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Abstract. Reassessment of infrastructure buildings has become an essential approach to deal with
increasing traffic loads on ageing infrastructure buildings and to verify the service-life of those structures.
Good estimation of the actual material properties is highly relevant for reliable structural reassessment.
Although this holds for all building materials, the importance of good parameter estimation is of
special importance for concrete structures, where the strength properties show relatively high variation
and where the nominal strength properties tend to be too conservative. Modern design guidelines
allow to make use of scientific methods such as Bayesian Updating of material properties to enable a
more realistic consideration of the actual material properties in the reassessment of existing structures.
However, guidelines for application and experience with those methods are not yet reported much or
are rather vague [1]. The presented study focuses on the effect of the Bayesian Updating process for
material parameters with special emphasis on the number and sampling location of test specimens
as well as on the accuracy and confidence in the obtained posterior distribution, since sampling also
includes a certain margin of uncertainty. The investigation on the methodological potential and on
the uncertainty margin in the updating process in this contribution uses a batch of 14 test results
on the concrete compressive strength obtained from drill cores along with the inherent measurement
uncertainties from the testing procedure. After a short review of Bayes’ Theorem, the Markov Chain
Monte Carlo Method (MCMC) and the bootstrap methodology, all combinations of subsamples of size
1, 3 and 5 specimens were built and provided to the Bayes’ updating procedure via MCMC to determine
the posterior distributions. The series of obtained posterior distributions for a certain subsample was
used to determine the uncertainty in the Bayesian Updating process by evaluation of the scatter in
the expected value, the standard deviation and the 5 %-quantile of the updated distribution. The
simulations show the importance of an adequate sample size and quantify the uncertainties arising from
the limited number of observations.

Keywords: Bayesian updating, bootstrapping, burn-in, concrete compressive strength, Markov chain
Monte Carlo, MCMC, Metropolis algorithm, Roding Bridge, structural reassessment.

1. Introduction
Continuously increasing life-loads and ageing of in-
frastructure are the most important reasons for the
requirement of reassessment of existing infrastructure
buildings. For this purpose, the correct estimation
of the actual material properties is of high practical
relevance. This is considered specifically difficult for
concrete structures, since the material strength de-
pends on various factors and as consequence of this
shows considerable scatter. In many cases the nominal
values in the design codes turn out to be rather conser-
vative, since they must represent the expected strength
values with a certain safety margin. Material tests on
specimens taken from the structure are worth a lot to
verify the expected strength class, but can’t be used
directly for the structural reassessment process. As a
consequence of this, the scientific motivation strives

for a more advanced methodology and consideration
of the measurement results for structural reassessment.
Statistical methods such as Bayes’ Theorem play an
increasingly important role for interpretation and ex-
ploitation of data and setup of specifically tailored
reassessment of individual structures.

More precisely, Bayes’ Theorem allows to update
prior information from literature or other sources
by direct or indirect observations. However, spatial
variations of material properties within the structure
and uncertainties in the measurement process lead to
follow-up questions for the application of such meth-
ods, especially when the sample sizes are small.

In this paper, the methodology of stochastic up-
dating is shown on the example of the compressive
strength of concrete using Bayes’ Theorem via Monte
Carlo Approximation. Similar studies have been dis-
cussed in e.g. [2] using theoretical data sets. For this
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Figure 1. (a) Sampling of the drilling cores and (b) bird’s eye view of the investigated bridge in Roding.

purpose, a limited number of destructive material test
results from a large-scale structure are used to show
the outcome of the updating procedure for different
sizes of the data set. For the Bayesian updating pro-
cess, all possible subsamples of size 1, 3 and 5 core
samples are composed from the entire data set of 14
measurements. For all those subsamples the posterior
stochastic models are calculated. The resulting expec-
tation, the standard deviation and the 5 %-quantile
of the subsamples are used to derive a distribution
that shows the uncertainties related to the choice of
the measurement locations and cope with the aspect
of spatial variation. The study is conducted using
Markov Chains which have proven to be an excellent
tool for the implementation of Bayesian Updating in
the framework of a Monte Carlo simulation. As a
sampling strategy, the Metropolis Algorithm has been
implemented in MATLAB to conduct the more than
2,300 simulations.

2. Methodology
2.1. Evaluation of Compressive Strength
Within a research project dealing with the updating
of finite-element-models for a refined calculation of ex-
isting structures using different kinds of experimental
data, 14 core samples were taken at different locations
during the demolition of a specific bridge located in
Roding, Bavaria. The three-span box girder bridge
dating from 1965 was made up from site concrete
of strength class B300 corresponding to the strength
class C20/25 in current design standards in Europe
[3]. For the determination of the sampling locations,
a minimum distance of 3.5 m between those locations
corresponding to the requirements on the correlation
length of compressive strength properties described in
[4] was respected. Figure 1(a) gives an impression of
the drilling process on a bridge part after demolition
while Figure 1(b) shows a bird’s eye view of the struc-
ture. For further information concerning the research
project the data set originates from, please refer to
[5–7].

