
South African Statist. J. (2016) 50, 103 – 122 103

BIVARIATE NONCENTRAL DISTRIBUTIONS: AN
APPROACH VIA THE COMPOUNDING METHOD

Johan Ferreira 1

Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria,
Pretoria, South Africa

e-mail: johan.ferreira@up.ac.za

Andriette Bekker
Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria,

Pretoria, South Africa

Mohammad Arashi
Department of Statistics, School of Mathematical Sciences, University of Shahrood, Shahrood,

Iran.
Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria,

Pretoria, South Africa

Key words: Bivariate chi-square distribution, bivariate F distribution, composites, compounding,
noncentral, Poisson distribution.

Abstract: This paper enriches the existing literature of bivariate noncentral distributions by propos-
ing bivariate noncentral generalised chi-square and F distributions via the employment of the com-
pounding method with Poisson probabilities. This method has been used to a limited extent to obtain
univariate noncentral distributions; this study extends some results in literature to the corresponding
bivariate setting. The process which is followed to obtain such bivariate noncentral distributions is
systematically described and motivated. Some distributions of composites (univariate functions of
the dependent components of the bivariate distributions) are derived, in particular the product, ratio,
and proportion. Furthermore, an example of possible application is given and discussed to illustrate
the versatility of the proposed models.

1. Introduction

Bivariate distributions can be constructed in a variety of ways from univariate settings (see
Balakrishnan and Lai, 2009). Patnaik (1949) showed that the noncentral chi-square distribution
with n degrees of freedom and noncentrality parameter θ can be represented as a weighted sum of
univariate chi-square probabilities with weights equal to the probabilities of a Poisson distribution
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with expected value θ

2 . In the text by Johnson, Kotz and Balakrishnan (1995, p. 433), the noncentral
chi-square distribution is presented as follows:
Let X = ∑

n
i=1 U2

i , where U1,U2, ...,Un are independent random variables and Ui is normally dis-
tributed with mean µi and unit variance. Then the probability density function (pdf) of a noncentral
chi-square distributed random variable X with n degrees of freedom, and noncentrality parameter
θ = ∑

n
i=1 µ2

i is given by

fX (x) =
∞

∑
k=0

x
n
2+k−1e−

1
2 x

2
n
2+k

Γ
( n

2 + k
) e−

θ
2
(

θ

2

)k

k!
, x > 0

where n > 0 and θ > 0. This pdf can be viewed as a compound pdf:

fX (x) =
∞

∑
k=0

fX (x|k)gK(k)

such that fX (x|k) = x
n
2 +k−1e−

1
2 x

2
n
2 +k

Γ( n
2+k)

, x > 0, and gK(k) =
e−

θ
2 ( θ

2 )
k

k! , k = 0,1,2,3, ....

The genesis for this paper originated from the papers by Yunus and Khan (2011) and Van den
Berg, Roux and Bekker (2013), with Khan, Pratikno, Ibrahim and Yunus (2015) making recent
valuable contributions. In this paper the authors use the above univariate description as a departure
point for constructing an analogy to the bivariate setting. Yunus and Khan (2011) mentioned that the
compounding method to derive distributions by mixing more than one distribution is well known in
the literature; in this paper, we propose the following:
Description 1 An (unconditional) bivariate noncentral pdf can be obtained from a (conditional)
bivariate central pdf in the following manner:

fX1,X2(x1,x2) =
∞

∑
k1=0

∞

∑
k2=0

fX1,X2(x1,x2|k1,k2)gK1(k1)gK2(k2). (1)

Here, gKv(kv) =
e−

θv
2
(

θv
2

)kv

kv! ,v = 1,2 is the Poisson weights where θv are the noncentrality parame-
ters, and f (x1,x2|k1,k2) being the pdf of some suitable conditional bivariate central distribution for
X1 and X2 .

By using this method a new representation of a bivariate noncentral generalised chi-square dis-
tribution is proposed here, (shown to be equivalent to an existing distribution) by showing that their
respective moment generating functions are equal. The construction of this distribution is system-
atically described and outlined. Subsequently, a bivariate noncentral generalised F distribution is
derived. Furthermore, some univariate distributions of composites (a univariate function of the com-
ponents of the bivariate distribution) are derived for both the bivariate noncentral generalised chi-
square distribution, and its F counterpart. Al-Ruzaiza and El-Gohary (2008) discuss the relevance
and application of such univariate distributions, considering their natural occurrence in, amongst
others, genetics, nuclear physics, and meteorology. The composites under consideration in this pa-
per are, the product of the components (W1 = X1X2), the ratio of the components (W2 =

X1
X2

) (termed,

the ratio of type II), and the proportion of the components (W3 =
X1

X1+X2
) (termed, the ratio of type I).

In Section 2, this alternative representation of an existing bivariate noncentral generalised chi-
square distribution is systematically derived and motivated. Section 3 includes the development
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in a similar way of a bivariate noncentral generalised F distribution, along with an expression for
its products moments. Some univariate distributions of the composites are derived for both chi-
square and F distributions considered in this paper in Section 4. An application of derived results is
proposed in Section 5, and conclusions are discussed in Section 6.

2. An alternative method

In this section, an alternative expression for an existing bivariate noncentral generalised chi-square
distribution is proposed. This distribution is systematically constructed by using the following ap-
proach: a) employ the bivariate central generalised chi-square distribution as defined by Van Den
Berg (2010), and impose conditions on the degrees of freedom; b) remove the imposed condition by
using Poisson weights; and c) the resulting pdf is that of the corresponding bivariate noncentral gen-
eralised chi-square distribution. Furthermore, we show that the moment generating function (mgf)
of the new proposed distribution is identical to that of the one derived in Van Den Berg (2010). The
section concludes with a brief discussion regarding the obtained results.

