
Ea
rly

bir
d

Computer Science • 23(3) 2022 https://doi.org/10.7494/csci.2022.23.3.4356

Yasmina Rahmoune
Allaoua Chaoui

AUTOMATIC BRIDGE BETWEEN BPMN
MODELS AND UML ACTIVITY DIAGRAMS
BASED ON GRAPH TRANSFORMATION

Abstract Model-driven engineering (MDE) provides the available tools, concepts, and
languages for creating and transforming models. One of the most important
successes of MDE is model transformation; it permits the transformion of models
that are used by one community to equivalent models that can be used by another
one. Moreover, each community of developers has its own tools for verification,
testing, and test-case generation. Hence, a developer of one community who
moves to another community needs a transformation process from the second
community to his/her own community and vice versa. Therefore, the target
community can benefit from the expertise of the source one, and the developers
do not begin from zero.

In this context, we propose an automatic transformation in this paper for
creating a bridge between the BPMN and UML communities. We propose an
approach and a visual tool for the automatic transformation of BPMN models
to UML activity diagrams (UML-AD). The proposed approach is based on meta-
modeling and graph transformation and uses the AToM3 tool. Indeed, we were
inspired by the OMG meta-models of BPMN and UML-AD and implemented
versions of both meta-models using AToM3. This latter one allows for the
automatic generation of a visual-modeling tool for each proposed meta-model.
Based on these two meta-models, we propose a graph grammar that is composed
of 58 rules that perform the transformation process. The proposed approach is
illustrated through three case studies.

Keywords MDE, BPMN, Business Process Models, UML-AD, Meta-Modeling, Graph
Grammars, Models Transformation, AToM3

Citation Computer Science 23(3) 2022: 411–447

Copyright © 2022 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

411

https://doi.org/10.7494/csci.2022.23.3.4356
https://creativecommons.org/licenses/by/4.0/

Ea
rly

bir
d

412 Yasmina Rahmoune, Allaoua Chaoui

1. Introduction

A business process model (BPM) describes the business processes of organizations and
modern enterprises. BPM is used to understand information and activities in order to
reach certain goals. For describing BPM, researchers can use different notations such
as BPMN [34], UML-AD [35], Eriksson-Penker’s notation [21], etc.

Recently, the business process model and notation (BPMN) has become one of
the standard graphical modeling languages of business processes. It is used by business
process managers for creating and representing their organizations’ models (diagrams).
BPMN contains a variety of symbols to describe the process in a detailed and efficient
way.

The unified modeling language (UML) is more suitable for software developers
and its supported tools. UML is the de-facto standard for software design; it has been
widely adopted in the industry. The UML activity diagram specifies the dynamic
(behavioral) structure of a system by describing the activities, choices, interactions,
and concurrency of a workflow or a process [6]. The major advantage of the activity
diagram is its simplicity and its ease for understanding the logical flow of a modeled
system [43]. Hence, BPMN and UML are two alternative modeling specifications for
business process models. The communication between these communities allows for
taking benefits from both the tools of business process management and software
development.

In this paper, we propose an automatic approach for transforming BPMN to
UML-AD based on a transformation model of model-driven engineering. Furthermore,
our global objective is to create a bridge between the BPMN and UML communities
and create a framework that permits developers to reuse the existing BPM of the
first notation (BPMN) in the second notation (UML). We propose an automatic
transformation approach and a visual tool that are based on meta-modeling and
graph grammars. To do so, we propose two meta-models that are associated with
BPMN and UML-AD, respectively. Based on these meta-models, we propose a graph
grammar that contains 58 rules that automatically perform the transformation process.
The proposed graph grammar is executed using AToM3 (a tool for multi-formalism
and meta-modeling) [10, 12]. This tool proves its capacity and power for enabling
meta-modeling and transformations of known formalisms [23].

In this work, we focus on the transformation of flow object elements (events,
activities, and gateways) and data elements (data objects, data inputs, data outputs,
data stores, etc.) that were not studied and discussed in the previous works that
addressed the mapping of BPMN and UML-AD.

The principal objectives of this approach are as follows:

• Exploiting the principles and techniques of MDE approaches (such as meta-
modeling and graph grammars) to create a bridge between two different commu-
nities: BPMN and UML-AD. This transformation takes the benefits of both tools
for business process management and software development. This also allows the

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 413

exchange between these communities. Moreover, the target community (UML)
can use BPMN as a source model even if it is unknown to the community.

• Proposing an automatic visual tool for transforming business process models to
UML activity diagrams. Our tool allows us to re-express and rewrite a business
process model into its equivalent model (UML-AD in this case). BPMN contains
several rich, complex, and non-atomic elements. The proposed tool extracts these
elements and represents them in a UML activity diagram. For example, the
semantics of a message start event in a BPMN is the combination of accepting a
message and starting a process; our tool decomposes this event into three elements
in UML-AD (Initial node, Control Flow, and AcceptCallAction – see Case Study
3).

• Enabling the existing business process models to benefit from all of UML’s advan-
tages (methods, development tools, and verification) and validation techniques.
Actually, we can check some of the properties (deadlock, incoherence, inconsisten-
cies, etc.) of the target model (UML-AD) by using existing methods such as the
one that was proposed in [36]. This verification provides feedback on the proper-
ties of the source model (BPM modeled in the input). It is noteworthy that we
use the techniques of MDE for model transformation as well as their verifications
by different specifications such as those that were presented in [15,16,24,26, 33].
Furthermore, we can use generation test cases like those that were presented
in [22].
This paper is organized as follows; Section 2 presents related works, and Section 3

recalls the basic notions of model transformation (meta-modeling, graph grammar and
the AToM3 tool). We present the proposed automatic approach in Section 4, while
Section 5 presents some examples for illustrating our automatic approach. In order to
ensure the correctness of our transformation, we present the verification of the most
important properties in Section 6. In the last section, we give our conclusions and
draw some perspectives from the work.

2. Related Works

Over the past decade, much research has been done in the domain of business process
modeling and raised many challenges in modernizing enterprises; BPMN and UML-AD
are the most used notations in this field. In [44], the author reviewed the ability of
representing 21 workflow patterns for describing the behavior of business processes
by BPMN and UML-AD. The author compared the results of the two notations with
respect to the technical ability to represent the patterns as well as their readability.
In [41, 45], the authors studied the suitability of UML 2.0 activity diagrams (ADs) for
business process modeling, and they used workflow patterns (WPs) as an evaluation
framework. They presented all of the proposed groups of WPs as well as their abilities.
They provided a complete evaluation of the capabilities of UML 2.0 ADs, BPMN,
and the business process execution language (BPEL) and showed their strengths and
weaknesses when utilized for business process modeling.