The material testing of the cylinder strength of
hardened concrete specimens was conducted accord-
ing to DIN EN 12390-3:2019-10 [8] using cylindrical
drill cores with 150 mm in diameter and about 300
mm in height. The results of the material tests are
given in Table 1. The material tests were carried out
on a compression test machine of type MTS (max.
force 5 MN). The accuracy of the strength testing pro-
cedure can mainly be attributed to the measurement
of the pressure area with an estimated homoscedastic
measurement uncertainty of σ = 0.05 N/mm2 [9].

Specimen No. Test Result
[
N/mm2]

No. 1 59.6
No. 2 55.1
No. 3 45.7
No. 4 48.2
No. 5 58.0
No. 6 58.0
No. 7 70.4
No. 8 59.9
No. 9 73.4
No. 10 38.0
No. 11 67.9
No. 12 63.6
No. 13 57.2
No. 14 73.0

Table 1. Data from compressive strength testing.

Due to additional sources of uncertainty from the
reading of the results and the handling of the spec-
imen, the uncertainty in the data shall be assumed
as a normal distribution with an estimated standard
deviation of ≈ 1 N/mm2.

In addition to the cylinder strength testing, the
Young’s modulus was determined. Since this contri-
bution focuses on the methodological approach, the
test results are not reported here.
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Figure 2. (a) Histogram of the observed concrete strength values (b) Kernel density estimation of the standard
deviation of the bootstrap samples as statistical scatter estimator.

2.2. Statistical Analysis of the Original
Data Set

The data set from section 2.1 has been examined by
means of descriptive statistics. Figure 2(a) shows a
histogram of the data set using 6 bins. The mean value
of the 14 samplesis 59.1 N/mm2, while the standard
deviation in the data set is 10.3 N/mm2.

In order to obtain a good estimation on the point
estimators of the population from one specific and
limited set of test results, the bootstrapping method-
ology can be used. In this methodology, the available
data set is resampled with replacement to generate
additional vectors of resampled data that can be com-
pared among each other. The distribution of a certain
estimator, in this case the expected value, the stan-
dard deviation and the 5 %-quantile of the compressive
strength, is subsequently evaluated using the vectors
of resampled data. The derived statistics can thus be
seen as an evaluation of the uncertainty for the point
estimators.

The standard deviation of the point estimator for
the measurement results can be computed to be
≈ 2.7 N/mm2 (expectation) and ≈ 1.8 N/mm2 (stan-
dard deviation), while it is about 4.6 N/mm2 for the
5 %-quantile. This indicates that the gained data give
a sufficient approximation, but still leaves space for
further research which uses more specimens. Further
details on the bootstrap methodology can be found,
e.g. in [10–12].

In order to visualize the assumed PDF of the
bootstrap-samples, kernel density estimation can be
employed to smoothen the graph. For the kernel den-
sity shown in Figure 2(b), a number of 106 resamples
have been evaluated.

2.3. Bayesian Framework
The application of Bayes’ Theorem allows for the
updating of information based on knowledge from
observations i.e. measurements. As a basis for up-
dating, the distribution p(fc) has to be established

which states our belief in the occurrence of a certain
compressive strength.

In order to formalize our belief in the appearance
of a certain observation under uncertainty, the con-
ditional probability p

(
D̃fc

|fc

)
has to be determined

which represents the probability to observe a cylin-
drical compressive strength D̃fc conditional on the
value of fc. This expression is also called likelihood-
function and is abbreviated here L

(
fc|D̃fc

)
. The

formal expression for L
(
fc|D̃fc

)
for a number of n

observations and a measurement uncertainty of σ is
given in Equation 1.

L
(
fc|D̃fc

)
=

n∏
i=1

1√
2πσ2

exp
(

fci − D̃fci

2σ2

)
(1)

As input for the simulations, the test data from
Table 1 has been used and is denominated D̃fc

in
Equation 1. The measurement uncertainty inherent
to observations using imperfect measurement devices
finds its way into the formula using the standard
deviation, which has been determined in section 2.1
to be 1 N/mm2 . For the specification of the applied
probability function for p(fc), please refer to chapter
2.5.

