
 
 

  Article no. 48 
 

THE CIVIL ENGINEERING JOURNAL 3-2021 
 

 

                  DOI 10.14311/CEJ.2021.03.0048 634 

 

STUDY ON SPATIAL STRESS EFFECT OF PC CONTINUOUS 
THIN-WALLED BOX GIRDER BRIDGE 

Shulin Zhou1, Honglei Zhang 2 

 
1. Highway Development Center of Guangxi Zhuang Autonomous Region, 

Maintenance Department, Nanning, No.3 Yunjing Road, PR of China; 

317880950@qq.com 

2. Beijing Xinqiao Technology Development Co., Ltd, Bridges and Tunnels 

Department, Beijing, No.8 Xitucheng, PR of China; 

Hongleizhang_Xq@163.com, 765310906@qq.com 

ABSTRACT 

In order to study the influence of spatial stress effect and shear lag effect on the cracking of 
PC continuous thin-walled box girder bridge, a spatial model was established by using ANSYS 
finite element software to analyze the internal stress distribution of the bridge. The test results are 
compared with the analysis results of spatial model and plane link system model through the load 
test of real bridge. The results show that the longitudinal stress is evenly distributed along the width 
direction, which means that the spatial stress effect and the shear lag effect have little influence on 
the downdeflection of the bridge. The shear lag coefficient at the longitudinal axis of midspan 
bottom plate and the intersection of bottom plate and web are larger than other positions, which is 
most likely to produce cracks caused by stress concentration and should be strengthened here in 
practical engineering. The results of load test show that the results of spatial finite element analysis 
are more reliable than those of plane link system calculation, and the design and construction 
based on the results of spatial finite element analysis is safer.  
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INTRODUCTION 

The PC continuous box girder has the advantages of strong span capacity, large structural 
stiffness, beautiful appearance, smooth deck and easy maintenance, and is widely used in bridge 
structures with large span [1]. However, the section of box girder belongs to thin-walled structure. 
According to the investigation, the prestressed continuous thin-walled box girder bridge has 
cracked in different degrees after a period of operation [2]. Therefore, it needs to be equipped with 
a lot of structural reinforcement. There are many reasons that affect the crack generation, such as 
prestress spatial distribution, shear lag effect, prestress loss, overload, etc. Therefore, appropriate 
space analysis theory of box girder should be adopted to analyze the crack resistance of box 
girder, focusing on analyzing the spatial stress effect of the structure, so as to reflect the spatial 
stress effect of box girde. Then we can accurately understand the crack resistance of box girder 
structure. 

The spatial stress analysis methods of PC thin-walled box girder bridges can be divided into 
two categories: analytical method and numerical method. Based on the analytical method and from 
different perspectives, some scholars have proposed such approximate calculation methods as 
energy variation method, generalized coordinate method, analogy beam method and frame 
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analysis method for the calculation and analysis of torsion and distortion of box girder [3-5]. The 
calculation process of these methods is relatively complicated, and the calculation accuracy 
depends on the numerical solution accuracy of the differential equations. So, they are mostly 
applied to the research of the box-girder bridge with constant section, as the theoretical analysis 
results of the shear lag effect of the box girder with variable section are relatively few [6-7]. With 
the development of electronic computers, finite element method is very common in the analysis of 
box girder [8-12], such as Midas Civil, Adina, ANSYS and other structural linear and nonlinear finite 
element analysis software. With the help of computer finite element analysis, all the stresses on 
the box section, such as longitudinal bending stress, torsional warping stress, distorted warping 
stress, distorted transverse stress, shear lag and local load stress, can be obtained. By analyzing 
the data and results, researchers can accurately know the spatial stress distribution, magnitude 
and structural deformation of the components.  

In this paper, a PC continuous thin-walled box girder bridge is selected as the research object. 
The finite element analysis software ANSYS is used to analyze the effect of spatial stress and 
shear lag on the deflection and cracking of the bridge. Through load tests, the fitting degree of 
spatial finite element model, plane beam analysis and test results is compared, so as to further 
verify the validity of spatial finite element model to analyze the spatial stress effect of PC 
continuous thin-walled box girder bridge. It provides reference for engineering practice.  