Ea
rly

bir
d

414 Yasmina Rahmoune, Allaoua Chaoui

In [37], UML and BPMN were compared based on their complexity levels; it was
discovered that BPMN had a very high level of complexity as opposed to UML. In [7],
the authors presented the results of a comparison of both notations during the process
of creating an application model by business users; this indicated that an activity
diagram is just as useful as the BPMN model in any case.

Likewise, another study [42] presented a method for translating business models
such as BPMN and DMN (decision model and notation) into a set of consistent UML
models (which can be later used by business analysts and developers for understanding
and implementing the system). As a single-notation design, this allows users to take
advantage of software that supports UML modeling and consistency checking. The
limitation of this method is that, for business users, UML is too technical and complex
in the preparation of models.

In addition, a UML profile is used to extend UML’s general-purpose language.
There has been some research that studied the transformation of BMN to a UML
profile (e.g., [2, 27,29]).

In [27], the author developed a UML profile for an event-driven process chain
(EPC) to facilitate software developers, as a UML activity diagram is close to the
design/model of a software project. EPC is widely used in the industry, but it is not a
standard language. In contrast, BPMN has been an OMG standard since 2005.

In [29], a UML profile for business process modeling was developed to help
software developers view business process modeling in familiar notations. For this
purpose, two perspectives were considered; business perspective (which focused on
goals, deliverables, and customers) and sequence perspectives (which was used to
refine the business perspective).

In [2], the authors proposed a UML profile for business process modeling notation
(UMLPBPMN). Their goal was that a UML model would be accessable to a software
engineer without him/her being forced to master the particulars for understanding
BPMN or relate it with any software requirements. Moreover, the communication
time was significantly reduced, and the understandability and synchronization were
highly increased; this could ultimately boost the productivity of a software product.

Other works have been proposed to translate BPMN to a UML use case diagram.
We can cite the work in [8] where the authors developed an MDA approach (BPMN2UC)
to generate UML use cases that represent the user requirements of an information
system (IS) to bridge the gap between BPMs and information system models.

In [9], the author discussed the importance of this mapping to satisfy business
process requirements and facilitate the alignment among the BP and IT solutions
of building a BPM in business-driven development (BDD). The author claimed that
the translation of BPMN diagrams to UML activity diagrams was required for the
development of systems, because UML had become the de-facto standard modeling
language for object-oriented systems. Besides, UML has rich tools for modeling
software systems and is easier to be read by end users. The author presented the
challenges of defining and implementing this translation. The author proposed the use

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 415

of the ATLAS Transformation Language (ATL) as a model transformation language
but did not detail the proposal.

In [30], Macek and Richta presented a transformation from BPM to UML activity
diagrams using XSLT (XSL Transformations). They used an extensible markup
language (XML) document as an intermediate notation between BPM and UML-AD.
The authors discussed the need for transforming business process models to UML-ADs
but not to other UML diagrams. They explained the drawbacks of the transformation
of BPM to use case diagrams (presented in [38]) and to class diagrams (presented
in [39]). The disadvantages of this approach consist of the use of intermediate models
and the manual creation of the graphical layout of the AD.

This paper [18] presented a synthetic analysis of BPMN and UML-AD according
to three criteria: the capacity of being readily understandable, the adequacy of the
graphical elements of BPMN and UML AD to represent the real business processes of
an organization, and the mapping to business process execution language (BPEL).

In the previous works, the researchers discussed the necessity for transforming
BPMN to UML diagrams and proposed general ideas (UML-AD, a UML profile, a use
case model) that lacked a complete transformation.

The strong point of our approach is the use of a graph transformation approach
to realize the automatic transformation of BPMN modes to a UML-AD model and
take the primary benefit of the important advantage of graph transformation (which is
graph grammar – it has a mathematical foundation and is a generalization of Chomsky
grammars for graphs [40]). This represents the first advantage of this research. The
second advantage consists of the creation of a visual tool for manipulating a business
process model, an UML-AD model, and their automatic transformation. The third
advantage of our proposal is that the transformation is performed at a high level of
abstraction, as our rules are defined in the meta-model level. Finally, we believe that
the transformation between these two notations can serve as a bridge between the
tools that support the business process management and the UML tools for software
development.

3. Background of Model Transformation

3.1. Graph transformations

Model transformation is a very important operation in any model-driven approach.
Actually, such transformations assure the translation of operations regarding one or
more models of a given level of abstraction as well as to one or more other models of
the same level (horizontal transformation) or a different level (vertical transformation).
Graph transformation is a particular and well-known type of model transformation.
Generally, graph transformations consist of two steps: meta-modeling and graph
grammar.

Ea
rly

bir
d

416 Yasmina Rahmoune, Allaoua Chaoui

• Meta-modeling techniques are widely used when describing the different kinds
of formalisms that are needed for the specifications and designs of systems. The
definition of meta-models requires the definition of two syntaxes. In the first
syntax, we define the abstract formal syntax to designate the formalism’s entities,
their relationships, their attributes, and the constraints. In the second one, we
define the concrete graphical syntax to represent the graphical appearance of
these entities and their relationships. The advantage of this technique is that
the generated tool accepts only syntactically correct models according to the
formalism definition. For more details, the reader is referred to [11].

• A graph grammar [40] has a mathematical foundation and is a generalization of
Chomsky grammar for graphs. This is a formalism in which the transformation
of graph structures can be modeled and studied.

3.2. Graph grammar

According to Rozenberg [40], a graph grammar is defined as follows:

A graph grammar (G) consists of a set of production rules (P) and a start
graph (G0). A sequence of direct derivations (p = (G0

p1
=⇒ G1

p2
=⇒ · · · pn

=⇒ Gn))
constitutes a derivation of the grammar (also denoted by G0 =⇒ ∗Gn). The L(G)

language that is generated by grammar G is the set of all graphs Gn such that
G0 =⇒ ∗Gn is a derivation of the grammar.

Graph grammars are composed of production rules, with each rule having graphs
on the left-hand and right-hand sides (LHS and RHS, respectively). The LHS of the
rules are compared with an input graph that is called the host graph. If a match is
found between the LHS of a rule and a sub-graph in the host graph, the rule can be
applied, and the matching sub-graph of the host graph is replaced by the RHS of the
rule. A rewriting system iteratively applies matching rules in the grammar to the host
graph until no more rules can be applied [14]. In our case, AToM3 allows for an order
of rules that is based on a user-assigned priority [13].

3.3. Principle of transformation rules

A graph transformation rule is defined by r = (L, R, K, glue, emb, cond), where

• L: left-side graph;
• R: right-side graph;
• K: subgraph of L;
• glue: occurrence of K (subgraph of L) in R (right-side graph);
• emb: embedding relationship emb that connects vertices of L and those of R;
• cond: set of conditions for applying rule r.

