
https://doi.org/10.14311/APP.2022.34.0015
Acta Polytechnica CTU Proceedings 34:15–19, 2022 © 2022 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

A MODULAR EXTENSION OF A FINITE ELEMENT CONTACT
IMPLEMENTATION

Ondřej Faltus∗, Martin Horák

Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thákurova 7,
166 29 Prague 6, Czech Republic

∗ corresponding author: ondrej.faltus@cvut.cz

Abstract. The structural mechanics module of the OOFEM finite element software has been
developed to include various algorithms for solving contact mechanics problems. After developing small
strain contact algorithms in the 2D domain and their extension to large strain applications [1, 2], the
present contribution extends the existing framework to the 3D domain. After reviewing the current
code and comparing existing solutions found in the literature, we identify the common ground between
2D and 3D applications, then propose and implement the necessary changes and additions to smoothly
integrate the 3D support into existing code. Tests and example problems are presented to confirm the
functionality of the resulting implementation.

Keywords: Contact, large strains, penalty method, 3D contact, node-to-segment, OOFEM.

1. Introduction
Contact mechanics, as a specific subdiscipline of struc-
tural mechanics, lend themselves very handily to com-
putational implementations. Analytical solutions to
contact mechanics problems are scarcely found. Since
the end of the 19th century, when Heinrich Hertz
studied the contact of convex elastic bodies without
friction [3], progress in this originally fringe discipline
had been very slow until the advent of computational
methods, mainly the finite element method (FEM)
in the latter half of the 20th century [4, 5]. Today,
more and more complicated problems can be studied
with the help of more and more involved algorithms,
owing to the technological advances in computational
hardware.

In our past work [1, 2], we have developed the ba-
sis of contact algorithms in the OOFEM software.
OOFEM [6] is a finite element computational software
package developed at the Czech Technical University
in Prague. From a programming perspective, OOFEM
is built as a strictly object-oriented C++ codebase.
In our past implementations, we have paid close at-
tention to this fact, adapting some of the commonly
in literature presented programmatic solutions to suit
the object-oriented philosophy better. So far, contact
algorithms in OOFEM can handle contact problems in
the 2D domain, using the node-to-node and node-to-
segment discretizations and alternatively the penalty
method or Lagrangian multiplier method of contact
condition enforcement. Of these options, the penalty
method node-to-segment approach is adapted for use
with geometrically nonlinear problems as well.

This work aims to extend our previous implemen-
tation to the 3D domain. Keeping in with the idea of
object-oriented code, we try to achieve this by extend-
ing the existing objects and algorithms they represent
instead of coding everything anew. Chiefly, we would

like to avoid the "contact element" approach often
presented in literature [4, 7, 8] and create instead
a universal contact condition object able to interact
with every possible contact segment type.

2. Theoretical Basis
At the core of our modular code extension lies the
desire to adapt the existing geometrically nonlinear
penalty contact formulation for 2D domains to fully
work in the 3D domain as well. For this purpose, we
would like to derive a universal formulation for the
forces and stiffness applicable to all cases equally.

2.1. Formulation of Penalty Contact
The penalty formulation counts as one of the most
straightforward possible implementations of contact
conditions into the FEM framework. Its governing
idea is the introduction of an arbitrary penalty param-
eter to the force vector, aimed at penalizing unwanted
states of penetration among the contacting bodies.
In other words, we express the force on the contact
boundary as H(−gc)pgc, where p is the chosen penalty
parameter and gc the contact gap (negative in pene-
tration) [1, 4, 5, 7]. H is the Heaviside function.

To this end, the energy contribution of the contact
process can be expressed as

W c(u) =
∫

Γc

1
2H(−gc(u))pg2

c (u) dΓ (1)

where u is the global vector of displacements and Γc

is the contact boundary. Note that for a node-to-
segment contact discretization, the integral morphs
into a sum over a finite set of discrete contact points.

With the first variation of the contact energy, we
obtain the internal force vector as

15

https://doi.org/10.14311/APP.2022.34.0015
https://creativecommons.org/licenses/by/4.0/
https://www.cvut.cz/en

Ondřej Faltus, Martin Horák Acta Polytechnica CTU Proceedings

fc =
∫

Γc

pgc

(
N∗T n

||n||

)
dΓ (2)

where n is the normal vector to the contact boundary
in the deformed configuration and N∗ is the extended
N-matrix: a matrix serving to distribute the forces to
the according degrees of freedom of both the external
node and the nodes of the element forming the contact
surface (see [1] for a more detailed discussion of the
concept).