BACKGROUND 

The span of the bridge is 35 m+60 m+90 m+60 m+35 m, and the width combination is 0.75 
m+10.5 m+0.75 m. The box girder is prestressed in longitudinal, horizontal and vertical directions, 
and the tensioning stress is 1290 MPa. Lateral view of the bridge is shown in Figure 1 and Figure  
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Fig. 1 – Lateral view of the bridge ( unit: cm )  
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(a) Ⅰ, Ⅱ, Ⅳ (b) Ⅲ 

Fig. 2 – Cross-section of the bridge (unit: cm) 

FINITE ELEMENT MODEL ANALYSIS 

Using ANSYS finite element software to establish the space solid finite element model, 
reinforced concrete structure using 8-node solid element SOLID 65, can well simulate the Williams- 
Warnke strength theory based on the concrete three- direction force of the nonlinear response. 
Link8 unit is selected for prestressing tendon. Separate model is used to simulate the prestress in 
the model, and the longitudinal, vertical and transverse prestress tendons are separately modelled. 
Since the linear shape of the bottom flange is a quadratic parabola and there are many control 
nodes, this paper adopts the bottom-up modelling method, namely K-V and K-L modes. 
Considering the symmetry of the structure and load of the bridge, the model of the semi-full bridge 
is selected, which cannot only save the number of units and nodes, but also greatly save the 
calculation time. The model consists of 120,490 units and 165,435 nodes. In the model, X 
coordinate represents the transverse bridge direction, Y coordinate represents the vertical bridge 
direction, and Z coordinate direction is the vertical bridge direction. The box girder concrete bulk 
density is calculated by 26kN/m3, the guardrail load is calculated by 24kN/m.  

According to the requirements of design specifications [13], the temperature load and the 
moving load were loaded according to the worst load condition of the mid-span bending moment of 
the main span. Working load includes deadweight, deck pavement weight, prestress, temperature 
gradient and moving load. The finite element model is shown in Figure 5.  

  
Fig. 3 – Finite element model of bridge Fig. 4 – Finite element model of steel strand 

javascript:;
javascript:;


 
 

  Article no. 48 
 

THE CIVIL ENGINEERING JOURNAL 3-2021 
 

 

                  DOI 10.14311/CEJ.2021.03.0048 637 

 

ANALYSIS OF SPATIAL STRESS EFFECT  

LONGITUDINAL STRESS 

The calculation results of the longitudinal stress of the bridge are shown in Figure 5 – Figure 8. 
The top flange is under pressure as a whole, and the longitudinal stress increases from the beam 
end to the middle of the main span. The longitudinal stress of the top flange is distributed evenly 
along the width direction, and the difference is basically controlled within 0.8 MPa. 

The longitudinal stress of the bottom flange is basically compressive stress, and the stress 
gradually increases from the pier to both sides of the longitudinal bridge. The longitudinal stress of 
bottom flange is evenly distributed along the width of the main span, but fluctuates greatly in the 
middle of the side span and the secondary side span, especially near the web. The transverse 
difference of other sections is basically within 1.0 MPa. 

  
Fig. 5 – Top flange stress nephogram  Fig. 6 – Bottom flange stress nephogram  

 
Fig. 7 – Transverse distribution of longitudinal stress along the top flange 

（0,2,4,6 represents the distance from the longitudinal axis） 

 

 
Fig. 8 - Transverse distribution of longitudinal stress along the bottom flange 
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PRINCIPAL STRESS 

The calculation results of principal stress are shown in Figure 9 – Figure 12. The principal 
stress of top flange is basically between -0.3 MPa ~2.5 MPa, except for the prestressed anchorage 
point with stress concentration. The stress distribution along the flange slab is more uniform. At the 
main pier, the stress changes within the range of webs, the maximum is about 2.5 MPa. The lateral 
distribution of principal stress along the bridge is that the longitudinal axis increases laterally. The 
principal stress range of bottom flange is -1.0 MPa~6.5 MPa. Due to the influence of shear lag, the 
principal stress decreases gradually from the longitudinal axis of the bottom flange to the web. 