2.1. Probability density function

Suppose X1 and X2 are random variables, each having a (central) chi-square distribution with n1 and
n2 degrees of freedom respectively. The joint pdf is constructed such that the marginal distributions
are correlated. Van Den Berg (2010) defined a joint mgf of X1 and X2 of the form

MX1,X2(t1, t2) = (1−2t1)
− n1

2 (1−2t2)
− n2

2

(
1− 4ξ 2t1t2

(1−2t1)(1−2t2)

)− r
2

(2)

where n1 ≥ r and n2 ≥ r, with the pdf of this distribution given as

fX1,X2(x1,x2) = x
n1
2 −1

1 e−
1
2 x1x

n2
2 −1

2 e−
1
2 x2

∞

∑
j=0

( r
2

)
j j!ξ 2 j

2
1
2 (n1+n2)

×
L

n1
2 −1

j

( 1
2 x1
)

L
n2
2 −1

j

( 1
2 x2
)

Γ
( n1

2 + j
)

Γ
( n2

2 + j
) , x1,x2 > 0 (3)

where n1,n2,r > 0, n1 ≥ r and n2 ≥ r, −1≤ ξ ≤ 1 , and Ln
j (·) is the Laguerre polynomial as defined

in Kotz, Balakrishnan, Read, Vidakovic and Johnson (2006, p. 9). This joint distribution of X1 and
X2 (see (3)) is referred to as the bivariate generalised chi-square distribution. ξ is the correlation
component, r is an additional form parameter, and Γ(·) is the gamma function.
Along with the bivariate central generalised chi-square mgf (2) defined by Van Den Berg (2010), an
mgf for a bivariate noncentral generalised chi-square distribution was also defined, given by

MX1,X2(t1, t2) = (1−2t1)
− n1

2 (1−2t2)
− n2

2

(
1− 4ξ 2t1t2

(1−2t1)(1−2t2)

)− r
2

×eθ1t1(1−2t1)−1
eθ2t2(1−2t2)−1

, t1, t2 > 0. (4)
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This distribution also contains the additional parameter r, and the corresponding pdf is given by

fX1,X2(x1,x2) = x
n1
2 −1

1 e−
1
2 x1x

n2
2 −1

2 e−
1
2 x2

∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

( r
2

)
j (−θ1)

k1 (−θ2)
k2

Γ
( n1

2 + j+ k1
)

Γ
( n2

2 + j+ k2
)

× ( j+k1)!( j+k2)!
j!k1!k2!

ξ 2 j

2
1
2 (n1+n2)+k1+k2

L
n1
2 −1

j+k1

(
1
2

x1

)
L

n2
2 −1

j+k2

(
1
2

x2

)
, x1,x2>0

(5)

where n1,n2,r > 0, and n1 ≥ r and n2 ≥ r. The parameter ξ , where −1 ≤ ξ ≤ 1, is a component
of the product-moment correlation between X1 and X2. The parameters θ1,θ2 > 0 are the noncen-
trality parameters respectively, and the marginal distribution of X1 and X2 are univariate noncentral
chi-square distributions with parameters (n1,θ1) and (n2,θ2) (see Van Den Berg, 2010). Consider
Description 1 in the introduction of this paper. To this end, a conditional bivariate central chi-square
pdf needs to be defined and is considered next.

Definition 1 Let (X1,X2|(K1 = k1,K2 = k2)) have a conditional bivariate generalised chi-square
distribution (see (3)) with pdf given by

fX1,X2(x1,x2|k1,k2) = x
n1
2 +k1−1

1 e−
1
2 x1x

n2
2 +k2−1

2 e−
1
2 x2

∞

∑
j=0

( ( r
2

)
j j!ξ 2 j

2
1
2 (n1+n2+2k1+2k2)

)

×
L

n1
2 +k1−1

j

( 1
2 x1
)

L
n2
2 +k2−1

j

( 1
2 x2
)

Γ
( n1

2 + j+ k1
)

Γ
( n2

2 + j+ k2
) , x1,x2 > 0 (6)

where n1,n2,r > 0 and n1 ≥ r and n2 ≥ r. As previously, ξ (where−1≤ ξ ≤ 1) is a parameter which
is a component of the product-moment correlation between X1 and X2. The conditional values k1

and k2 have domain such that kv ≥ 0, v = 1,2.

By substituting (6) as the conditional bivariate distribution in (1), an alternative representation to the
bivariate noncentral generalised chi-square distribution (see (5)) is proposed.

Definition 2 The joint pdf of X1 and X2, that is an alternative representation of the bivariate
noncentral generalised chi-square pdf (5), is proposed by substituting (6) in (1), with the following
result:

fX1,X2(x1,x2) =
∞

∑
k1=0

∞

∑
k2=0

fX1,X2(x1,x2|k1,k2)gK1(k1)gK2(k2)

=
∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

x
n1
2 +k1−1

1 e−
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2 x1x
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2 e−
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×
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j j!ξ 2 j

2
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2 (n1+n2+2k1+2k2)
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j

( 1
2 x1
)
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2 +k2−1

j

( 1
2 x2
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Γ
( n1

2 + j+ k1
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Γ
( n2

2 + j+ k2
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×
e−
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(
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2

)k1

k1!

e−
θ2
2

(
θ2
2

)k2

k2!
, x1,x2 > 0 (7)
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where n1,n2,r > 0, n1 ≥ r and n2 ≥ r, −1≤ ξ ≤ 1, and noncentrality parameters θ1,θ2 > 0.