Under the assumption of small strains, the normal
vector and the extended N-matrix would remain in-
dependent of u, giving with the second variation of
contact energy a simple formula for the algorithmic
stiffness contribution [1, 2]

Kc =
∫

Γc

p

(
N∗T n

||n||

) (
N∗T n

||n||

)T

dΓ (3)

However, those assumptions no longer hold with non-
linear geometry, and a more complex stiffness formula
has to be derived. Keeping in mind the desired uni-
versality of the solution for both 3D and 2D domains,
we shall do that in the following paragraph.

2.2. A Universal Stiffness Formula
In expression (2) for the internal forces of contact, the
gap function gc depends on the current deformation
state of the domain, with the variation

δgc = NT
v δd (4)

with Nv = N∗T n/||n|| and δd being the variational
displacements of the related degrees of freedom.

Moreover, the extended N-matrix N∗ and the unit
normal vector ν = n/||n|| depend on the convective
natural coordinates ξ denoting the contact point on
the element surface. The β-th natural coordinate ξβ

has the variation

δξβ = A−1
αβ (Tv,α − gcBv,α) δd = Dv,βδd (5)

where:

Bv,α = B∗T
α ν Tv,α = N∗T tα (6)

the matrix B∗
α being the derivative of N∗ with respect

to ξα, the vector tα being the tangent vector to the
surface in the α-th direction and A being an extended
metric tensor of the surface, composed of the covariant
metric tensor m and the curvature tensor κ [4]

Aαβ = mαβ − gN καβ (7)

Summation convention over α and β (parametric sur-
face coordinate indicies) is implied wherever applica-
ble.

After substitution of these variations into the known
expressions and exploitation of the orthogonality of

the normal and tangent vectors, we can express the
desired tangential stiffness as

Kc =
∫

Γc

pNT
v Nv (8)

+ pgc

(
Bv,αDT

v,α + Dv,αBT
v,α

+ καβDv,βDT
v,α + gcmαβB̄v,αB̄T

v,β

)
dΓ

where

B̄v,α = Bv,α + καβDv,β (9)

and mαβ is the contravariant metric tensor (i.e. m−1).
Note that the first term in equation (8) corresponds
perfectly to the geometrically linear formula (3).

This formula has been derived with the express aim
to make no assumptions about the dimension of the
domain space or the number of nodes on the element
boundary. It is, therefore, a universal formula for all
cases of nonfrictional contact. Letting α and β only
assume the value of 1, setting m to element length
squared and κ to 0, an expression for a linear element
in 2D space is obtained, which reduces perfectly to
the stiffness formula found for this case in [4] and used
in [2].

3. Implementation
This section shall discuss the precise intricacies of the
chosen approach to implementing the contact algo-
rithms.

3.1. The Contact Condition and Contact
Segment Objects

Contact usually occurs among two bodies within the
domain space, of which at least one is deformable
and described in FEM by a mesh of finite elements.
By definition, when the contact gap is open, no solid
matter occupies the area between the two bodies, and
therefore no mesh is present.

From a practical programmatic perspective, an es-
sential part of any FEM algorithm is the assembly
process. In this process, all the elements within the
domain space contribute to the global stiffness matrix
and the global vector of internal forces, assembling
their contributions to their proper places.

In the case of contact, it is unclear how to introduce
contact forces and resulting algorithmic stiffness into
this process. In literature [4, 5, 7], it is customary
to introduce so-called contact elements. Those are
finite elements occupying the physically empty space
in between the contacting objects. Those elements
perform the aforementioned force and stiffness assem-
bly function. Therefore, the gap area in the reference
configuration has to be meshed with those special
elements describing the contact algorithm.

This approach has several noticeable drawbacks.
Firstly, in the node-to-segment approach, for example,
a separate contact element has to be formulated for

16

vol. 34/2022 A Modular Extension of a Finite Element Contact Implementation

Figure 1. A UML diagram describing the concept of
object relationships within OOFEM.

each possible case of element edge or surface forming
the segment (in the segment-to-segment approach,
matters would be even much worse). For a codebase
with a reasonable claim to universality, this could
shortly result in a significant increase of necessary
code.

Secondly, the formulation of those elements may
be restrictive in terms of the possible contact cases.
A contact element usually only pairs one node with
one boundary segment. Each node deemed possible
to come in contact with a given segment, therefore,
requires a separate element defined, and this has to
be decided already at the time of meshing.

Already in the existing implementation in OOFEM,
we have diverged from this standard practice. In
line with object-oriented programming principles, the
aforementioned assembly process in OOFEM is han-
dled with the use of objects. Apart from object
classes representing elements, another class capable of
contributing to the global stiffness matrix and force
vectors is the ActiveBoundaryCondition class. We
have chosen to handle contact algorithms through
subclasses descended from that.

