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ABSTRACT. Realistic structural analyses and optimisations using the non-linear finite element method
are possible today yet suffer from being very time-consuming, particularly in case of reinforced concrete
plates and shells. Hence such investigations are currently dismissed in the vast majority of cases
in practice. The "Artificial Intelligence - Finite Element - Hybrids" project addresses the current
unsatisfactory situation with an approach that combines non-linear finite element models for reinforced
concrete shells with scientific machine learning algorithms to create hybrid AI-FEM models. The
Al-based surrogate material model provides the material stiffness as well as the stress tensor for given
concrete design parameters and the strain tensor. This paper reports on the current status of the project
and findings of the calibration of the Al-based reinforced concrete material model. We successfully
calibrated and evaluated k-nearest-neighbour, LGBM and ResNet algorithms and report their predictive
capabilities. Finally, some light is shed on the future work of integrating the Al surrogate material
models back into the finite element method in the course of the numerical analysis of reinforced concrete
structures.
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surrogate modeling, uncertainty quantification.

1. INTRODUCTION

Digital design and manufacturing methods, such as
those to be developed at the new Immersive Design
Lab (IDL) at ETH Zurich, offer great potential for sig-
nificantly more efficient and sustainable construction.
In order to ensure the structural safety, economic
efficiency and sustainability of complex structures,
reliable and powerful models for automatic analy-
sis, optimisation and design are essential. However,
such models are largely lacking to date. This is espe-
cially true for concrete structures, as their behaviour
is highly non-linear. Realistic structural analyses
and optimisations using the non-linear finite element
method (FEM) are possible today, yet being very
time-consuming even for the case of extraordinary
computational capacities. For reasons of temporal
and monetary efficiency, established traditional and in
many cases excessively conservative design methods
without structural optimisation are still used in the
vast majority of projects in practice today. The in-
creased public awareness of and demand for a sustain-
able built environment however urges civil engineers
to make use of structural efficiency to the maximum
level possible.

To that end, a two-phased research program [, 2]
is proposed to address this unsatisfactory situation.

In the first phase, non-linear FEM for reinforced con-
crete plates and slabs developed at ETH Zurich [3H8]
are combined with scientific machine learning (SciML)
algorithms to create hybrid AI-FEM models, which
are expected to be much more efficient compared to
established analysis methods both in terms of the com-
puting power required and the reliability of predicting
the load-bearing behaviour. In the second phase of
this project, the AI-FEM-Hybrids will be used within
a novel Generative Design process for accelerated yet
realistic conceptual design of bridges [T} 2].

Within a FE analysis, a material model has to pro-
vide on the one hand the material stiffness matrix
and on the other hand the current stress state. In the
novel hybrid artificial intelligence finite element (Al-
FEM) model implementation for material-nonlinear
reinforced concrete slabs and plates elements, the
mathematical description of the material model is per-
formed using scientific Machine and Deep Learning
algorithms, which act as functional approximators of
the stress-strain relationship and the stiffness-strain
relationship based on numerical simulations. The ba-
sic data set for training, validation and testing of
the AT algorithms is generated by extensive simula-
tions of strain states for different reinforced concrete
configurations with the material model for reinforced
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concrete as implemented in the mentioned USERMAT
in ANSYS MECHANICAL APDL on the basis of the
cracked membrane model (CMM) in combination with
a Reissner-Mindlin layer model. This paper describes
the process of data generation and calibration of the
Al-based reinforced concrete material model for differ-
ent Machine and Deep Learning algorithms for stress
and stiffness tensor prediction.

This paper is organised as follows: we first pro-
vide background on the materials and methods from
computational mechanics and scientific machine learn-
ing used in this paper in sec. 2] Sec. [3] reports and
presents selected numerical results of the SciML-based
substitute concrete material models w.r.t. their ap-
proximation accuracy and statistical qualities. Sec. [4]
presents a discussion of current findings and sec. [f]
sheds light on the future steps of incorporating the
SciML-based substitute concrete material models into
the FEM software ANSYS.