Evidently, the Poisson weights, namely gKv(kv) = e−θv/2 (θv/2)kv /kv!,v = 1,2, isolate the noncen-
trality parameters as suggested by (1) in a mathematically convenient way. In Figure 1, the contour
plots for the distribution in (7) are given to illustrate its form for arbitrary parameter values: n1 = 10,
n2 = 12, and r = 2. In Figure 1, θ1 = 3 remains fixed together with ξ = 0.5, whilst θ2 varies.

Figure 1: From left to right, (7) for θ1 = 3, and θ2 = 5, 8, and 11.

For this change in θ2, it is seen that as θ2 increases, the pdf moves away from the axis of variable
X1 — which is to be expected, as θ2 represents the noncentrality of variable X2. Note that the same
effect would be observed for changes in θ1, but moving away from the axis of variable X2, because
of the symmetric nature of the noncentrality components (Poisson weights).
From (7), consider the moment generating function:

MX1,X2 (t1, t2) = E
(
et1X1+t2X2

)
=

∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

∫
∞

0
e−(

1
2−t1)x1x
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1
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)
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×
∫

∞

0
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(
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2
1
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)
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Γ
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)

Γ
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2 + k2 + j
) e−
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2
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2
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e−
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2

(
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2
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k2!
.

By applying Prudnikov, Brychkov and Marichev (1986b, eq. 2.19.3.3, p. 462) to both integrals
above, one obtains:

MX1,X2 (t1, t2) =
∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

ξ 2 j
( r

2

)
j

j!

(
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× 1
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e−
θ2
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2

)k2

k2!
.
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Now, by reordering the expression accordingly and rearranging constant terms, the following is
obtained:

MX1,X2 (t1, t2) = (1−2t1)
− n1

2 (1−2t2)
− n2

2

(
1− 4ξ 2t1t2

(1−2t1)(1−2t2)

)− r
2

×
∞

∑
k1=0

e−
θ1
2

(
θ1

2(1−2t1)

)k1

k1!

∞

∑
k2=0

e−
θ2
2

(
θ2

2(1−2t2)

)k2

k2!
.

By using the binomial expansion and the series expansion for the exponential function, the joint mgf
is given by

MX1,X2 (t1, t2) = (1−2t1)
− n1

2 (1−2t2)
− n2

2

(
1− 4ξ 2t1t2

(1−2t1)(1−2t2)

)− r
2

×eθ1t1(1−2t1)−1
eθ2t2(1−2t2)−1

, t1, t2 > 0

≡ (4).

Therefore, this distribution with pdf defined in (7) is an alternative representation of the bivariate
noncentral generalised chi-square distribution given in (5), i.e. (5) ≡ (7).

Remark 1 Note that when θ1 = θ2 = 0 in (4) the expression reduces to that of the moment generating
function of a bivariate central chi-square distribution (see (2)). This motivates the naming convention
of the bivariate noncentral chi-square distribution in (7).

3. A bivariate noncentral generalised F distribution

Since we have now seen that the proposal of the compounding idea works for the bivariate noncen-
tral generalised chi-square distribution, in this section we will apply the method given in Description
1 and define a new bivariate noncentral generalised F distribution. This new distribution is derived
by deriving a bivariate central generalised F distribution via the transformation approach from its
chi-square counterpart (see (3)). Next (in a similar manner as in Section 2.1), the systematic con-
struction of its noncentral counterpart is then proposed by defining a conditional bivariate central
generalised F distribution, and the condition subsequently removed with Poisson weights to obtain
the noncentral distribution.

3.1. Probability density function

A bivariate central generalised F distribution is derived in this section via the transformation ap-
proach, by using the bivariate central generalised chi-square distribution in (3).

Theorem 1 Let X1 and X2 be jointly distributed with pdf (3) with n1 and n2 degrees of freedom
respectively, and let Z ∼ χ2 (m) be an independent chi-square distributed random variable with m
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degrees of freedom. Let (Y1,Y2) =

(
X1/n1
Z/m

,
X2/n2
Z/m

)
. The joint pdf of Y1 and Y2 is given by

fY1,Y2(y1,y2) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

(
ξ 2 j
( r

2

)
j (−1)l1+l2

( j
l1

)( j
l2

)
j!

)

×

(
Γ
( n1+n2+m

2 + l1 + l2
)

Γ
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2 + l1
)

Γ
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)

Γ
(m

2

))(n1

m

) n1
2 +l1 (n2

m

) n2
2 +l2

×y
n1
2 +l1−1

1 y
n2
2 +l2−1

2

(
1+

n1

m
y1+

n2

m
y2

)−( n1+n2+m
2 +l1+l2

)
, y1,y2 > 0

(8)

where n1,n2,r,m > 0, and −1≤ ξ ≤ 1.

Proof. The proof follows directly following a transformation. �

Definition 3 Let (Y1,Y2|(K1 = k1,K2 = k2)) have a conditional bivariate generalised F distribution
(see (8)) with pdf given by

fY1,Y2(y1,y2|k1,k2)

=
∞

∑
j=0

j

∑
l1=0

j

∑
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ξ 2 j
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)

Γ
( n1

2 + l1 + k1
)

Γ
( n2

2 + l2 + k2
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Γ
(m

2
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m
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)
, y1,y2 > 0 (9)

where n1,n2,r,m > 0. As previously, ξ (where−1≤ ξ ≤ 1 ) is a parameter which is a component of
the product-moment correlation between X1 and X2. The conditional values k1 and k2 have domain
such that k1,k2 ≥ 0.