The principle is illustrated diagrammatically
in Figure 1. All OOFEM objects are collec-
tively stored in the overarching Domain class. A
Node2SegmentPenaltyContact object is a subtype
of an ActiveBoundaryCondition, which itself is a
subtype of a BoundaryCondition. This contact con-
dition class maintains a generalized reference to a
ContactSegment object, which, in the case it is of
the BoundaryContactSegment subtype, can reference
element objects relevant for its task of describing an
element boundary.

This way of structuring the code offers us a great
potential of generality in large parts of the code and
presents a more intuitive way of modeling the real
physical idea of the contact phenomenon.

3.2. Universality of the Contact
Condition Object

In our previous work, four bound-
ary condition objects have been cre-
ated, namely Node2NodePenaltyContact,
Node2NodeLagrangianMultiplierContact,
Node2SegmentPenaltyContact, and

Node2SegmentLagrangianMultiplierContact
[1, 2]. In the case of the node-to-node approach, the
contact condition object itself handles the references
to the nodes concerned, requiring no interaction with
any other objects. Its universality and extension to
the 3D domain is therefore trivial and not a subject
of this paper.

In the node-to-segment case, however, the opera-
tions within the code rely heavily on an interaction
between the condition and an object representing the
contact segment. As described by Figure 1, we aimed
to maintain the connection of the boundary condition
class only to the generalized ContactSegment parent
class, rather than differentiating among its subtypes,
which include formulations as diverse as an analyti-
cal polynomial function in 2D space and a segment
representing multiple 3D element surfaces.

The formulas necessary to this universal approach
have already been discussed in section 2.2. The only
necessary part of the implementation part is to ensure
the ability of the code to handle all possible matrix
sizes of the various contributions. Extensive use has
been made of the std::list array object in the C++
language, which allows for an unspecified number of
objects to be passed between C++ functions. To this
end, the functions in the 2D contact segment have
been altered to return an array of size one (of, i.e.,
tangent vectors) as opposed to a single object. On the
level of the Node2SegmentPenaltyContact class, the
code is written to always loop through those arrays
regardless of their size.

Key to the computations in the
Node2SegmentPenaltyContact class are
the computeTangentFromContact() and
computeExternalForcesFromContact() methods,
which compute the stiffness and force contributions,
respectively, for a given node-segment pair. In
addition to those, auxiliary methods exist to compute
the various expressions seen in formula 8, e.g. the
computeNvMatrixAt() method for the Nv matrix or
the computeModifiedBvMatricesAt() method for
the (one or multiple) B̄v matrices. Those then poll
the contact segment for the relevant information, such
as gap value, metric and curvature tensor, normal
and tangent vector(s), the N matrix etc.

3.3. The universality of Contact Search
Algorithm

Another issue with code universality arises specifically
in the 3D domain. Contrary to the 2D case, in 3D,
even the limitation to finite elements with linear formu-
lation does not necessarily ensure the linearity of their
boundary [9]. More specifically, only surfaces of trian-
gular shape can be described linearly. We have come
to the conclusion that limiting our implementation to
those would severely hamper the usability of the result-
ing code; it was, therefore, necessary to take the pos-
sible nonlinearity of the contact surface into account
when conducting a contact point search. The solution

17

Ondřej Faltus, Martin Horák Acta Polytechnica CTU Proceedings

(A) (B) (C)

Figure 2. Node-to-segment contact with penalty formulation in the 3D domain: tests on a linear wedge and a linear
brick element. Displayed geometries correspond to the 0th (undeformed configuration), 40th, and 60th steps of the
computation. Coloring represents the vertical normal stress σyy. A) A test on a linear wedge element. B) A test on a
linear brick element, with the initial contact point at an axis of symmetry of the top surface. The deformed state
remains symmetric along this axis. C) A test on a linear brick element with an arbitrary initial contact point. The
apparent gap is only a consequence of the imprecise rendering of the resulting bilinear surface.

is an implementation of a closest-point-projection al-
gorithm in the computeContactPoint() method of
the Linear3DElementSurfaceContactSegment class.

The parametric coordinates of the desired contact
point (i.e., the point on the surface closest to the
contacting node, regardless of whether contact occurs)
can be expressed as a vector ξ minimizing the distance
function

F (ξ) = 1
2(r − ρ(ξ)) · (r − ρ(ξ)) (10)

where r are the global coordinates of an external point
(the node), and ρ are the global coordinates of the
contact point (on the surface).

Solving this minimization problem with the Newton-
Raphson scheme leads to a convenient expression for
the iterative increment δξ in the form

δξ = −A−1 dF

dξ
(11)

where A is the already well-established extended met-
ric tensor of the contact surface (see (7)).