  
Fig. 9 – Top flange principal 

stress nephogram 
Fig. 10 – Bottom flange principal 

stress nephogram 

 

 

Fig. 11 – Transverse distribution of principal stress along the top flange 
 

 

Fig. 12 – Transverse distribution of principal stress along the bottom flange 
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SHEAR LAG EFFECT 

In order to describe the influence of shear lag effect of box girder, the concept of shear lag 
coefficient is introduced in the project [14-15].  

 
=

      

real stress

stress calculated according to elementary beam theory
  

Under the effect of shear lag, the shear force transmits lag from the web to the flange slab, 
resulting in the uneven lateral distribution of normal stress. The actual longitudinal stress of the 
flange slab near the web is greater than the elementary beam theory calculation, which is called 
"positive shear lag effect". On the contrary, it is called "negative shear lag effect". 

 

Fig.13 - Positive shear lag effect             Fig.14 - Negative shear lag effect 

Figure 15 and Figure 16 respectively show the distribution of longitudinal stress of the top and 
bottom flange in the middle of the main span along the transverse bridge direction. Figure 17 and 
Figure 18 are respectively longitudinal stress distribution diagrams of the top and bottom flange at 
main pier along the transverse bridge direction. It can be concluded that the top and bottom flange 
are in a state of compression, and the longitudinal stress distribution along the transverse is not 
uniform. The stress difference of the top flange at the middle of the main span is about 5.1 MPa, 
and that of the bottom flange is about 13.0 MPa. At the main pier, the stress difference of the top 
flange is 5.6 MPa, and that of the bottom flange is about 5.2 MPa.  

Figure 19 and Figure 20 respectively show the shear lag coefficients of the top and bottom 
flange of the main span at middle. Figure 21 and Figure 22 show the top of the main pier top and 
bottom flange, respectively. It can be seen that the shear lag effect of these sections is positive. 
The shear lag coefficient of the top flange at midspan is between 0.7 and 1.7, and that of bottom 
flange is between 0.85 and 1.6. As the main pier, the shear lag coefficient of top flange is between 
0.8 and 1.65, and that of bottom flange is between 0.8 and 1.82.  

In general, under the action of deadweight and prestress, the transverse difference of the 
longitudinal stress of the key sections and the dispersion degree of the shear lag coefficient is 
larger. Compared with the top flange, the dispersion degree of the shear lag coefficient in the same 
section is larger than that of the bottom flange.  
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Fig. 15 - Longitudinal stress along the top  

flange of midspan 

Fig. 16 - Longitudinal stress along the bottom 
flange of midspan 

  

Fig. 17 - Longitudinal stress along the top  
flange of main pier 

Fig. 18 - Longitudinal stress along the bottom 
flange of main pier 

  

Fig. 19 - Shear-lag coefficient along the top 
flange of midspan 

Fig. 20 - Shear-lag coefficient along the bottom 
flange of midspan 

  

Fig. 21 - Shear-lag coefficient along the top 
flange of main pier 

Fig. 22 - Shear-lag coefficient along the bottom 
flange of main pier 
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LOAD TEST ANALYSIS  

According to the requirements of design specifications [13], the maximum effect of the 
combination of bending moment and shear force is considered in the test condition. The measuring 
points arrangement is shown in Figure 23 and Figure 24. 