Similar to Section 2.1, a bivariate noncentral generalised F distribution is obtained by applying
Description 1 for (8) together with the respective Poisson weights, and is defined next.

Definition 4 The joint pdf of Y1 and Y2, which represents the bivariate noncentral generalised F
distribution is proposed by substituting (9) in (1), with the following result:

fY1,Y2(y1,y2) =
∞

∑
k1=0

∞

∑
k2=0

fY1,Y2(y1,y2|k1,k2)gK1(k1)gK2(k2)
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2
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k2!
, y1,y2 > 0 (10)
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where

C =

(
(−1)l1+l2

( j
l1

)( j
l2

)
ξ 2 j
( r

2

)
j

j!

)(
Γ
( n1+n2+m

2 + l1 + l2 + k1 + k2
)

Γ
( n1

2 + l1 + k1
)

Γ
( n2

2 + l2 + k2
)

Γ
(m

2

))

×
(n1

m

) n1
2 +l1+k1

(n2

m

) n2
2 +l2+k2

(11)

and n1,n2,r,m > 0, and θ1,θ2 > 0. Again, due to the construction of the noncentrality, the Poisson
probability factors, namely gKv(kv) = e−θv/2 (θv/2)kv/kv!,v = 1,2, isolates the noncentrality param-
eters in a mathematically convenient way.

In Figure 2, the contour plots for the distribution in (10) are given to illustrate its form for arbitrary
parameter values: n1 = 10, n2 = 12, and r = 2. In Figure 2, θ1 = 3 remains fixed together with
ξ = 0.5, whilst θ2 varies. For the change in θ2, it is seen that as θ2 increases, the pdf becomes more

Figure 2: From left to right, (10) for θ1 = 3, and θ2 = 5, 8, and 11.

attracted to the axis of the corresponding variable X2. Similar to the shape analysis of the analogous
bivariate chi-square distribution in Section 2, this is to be expected.

Remark 2 In this section a bivariate noncentral generalised F distribution is proposed (see (10))
by using the compounding method (see (1)) after defining a conditional bivariate generalised F
distribution in (9). Note that the same bivariate distribution (10) would have been obtained as a
joint distribution for Y1 and Y2 with a transformation approach had the joint pdf of X1 and X2 been
the bivariate noncentral generalised chi-square distribution as given in (7), together with Z ∼ χ2 (m)

independent and Y1 =
X1/n1
Z/m

and Y2 =
X2/n2
Z/m

.

3.2. Product moments

In the following theorem, an expression for the product moments is derived.

Theorem 2 If Y1 and Y2 are jointly distributed according to (10), then the product moment, i.e.
E
(
Y q

1 Y s
2
)
, is given by
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where n1,n2,m,r > 0,−1≤ ξ ≤ 1, and θ1,θ2 > 0. B(·, ·) is the beta function with values of argument
such that B(·, ·) is well-defined.

Proof. From (10) (and C is the value defined in (11)):
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∞

∑
k1=0

∞

∑
k2=0

j

∑
l1=0

j

∑
l2=0

C
e−

θ1
2

(
θ1
2

)k1

k1!

e−
θ2
2

(
θ2
2

)k2

k2!

(
m
n2

) n1+n2+m
2 +l1+l2+k1+k2

×B
(

s+
n2

2
+l2+k2;

n1+m
2

+l1+k1−s
)∫

∞

0
y

q+ n1
2 +l1+k1−1

1

(
m+n1y1

n2

)−( n1+m
2 +l1+k1−s

)
dy1

which follows by applying Prudnikov, Brychkov and Marichev (1986a, eq. 2.2.4.24, p. 298): setting
α = s+ n2

2 + l2 + k2, ρ = n1+n2+m
2 + l1 + l2 + k1 + k2, and z = m

n2
+ n1

n2
y1. The remaining integral is

solved by applying the same result: setting then α = q+ n1
2 + l1 + k1, ρ = n1+m

2 + l1 + k1− s, and
z = m

n1
; and then, after some simplification, the proof is complete. �

4. Distributions of composites

The following two subsections contain the derivations of the pdfs for the univariate distributions of
composites; specifically, the product, the ratio of type II, and the ratio of type I. These composite
pdfs are derived for both their bivariate noncentral generalised chi-square- and F counterparts.

Similar to previous sections, the derivation of the composite pdfs will be described systemati-
cally: first obtaining the result for the conditional central case, and subsequently unconditioning the
conditional pdf to obtain the corresponding noncentral distribution counterpart.
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4.1. Chi-square distribution setting (see (7))

Here the results as derived by Van Den Berg (2010) are presented as Result A, B, and C respec-
tively. A similar approach as in Section 2.1 is followed where a conditional case is defined, and
subsequently unconditioned to obtain its noncentral counterparts.
Result A If X1 and X2 are jointly distributed according to (3), the pdf of W1 = X1X2 is given by

fW1(w1) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

Kτ (
√

w1)w

n1
2 +

n2
2 +l1+l2−2

2
1

(
ξ 2 j
( r

2

)
j (−1)l1+l2

( j
l1

)( j
l2

)
j!Γ
( n1

2 + l1
)

Γ
( n2

2 + l2
) )

×
(

1
2

) 1
2 (n1+n2+2l1+2l2−2)

, w1 > 0,

where n1,n2,r > 0, −1 ≤ ξ ≤ 1, τ = n2−n1
2 + l2− l1, and Kτ(·) the modified Bessel function of the

second kind (see Gradshteyn and Ryzhik, 2007, eq. 8.432.3, p. 917). �
Result B If X1 and X2 are jointly distributed according to (3), the pdf of W2 =