2. MATERIALS AND METHODS

This section reports on materials and methods for
database generation, development of machine and
deep learning (ML/DL) models, and the evaluation
criteria for the performance of the developed models
as a surrogate for a FEM.

2.1. CONCEPT

This research project explores the potential of us-
ing ML/DL surrogate models of mechanically con-
sistent nonlinear finite element material models for
reinforced concrete plates and shells, developed at
ETH Zurich, as a data-driven yet physics-informed
AT method within a FEM workflow. The project is
divided into two parts.

The AI-FEM-Hybrids of phase one provide predic-
tions of the material stiffness tensor as well as the
stress tensor for a current strain state, where the
SciML algorithms act as functional approximators of
the stress-strain relationship and the stiffness-strain
relationship, which was found to be applicable to a
number of materials [9]. The basic data set for train-
ing, validation and testing of the AI algorithms is
generated by an extensive simulation of strain-stress-
stiffness states for different reinforced concrete config-
urations with the material model for reinforced con-
crete as implemented in the mentioned USERMAT
in ANSYS MECHANICAL APDL on the basis of
the cracked membrane model (CMM) in combination
with a layer model based on Reissner-Mindlin plate
kinematics. The training, validation and testing of the
SciML algorithms for stress and stiffness tensor pre-
diction are presented and discussed in the following,
where special consideration is given to model uncer-
tainty quantification to allow for a future Eurocode-
compliant use within the semi-probabilistic design
philosophy. With the completion of the first phase, a
validated software demonstrator of AI-FEM-Hybrids
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for the efficient non-linear analysis and design of rein-
forced concrete structures is available. In the second
project phase, the AI-FEM-Hybrids approach will
be extended to structural optimisation of concrete
bridges. The pilot project in this phase focuses on
concrete bridges with a geometry defined by a few
parameters. While the case study is specific, the de-
veloped optimisation methodology is kept as general
as possible to allow its application beyond parametric
concrete bridge structures. At the end of the research
project, a validated software demonstrator of the Al-
FE-Hybrids will be available for the efficient non-linear
analysis, design and optimisation of reinforced con-
crete structures. In the future, this will then allow
for (i) realistic structural analyses taking into account
non-linearities and (ii) structural optimisation to be
carried out much more efficiently. The outcomes of
this research are potentially of high interest to indus-
try and engineering practice, as structural concrete
is the most widely used construction material world-
wide and incorporation of these ideas allows for more
economic, yet sustainable and reliable design.

To achieve the objectives for phase one of the re-
search project, the following sequence of steps was
conducted:

(1.) define relevant feature X and target variables Y
for a reinforced concrete material model (cf. Tab.

(2.) create the database {X;Y} of FEM simulations

(3.) calibrate different ML and DL algorithms given
the database

(4.) assess different metrics for accuracy and predic-
tive capabilities of the ML resp. DL models

(5.) implement a selection of ML resp. DL models for
implementation in ANSYS

(6.) verify efficiency and accuracy at industry scale via
computation of example problems from reinforced
concrete design

2.2. FEM MATERIAL MODEL DATA
GENERATION

The dataset generation within the AI-FEM-Hybrid
project was performed by nonlinear finite element
analysis of a reinforced concrete structure utilising
the CMM-USERMAT [3], a mechanically consistent
material model for reinforced concrete implemented
in ANSYS Mechanical APDL, cf. Figs.[[]and 2} Com-
bined with a layer element (Shell181), the non-linear
FEM analysis of reinforced concrete structures as
girders or shells are possible. As presented in [3H5],
an excellent agreement between experimental results
and FEM analysis utilising the CMM-USERMAT is
reported.

In order to provide the necessary dataset for the
training of the machine learning algorithms, a dummy
girder bridge (cf. Figs. [[]and [2)) was arbitrary loaded
incrementally until failure, which enables the export of



VOL. 36/2022

AI-FEM-Hybrids for Nonlinear Concrete Materials

(a)

9y __4,=~200kN/m

g,= 1911 kN/m
Np
w(x=1L/2, S\)
Parameter:
L = 4500m t = 400 mm
b, = 500m t,, =1200mm
hy = 225m a, = 495mm
Ly = 250 mm a, = 430mm
L = 250 mm a, = 437mm
1'500
[kN] - 8'600
[kNm]

FIGURE 1. Dummy girder bridge used within ANSYS to generate the database.

