelize the TRANSIT RT code. Other RT codes may interface better with some of these

algorithms.

Overall, the algorithms agree. The notable exceptions are DEMC, which has two rogue chains

that did not converge to the same solution and thus contains features not seen in the other posteri-

ors; PyMultiNest, which undersamples the high-probability region for the log CO parameter; and

PyDREAM, which oversamples the high-probability region for log CO. We emphasize that, even

though PyMultiNest’s result is more physically plausible than the other algorithms, its disagree-

ment with the other Bayesian frameworks identifies an algorithmic shortcoming. PyMultiNest’s

behavior is not unexpected given the eggbox results, though further research is necessary to de-

termine if MULTINEST generally struggles with characterizing high-probability regions that are

on the edge of the phase space. While DEMC’s behavior is not observed in the earlier tests, it is

not unusual when applied to exoplanet retrievals, based on our prior experiences. In theory, these

rogue chains will converge if the chains continue for more iterations; however, in practice that can

be significantly more iterations than the other MCMC algorithms considered here. The presented

DEMC run features 4× the number of total iterations as the DEMC(ZS) run, thus highlighting the

convergence and efficiency improvements of the DEMC(ZS) algorithm of ter Braak & Vrugt (2008)

over the earlier DEMC algorithm of ter Braak (2006).
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PyDREAM features the longest runtime, attributable at least in part to its multi-try approach. For

computationally expensive forward models, as in this case, multi-try adds significant overhead per

iteration. If a MT-DREAM algorithm were written in a way to better parallelize a program like

TRANSIT, we expect that this overhead could be minimized. Regarding its agreement with the

other algorithms, PyDREAM only features disagreement in the high-probability region for the log

CO marginalized posterior, where it finds a much higher probability for the planet to contain a

significant fraction of CO (> 10%). However, except for PyMultiNest, each algorithm finds this to

be the most probable abundance for CO despite that this is not plausible for a hot Jupiter. Evidently,

this unusually high abundance of CO provides a better numerical fit to the data, though the long,

non-negligible tails of the distributions indicate a lack of a strong constraint, consistent with some

previous studies (see Harrington et al. 2022 for additional discussion).

By using an even proportion of stretch moves and DE snooker updates, emcee achieves a higher

ESS and lesser runtime compared to MCcubed’s DEMC(ZS). When emcee’s sampling strategy

exactly matches MCcubed’s DEMC(ZS), the ESS drops by around a factor of 3 for the same number

of total iterations. This behavior was not observed in the toy problems. While this seems to

suggest that the stretch moves help to better characterize the posterior, runs that only use stretch

moves take longer to converge, suggesting that they are less efficient than the DEMC(ZS) sampling

strategy. Further investigation is necessary to determine the optimal MCMC sampling strategy for

atmospheric retrieval as well as why allowing for both sampling methods improves convergence

compared to using either independently.

UltraNest finds similar results to the other algorithms but at additional compute cost. Reducing the

tolerance or number of live points accordingly reduces the compute cost, however that resulting

posterior is not in close agreement with the other algorithms presented here. UltraNest’s addi-

tional compute cost may be attributed to differences in how the algorithms parallelize likelihood

evaluations.
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Figure D.1: Comparison of the thermal profile 1D marginalized posteriors for HD 189733 b be-
tween the 7 Bayesian frameworks listed.
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Figure D.2: Comparison of the gas abundance 1D marginalized posteriors for HD 189733 b be-
tween the 7 Bayesian frameworks listed.
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Table D.5: Performance Comparison: HD 189733 b

Code ESS Relative runtime factor
dynesty 6317 2.0
emcee 723 2.3
MCcubed’s DEMC 65 2.7
MCcubed’s DEMC(ZS) 500 2.6
PyDREAM 1258 8.3
PyMultiNest 7476 1.0
UltraNest 3630 4.2
Notes. For emcee, we set the sampling strategy to an
even mixture of its default “stretch move” and MC-
cubed’s DEMC(ZS) sampling strategy (90% differential
evolution updates, 10% snooker updates), as we find it
converges faster than using either approach on its own.
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Overall, dynesty appears to best capture the posterior while minimizing compute cost. Despite that

its compute cost is around double that of PyMultiNest, its 1D marginalized posterior for log CO

more closely matches the other algorithms considered. Additionally, these results do not appear to

exhibit the wing undersampling observed in the eggbox and 2D log gamma problems.