  

(a) (b) 

Fig. 23 - Measuring points arrangement of longitudinal stress 

  

(a) (b) 

Fig. 24 - Measuring points arrangement of principal stress 

The test results are shown in the tables and figures below. It can be seen that the theoretical 
calculation of longitudinal stress and principal stress have the same law as the test results, and the 
results are basically consistent with less error. In general, the results of spatial calculation are 
smaller than those of plane calculation. The maximum longitudinal stress difference is 0.35MPa, 
and the principal stress is 0.34 MPa. The spatial calculation are closer to the test results, which 
indicates that the spatial finite element model established in this paper accords with the practice 
and the theoretical calculation results are reliable. At the same time, the calculation of the spatial 
model is slightly larger than the test results, so the calculation is somewhat safe.  
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Tab.1 - Test results of longitudinal stress (unit: MPa) 

Test position 
Test 
result 

Plane 
calculation 

Spatial 
calculation 

Plane / 
Spatial 

Negative moment 
for pier 1 

1 Top flange 0.17 0.69 0.44 1.57 

2 Bottom flange -0.86 -1.35 -1.12 1.21 

Negative moment 
for pier 2 

3 Top flange 0.35 0.80 0.72 1.11 

4 Bottom flange -0.41 -0.70 -0.51 1.37 

Midspan for span 2 
5 Top flange -0.63 -1.04 -0.71 1.46 

6 Bottom flange 1.27 1.74 1.39 1.25 

Midspan for main 
span 

7 Bottom flange 1.21 1.84 1.62 1.14 

8 Web 1.01 1.66 1.56 1.06 

 

 
Fig. 25 - Longitudinal stress line chart 

 

Tab. 2 - Test results of principal stress (unit: MPa) 

Test position 
Measuring 

points 

Strain（µε） Test 
result 

Plane 
calculation 

Spatial 
calculation 

Plane 
/Spatial 0° 45° 90° 

5# segment for 
span 2 

1 12.40 6.40 20.80 0.95 1.17 1.38 1.18 

2 30.10 17.2 -23.00 1.15 1.38 1.52 1.10 

Top for pier 2 
3 0.41 1.47 -5.50 0.18 0.22 0.29 1.32 

4 3.70 -1.50 -2.20 0.35 0.42 0.49 1.17 

5# segment for 
main span 

5 5.70 -49.40 -33.20 0.93 1.24 1.58 1.27 

6 -20.40 -70.90 -30.30 0.71 1.02 1.32 1.29 
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Fig.26 - Principal stress line chart 

CONCLUSION 

Based on the research results, the following conclusions can be drawn: 

(a)  The top and bottom flange are under longitudinal compression, and the longitudinal stress 
is evenly distributed along the width direction, which indicates that the spatial stress effect and 
shear lag effect have little influence on the down deflection of the bridge. 

(b)  The stress at the main pier within the webs is abrupt, and it is easy to crack. Due to the 
influence of shear lag effect, the main stress from the longitudinal axis of the bottom flange to the 
web gradually decreases, and the stress concentration occurs at this place, where transverse 
cracks are more likely to occur than both sides. 

(c)  The top and bottom flange of the main span and the main pier are positive shear lag effect. 
The shear lag coefficient of the top flange at midspan is between 0.7 and 1.7, and that of bottom 
flange is between 0.85 and 1.6. As the main pier, the shear lag coefficient of top flange is between 
0.8 and 1.65, and that of bottom flange is between 0.8 and 1.82. Under the action of deadweight 
and prestress, the longitudinal stress of box girder is distributed unevenly in the transverse 
direction, and the dispersion degree of shear lag coefficient is larger in top flange than that in 
bottom flange.  

(d)  The spatial calculations are closer to the test results than those of plane calculations, the 
maximum longitudinal stress difference is 0.35MPa, it indicates that the spatial finite element 
analysis is more practical and reliable. Moreover, the spatial calculations analysis are generally 
larger than the test results, so it is safe to carry out design and construction according to the spatial 
finite element analysis.  

(e)  The shear lag coefficient reaches its maximum value at the intersection of the top and 
bottom flange with web, and decreases to both sides. In the design and construction stage, the 
cracking and bending situation of this position should be fully considered, and the strengthening 
treatment should be carried out here. And reasonable arrangement of prestressed and structural 
reinforcement to prevent cracks caused by stress concentration. For bridges that have been 
cracked and flexed down, external prestress or steel plate can be used to reinforce them. Cracks 
should be treated before reinforcement. If the number of external prestressing steel strand is 
numerous, the scheme of dispersed arrangement along the top and bottom flange can be adopted. 
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