Features X;

Targets Y;

Reinforcement Layer (ReLa)
CMM Usermat Model (CMM)
Reinforcement Area ag
Reinforcement Diameter d

Effective Reinforcement Ratio for TCM Model pg c ¢

Reinforcement Yield Stress f,
Reinforcement Ultimate Stress fy,
Reinforcement Ultimate Strain eg,,
Reinforcement Angle 6,

Concrete Compressive Strength f..
Concrete Ultimate Strain €.,
Normal Strain in X-Direction ¢,
Normal Strain in Y-Direction €,
Shear Strain in XY-Direction ez,

Normal Stress in X-Direction o,
Normal Stress in Y-Direction oy,
Shear Stress in XY-Direction 74,
Stiffness Component Ky
Stiffness Component Ky
Stiffness Component Kj3
Stiffness Component Koq
Stiffness Component Koo
Stiffness Component Koz
Stiffness Component Ks3;
Stiffness Component Kso
Stiffness Component Kss

TABLE 1. List of Features and Targets for data generation and calibration of AI-FEM-Hybrids. Note that €5, is the

tensorial component of the shear strain vy, i.€., €zy="zy/2.

all necessary features (input parameters X: strain ten-
sor, reinforcement properties, material constants, etc.
acc. to Tab. 1)) and results (stress and stiffness tensors
acc. to Tab. in every integration point (Gauss-
points) for all converged load steps. This approach
enables the collection of a considerable number of data
points within one non-linear FEM computations, as
in almost every integration point an individual data
set exists.

For simplicity, a dummy girder bridge was chosen to
minimise the number of parameters, e.g. the diameter
of the rebars or the material constants. As soon as the
general framework of the AI-FEM-Hybrids is estab-
lished (proof of concept), the results of any dummy
experiment and the results of any FEM analysis us-
ing the CMM-USERMAT can be used to train the
machine learning algorithms.

In total the data set consists of:

® Ng wor = 10,636,800 samples of concrete elements
without reinforcement (configuration "CF 0")

® Ng . = 443,200 samples of concrete elements with
reinforcement (configuration "CF 1")

2.3. DATA PRE-PROCESSING

The data generated in the previous section is used
to develop the ML resp. DL models. The dataset
consists of over 11 million data points with 14 feature
and 12 target variables, cf. Tab. [I} Some dimensions
of the feature dataset are categorical (reinforcement
layer, CMM-USERMAT model), while the remaining
features are all of numerical nature. For the categori-
cal features we use one-hot-encoding. All dimensions
of the target dataset are of numerical nature. None
of the attributes has any missing data since the data
is generated via FEM analyses. The range of values
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FIGURE 2. Detail of the CMM finite element within
ANSYS to generate the database.

of the features as well as the targets are extremely
different, hence we employ normalization of the data.
For each numerical variable v; we deduce its mean m
and divide it by its standard deviation s (yielding its
z-score) using;:

Vi — My (1 )

0

z; =

For sake of brevity of this paper, we omit report-
ing further statistical properties or histograms of the
dataset, which would usually be delivered in the ex-
ploratory data analysis step.

2.4. MACHINE LEARNING MODEL
DEVELOPMENT

In this study, three ML resp. DL algorithms for re-

gression are investigated for predictive capabilities for

stress and stiffness target tensors given the strain ten-

sor together with concrete and reinforcement features:

e k-nearest-neighbours (kNN)
e LightGBM

e Artificial Neural Networks: Residual Neural Net-
works (ResNet)

While kNN is a strictly data-driven approach and
hence needs to store some of the simulation data
instances, Light GBM as well as ResNet are surrogate
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functions without the need to store the training data.
Due to reasons of brevity of this paper, only selected
results and implementation details can be reported.
The ML models are developed using sklearn, Keras,
and XGBoost (extreme gradient boosting) python
libraries and run on the ETH Euler clustexlll

2.4.1. KNN

The k-nearest-neighbours algorithm is a decision
method originally developed for classification tasks
[10]. At inference time, it compares the previously un-
seen samples to all instances in a database and assigns
classes by means of majority voting of the k nearest
neighbours, where k and the distance metric are hy-
perparameters. The algorithm was later extended to
support regression tasks [I] by interpolating between
the values of the k nearest neighbours (e.g. through
inverse distance weighted average) to obtain values
for new, unseen samples.