X1
X2

is given by

fW2(w2) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

w
n1
2 +l1−1

2

(1+w2)
n1+n2

2 +l1+l2

(
ξ 2 j
( r

2

)
j (−1)l1+l2

( j
l1

)( j
l2

)
j!B
( n1

2 +l1,
n2
2 +l2

) )
, w2 > 0,

where n1,n2,r > 0, −1≤ ξ ≤ 1. �
Result C If X1 and X2 are jointly distributed according to (3), the pdf of W3 =

X1
X1+X2

is given by

fW3(w3) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

w
n1
2 +l1−1

3 (1−w3)
n2
2 +l2−1

(
ξ 2 j
( r

2

)
j (−1)l1+l2

( j
l1

)( j
l2

)
j!B
( n1

2 +l1,
n2
2 +l2

) )
, 0 < w3 < 1,

where n1,n2,r > 0, −1≤ ξ ≤ 1. �

4.1.1. The probability density function of the product

In this section, the pdf of the product of the components of the bivariate distribution proposed in
(6) is given. Subsequently the noncentral case is proposed by using the compounding method. Let
W1 = X1X2.

Theorem 3 If X1 and X2 are jointly distributed according to (6), the pdf of the conditional distribu-
tion of W1|(K1 = k1,K2 = k2) is given by

fW1(w1|k1,k2) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

Kτ (
√

w1)w

n1
2 +

n2
2 +l1+l2+k1+k2−2

2
1

(( r
2

)
j ξ 2 j

j!

)

×
(−1)l1+l2

( j
l1

)( j
l2

)
Γ
( n1

2 + l1 + k1
)

Γ
( n2

2 + l2 + k2
)

×
(

1
2

) 1
2 (n1+n2+2l1+2l2+2k1+2k2−2)

, w1 > 0, (12)

where n1,n2,r > 0,−1≤ ξ ≤ 1, τ = n2−n1
2 + l2− l1+k2−k1, and Kτ(·) the modified Bessel function

of the second kind (see Gradshteyn and Ryzhik, 2007, eq. 8.432.3, p. 917). The conditional values
k1 and k2 have domain such that kv ≥ 0, v = 1,2.
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Proof. See Result A, Section 4.1. �

Corollary 1 Upon taking the pdf in (12) one can now obtain the (unconditional) noncentral distribu-
tion of W1 = X1X2 by substituting the Poisson weights and the corresponding summation operators
(similar to (1)):

fW1(w1) = fW1(w1|k1,k2)gK1(k1)gK2(k2)

=
∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

j

∑
l1=0

j

∑
l2=0

Kτ (
√

w1)w

n1
2 +

n2
2 +l1+l2+k1+k2−2

2
1

(( r
2

)
j ξ 2 j

j!

)

×
(−1)l1+l2

( j
l1

)( j
l2

)
Γ
( n1

2 + l1 + k1
)

Γ
( n2

2 + l2 + k2
) (1

2

) 1
2 (n1+n2+2l1+2l2+2k1+2k2−2)

×
e−

θ1
2

(
θ1
2

)k1

k1!

e−
θ2
2

(
θ2
2

)k2

k2!
, w1 > 0,

where n1,n2,r > 0, −1 ≤ ξ ≤ 1, τ = n2−n1
2 + l2 − l1 + k2 − k1, θ1,θ2 > 0, and gKv(kv) =

e−θv/2 (θv/2)kv/kv!, v = 1,2.

4.1.2. The probability density function of the ratio of type II

In this section, the pdf of the ratio of type II of the components of the bivariate distribution proposed
in (6) is given. Subsequently the noncentral case is proposed by using the compounding method.
Let W2 =

X1
X2

.

Theorem 4 If X1 and X2 are jointly distributed according to (6), the pdf of the conditional distribu-
tion of W2|(K1 = k1,K2 = k2) is given by

fW2(w2|k1,k2) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

w
n1
2 +l1+k1−1

2
(1+w2)τ

(( r
2

)
j ξ 2 j

j!

)

×
(−1)l1+l2

( j
l1

)( j
l2

)
B
( n1

2 + l1 + k1,
n2
2 + l2 + k2

) , w2 > 0, (13)

where n1,n2,r > 0, −1≤ ξ ≤ 1, and τ = n1
2 + n2

2 + l1 + l2 + k1 + k2. The conditional values k1 and
k2 have domain such that kv ≥ 0, v = 1,2.

Proof. See Result B, Section 4.1. �

Corollary 2 Upon taking the pdf in (13) one can now obtain the (unconditional) noncentral distri-
bution of W2 =

X1
X2

by substituting the Poisson weights and the corresponding summation operators
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(similar to (1)):

fW2(w2) = fW2(w2|k1,k2)gK1(k1)gK2(k2)

=
∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

j

∑
l1=0

j

∑
l2=0

w
n1
2 +l1+k1−1

2
(1+w2)τ

(( r
2

)
j ξ 2 j

j!

)

×
(−1)l1+l2

( j
l1

)( j
l2

)
B
( n1

2 + l1 + k1,
n2
2 + l2 + k2

)
×

e−
θ1
2

(
θ1
2

)k1

k1!

e−
θ2
2

(
θ2
2

)k2

k2!
, w2 > 0, (14)

where n1,n2,r > 0, −1 ≤ ξ ≤ 1, τ = n1
2 + n2

2 + l1 + l2 + k1 + k2, θ1,θ2 > 0, and gKv(kv) =

e−θv/2 (θv/2)kv/kv!, v = 1,2.