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 417

3.4. Application of rules

Applying rule r = (L, R, K, glue, emb, cond) to GRAPH G produces resulting GRAPH
H. The provided graph H can be obtained from the original graph G through the
following five steps:

1. choose occurrence of left-side graph L in G;
2. check application conditions according to cond;
3. remove occurrence of L (up to K) from G as well as dangling arcs, which are all

arcs that have lost their sources and/or destinations – this provides context graph
D of L;

4. paste context graph D and right-side graph R by following occurrence of K in D
and R – this is construction of disjunction union of D and R and, for each point
in K, identify corresponding point in D with corresponding point in R;

5. embed right-side graph into context graph of L following embedding relationship
emb.
The application of r on a graph G to provide a graph H is called a direct derivation

from G to H through r; this is denoted by G =⇒ H.
The main idea of graph transformations is the rule-based modification of the

graphs. Figure 1 shows the general principle of applying a rule to a graph.

Figure 1. Principle of application of rule [25]

The use of graph transformations has some advantages over an implicit represen-
tation [13]; it is an abstract, declarative, high-level representation. This enables the

Ea
rly

bir
d

418 Yasmina Rahmoune, Allaoua Chaoui

exchange, re-use, and symbolic analysis of the transformation model. The theoretical
foundations of graph rewriting systems may assist in proving the correctness and
convergence properties of the transformation tool.

3.5. AToM3

In AToM3, we can use either the entity-relationship or the UML class diagram meta-
formalisms for meta-modeling. A meta-formalism can be used to define formalisms as
well as other meta-formalisms; in addition, meta-models can be provided with textual
constraints that are expressed as OCL or Python code [13].

Additionally, AToM3 allows us to define visual languages by means of meta-
models. Model manipulation can be expressed as either Python programs or by means
of attribute graph grammars. AToM3’s graph rewriting processor can be configured to
work in the single or double pushout approaches [40].

In our contribution, we have realized the transformation of BPMN models to
UML-AD models by a combination of meta-modeling and graph grammar using the
AToM3 tool.

4. Proposed Approach

In this section, we present our automatic approach as well as the visual tool that is
proposed for transforming the business process models that are created by BPMN into
their equivalent UML activity diagrams. This transformation enables us to create a
bridge between these two standards.

We start our contribution by proposing the correspondences between the most
elements of BPMN2.0.2 and UML Activity Diagram 2.5 (as shown in Table 1).

Table 1
Correspondences between BPMN and UML-AD

Description in
BPMN

Graphical
representation

Description in
UML-AD

Graphical
representation

Start Event indi-
cates where particu-
lar process will start

Initial Node is control
node that acts as start-
ing point for executing
activity

Message Start
Event – message
arrives from partic-
ipant and triggers
start of process

Following group (Initial
Node, Control Flow,
and Accept Call Ac-
tion)

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 419

End Event indicates
where process will
end

Final Node is control
node at which flow in
activity stops (activity
final)

Message End
Event finishes
process and sends
message to partici-
pant

Following group (Send
Signal Action, Control
Flow, and Flow Final
Node)

Link Intermediate
Events (throw) is
mechanism for con-
necting two sections
of process – it is used
for throwing

Connector is used for
connecting two sections
of activity diagram – it
is employed for throw-
ing

Link Intermediate
Events (catch) is
mechanism for con-
necting two sections
of process – it is used
for catching

Connector is used for
connecting two sections
of activity diagram – it
is employed for catch-
ing

Parallel Split gate-
way (AND-Split)

Fork Node is control
node that splits flow
into multiple concur-
rent flows

Synchronization
gateway (AND-Join)

Join Node is control
node that synchronizes
multiple flows

Simple Merge gate-
way (OR-Join)

Merge Node is
control node that
brings multiple flows
together without
synchronization

Exclusion Choice
gateway (OR-Split)

Decision Node is con-
trol node that chooses
between outgoing flows

Ea
rly

bir
d

420 Yasmina Rahmoune, Allaoua Chaoui

Activity is generic
term for work that
company performs in
process – activity can
be atomic

Action is executable
activity node that is
fundamental unit of ex-
ecutable functionality
in activity

Sub-Process is com-
pound activity that is
included within pro-
cess or choreography

Sub-Activity is set
of actions and control
node using control and
data flow

Intermediate
Event «Throwing
»signal and message

SendSignalAction

Intermediate
Event «Catching
»signal and message

AcceptCallAction

Timer Intermedi-
ate Event

Time Event generat-
ing

Data Object pro-
vides information
about which activi-
ties required to be
performed and/or
what they produce

Object Node is
used to hold value-
containing object
tokens during course of
execution of activity

Data Object Col-
lection can represent
collection of objects

Central Buffer Node
acts as buffer between
incoming object flows
and outgoing object
flows

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 421

Data Input and
Data Output pro-
vide same informa-
tion for processes

Activity Parameter
Node accepts input to
activity or provides out-
put from activity

Data Store provides
mechanism for activi-
ties to retrieve or up-
date stored informa-
tion that will persist
beyond scope of pro-
cess

Data Store Node is
central buffer node that
holds its object tokens
persistently while its
activity is executing

Data Object is as-
sociated with inputs
of activities (tasks)
– data association is
used to move data be-
tween them

Action Pin is used to
define data values that
are passed out of and
into action – input pin
provides value to action

Data Object is asso-
ciated with outputs
of activities (tasks)
– data association is
used to move data be-
tween them

Action Pin is used
to define data values
that are passed out of
and into action – out-
put pin contains re-
sults from this action

Data Object is associ-
ated directly with ac-
tivity (task)

Value Pin provides
value by evaluating
value specification; e.g.,
this may be used as sim-
ple way to specify con-
stant inputs to action

4.1. Overview of Proposed Approach

The proposed approach is based on a combination of meta-modeling and graph
grammars. First, we were inspired by the OMG meta-models and redefined two meta-
models for the basic category of business process models (source models) and UML
activity diagrams (target models). We present these last meta-models in UML class
diagrams by using the AToM3 meta-tool, which allows us to generate a visual-modeling
tool for each proposed formalism.

Ea
rly

bir
d

422 Yasmina Rahmoune, Allaoua Chaoui

Second, we propose a graph grammar that contains 58 rules that automatically
perform transformations of business process models to UML-ADs. This graph grammar
is the core of our work. Furthermore, we define for each rule:

• the left and right sides;
• initialization;
• pre and post-conditions;
• actions.

These last three items are expressed in Python [17].
In this study, we have only focused on the transformations of BPMs to UML-ADs

at the meta-model level and used model-to-model transformation, as the two parts of
our rules are graphical models. We will describe these in detail and show some rules
later. Figure 2 provides an overview of the proposed approach.