D.4 Conclusions

In this paper, we presented comparisons between 9 Bayesian frameworks using toy problems and

a real-data retrieval case on HD 189733 b. In general, we find agreement between the algorithms

considered. We also introduced an open-source Python package called LISA, which provides a

unified interface for these 9 algorithms.

While all Bayesian algorithms should in theory agree with one another, in practice we find that

some algorithms yield the wrong posteriors in certain regimes. Specifically, PyMultiNest appears

to have difficult characterizing high-probability regions at phase space edges; dynesty appears to

undersample the wings of low-dimensional, multi-modal problems; and DEMC can have one or

more rogue chains that delay convergence for exoplanet retrievals. We also find that, while emcee’s

default stretch move delays convergence in the multi-modal toy problems considered, its inclusion

improves the resulting ESS compared to only using DE and snooker updates. Further research is

necessary to determine the optimal ratio of these update methods.

Specifically in the case of exoplanet retrievals, we find that dynesty, emcee, and MCcubed’s

DEMC(ZS) minimize compute cost while achieving posteriors that agree with the other algorithms.

For retrievals where the high-probability region is not at the edge of the phase space, PyMultiNest

may also be an efficient option. We emphasize that the other algorithms are in theory acceptable

choices for exoplanet retrievals, but in our setup, the parallelization approaches of the other al-
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gorithms are less efficient for our RT forward model. We recommend that future investigations

utilize 2 or more Bayesian frameworks when reporting retrieval results to confirm that their results

are independent of the posterior sampling algorithm. Looking ahead to the next generation of ex-

oplanet modeling, minimizing overhead from the Bayesian posterior sampling algorithm without

reducing posterior accuracy will be imperative as 2D and 3D exoplanet retrieval models become

the standard.
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Brewer, B. J., Pártay, L. B., & Csányi, G. 2011, Statistics and Computing, 21, 649

218



Buchner, J. 2016, Statistics and Computing, 26, 383

—. 2019, PASP, 131, 108005

—. 2021, The Journal of Open Source Software, 6, 3001

Buchner, J., Georgakakis, A., Nandra, K., et al. 2014, A&A, 564, A125

Cubillos, P., Harrington, J., Loredo, T. J., et al. 2017, AJ, 153, 3

Cubillos, P. E., Harrington, J., Blecic, J., et al. 2022, The Planetary Science Journal, 3, 81

Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306

Gandhi, S., & Madhusudhan, N. 2018, MNRAS, 474, 271

Goodman, J., & Weare, J. 2010, Communications in Applied Mathematics and Computational

Science, 5, 65

Handley, W. J., Hobson, M. P., & Lasenby, A. N. 2015, MNRAS, 450, L61

Handley, W. J., Hobson, M. P., & Lasenby, A. N. 2015, Monthly Notices of the Royal Astronomical

Society, 453, 4384

Harrington, J., Himes, M. D., Cubillos, P. E., et al. 2022, The Planetary Science Journal, 3, 80

Higson, E., Handley, W., Hobson, M., & Lasenby, A. 2019, Statistics and Computing, 29, 891

Himes, M. D., Harrington, J., Cobb, A. D., et al. 2022, PSJ, 3, 91

Hogg, D. W., & Foreman-Mackey, D. 2018, ApJS, 236, 11

Laloy, E., & Vrugt, J. A. 2012, Water Resources Research, 48,

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011WR010608

219



Lavie, B., Mendonça, J. M., Mordasini, C., et al. 2017, AJ, 154, 91

Line, M. R., Knutson, H., Wolf, A. S., & Yung, Y. L. 2014, ApJ, 783, 70

Madhusudhan, N. 2018, Atmospheric Retrieval of Exoplanets (Springer International Publishing

AG), 104

Rojo, P. M. 2006, PhD thesis, Cornell University

Shockley, E. M., Vrugt, J. A., & Lopez, C. F. 2017, Bioinformatics, 34, 695

Skilling, J. 2006, Bayesian Analysis, 1, 833

Speagle, J. S. 2020, MNRAS, 493, 3132

ter Braak, C. 2006, Statistics and Computing, 16, 239

ter Braak, C. J. F., & Vrugt, J. A. 2008, Statistics and Computing, 18, 435

Wakeford, H. R., Sing, D. K., Kataria, T., et al. 2017, Science, 356, 628

220


	Atmospheric Retrieval: Bayesian Methods, Machine Learning, and Application to Exoplanets
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Atmospheric Retrieval
	1.2 Machine Learning
	1.2.1 Dissertation Overview