4.1.3. The probability density function of the ratio of type I

In this section, the pdf of the ratio of type I of the components of the bivariate distribution proposed
in (6) is given. Subsequently the noncentral case is proposed by using the compounding method.
Let W3 =

X1
X1+X2

.

Theorem 5 If X1 and X2 are jointly distributed according to (6), the pdf of the conditional distribu-
tion of W3|(K1 = k1,K2 = k2) is given by

fW3(w3|k1,k2) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

w
n1
2 +l1+k1−1

3 (1−w3)
n2
2 +l1+k2−1

(( r
2

)
j ξ 2 j

j!

)

×
(−1)l1+l2

( j
l1

)( j
l2

)
B
( n1

2 + l1 + k1,
n2
2 + l2 + k2

) , 0 < w3 < 1, (15)

where n1,n2,r > 0, and−1≤ ξ ≤ 1. The conditional values k1 and k2 have domain such that kv ≥ 0,
v = 1,2.

Proof. See Result C, Section 4.1. �

Corollary 3 Upon taking the pdf in (15) one can now obtain the (unconditional) noncentral distribu-
tion of W3 =

X1
X1+X2

by substituting the Poisson weights and the corresponding summation operators
(similar to (1)):

fW3(w3) = fW3(w3|k1,k2)gK1(k1)gK2(k2)

=
∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

j

∑
l1=0

j

∑
l2=0

w
n1
2 +l1+k1−1

3 (1−w3)
n2
2 +l1+k2−1

×

(( r
2

)
j ξ 2 j

j!

)
(−1)l1+l2

( j
l1

)( j
l2

)
B
( n1

2 + l1 + k1,
n2
2 + l2 + k2

)
×

e−
θ1
2

(
θ1
2

)k1

k1!

e−
θ2
2

(
θ2
2

)k2

k2!
, 0 < w3 < 1,
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where n1,n2,r > 0, −1≤ ξ ≤ 1, θ1,θ2 > 0, and gKv(kv) = e−θv/2 (θv/2)kv/kv!, v = 1,2.

4.2. F-distribution setting (see (10))

In this section, the univariate distribution of the composites of the product, the ratio of type II and
the ratio of type I is derived for the distribution in (10). The approach again is systematic by first
deriving the conditional counterparts using the distribution in (9), and subsequently unconditioning
using the compounding method.

4.2.1. The probability density function of the product

In this section, the pdf of the product of the components of the bivariate distribution proposed in (9)
is derived. Subsequently, the noncentral case is proposed by using the compounding method as in
Description 1. Let W1 = Y1Y2.

Theorem 6 If Y1 and Y2 are jointly distributed according to (9), the pdf of the conditional distribution
of W1|(K1 = k1,K2 = k2) is given by

fW1(w1|k1,k2)

=
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

Cw
−(m

4 +1)
1

(n1

m

)−( n1
2 +m

4 +l1+k1)(n2

m

)−( n2
2 +m

4 +l2+k2)

× 2F1

(
n2

2
+

m
4
+l2+k2,

n1

2
+

m
4
+l1+k1;

n1+n2+m+1
2

+l1+l2+k1+k2;1− m2

4w1n1n2

)
, w1>0

(16)

where n1,n2,m > 0,−1≤ ξ ≤ 1, and 2F1 (·, ·; ·; ·) is the Gauss hypergeometric function (see Mathai,
1993, p. 96) with

∣∣∣1− m2

4w1n1n2

∣∣∣< 1. The conditional values k1 and k2 have domain such that kv ≥ 0,
v = 1,2, and C is the value as given in (11).

Proof. The Jacobian of the transformation is given by 1
y2

, and thus from (9):

fW1,Y2(w1,y2|k1,k2)

=
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

Cw
n1
2 +l1+k1−1

1
y

n2+
m
2 +2l2+2k2−1

2( n2
m y2

2 + y2 +
n1w1

m

) n1+n2+m
2 +l1+l2+k1+k2

.

Now, since y2 > 0; the conditional pdf of W1 is given by

fW1(w1|k1,k2)

=
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

Cw
n1
2 +l1+k1−1

1

∫
∞

0

y
n2+

m
2 +2l2+2k2−1

2( n2
m y2

2 + y2 +
n1w1

m

) n1+n2+m
2 +l1+l2+k1+k2

dy2

where this last integral is evaluated using Prudnikov et al. (1986a, eq. 2.2.9.7, p. 309): setting
ρ = n1+n2+m

2 + l1 + l2 + k1 + k2, α = n2 +
m
2 + 2l2 + 2k2, a = n2

m , b = 1
2 , and c = n1w1

m , the proof is
complete.

�
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Corollary 4 Upon taking the pdf in (16) one can now obtain the (unconditional) noncentral distri-
bution of W1 =Y1Y2 by substituting the Poisson weights and the corresponding summation operators
(similar to (1)):

fW1(w1) = fW1(w1|k1,k2)gK1(k1)gK2(k2)

=
∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

j

∑
l1=0

j

∑
l2=0

C
(n1

m

)−( n1
2 +m

4 +l1+k1)(n2

m

)−( n2
2 +m

4 +l2+k2)
w
−(m

4 +1)
1

× 2F1

(
n2

2
+

m
4
+l2+k2,

n1

2
+

m
4
+l1+k1;

n1+n2+m+1
2

+l1+l2+k1+k2;1− m2

4w1n1n2

)

×
e−

θ1
2

(
θ1
2

)k1

k1!

e−
θ2
2

(
θ2
2

)k2

k2!
, w1 > 0,

where n1,n2,m > 0, −1 ≤ ξ ≤ 1, θ1,θ2 > 0, and gKv(kv) = e−θv/2 (θv/2)kv/kv! for v = 1,2, and∣∣∣1− m2

4w1n1n2

∣∣∣< 1.