Figure 2. Overview of proposed approach

4.2. Business Process Meta-Model

We have proposed the meta-model that is shown in Figure 3, which contains 28 classes
that are linked by 3 association and inheritance relationships. In this meta-model, we
have taken the most used elements into account.

From this meta-model, we used AToM3 to automatically generate a visual-
modeling environment for manipulating BPMs (as shown in Figure 4). It contains a
set of buttons that allow the user to manipulate (create, edit, etc.) business process
models that conform to the above-presented meta-model in a graphical manner.

4.3. Activity Diagram Meta-Model

We have proposed the meta-model presented in Figure 5, which contains 17 classes
that are linked by 6 association and inheritance relationships.

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 423

Figure 3. Proposed business process meta-model

Figure 4. Generated tool for business process models

From this meta-model, we used AToM3 to automatically generate a visual-
modeling environment for manipulating UML-ADs (as shown in Figure 6). This
contains a set of buttons that allow the user to manipulate (create, modify, etc.) the

Ea
rly

bir
d

424 Yasmina Rahmoune, Allaoua Chaoui

Figure 5. Proposed activity diagram meta-model

activity diagrams that conform to the above-presented meta-model in a graphical
manner.

Figure 6. Generated tool for UML activity diagrams

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 425

After creating these two meta-models and generating their visual environments
with AToM3, we propose a graph grammar, which contains a set of rules for accom-
plishing this transformation.

4.4. Proposed Graph Grammar

Graph grammars have a mathematical foundation and are a generalization of Chomsky
grammars for graphs [40]. One of the advantages of a graph grammar is that it
facilitates the graphical manipulation of model transformations.

There are many definitions of a graph grammar; in [5], it was defined by a triplet
– GG = (P, S, T), where

P: set of rules (our proposed graph grammar);
S: initial graph (BPM source model);
T: set of symbols (all elements of BPMN and UML-AD that are defined in both of our

meta-models).

Each r rule (r ∈ P) has graphs on the left-hand and right-hand sides (LHS and RHS).
In the transformation process, the LHS rules are evaluated against an input graph
that is called the host graph. If a matching is found between the LHS of a rule and a
subgraph of the host graph, the rule can then be applied.

In this respect, we have proposed a graph grammar that enables us to transform
the most frequently used elements of BPMN. The graph grammar includes a set of
rules that cover flow objects (events, activities, and gateways) and data (data objects,
data inputs, data outputs, etc.). These rules are applied in ascending order, where
each rule has a priority (number). Giving a priority for each rule and coordinating all
of the proposed rules is considered to be the main challenge when proposing a graph
grammar.

In addition, each rule in our graph grammar may have an initialization, condition,
and action; these instructions are described in the Python language.The initialization,
the condition and the action of Rule 1 will be presented later in Table 6. Table 2
contains our proposed graph grammar. For each rule, we have presented its LHS, RHS,
and priority.

Table 2
Our proposed graph grammar (BPMN2UML-AD)

Ea
rly

bir
d

426 Yasmina Rahmoune, Allaoua Chaoui

Rule 1: Sub-Process2Sub-Activity
(Priority 1):

LHS and RHS of Rule 1

Rule 2: DataInPut2ActParameterNode
(Priority 2):

LHS and RHS of Rule 2

Rule 3:
DataOutPut2ActParameterNode

(Priority 3):

LHS and RHS of Rule 3

Rule 4: Start2InitialNodee (Priority
4):

LHS and RHS of Rule 4

Rule 5:
StartMsg2Initial/AcceptCallAction

(Priority 5):

LHS and RHS of Rule 5

Rule 6: Activity2Action (Priority 6):

LHS and RHS of Rule 6

Rule 7:Start2ActivityLink (Priority
7):

LHS and RHS of Rule 7

Rule 8: Parallel(And-Split)2ForkNode
(Priority 8):

LHS and RHS of Rule 8

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 427

Rule 9: Act2ParallelLink (Priority
9):

LHS and RHS of Rule 9

Rule 10:Parallel2ActLink (Priority
10):

LHS and RHS of Rule 10

Rule 11:Synchronization(And-
Join)2JoinNode (Priority 11):

LHS and RHS of Rule 11

Rule 12: Act2SynchLink (Priority
12):

LHS and RHS of Rule 12

Rule 13:Synch2ActLink (Priority 13):

LHS and RHS of Rule 13

Rule 14: Xor(OR-Split)2DecisionNode
(Priority 14):

LHS and RHS of Rule 14

Rule 15: Act2XorLink (Priority 15):

LHS and RHS of Rule 15

Rule 16:Xor2ActLink (Priority 16):

LHS and RHS of Rule 16

Ea
rly

bir
d

428 Yasmina Rahmoune, Allaoua Chaoui

Rule 17:Xor2SynchLink (Priority
17):

LHS and RHS of Rule 17

Rule 18:
SimpleMerge(OR-Join)2MergeNode

(Priority 18):

LHS and RHS of Rule 18

Rule 19: Act2MergeLink (Priority
19):

LHS and RHS of Rule 19

Rule 20: Xor2MergeLink (Priority
20):

LHS and RHS of Rule 20

Rule 21: Synch2MergeLink (Priority
21):

LHS and RHS of Rule 21

Rule 22: Merge2ActLink (Priority
22):

LHS and RHS of Rule 22

Rule 23: End2FinalNode (Priority
23):

LHS and RHS of Rule 23

Rule 24: Act2EndLink (Priority 24):

LHS and RHS of Rule 24

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 429

Rule 25: EndMs-
gEvent2SendSignalAction&FinalNode

(Priority 25):

LHS and RHS of Rule 25

Rule 26: Act2EndMsgEventLink
(Priority 26):

LHS and RHS of Rule 26

Rule 27: Synch2EndMsgEventLink
(Priority 27):

LHS and RHS of Rule 27

Rule 28: DataObject2ObjectNode
(Priority 28):

LHS and RHS of Rule 28

Rule 29: Delete Act2Act linked by
DataObject (Priority 29):

LHS and RHS of Rule 29

Rule 30: Activity2DataObjectLink
(Priority 30):

LHS and RHS of Rule 30

Rule 31: DataObject2ActivityLink
(Priority 31):

LHS and RHS of Rule 31

Rule 32: DataObject2PinOut
(Priority 32):

LHS and RHS of Rule 32

Ea
rly

bir
d

430 Yasmina Rahmoune, Allaoua Chaoui

Rule 33: DataObject2PinIn (Priority
33):

LHS and RHS of Rule 33

Rule 34: PinOut2PinInLink (Priority
34):

LHS and RHS of Rule 34

Rule 35: DeleteDataObject (Priority
35):

