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In this work, inertial and diffusive effects are rediscussed on the propagation of magnetosonic waves 

in plasmas of finite conductivity, with basis on an extension of Ohm’s law. It is shown that when such 

effects are strong, the discussion can be pursued by defining suitably a perturbative parameter with the 

dimension of speed. The results presented here are part of a program which aims to investigate the influ-

ence of inertia due to charged species on the propagation of hydromagnetic waves and instabilities in re-

sistive plasmas. 
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1 INTRODUCTION 

It is well known that the coupling of small dis-

turbances of velocity and magnetic fields with 

those of density and pressure gives rise to the 

propagation of compressional waves in plas-

mas. These waves are generally referred to as 

magnetosonic waves. If the propagation is per-

pendicular to the equilibrium magnetic field, 

only fast modes exist. When the propagation is 

parallel to the field, slow modes may arise. The 

dispersion relation which describes the propa-

gation of magnetosonic waves is usually de-

rived for ideal plasmas (their resistivity is neg-

ligible) [1]. The inclusion of finite resistive ef-

fects in the problem is important because it al-

lows the description of diffusive processes in 

both laboratory and astrophysical plasmas [2-

9]. However, in all these references, diffusive 

phenomena are studied for long wavelength 

perturbations. Such an approach neglects the 

influence of charged species inertia in the 

plasma. In this work, diffusive and inertial ef-

fects are rediscussed on the propagation of 

magnetosonic waves in plasmas of finite con-

ductivity, as can be inferred from [10]. 

 

2 THEORETICAL BASIS 

It is widely accepted that the current density 𝐽, 

induced in a plasma of finite conductivity 𝜎, is 

related to the applied electric 𝐸⃗⃗ and magnetic 𝐵⃗⃗ 

fields, and to the developed fluid velocity 𝑣⃗, 

through the standard Ohm’s law, [1] 

 
𝐽 = 𝜎(𝐸⃗⃗ + 𝑣⃗ × 𝐵) .   (1) 

Eq. (1) is recognized to describe satisfactorily 

the dissipative processes which occur  

 

in the conductive plasma, provided that the 

characteristic wavelength of the electromag-

netic field is sufficiently long. In this case, in-

ertial effects due to charged species in 

the plasma are negligible. However, at shorter 

wavelengths, inertial effects become important 

enough for that the time rate of 𝐽 may be in-

cluded in Eq. (1), [11] 

 

(1 + 𝜏
𝜕

𝜕𝑡
) 𝐽 = 𝜎(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) .    (1) 

In Eq. (2), 𝜏 is interpreted as the relaxation time 

of 𝐽. Actually, when the electromagnetic field 

is suddenly removed from the presence 

of the plasma, Eq. (2) shows that 

 

𝐽 = 𝐽0𝑒−𝑡 𝜏⁄  . (3) 

Eq. (3) means that any initial current density 𝐽0 

damps off within the plasma in a finite time 

scale of the order of 𝜏. In the limit 𝜏 → 0, 

Eq. (2) recovers Eq. (1) and Eq. (3) shows that 

𝐽0 damps off instantaneously. Clearly, such 

a situation can be justified only if the other time 

scales which are involved in the problem are 

much longer than 𝜏. In this case, inertial effects 

can be neglected. By combining Eq. (2) with 

Maxwell’s equations, one gets [10] 

(1 − 𝛿2∇2)
𝜕𝐵⃗⃗

𝜕𝑡
− 𝜁∇2𝐵⃗⃗ = ∇ × (𝑣⃗ × 𝐵⃗⃗) ,      (4) 

where we have introduced the standard mag-

netic diffusivity 𝜁 and finite skin depth 𝛿, 

 𝜁 =
1

𝜇0𝜎
          and          𝛿 = √

𝜏

𝜇0𝜎
 , (5) 
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respectively, with 𝜇0 denoting the vacuum 

magnetic permeability. 

 

3 RESULTS AND DISCUSSION 

Consider an initially static, homogeneous and 

isotropic, infinite plasma with mass density 𝜌, 

subjected to a constant and uniform magnetic 

field 𝐵⃗⃗. Subsequently, assume that the plasma 

experiences a small perturbation ~𝑒𝚤(𝑘⃗⃗∙𝑟−𝜔𝑡). 