4.2.2. The probability density function of the ratio of type II

Here the pdf of the ratio of type II of the components of the bivariate distribution proposed in (9)
is derived. Subsequently the noncentral case is proposed by using the compounding method. Let
W2 =

Y1
Y2

.

Theorem 7 If Y1 and Y2 are jointly distributed according to (9), the pdf of the conditional distribution
of W2|(K1 = k1,K2 = k2) is given by

fW2(w2|k1,k2) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

Cw
n1
2 +l1+k1−1

2

(
w2n1 +n2

m

)−( n1+n2
2 +l1+l2+k1+k2

)

×B
(

n1 +n2

2
+ l1 + l2 + k1 + k2,

m
2

)
, w2 > 0, (17)

where n1,n2,m> 0, and−1≤ ξ ≤ 1. The conditional values k1 and k2 have domain such that kv ≥ 0,
v = 1,2, and C is the value as given in (11).

Proof. The Jacobian of the transformation is given by y2, and thus from (9) the joint conditional pdf
of W2 and Y2 is given by

fW2,Y2(w2,y2|k1,k2) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

Cw
n1
2 +l1+k1−1

2 y
n1+n2

2 +l1+l2+k1+k2−1
2

×
(

1+
n1w2 +n2

m
y2

)−( n1+n2+m
2 +l1+l2+k1+k2

)
.

Now, since y2 > 0; the pdf of W2 is given by
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fW2(w2|k1,k2) =
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

Cw
n1
2 +l1+k1−1

2

×
∫

∞

0
y

n1+n2
2 +l1+l2+k1+k2−1

2

(
1+

n1w2 +n2

m
y2

)−( n1+n2+m
2 +l1+l2+k1+k2

)
dy2.

The latter integral is simplified by applying Gradshteyn and Ryzhik (2007, eq. 3.194.3, p. 315):
setting β = n1w2+n2

m , µ = n1+n2
2 + l1+ l2+k1+k2, κ = n1+n2+m

2 + l1+ l2+k1+k2, and by substituting
the result the proof is complete. �

Corollary 5 Upon taking the pdf in (17) one can now obtain the (unconditional) noncentral distri-
bution of W2 = Y1

Y2
by substituting the Poisson weights and the corresponding summation operator

(similar to (1)):

fW2(w2) = fW2(w2|k1,k2)gK1(k1)gK2(k2)

=
∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

j

∑
l1=0

j

∑
l2=0

Cw
n1
2 +l1+k1−1

2

(
n1w2 +n2

m

)−( n1+n2
2 +l1+l2+k1+k2

)

×B
(

n1 +n2

2
+ l1 + l2 + k1 + k2,

m
2

)

×
e−

θ1
2

(
θ1
2

)k1

k1!

e−
θ2
2

(
θ2
2

)k2

k2!
, w2 > 0, (18)

where n1,n2,m > 0, −1≤ ξ ≤ 1, θ1,θ2 > 0, and gKv(kv) = e−θv2 (θv/2)kv/kv! for v = 1,2.

4.2.3. The probability density function of the ratio of type I

Here the pdf of the ratio of type I of the components of the bivariate distribution proposed in (9)
is derived. Subsequently the noncentral case is proposed by using the compounding method. Let
W3 =

Y1
Y1+Y2

.

Theorem 8 If Y1 and Y2 are jointly distributed according to (9), the pdf of the conditional distribution
of W3|(K1 = k1,K2 = k2) is given by

fW3(w3|k1,k2)

=
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

Cw
n1
2 +l1+k1−1

3 (1−w3)
−( n1

2 +l1+k1+1)

(
n1

w3
1−w3

+n2

m

) n1+n2
2 +l1+l2+k1+k2

×B
(

n1 +n2

2
+ l1 + l2 + k1 + k2,

m
2

)
, 0 < w3 < 1, (19)

where n1,n2,m > 0, and −1 ≤ ξ ≤ 1. C is the value as given in (11), and the conditional values k1

and k2 have domain such that kv ≥ 0, v = 1,2.
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Proof. Consider the following: if W3 = Y1
Y1+Y2

, and W2 = Y1
Y2

, then W2 = W3
1−W3

. Furthermore, the

Jacobian of this transformation is given by dw2
dw3

= 1
(1−w3)

2 , and it follows that

fW3 (w3) = fW2

(
w3

1−w3

)
dw2

dw3
.

By using this result and via substitution, the following is obtained:

fW3(w3|k1,k2)

=
∞

∑
j=0

j

∑
l1=0

j

∑
l2=0

C
(

w3

1−w3

) n1
2 +l1+k1−1

(
n1

w3
1−w3

+n2

m

) n1+n2
2 +l1+l2+k1+k2

1
(1−w3)2

×B
(

n1 +n2

2
+ l1 + l2 + k1 + k2,

m
2

)
which completes the proof. �

Corollary 6 Upon taking the pdf in (19) one can now obtain the (unconditional) noncentral distribu-
tion of W3 =

Y1
Y1+Y2

by substitution the Poisson weights and the corresponding summation operators
(similar to (1)):

fW3(w3)

= fW3(w3|k1,k2)gK1(k1)gK2(k2)

=
∞

∑
j=0

∞

∑
k1=0

∞

∑
k2=0

j

∑
l1=0

j

∑
l2=0

Cw
n1
2 +l1+k1−1

3 (1−w3)
−( n1

2 +l1+k1+1)

(
n1

w3
1−w3

+n2

m

) n1+n2
2 +l1+l2+k1+k2

×B
(

n1 +n2

2
+ l1 + l2 + k1 + k2,

m
2

) e−
θ1
2

(
θ1
2

)k1

k1!

e−
θ2
2

(
θ2
2

)k2

k2!
, 0 < w3 < 1,

where n1,n2,m > 0, −1≤ ξ ≤ 1, θ1,θ2 > 0, and gKv(kv) = e−θv/2 (θv/2)kv/kv! for v = 1,2.