4. Computational Examples
In light of the original aim of this paper, the extension
of OOFEM’s contact formulations to the 3D domain,

we shall demonstrate the functionality of the described
implementation on several 3D test examples.

The tests concern the node-to-segment formulations
for geometrically nonlinear cases. In one case, the
contact segment is made of a triangular surface of
a linearly formulated wedge element, while in the
other two cases, the used element is a linear brick.
Therefore, the first element represents an example
of a fully linear surface without curvature, while the
latter concerns a bi-linear surface, where the curvature
tensor is generally nonzero. On the brick element, two
different tests are performed; in the first one, the
initial contact point is positioned on one of the axes of
symmetry of the surface, in the other one, an arbitrary
point is chosen.

The elements in question are the OOFEM elements
LWedge and LSpace, respectively. Above them, a
single LTRSpace element is positioned. This is a linear
tetrahedral element, which serves, however, only to
provide the contacting node. All its nodes are fixed,
and the lower node is loaded by a prescribed vertical
displacement. This node is designed to come into
contact with the top surface of the lower element
and push it downwards. All nodes of the contact
surface are free; the lower element is fixed by Dirichlet
boundary conditions on its lower base.

All elements in these test simulations have a linear

18

vol. 34/2022 A Modular Extension of a Finite Element Contact Implementation

elastic material model assigned, with Young’s modulus
and Poisson’s ratio E = 500 MPa and ν = 0. In
OOFEM, such a material model translates to the
Saint Venant-Kirchhoff law in the case the geometrical
nonlinearity of the element is turned on [6].

Loading is performed in 60 steps in each case. The
total displacement prescribed for the external node is
0.3 m, i.e. 0.005 m per loading step.

The results of the test are pictured in Figure 2.
For the visualization of the results, ParaView, an
open-source software package, has been used [10].

We can observe that the deformation of the surface
follows the positioning of the contact point. For the
brick element, in the first case, the contact point re-
mains on the axis of symmetry, and the rotation of the
contact surface only follows the other axis, while in
the second case, the entire surface twists and assumes
a bi-linear deformed shape. Note that the somewhat
apparent gap between the element surface and the con-
tacting node is only a result of the rendering software’s
inability to portray this bi-linear surface properly.

5. Conclusions
The paper describes an object-oriented approach to
handling contact mechanics in FEM. As a result of
this object-oriented approach, a universal contact al-
gorithm is necessary. This is derived on a theoretical
basis, and the implementation in an open-source finite
element code OOFEM is then discussed in detail. To
verify the practical usability of the chosen approach,
tests are performed on contact in the 3D domain,
which is a feature previously unavailable in the exist-
ing OOFEM contact implementation.

Acknowledgements
The authors would like to acknowledge the support re-
ceived for work on this project from a CTU grant no.
SGS21/037/OHK1/1T/11.

References
[1] O. Faltus. Object-Oriented Design and

Implementation of Contact Mechanics into Finite
Element Code OOFEM. Master’s thesis, Czech
Technical University in Prague, 2020.

[2] O. Faltus, M. Horák. Finite element implementation
of geometrically nonlinear contact. Acta Polytechnica
CTU Proceedings 30:18–23, 2021.

[3] H. Hertz. On the contact of elastic solids. Z Reine
Angew Mathematik 92:156–171, 1881.

[4] P. Wriggers. Computational contact mechanics.
Springer, New York, 2nd edn., c2006.

[5] V. A. Yastrebov. Numerical methods in contact
mechanics. Wiley, Hoboken, NJ, 2013.

[6] B. Patzák. OOFEM home page, 2000.
Http://www.oofem.org.

[7] A. Konyukhov, R. Izi. Introduction to computational
contact mechanics. Wiley, Chichester, West Sussex, 2015.

[8] T. A. Laursen. Computational contact and impact
mechanics: fundamentals of modeling interfacial
phenomena in nonlinear finite element analysis.
Springer Science & Business Media, 2003.

[9] O. C. Zienkiewicz, R. L. Taylor. The finite element
method. Butterworth-Heinemann, Boston, 5th edn., 2000.

[10] U. Ayachit. The ParaView Guide: A Parallel
Visualization Application. Kitware, 1st edn., 2015.

19

	Acta Polytechnica CTU Proceedings 34:15–19, 2022
	1 Introduction
	2 Theoretical Basis
	2.1 Formulation of Penalty Contact
	2.2 A Universal Stiffness Formula

	3 Implementation
	3.1 The Contact Condition and Contact Segment Objects
	3.2 Universality of the Contact Condition Object
	3.3 The universality of Contact Search Algorithm

	4 Computational Examples
	5 Conclusions
	Acknowledgements
	References