Using these basic relations, Bayes’ Theorem can
be stated when normalized by the probability p(D̃fc).
The fundamental equation of Bayes’ Theorem is given
in Equation 2. For a more detailed review on Bayesian
techniques please refer to [13–15].

p
(
fc|D̃fc

)
= p(fc)p(D̃fc

|fc)
p(D̃fc)

= p(fc)L(fc|D̃fc
)

p(D̃fc)
(2)

2.4. Markov Chain Monte Carlo
As the evaluation of the posterior distribution is in
many cases not feasible in an analytical way, Monte
Carlo techniques are to be used for the computation
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Figure 3. Flowchart of the applied algorithm for sampling from the posterior distribution π(·).

of posteriors. The basis of the Markov Chain Monte
Carlo (MCMC) methodology is the construction of one
or more Markov Chains. In a discrete Markov Chain
the sampled values of the variable only depend on
the preceding sample, but not on the states sampled
before.

The Markov Chain explores the posterior which
is its stationary distribution. However, in order to
ensure this property, a certain burn-in sequence of
samples has to be cut off from the sample set [16].

In this study, a single-chain algorithm has been
implemented in MATLAB using Metropolis Sam-
pling. As a proposal distribution, a normal function
X ∼ N

(
0, σ2 = 4 (N/mm2)2)

has been used and a
burn-in of 200 samples has been implemented giv-
ing reasonable rates of acceptance. As a starting
value 60.0 N/mm2 was applied. The entire length of
the Markov Chain has been determined to be 20,200,
which leads to a number of 20,000 samples for the
construction of the posterior. The applicability of
these parameters is proven in chapter 3.1.

A flowchart of the applied algorithm is given in Fig-
ure 3, where the posterior distribution is abbreviated
by π(·). Further information for the implementation
and a good overview on the subject is given in [17].

2.5. Choice of Prior Distribution
The prior information on the strength property is
a basis for the updating procedure and thus has to
be determined properly. Therefore, a literature re-
view has been conducted in order to determine the
type of distribution, the expectation and the standard

deviation.
The test specimens were drawn from a structure

that was built in concrete. According to the structural
analysis documentation of the structure, concrete of
material strength class B300 according to the former
design code DIN 1045:1959-11 [18] was used in the
sampled parts.

This former designation for a concrete strength
class corresponds to class C20/25 in DIN EN 1992-
1-1 [19] as described in [3], resulting in an expected
strength value of fcm = 28 N/mm2. According to
[20], a standard deviation of σ ≈ 5N/mm2 shall be
assumed. The probability distribution function is
approximated with a normal distribution [21]. Con-
sequently, the prior can formally be expressed by
X ∼ N

(
28 N/mm2, σ2 = 25 (N/mm2)2)

.
For further insight into the probabilistic modelling

of historic concrete structures and the derivation of a
truncated distribution function on the basis of historic
quality regulations, please refer to [22].

2.6. Workflow of the Conducted
Procedure

In order to study the methodological effect, i.e. the
potential of the methodology as a measure of how
much the characteristic quantile in the updated "pos-
terior" distribution is increased in comparison to the
nominal strength value, subsets of different size were
built from the original data set with 14 test results.
The sizes of those subsamples were chosen at random
for studying purposes and contained 1, 3 or 5 test
specimens respectively. Since all possible combina-
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Figure 4. Illustration of the procedure.

Figure 5. (a) Traceplot of the first 200 samples for a simulation using 5 measurements (No. 1,3,4,7,12); (b)
Histogram of the samples from the posterior distribution using 5 measurements (No. 1,3,4,7,12).

tions of test results for the mentioned subsample sizes
were built, the uncertainty in the posterior distribu-
tion resulting from the sampling pattern is addressed
simultaneously.

This results in 14 subsamples of size 1, whereas 364
subsamples of size 3 and 2002 subsamples of size 5
were created and analysed.

For all subsamples of a certain size, the correspond-
ing posterior distributions are stored and empirical
probability density functions for the different point
estimators are calculated after completion of the up-
dating process for all subsets.

The computed mean values, standard deviations
and the 5 %-quantiles of the simulations are presented
as a kernel density-PDF and empirical CDF in section
3.

The workflow is illustrated in Figure 4.

3. Results and Discussion
3.1. Determination of Burn-in and

Convergence
To ensure the validity of the computed distributions, a
small study is conducted that verifies the burn-in and
the number of MC-samples taken for the exploration

80



vol. 36/2022 Bayesian uncertainty updating concrete strength properties

Figure 6. (a) Kernel density function and (b) eCDF of the simulation results of the mean value using 1, 3 and 5
drill cores.

Figure 7. (a) Kernel density function and (b) eCDF of the simulation results of the standard deviation using 1, 3
and 5 drill cores.

of the posterior. Figure 5(a) shows a representative
traceplot which indicates that a burn-in-sequence of
200 is more than sufficient to make the samples inde-
pendent from their starting value.