LHS and RHS of Rule 35

Rule 36: Activity2ActivityLink
(Priority 36):

LHS and RHS of Rule 36

Rule 37:
CollectionDataObject2CentralBuffer

(Priority 37):

LHS and RHS of Rule 37

Rule 38: DataStore2DataStoreNode
(Priority 38):

LHS and RHS of Rule 38

Rule 39:
Activity/DataStoreBidirectionalLink

(Priority 39):

LHS and RHS of Rule 39

Rule 40: Activity2DataStoreLink
(Priority 40):

LHS and RHS of Rule 40

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 431

Rule 41: DataStore2ActivityLink
(Priority 41):

LHS and RHS of Rule 41

Rule 42: DataInPut2ActivityLink
(Priority 42):

LHS and RHS of Rule 42

Rule 43: Activity2DataOutPutLink
(Priority 43):

LHS and RHS of Rule 43

Rule 44: DeleteStart (Priority 44):

LHS and RHS of Rule 44

Rule 45: DeleteStartMsgEvent
(Priority 45):

LHS and RHS of Rule 45

Rule 46: DeleteActivity (Priority 46):

LHS and RHS of Rule 46

Rule 47: DeleteEnd (Priority 47):

LHS and RHS of Rule 47

Rule 48: DeleteEndMsgEvent
(Priority 48):

LHS and RHS of Rule 48

Ea
rly

bir
d

432 Yasmina Rahmoune, Allaoua Chaoui

Rule 49: DeleteParallel(And-Split)
(Priority 49):

LHS and RHS of Rule 49

Rule 50:
DeleteSynchronization(And-Join)

(Priority 50):

LHS and RHS of Rule 50

Rule 51:
DeleteExclusiveChoice(OR-Split)

(Priority 51):

LHS and RHS of Rule 51

Rule 52: DeleteSimpleMerge(OR-Join)
(Priority 52):

LHS and RHS of Rule 52

Rule 53: DeleteDataStore (Priority
53):

LHS and RHS of Rule 53

Rule 54: DeleteCollectionDataObject
(Priority 54):

LHS and RHS of Rule 54

Rule 55: DeleteDataInPut (Priority
55):

LHS and RHS of Rule 55

Rule 56: DeleteDataOutPut (Priority
56):

LHS and RHS of Rule 56

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 433

Rule 57: DeleteActEvent (Priority
57):

LHS and RHS of Rule 57

Rule 58: DeleteSub-Process (Priority
58):

LHS and RHS of Rule 58

The main challenge that is encountered in the part of a data object transformation
is the existence of two representations of a single piece of data between the activities
in UML-AD. The result of the transformation of the example that is shown in Part
(a) of Figure 7 is provided in Parts (b) and (c) of Figure 7.

Figure 7. (a) data object in BPMN; (b) object node; and (c) data input and output pin in
UML-AD

In our graph grammar, we have dealt with all of the element representations in
UML-AD such as the object node, data input, and output pin. So, we have allowed
the user to choose the desired notation in the target model.

• First case: if the user desires to use a data input pin and a data output pin
notations (Figure 7[c]), he/she can click the “DataPin” button. As a result, Rules
29 and 30 are automatically deactivated.

• Second case: if the user desires to use an object node between activities (Figure
7[b]), he/she must click the “ObjectNode” button. As a result, Rules 31 through
35 are automatically deactivated.
Discussion: ‘Expressive power’ refers to the language ability to present different

kinds of process constructs, patterns, and situations that appear in business processes.
This aspect should be considered when analyzing the representation power of BPMN
and UML AD (in particular, the complexity of the graphical symbols that are used
to represent the real business processes of an organization). In many cases, BPMN

Ea
rly

bir
d

434 Yasmina Rahmoune, Allaoua Chaoui

and UML-AD use similar symbols to describe business processes; however, there are
elements of business processes that can be modeled in BPMN that use only one symbol,
where their representations in UML-AD require groups of symbols.

5. Case Studies

The goal of this section is to illustrate the transformation process and the execution
of our proposed graph grammar that transforms source business process models to
target UML-AD models.

In order to present and test the proposed rules, we chose three examples that
contained most of the elements that are studied in our contribution. The first example
contained only flow object elements, while the second example included certain data
elements such as Data Inputs, Data Outputs, and Data Store. The third model was
comprised other data elements like Message Start Event, Message End Event, and
Data Object.

To test our transformation, we followed the three well-known levels of testing:
unit testing, integration testing, and system testing. In addition to the testing, we
performed the verification of the transformation itself in the following section.

5.1. First case study

We focused on the transformation of flow object elements (events, activities, and
gateways) and their corresponding elements in the control part of UML-AD. Table 3
shows some steps of the transformation of the travel-booking process to an activity
diagram. This was the first version of our tool that contained only control flow (in the
first version of our tool, we proposed only 44 rules).

Table 3
Some steps of transformation of travel booking process to UML-AD

Invoking transformation rule After execution of Rule 3 seven times

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 435

After execution of Rule 5 After execution of Rule 6

After execution of Rule 10 After execution of Rule 15

After execution of Rule 43 two times After execution of last step

In the following case studies, we focused on the transformation of data elements
(data object, data input, data output, database, etc.) and their corresponding elements
in a UML activity diagram. After enriching and enhancing our visual-modeling
environment and the graph grammar that was proposed in the first case study, we
have illustrated the execution of the added transformation rules.

Ea
rly

bir
d

436 Yasmina Rahmoune, Allaoua Chaoui

5.2. Second case study

We chose a simple example of a so-called create-offer process ; this was a sub-process
of the car-purchasing process [20]. In Table 4, we present the transformation of the
preceding process to a corresponding UML activity diagram by our tool step by step.
We only selected some figures of this transformation, as it would occupy a large amount
of space.

Table 4
Some steps of transformation of Create Offer process to UML-AD

Create Offer process in BPMN created by our proposed tool

After execution of Rule 2 one time

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 437

After execution of Rule 4 one time

After execution of Rule 6 six times

After execution of Rule 43 one time

Ea
rly

bir
d

438 Yasmina Rahmoune, Allaoua Chaoui

After execution of Rule 46 six times

After execution of last Rule 58 one time

In this case study, we have illustrated the transformation of certain elements
such as data inputs and data outputs to an activity parameter node in UML-AD
and have specified the name as well as the type of data (input or output). For this
reason, Rule 2 was executed two times for the data input (Driver’s License, Finance
From, and Appraisal From). Thereafter, Rule 3 was executed one time for the data
output (offer documents). Moreover, the inputs and outputs served as place holders
for the data requirements that indicated important information. We also presented
the transformation of a data store and its name in this example.