By adopting Cartesian coordinates, one may re-

gard the wave vector 𝑘⃗⃗ to be in the 𝑥-direction 

and the magnetic field 𝐵⃗⃗ to lie on the 𝑥𝑦-plane, 

without loss of generality. In this case, it can be 

shown that the angular frequency 𝜔 satisfies 

the dispersion relation [10] 

(1 + 𝛿2𝑘2)𝜔4 + 𝚤𝜁𝑘2𝜔3 − [(1 + 𝛿2𝑘2)𝑐𝑠
2 +

𝑢2]𝑘2𝜔2 − 𝚤𝜁𝑐𝑠
2𝑘4𝜔 + 𝑐𝑠

2𝑢𝑥
2𝑘4 = 0,          (6) 

with 𝑐𝑠 denoting the sound speed in the medium 

concerned and where we have introduced the 

quantities 

 𝑢𝑥 =
𝐵𝑥

√𝜇0𝜌
     and     𝑢 = √

𝐵𝑥
2+𝐵𝑦

2

𝜇0𝜌
 , (7) 

both with the dimension of speed. For weak dif-

fusive and inertial effects, the solutions of Eq. 

(6) may be read as 

𝜔± = 𝑘√𝑐𝑠
2+𝑢2

2
[1 ± √1 − (

2𝑐𝑠𝑢𝑥

𝑐𝑠
2+𝑢2)

2

]

1 2⁄

.     (8) 

Eq. (8) recovers the standard dispersion rela-

tion for magnetosonic waves in the ideal limit 

[1]. The plus and minus signs describe the fast 

and slow magnetosonic waves, respectively. 

However, for strong diffusive and inertial ef-

fects, Eq. (6) may be rewritten as [10] 

(𝜔2 − 𝑐𝑠
2𝑘2)(𝛿2𝜔2 + 𝚤𝜁𝜔) −

(𝑢2𝜔2 − 𝑢𝑥
2𝑐𝑠

2𝑘2) = 0 .  
(9) 

As it appears, Eq. (9) may be substantially sim-

plified by considering the condition 𝑢 ~ 𝑢𝑥 

(𝐵𝑦 → 0, see Eqs. (7)). Actually, in this case, 

Eq. (9) reduces to 

(𝜔2 − 𝑐𝑠
2𝑘2)(𝛿2𝜔2 + 𝚤𝜁𝜔 − 𝑢𝑥

2) = 0. (10) 

The solutions of Eq. (10) are immediately rec-

ognizable as the standard sound wave and mod-

ified Alfvénic wave, [10] 

𝜔+ = 𝑐𝑠𝑘     and     𝜔− =
√4𝛿2𝑢𝑥

2−𝜁2−𝚤𝜁

2𝛿2 ,     (11) 

respectively. Therefore, the general solutions 

of Eq. (9) can be obtained, at any order of ap-

proximation, by defining the perturbative pa-

rameter 

 𝑢𝑦 =
𝐵𝑦

√𝜇0𝜌
 (11) 

 

with the dimension of speed. As a matter of 

fact, if the unperturbed solutions change 

slightly as 𝜔± → 𝜔± + 𝜔±
′ , then it can be 

shown that the first-order correction terms are 

given by 

𝜔+
′ =

𝜔+𝑢𝑦
2

2(𝛿2𝜔+
2 + 𝚤𝜁𝜔+ − 𝑢𝑥

2)
 

and 

 𝜔−
′ =

𝜔−
2 𝑢𝑦

2

(𝜔−
2 −𝑐𝑠

2𝑘2)(2𝛿2𝜔−+𝚤𝜁)
,           (12) 

respectively. 

 

4 CONCLUSION 

In this work, inertial and diffusive effects have 

been rediscussed on the propagation of magne-

tosonic waves in plasmas of finite conductivity, 

with basis on the extended Ohm’s law, Eq. (2). 

It has been shown that when such effects are 

strong, the discussion can be pursued by defin-

ing suitably a perturbative parameter with the 

dimension of speed. The results presented here 

are part of a program which aims to investigate 

the influence of inertia due to charged species 

on the propagation of hydromagnetic waves 

and instabilities in resistive plasmas [12, 13]. 
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