	1.3 List of References

	CHAPTER 2: AN OPEN-SOURCE BAYESIAN ATMOSPHERIC RADIATIVE TRANSFER (BART) CODE. I. DESIGN, TESTS, AND APPLICATION TO EXOPLANET HD 189733b
	2.1 Tests and BARTTest
	2.1.1 Analytic RT Tests
	2.1.1.1 f04broadening: Line Broadening
	2.1.1.2 f05abundance: Varying Abundance
	2.1.1.3 f08isothermal: Isothermal Atmosphere

	2.1.2 Comparison RT Test
	2.1.2.1 BarstowEtal2020mnrasRetrievalComparison Forward Models

	2.1.3 Synthetic Retrieval Tests
	2.1.3.1 BarstowEtal2020mnrasRetrievalComparison Synthetic Retrievals

	2.1.4 Real-Data Retrieval Test

	2.2 Application to HD 189733 b
	2.3 List of References

	CHAPTER 3: ON THE DAYSIDE ATMOSPHERE OF WASP-12b
	3.1 Abstract
	3.2 Introduction
	3.3 BART
	3.4 Model Configurations
	3.5 Results and Discussion
	3.6 Conclusions
	3.7 Acknowledgments
	3.8 List of References

	CHAPTER 4: FROM BIOHINTS TO CONFIRMED EVIDENCE OF LIFE: POSSIBLE METABOLISMS WITHIN EXTRATERRESTRIAL ENVIRONMENTAL SUBSTRATES
	4.1 Abstract
	4.2 Background
	4.3 Methods
	4.3.1 Tools, Compute and Software Environment
	4.3.2 Generation of Planetary Spectra via NASA Goddard's Planetary Spectrum Generator
	4.3.2.1 System Parameters
	4.3.2.2 Planetary Parameters

	4.3.3 Data Set INARA DS1
	4.3.4 Machine Learning
	4.3.4.1 Model evaluation & experiments
	4.3.4.2 Producing predictive distributions over abundances by using the Monte Carlo dropout approximation


	4.4 Results
	4.4.1 INARA Performance
	4.4.2 Links to Code Repositories

	4.5 Discussion
	4.6 Future Work
	4.7 Conclusions
	4.8 Acknowledgemnets
	4.9 List of References

	CHAPTER 5: ACCURATE MACHINE LEARNING ATMOSPHERIC RETRIEVAL VIA A NEURAL NETWORK SURROGATE MODEL FOR RADIATIVE TRANSFER
	5.1 Abstract
	5.2 Introduction
	5.3 Methods
	5.3.1 Model Training
	5.3.2 Retrieval
	5.3.3 Software
	5.3.3.1 MARGE
	5.3.3.2 HOMER


	5.4 Results and Discussion
	5.4.1 Limitations
	5.4.2 Compute Cost

	5.5 Conclusions
	5.6 Acknowledgements
	5.7 List of References

	CHAPTER 6: TOWARDS 3D RETRIEVAL OF EXOPLANET ATMOSPHERES: ASSESSING THERMOCHEMICAL EQUILIBRIUM ESTIMATION METHODS
	6.1 Abstract
	6.2 Introduction
	6.3 Methods
	6.3.1 Equilibrium via Gibbs Energy Minimization
	6.3.2 Equilibrium via Analytical Formulae
	6.3.3 Equilibrium via Interpolation
	6.3.4 Equilibrium via NN-based Surrogate Model
	6.3.5 Performance Assessment

	6.4 Results & Discussion
	6.5 Conclusions
	6.6 Acknowledgements
	6.7 List of References

	APPENDIX A: RETRIEVAL ERRORS DUE TO WAVENUMBER SAMPLING GRID MISMATCH
	A.1 List of References

	APPENDIX B: DETERMINING MODEL ARCHITECTURE
	B.1 List of References

	APPENDIX C: DATA SET SIZE CONSIDERATIONS
	APPENDIX D: ASSESSING BAYESIAN FRAMEWORKS FOR EXOPLANET ATMOSPHERIC RETRIEVAL
	D.1 Introduction
	D.2 Methods
	D.2.1 Software

	D.3 Results and Discussion
	D.3.1 Eggbox Problem
	D.3.2 Log Gamma Problems
	D.3.3 HD 189733 b

	D.4 Conclusions
	D.5 Acknowledgements
	D.6 List of References