5.3. Third case study

We chose a purchase-order process; we selected this process because it contains some
important elements that have not been studied previously (such as Message Start
Event, Message End Event, and Data Object). This process was composed of several
activities. We used abbreviations in order to reduce our source model during the
transformation: A – Receive Order; B – Fill Order; C – Ship Order; D – Send Invoice;
E – Make Payment; F – Accept Payment; and G – Close Order. In this process model,
the first activity was to receive a requested order. If the order was accepted and all of

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 439

the required information was filled out, the payment was accepted, and the order was
shipped. Figure 8 illustrates the purchase-order-process example that was created by
our tool.

Figure 8. Purchase-order process example

In Table 5, we present the transformation of this process to a corresponding
UML activity diagram by our tool step by step. We have selected some figures of this
transformation.

Table 5
Some steps of transformation of purchase-order process to UML-AD

After execution of Rule 5 one time

Ea
rly

bir
d

440 Yasmina Rahmoune, Allaoua Chaoui

After execution of Rule 6 one time

After execution of Rule 6 seven times

After execution of Rule 36 two times

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 441

After execution of Rule 46 seven times

After execution of Rule 52

6. Verification and Testing of Proposed Approach

To prove the transformation approaches, there are several methods: a theoretical case
study, a practical case, or an automatic tool that ensures the model’s transformation.
In our approach, we have proven our rules by a developed tool that was tested on
several cases studies.

Recently, several works have focused on the verification of model transformation
([1, 3, 4, 28, 32]). Actually, model transformations have a variety of properties that
are needed to ensure their correctness, such as termination, confluence, syntactic
correctness, and others [31]. Termination and confluence properties are important
requirements for practical applications of model transformations; they guarantee that
a model transformation always terminates and produces a unique result [28].

In order to check our proposed approach, we have discussed and established the
verification of the important properties.

Ea
rly

bir
d

442 Yasmina Rahmoune, Allaoua Chaoui

6.1. Termination

The termination property refers to Turing’s halting problem; it guarantees the existence
of target model(s) or must ensure that a model transformation will end.

In our transformation approach, we used a global variable named “Visited” in the
AToM3 tool. This is a Boolean variable; its initial value is false (Visited =0). The
use of this variable allows us to avoid infinite loops during the transformation (the
execution of the same rule on the same element).

For more detail, each rule in the grammar may feature initialization, condition,
and action. The following instructions (described in the Python language) give the
initialization, condition, and action of Rule 1.

Table 6
Basic instructions used in AToM3

Initialization for node in graph.listNodes[’SubProcess’]:node.Visited = 0
Condition node = self.getMatched(graphID,self.LHS.nodeWithLabel(1)) return

node.Visited == 0
Action node = self.getMatched(graphID,self.LHS.nodeWithLabel(1))

node.Visited = 1

After the execution of each rule of the source model, all of the visited elements
change their values to “true” (Visited= 1 – see Table 6). At the end of the transforma-
tion, no rule can be executed.

The use of the “Visited” variable ensures the visit and transformation of all of
the elements of the source model. In addition, our rules ensure the transformation
of all elements (studied elements) and their links to the source model. At the end of
the transformation process of the model source, all of the elements have been deleted
(and only the target model remains).

Consequently, we have deduced that the termination property is verified.

6.2. Confluence (Determinism)

The determinism property refers to the notion of confluence; it ensures that the
transformations always produce the same result (target model).

In our transformation, we have proposed a graph grammar that contains 58 rules.
Each rule has a priority (see Table 2); this priority is invariant and very important
in the transformation process, as these rules will be applied in ascending order until
no more rules are applied. This is one of the reasons for using a graph grammar in
AToM3.

The graph grammar in AToM3 consists of an initial action, a set of rules, and a
final action:

• The initial action specifies the actions to be executed before the rules.

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 443

• The rules are ranked according to a priority in order to guide the choice of the
rule to apply. For any iteration, all of the rules are tested in the ascending order
of their priorities. Each rule may also have additional conditions of application
and the actions to perform (for example, for Rule 1 – see Table 6).

• The final action specifies the actions to be carried after the application of the
rules.
Each time we execute the transformation of the source model, the transformation

follows the same predefined rule order (priority); this ensures repeating the same
steps and generating the same target model. Hence, the use of priorities ensures the
confluence property in our proposed graph transformation.

6.3. Syntactic Correctness

For the syntactic correctness of the process of transformation, we were inspired by
the definitions and propositions that were proposed in [28]. This property can be
guaranteed by the theoretical foundation of graph rewriting systems. These systems
try to iteratively apply rules that are defined in the graph grammar. These rules
specify the visual correspondence between the elements in the source and target models
at the meta-model level. Thus, the target models are syntactically correct; all of the
new elements that are created by the RHS (right-hand sides) of the rules conform to
the target meta-model (the syntactic correctness property is verified).

7. Conclusion

Model transformation is one of the most important advantages of the MDE approach.
This allows for exchanges between different communities and can be used to transform
the models of one community to equivalent models that can be used by the other
one. In this paper, we have proposed a transformation approach for creating a bridge
between the BPMN and UML-AD communities. To this end, we have proposed an
approach and a visual-modeling tool that are based on graph transformation, and we
have used the AToM3 tool. This approach allows for the transformation of business
process models to UML activity diagrams; it is based on the transformation of flow
objects and data elements (data object and data flow).

We used UML class diagram formalism as a meta-formalism for the two proposed
meta-models: the first one was for BPMN (source model), and the second for UML-AD
(target model). Then, we proposed a graph grammar that contained 58 rules using
the AToM3 tool and illustrated this transformation with three examples.

To make this practical, we plan to develop exporters and importers for loading
actual BPMN models that are developed by BPMN editors, transform them, and store
their equivalent UML-AD versions in a syntax that is accepted by UML tools.

We also plan to transform the rest of the elements of BPMN to UML-AD and
enrich the target model semantically by using a UML profile approach. In addition,
we will check our proposed graph grammar by using one of the techniques for verifying

Ea
rly

bir
d

444 Yasmina Rahmoune, Allaoua Chaoui

model transformation (such as the GROOVE tool – GRaphs for Object-Oriented
VErification) [19].

References

[1] Ab Rahim L., Whittle J.: A survey of approaches for verifying model trans-
formations, Software & Systems Modeling, vol. 14(2), pp. 1003–1028, 2015.
doi: 10.1007/s10270-013-0358-0.

[2] Amjad A., Haq S.U., Abbas M., Arif M.H.: UML Profile for Business Process Mod-
eling Notation. In: 2021 International Bhurban Conference on Applied Sciences
and Technologies (IBCAST), pp. 389–394, IEEE, 2021.