2.4.2. LicuTtGBM

LightGBM is a gradient boosting decision tree frame-
work [I2] that has found application in many different
data mining, classification and regression tasks. The
LightGBM algorithm variant used in this paper inte-
grates a number of regression trees to approximate the
dataset. It contains many of the advantages of other
common gradient boosting decision tree algorithms,
such as sparse optimization, parallel training, regu-
larization, bagging, and early stopping. However, it
grows trees leaf-wise by greedily choosing the leaf that
will lead to the largest improvement. This tree-growth
method, in combination with a histogram-based mem-
ory and computation optimization, make Light GBM
considerably more computationally efficient than other
frameworks.

2.4.3. ARTIFICIAL NEURAL NETWORKS
Fully-connected feed-forward neural networks (FFNN)
consist of one or more layers, where each node is con-
nected to every node in the following layer [I3]. De-
spite being very straight forward architectures, FFNNs
are universal function approximators [I4] and have
the advantage of being easy to implement and efficient
to train. On the other hand, the lack of implicit bias
limits their expressiveness and capability to gener-
alise. Furthermore, they are prone to pathologies like
vanishing gradients [15].

We therefore extend the FFNN by adding skip con-
nections [I5] as well as batch normalisation [16] and
dropout [I7] , cf. Fig. These additions allow us
to build deeper architectures, which were shown to
generalise better in practice [I8]. We will hereafter be
referring to this model by ResNet.

2.4.4. HYPERPARAMETER TUNING

We employ Bayesian Optimization in order to avoid
running extensive grid-search over the entire hyper-
parameter space [I9][20]. At first, 25 random points

Thttps://scicomp.ethz.ch/wiki/Euler
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FIGURE 3. ResNet: Neural Network with skip connec-
tions

on the hyperparameter space are evaluated. Gaussian
Processes then serve as prior distribution in order to
approximate the unknown function and a posterior
distribution is maintained as 75 more observations
are made, where Expected Improvement (EI) is used
as exploration strategy [2I]. The hyperparameters
together with optimization intervals are reported in

Tabs. 2, B} and [4

Range

Number of neighbours & 1, 10]
Power of Minkowski metric p  [1, 3]

Hyperparameter

TABLE 2. Hyperparameters for training settings to-
gether with ranges as used for Bayesian Optimisation
of KNN

Hyperparameter Range Log-scaling
Learning Rate [1075,1071] yes
Max Depth [3, 50] no
Min Child Weight [0, 10] no
Number Estimators [30, 300] no
Number Leaves [10, 100] no
Min Child Samples [10, 30] no

TABLE 3. Hyperparameters for training settings to-
gether with ranges as used for Bayesian Optimisation
of Light GBM

Hyperparameter Range Log-scaling
Learning Rate [107°,1071] yes
Depth [3, 50] no
Width [0, 10] no
Activation {ReLU, no
LeakyReLU}
TABLE 4. Hyperparameters for training settings

together with ranges for Bayesian Optimisation of
ResNets

For the optimization procedure, we split the dataset
into a training, validation and test set at ratios of (50;
25; 25)% of the whole dataset. The regressor is trained
on the training set using the hyperparameters chosen
by the Bayesian Optimization algorithm. Once the

model loss converged, it is evaluated on the validation
data set and the result serves as feedback for the
Bayesian Optimization step to refine its posterior and
select new hyperparameters. Finally, the test set is
used to estimate the model’s capability of generalizing.