The convergence of the results has been determined
differently to the recommendations in [17] via boot-
strapping (see section 2.2) using 104 replications. The
maximum of the length of the 95 %- Bootstrap Con-
fidence intervals for the applied number of 20,000
samples (without consideration of burn-in) can be
determined to be at maximum 0.03 (N/mm2) for the
mean values, 0.03 (N/mm2) for the standard devia-
tion and 0.02 (N/mm2) for the simulations of 5 %-
quantiles. The uncertainty in the recording of this
posterior distribution thus can be seen as sufficiently
small to ensure validity on the results from section 3.
A histogram of one of the chains for 20,000 samples

is given in Figure 5(b).

3.2. Uncertainty in the Simulated Mean
Values

The uncertainty that can be attributed to the determi-
nation of the posterior distributions shows significant
differences for different quantities of applied observa-
tions.

When only one sample is used, the standard devia-
tion of the mean values is at σ ≈ 10 (N/mm2), while
a number of 3 or 5 core samples shows variations of
σ ≈ 5 (N/mm2) and σ ≈ 3.7 (N/mm2). Figure 6(a)
and Figure 6(b) show a PDF and the empirical CDF
of the data. The jumps visible in Figure 6(b) stem
from the limited number of drawings.

The simulation results indicate that from a certain
sample size, the accuracy of a simulated expected
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Figure 8. (a) kernel density function and (b) eCDF of the simulation results of 5 %-quantiles using 1, 3 and 5 drill
cores.

value grows subproportionally and reaches reasonable
results for a number of 3 core samples.

3.3. Uncertainty in the Simulated
Standard Deviation

Similar to the study from 3.2, also the empirical stan-
dard deviations of the computed MCMC-samples have
been computed. The peak value of the results us-
ing only one core sample for updating is at about
1 (N/mm2), which is roughly the assumed measure-
ment uncertainty. For samples of 3 and 5 cores, the
simulated values of standard deviation are smaller
and show less scatter. Figure 7 gives both the kernel
density (a) and the empirical CDF (b) for the simula-
tion results of standard deviations across the different
densities.

3.4. Uncertainty in the Simulated 5
%-Quantiles

The 5 %-quantile is of high interest for practical en-
gineering problems and is defined as the applicable
characteristic value in most standards. Again, the
deviation of the 5 %-quantile is significantly higher
for a sample set of size one and reaches more stable
values for samples of 3 and 5. The respective values
are σ ≈ 10, 5.2 and 3.7 (N/mm2). Besides the ab-
solute values and the distribution functions given in
Figures 8(a) and 8(b), the results also reveal the enor-
mous potential of updating information on concrete
compressive strength for the practical application in
the reassessment of infrastructure buildings. In this
example, the characteristic value of a B300 ≈ C20/25
can roughly be estimated to be at least 35 (N/mm2)
instead of 25 (N/mm2).

4. Conclusions
This contribution reports about application of a
Bayesian Updating framework in civil engineering.
More precisely, the compressive strength of concrete
is subject to this procedure in order to study the po-
tential and the characteristics of such an algorithm.
The studies are carried out using a data set taken
from a real large-scale concrete bridge and the aspects
of spatial variation as well as uncertainties in the
sampling of the compressive strength from the bridge
are taken into account explicitly. In order to address
those aspects, the analysis was carried out for differ-
ent subsamples. The framework shown here applies
Bootstrapping for first statistical evaluation of the
available data set. Subsequently, the Markov Chain
Monte Carlo Method was chosen and implemented to
carry out Bayesian Updating.

By conducting a great number of MCMC simu-
lations for all possible combinations of single mea-
surement values according to the subsample sizes,
uncertainties from measurement were included ap-
propriately in the analysis. The results obtained for
the example in this contribution revealed considerable
scatter in the point estimators of the posterior distribu-
tions, especially for the mean value and the 5 % quan-
tile. As expected, the scatter in those parameters was
significantly higher for the rather academic subsample
of size one. For the subsamples of size 3 and 5 a cer-
tain trend of convergence was observed. A minimum
of three samples is thus recommended. The effect of
the presented methodology is to be measured best by
the 5 % quantile of the concrete compressive strength.
By comparing the nominal compressive strength of a
C20/25 according to the design guidelines with the
5 % quantile after application of the sampling and up-
dating procedure, the algorithm proposes an increase
from 25 to about 35 N/mm2 corresponding to nearly
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50 % increase in the concrete compressive strength.
However, the simulations unveiled considerable scatter
margins on the point estimators. With regard to the
5 % quantile of the concrete compressive strength,
the uncertainty in the point estimators resulted in
an uncertainty range between 16 to 5 % depending
on the size of the subsample. The posterior distri-
bution is thus not a unique stochastic model, since
the sample values and the sampling process include
some uncertainties. The presented paper contributes
to uncertainty quantification in Bayesian Updating
processes in consideration of spatial variability of the
drawn samples and measurement uncertainty.
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