[3] Amrani M., Combemale B., Lúcio L., Selim G.M., Dingel J., Le Traon Y.,
Vangheluwe H., Cordy J.R.: Formal verification techniques for model transforma-
tions: A tridimensional classification, Journal of Object Technology, vol. 14(3),
pp. 1–43, 2015. doi: 10.5381/jot.2015.14.1.a3.

[4] Amrani M., Syriani E., Wimmer M., Bill R., Gogolla M., Hermann F., Lano K.:
Report on the Third Workshop on Verification of Model Transformations (VOLT
2014). In: VOLT@ STAF, pp. 1–9, 2014.

[5] Andries M., Engels G., Habel A., Hoffmann B., Kreowski H.J., Kuske S., Plump D.,
Schürr A., Taentzer G.: Graph transformation for specification and programming,
Science of Computer programming, vol. 34(1), pp. 1–54, 1999.

[6] Bao N.Q.: A proposal for a method to translate BPMN model into UML activity
diagram. In: 13th International Conference on Business Information Systems,
2010.

[7] Birkmeier D.Q., Klöckner S., Overhage S.: An Empirical Comparison of the
Usability of BPMN and UML Activity Diagrams for Business Users. In: P.M.
Alexander, M. Turpin, J.P. van Deventer (Eds.), 18th European Conference on
Information Systems, ECIS 2010, Pretoria, South Africa, June 7–9, 2010, 2010.
http://aisel.aisnet.org/ecis2010/51.

[8] Bouzidi A., Haddar N., Abdallah M.B., Haddar K.: Deriving use case models from
BPMN models. In: 2017 IEEE/ACS 14th International Conference on Computer
Systems and Applications (AICCSA), pp. 238–243, IEEE, 2017.

[9] Cibran M.A.: Translating BPMN models into UML activities. In: International
Conference on Business Process Management, pp. 236–247, Springer, 2008. doi: 10.
1007/978-3-642-00328-8_23.

[10] De Lara J.: A Tool for Multi-formalism and Meta-Modeling, Home page, 2003.
http://http://atom3.cs.mcgill.ca/.

[11] De Lara J., Guerra E.: Towards the uniform manipulation of visual and textual
languages in AToM3. In: Proceedings of III Jornadas de Programación y Lenguajes.
Universidad de Alicante, Alicante, Noviembre 12-14, 2003, 2003.

https://doi.org/10.1007/s10270-013-0358-0
https://doi.org/10.1007/s10270-013-0358-0
https://doi.org/10.1007/s10270-013-0358-0
https://doi.org/10.5381/jot.2015.14.1.a3
https://doi.org/10.5381/jot.2015.14.1.a3
https://doi.org/10.5381/jot.2015.14.1.a3
http://aisel.aisnet.org/ecis2010/51
http://aisel.aisnet.org/ecis2010/51
http://aisel.aisnet.org/ecis2010/51
https://doi.org/10.1007/978-3-642-00328-8_23
https://doi.org/10.1007/978-3-642-00328-8_23
https://doi.org/10.1007/978-3-642-00328-8_23
http://http://atom3.cs.mcgill.ca/
http://http://atom3.cs.mcgill.ca/

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 445

[12] De Lara J., Vangheluwe H.: AToM3: A Tool for Multi-Formalism Modeling and
Meta-Modeling, LNCS 2306, Presented at Fundamental Approaches to Software
Engineering-FASE, vol. 2, 2002.

[13] De Lara J., Vangheluwe H.: Using atom3 as a meta-case tool. In: ICEIS, vol. 2,
2002.

[14] Dörr H.: Efficient graph rewriting and its implementation, vol. 922, Springer
Science & Business Media, 1995.

[15] Elmansouri R., Hamrouche H., Chaoui A.: From uml activity diagrams to csp
expressions: A graph transformation approach using atom 3 tool, IJCSI Interna-
tional Journal of Computer Science Issues, vol. 8(2), pp. 368—-374, 2011.

[16] Elmansouri R., Meghzili S., Chaoui A.: A UML 2.0 Activity Diagrams/CSP
Integrated Approach for Modeling and Verification of Software Systems, Computer
Science, vol. 22(2), 2021.

[17] Foundation P.S.: Python (python language) Home page. http://www.python.org.
[18] Geambaşu C.V.: BPMN vs. UML activity diagram for business process modeling,

Accounting and Management Information Systems, vol. 11(4), pp. 934–945, 2012.
[19] GROOVE: GRaphs for Object-Oriented Verification, Home page, 2015. http:

//groove.cs.utwente.nl/.
[20] Guidebook B.A.: The car purchasing process. https://en.wikibooks.org/wiki/

Business_Analysis_Guidebook/Requirement_Gathering_Tools.
[21] H. E. E., M. P.: Business Modeling with UML: Business Patterns at Work, 2000.
[22] Hettab A., Kerkouche E., Chaoui A.: A graph transformation approach for

automatic test cases generation from UML activity diagrams. In: Proceedings
of the Eighth International C* Conference on Computer Science & Software
Engineering, pp. 88–97, 2015.

[23] Kerkouche E., Chaoui A., Bourennane E.B., Labbani O.: A UML and Colored Petri
Nets Integrated Modeling and Analysis Approach using Graph Transformation,
Journal of Object Technology, vol. 9(4), pp. 25—-43, 2010. doi: 10.5381/jot.2010.
9.4.a2.

[24] Kerkouche E., Elmansouri R., Chaoui A., Khalfaoui K.: An Automatic approach
to verify business process models using INA petri nets analyzer, International
Journal of Computer and Information Technology (ISSN, vol. 3(4), pp. 706–711,
2014.

[25] Kerkouche E., Khalfaoui K., Chaoui A.: A rewriting logic-based semantics and
analysis of UML activity diagrams: a graph transformation approach, International
Journal of Computer Aided Engineering and Technology, vol. 12(2), pp. 237–262,
2020.

[26] Kerkouche E., Khalfaoui K., Chaoui A., Aldahoud A.: UML Activity Diagrams and
Maude Integrated Modeling and Analysis Approach Using Graph Transformation.
In: 7th International Conference on Information Technology, pp. 515–521, 2015.
doi: 10.15849/icit.2015.0093.

http://www.python.org
http://www.python.org
http://groove.cs.utwente.nl/
http://groove.cs.utwente.nl/
http://groove.cs.utwente.nl/
https://en.wikibooks.org/wiki/Business_Analysis_Guidebook/Requirement_Gathering_Tools
https://en.wikibooks.org/wiki/Business_Analysis_Guidebook/Requirement_Gathering_Tools
https://en.wikibooks.org/wiki/Business_Analysis_Guidebook/Requirement_Gathering_Tools
https://doi.org/10.5381/jot.2010.9.4.a2
https://doi.org/10.5381/jot.2010.9.4.a2
https://doi.org/10.5381/jot.2010.9.4.a2
https://doi.org/10.5381/jot.2010.9.4.a2
https://doi.org/10.15849/icit.2015.0093
https://doi.org/10.15849/icit.2015.0093
https://doi.org/10.15849/icit.2015.0093

Ea
rly

bir
d

446 Yasmina Rahmoune, Allaoua Chaoui

[27] Korherr B., List B.: A UML 2 profile for event driven process chains. In: Research
and Practical Issues of Enterprise Information Systems, pp. 161–172, Springer,
2006.