2.4.5. MODEL QUANTITATIVE PERFORMANCE
METRICS AND Al SURROGATE MODEL
SELECTION

Model selection refers to the process of seeking for a

model in a set of candidate models, which delivers the

best balance between model fit and complexity [22].

For regression modeling, the quantitative performance

metrics used with this research are the mean absolute

error (MAE), root mean squared error (RMSE), R-

squared (R2) value as well as the data variance Var

(which is the square of the standard deviation (SD)),

cf. Tab. fl The MAE shows the average difference

between the actual values of the output variable in
the original data vs. the predicted output values via
the ML models. The lower the MAE, the more precise
the performance of the model is in predicting future
occurrences of the output. The RMSE is defined as
the standard deviation of the response variable. Val-
ues of R2 range from 0 to 1, where 1 is a perfect
fit, and 0 means there is no gain by using the model
over using fixed background response rates. It esti-
mates the proportion of the variation in the response
around the mean that can be attributed to terms in
the model rather than to random error. For compar-

ing different models, we provide Taylor diagrams [23]

and additionally report R2, RMSE and MAE values.

Taylor diagrams are used to quantify the degree of

correspondence between the modeled and observed

data using the Pearson correlation coefficient, RMSE,
and standard deviation. A model with the highest

R2 and the lowest RMSE and MAE is preferred. The

details of how MAE, RMSE, and R2 are calculated

are shown in Tab. Bl

MAE N i 19— il

N N
VE S G- w2
N

Zi, (Bi—y:)?® _ N
R2 1—may:%2i:1 |y
=1

TABLE 5. Regression performance evaluation metrics.

RMSE

where N is the sample size, ¥; is the predicted and
y; is the true target value, SSE is the sum of the
square of error and SST is the total sum of squares.

3. RESULTS
This section describes the results obtained with kNN,
Light GBM, and ResNet and evaluates their perfor-
mance as a surrogate for the FEM data generated and
used within this study, cf. Sec.

All three ML models were trained, validated and
tested using the data from the total of 12 million

103



M. A. Kraus, R. Bischof, W. Kaufmann, K. Thoma

ActA POoLYTECHNICA CTU PROCEEDINGS

data points. Comparing the R2 values, all models
have high values of around 0.98. This indicates that
the ML algorithms are able to describe over 98% of
variations in the data, and are highly predictive of
the output based on the feature variables used in the
study. Regarding the MAE and RMSE, the kNN
model performs one order of magnitude better than
the other two ML models for the CF 0 configuration
(without reinforcement) at a level of 0.3% resp. 0.05%,
while for the CF 1 configuration (with reinforcement)
the ResNets has the lowest RMSE value of 2.4% and
the LGBM has the lowest MAE value of 1.8%.

The results suggest that all ML models developed
for predicting the stress (all in unit: MPa) and stiffness
(all in unit: MNm?) tensor components are promising,
with ResNet being the most predictive model amongst
the three. The model performances, described by the
mean absolute error MAE, root mean squared error
RMSE and R-squared have converged to a stable
minimum during training.

3.1. KNN MODEL RESULTS

Fig. [ provides selected results for the kNN algorithm
in the two configurations "CF 0" (without reinforce-
ment) and "CF 1" (with reinforcement).

It is important to note, that the size of the trained
kNN model is of around 1.13 GB, as it needs to store
all training samples in order to make new predictions.

3.2. LGBM MODEL RESULTS

Fig. [f] provides selected results for the LGBM al-
gorithm in the two configurations "CF 0" (without
reinforcement) and "CF 1" (with reinforcement).

3.3. RESNET MODEL RESULTS

Fig. [6] provides selected results for the ResNet al-
gorithm in the two configurations "CF 0" (without
reinforcement) and "CF 1" (with reinforcement).

3.4. OVERALL MODEL COMPARISON RESULTS

The performances of different AT models according
to the mentioned criteria are reported in Tab. [] for
configuration "CF 0" (without reinforcement) and in
Tab. [7| for configuration "CF 1" (with reinforcement).