[28] Küster J.M.: Definition and validation of model transformations, Software &
Systems Modeling, vol. 5(3), pp. 233–259, 2006. doi: 10.1007/s10270-006-0018-8.

[29] List B., Korherr B.: A uml 2 profile for business process modelling. In: Interna-
tional Conference on Conceptual Modeling, pp. 85–96, Springer, 2005.

[30] Macek O., Richta K.: The BPM to UML activity diagram transformation using
XSLT. In: Dateso, vol. 9, pp. 119–129, 2009.

[31] Meghzili S., Chaoui A., Strecker M., Kerkouche E.: On the Verification of UML
State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL.
In: International Conference on Information Reuse and Integration (IRI), pp. 419–
426, IEEE, 2017. doi: 10.1109/IRI.2017.63.

[32] Meghzili S., Chaoui A., Strecker M., Kerkouche E.: Verification of Model Transfor-
mations Using Isabelle/HOL and Scala, Information Systems Frontiers, vol. 21(1),
pp. 45–65, 2019.

[33] Meghzili S., Chaoui A., Strecker M., Kerkouche E.: An approach for the transforma-
tion and verification of BPMN models to colored petri nets models, International
Journal of Software Innovation (IJSI), vol. 8(1), pp. 17–49, 2020.

[34] OMG: Business Process Model and Notation, 2013. http://www.omg.org/spec/
BPMN/2.0.2/.

[35] OMG: Unified Modeling Language, 2015. http://www.omg.org/spec/UML/2.5/.
[36] Rahmoune Y., Chaoui A., Kerkouche E.: A framework for modeling and analysis

UML Activity diagram using graph transformation, Procedia Computer Science,
vol. 56, pp. 612–617, 2015. doi: 10.1016/j.procs.2015.07.261.

[37] Recker J., Zur Muehlen M., Siau K., Erickson J., Indulska M.: Measuring method
complexity: UML versus BPMN. In: Proceedings of the Fifteenth Americas
Conference on Information Systems, pp. 1–9, Association for Information Systems,
2009.

[38] Rodríguez A., Fernández-Medina E., Piattini M.: Analysis-level classes from secure
business processes through model transformations. In: International Conference
on Trust, Privacy and Security in Digital Business, pp. 104–114, Springer, 2007.
doi: 10.1007/978-3-540-74409-2_13.

[39] Rodríguez A., Fernández-Medina E., Piattini M.: CIM to PIM transformation: A
reality. In: Research and Practical Issues of Enterprise Information Systems II,
pp. 1239–1249, Springer, 2008. doi: 10.1007/978-0-387-76312-5_50.

[40] Rozenberg G.: Handbook of graph grammars and computing by graph transforma-
tion, vol. 1, World Scientific, 1997.

[41] Russell N., van der Aalst W.M., Ter Hofstede A.H., Wohed P.: On the suitability
of UML 2.0 activity diagrams for business process modelling. In: Proceedings
of the 3rd Asia-Pacific conference on Conceptual modelling, vol. 53, pp. 95–104,
Australian Computer Society, Inc., 2006.

https://doi.org/10.1007/s10270-006-0018-8
https://doi.org/10.1007/s10270-006-0018-8
https://doi.org/10.1109/IRI.2017.63
https://doi.org/10.1109/IRI.2017.63
https://doi.org/10.1109/IRI.2017.63
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
https://doi.org/10.1016/j.procs.2015.07.261
https://doi.org/10.1016/j.procs.2015.07.261
https://doi.org/10.1016/j.procs.2015.07.261
https://doi.org/10.1007/978-3-540-74409-2_13
https://doi.org/10.1007/978-3-540-74409-2_13
https://doi.org/10.1007/978-3-540-74409-2_13
https://doi.org/10.1007/978-0-387-76312-5_50
https://doi.org/10.1007/978-0-387-76312-5_50
https://doi.org/10.1007/978-0-387-76312-5_50

Ea
rly

bir
d

Automatic Bridge between BPMN Models and UML Activity Diagrams... 447

[42] Suchenia A., Łopata P., Wiśniewski P., Stachura-Terlecka B.: Towards UML
representation for BPMN and DMN models. In: MATEC Web of Conferences,
vol. 252, p. 02007, EDP Sciences, 2019.

[43] Swain R.K., Panthi V., Behera P.K.: Generation of test cases using activity
diagram, International journal of computer science and informatics, vol. 3(2),
pp. 1–10, 2013.

[44] White S.A.: Process modeling notations and workflow patterns, Workflow hand-
book, vol. 2004, pp. 265–294, 2004.

[45] Wohed P., van der Aalst W.M., Dumas M., ter Hofstede A.H., Russell N.: On the
suitability of BPMN for business process modelling. In: International conference
on business process management, pp. 161–176, Springer, 2006. doi: 10.1007/
11841760_12.

Affiliations

Yasmina Rahmoune
Department of Computer Science, Assia Djebar Teacher Training School of Constantine,
Constantine, Algeria, MISC Laboratory, Abdelhamid Mehri Constantine2 University,
Constantine, Algeria, yasmina.rahmoune@univ-constantine2.dz

Allaoua Chaoui
University Constantine 2-Abdelhamid Mehri, MISC Laboratory, Department of Computer
Science and Its Applications, Faculty of Ntic, Constantine, Algeria,
allaoua.chaoui@univ-constantine2.dz

Received: 28.06.2021
Revised: 14.10.2021
Accepted: 04.04.2022

https://doi.org/10.1007/11841760_12
https://doi.org/10.1007/11841760_12
https://doi.org/10.1007/11841760_12
https://doi.org/10.1007/11841760_12
yasmina.rahmoune@univ-constantine2.dz
allaoua.chaoui@univ-constantine2.dz

	Introduction
	Related Works
	Background of Model Transformation
	Graph transformations
	Graph grammar
	Principle of transformation rules
	Application of rules
	AToM3

	Proposed Approach
	Overview of Proposed Approach
	Business Process Meta-Model
	Activity Diagram Meta-Model
	Proposed Graph Grammar

	Case Studies
	First case study
	Second case study
	Third case study

	Verification and Testing of Proposed Approach
	Termination
	Confluence (Determinism)
	Syntactic Correctness

	Conclusion