Model RMSE MAE R2 Var

KNN 0.00045 0.00310 0.99955 0.00044
LGBM 0.00530 0.01837 0.99440 0.00560
ResNet 0.00212 0.01576 0.99760 0.00238

TABLE 6. Performance of different models on test set
without reinforcement

For model selection purposes, we provide selected
results for the Taylor diagrams in the two configu-
rations "CF 0" (without reinforcement) and "CF 1"
(with reinforcement) in Fig.
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Model RMSE MAE R2 Var

KNN 0.06678 0.01579 0.93789 0.06678
LGBM 0.02783 0.02329 0.97390 0.02783
ResNet 0.02417 0.03301 0.97715 0.02416

TABLE 7. Performance of different models on test set
with reinforcement

4. DISCUSSION

The choice for the three investigated Al algorithms
was done under three aspects: modeling bias, com-
puting efficiency and prediction precision. The kNN
and LGBM belong to the family of non-parametric
models, whereas ResNet is a parametric model. Non-
parametric ML algorithms promise greater perfor-
mance at the cost of higher data requirements and
training times together with a risk of overfitting. Para-
metric ML/DL models on the other hand come with
high modeling bias towards the functional relation, yet
neural networks provide a great enough expressiveness
for modeling the database. Concerning computational
efficiency in the prediction stage (which is called a lot
of times during FEM analysis in each iteration step)
kNN requires to store the dataset and call it at predic-
tion time, leading to impractical lengthy procedures.
LGBM and ResNet however are much more time effi-
cient and hence to be preferred for an implementation
into the FEM analysis.

The AI models perform better in CF 0 (without
reinforcement) than in CF 1 accross the different qual-
ity measures. Looking at the R2 values, all models
have high values of approx. 0.99 (CF 0) resp. 0.97
(CF 1). This means, that the ML algorithms are able
to describe over 97% of variations in the data, and
hence are highly predictive for the outputs. For CF 0
RMSE is around 0.35% and MAE is around 1.5%,
while for CF 1 RMSE as well as MAE lie about 3%
and are thus one magnitude bigger than for CF 0. It
is noteworthy that on average, every target is pre-
dicted well, while the prediction’s standard deviation
is dependent on the respective target quantity. Given
all model results, especially the stiffness tensor terms
Ko5 and Koz show severe model predictive deviations.

For model selection, inspection of the Taylor dia-
grams in Fig. [7] suggests that all described AI models
possess great approximation quality with slight dif-
ferences, where kNN outperforms ResNet and LGBM
(in the order of decreasing approximation quality).
The results in summary suggest that the AT models
developed for predicting the stress and stiffness re-
sponses of the CMM USER-MAT are promising and
may be used within a FEM. Given the outlines in the
beginning of this section towards computational effi-
ciency, the ResNet and LGBM are chosen for further
implementation into the FEM analysis process.

Another interesting thought is to use the calibra-
tion of AT algorithms on such numerical datasets for
non-intrusive verification purposes of the implementa-
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tion of the ground truth data generating mechanism.
Especially the data points in far distance to the diag-
onal line in Figs. [4] Bl[6] give rise to outlier detection
methods. It is currently under investigation whether
the identified outliers are truly faulty data (i.e. the
generating FEM material model is not correct) or
the AI algorithm with its current state is not able to
approximate the respective quantities well.

5. CONCLUSIONS AND OUTLOOK

This paper presented intermediate results of the first
phase of a two-stage research project conducted cur-
rently at ETH Ziirich. It reports on calibrating Al-
based surrogates for a highly nonlinear reinforced
concrete plate and shell model upon the CMM. All
three Al algorithms have proven to furnish as valid
candidates for surrogate models to predict the stress
and stiffness tensors used within a FEM. The data-
driven kNN algorithm performed slightly better that
the LGBM and ResNet model for prediction standard
deviation and RMSE, whereas on average all models
show almost full correlation.

Future research is concerned with further improving
predictive capabilities by training an ensemble model
using the kNN, ResNet and LGBM models. Finally,
the non-intrusive verification analysis of the ANSYS
USER-MAT by AI surrogate modelling will shed light
on generalisation of this idea of physics informed ML
[24].
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