5. Application

In this section, an application of some results from the bivariate noncentral generalised chi-square
distribution and the bivariate noncentral generalised F distribution is presented. The data used is
drought data from the state of Nebraska, USA, obtained freely from the website
http://lwf.ncdc.noaa.gov.oa/climate/onlineprod/drought/xmgrg3.html, which consists of drought-
and nondrought duration (in months) for eight climate divisions of Nebraska from January 1895
to December 2004. Specifically, the univariate distribution of the ratio of type II will be considered
here (see (18)). Some percentage points are also calculated for the univariate distribution of the ratio
of type II of the bivariate noncentral generalised chi-square distribution (see (13)).
Nebraska is divided into eight climate divisions (there is no 4th division). Considering the state as
a whole, Nebraska is considered to have two major climate divisions: the eastern half of the state
has a humid, continental climate (i.e. divisions 3, 6, and 9), and the western half of state which has
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a semi-arid climate (i.e. divisions 1, 2, and 7). Overall, it is known that the entire state encounters
wide seasonal changes in temperature and precipitation throughout the year. Figure 3 illustrates the
outlay of Nebraska as divided by state.

Figure 3: Climate divisions of Nebraska, USA.

Due to these known differences between the climate divisions from the eastern- and western half
of the state, one would expect the number of dry months between, say, division 1 and division 9, to
be independent from each other. This is mainly attributed to the fact that these divisions fall within
different climate regions, each with their own climatic structure, and is under the assumption that
Y1 = number of dry months for division 1, and Y2 = number of dry months for division 9, is jointly
distributed according to the bivariate noncentral generalised F distribution. It is our intention to show
that the correlation component in the bivariate noncentral generalised F distribution’s considered
composite (see (18)) will exhibit this independence in the estimation of the parameters, by being
negligibly small. The divisions that will be considered for this purpose are regions 1 and 9.

Furthermore, letting Y1 = number of dry months of division t, and Y2 = number of nondry months
of division t, the distribution of W2 would give an indication of the degree of dryness experienced
by the division in question: if W2 > 1, it implies that Y1 > Y2, or rather, that the division seems to
statistically exhibit more dry months than otherwise. This is investigated for divisions 1 and 8.

5.1. Model description and parameter estimation

The distributions of particular interest here are the following cases:
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1. the ratio of drought duration of division 1 to drought duration of division 9 (W2) = drought
duration of division 1 / drought duration of division 9

(
≡ Y1

Y2

)
;

2. the ratio of drought duration of division t to nondrought duration of division t (W2) = drought
duration of division t / nondrought duration of division t

(
≡ Y1

Y2

)
(t = 1,8 ).

By using the method of maximum likelihood for estimation of the parameters, the parameters of the
distributions of W2 was calculated for the described cases 1 and 2. The log-likelihood functions were
optimized by using the SAS/IML call nlpnra - this call finds the maximum value of the provided
function via a Newton-Raphson algorithm.
For the ratio of drought duration of division 1 to drought duration of division 9, the data was fitted
to the distribution given in (18) by using the above mentioned procedure in SAS/IML. Note that the
parameters n1 and n2 are assumed known as it corresponds to the respective sample sizes, and was
not estimated. By considering these estimated values, it is observed that the correlation component,

Table 1: Parameter estimates of W2, (18) for case 1.

Parameter estimates Climate division 1 & 9
n1 74
n2 74
m̂ 20.004631
r̂ 7.2786409
ξ̂ −8.42×10−8

θ̂1 1.642×10−17

θ̂2 3.8882968
AIC 2352.4459

ξ̂ , is extremely small. The expected independence mentioned at the start of Section 5.1 seems to be
confirmed by these results. The computed value of the Akaike Information Criterion (AIC) is also
provided in Table 1.
In the second considered case (drought versus nondrought duration for each considered division),
the parameter estimates are given in Table 2. Note again that the parameters n1 and n2 are assumed
known as it corresponds to the respective sample sizes, and was not estimated.
Similar to before, it is observed that the estimated correlation component ξ̂ is negligibly small. The
independence for this case exhibits the independence of drought duration and nondrought duration,
which is also expected within each climate division.
Consider the generalised model, i.e. (18), for division 8, the value of P(W2 > 1) = 1−P(W2 < 1) =
1−P

(
Y1
Y2

< 1
)

, the probability that the drought duration for division 8 will be greater than that of
the nondrought duration. This value is calculated, using the package Mathematica, as P(W2 > 1) =
1−P(W2 < 1) = 1−0.60015 = 0.39985. This seems to be a reasonable observation since division
8 lies more to the east of the state - i.e. lies more toward the humid / continental climatic side of the
state, therefore resulting in less drought-ridden months than otherwise.
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Table 2: Parameter estimates of W2, (18) for case 2.

Parameter estimates Climate division
1 8

n1 84 76
n2 84 76
m̂ 20.00713 19.999673
r̂ 2.880700 9.2246327
ξ̂ −8.314×10−8 −2.44×10−8

θ̂1 3.518×10−17 2.949×10−17

θ̂2 2.7391218 4.4891381
AIC 3562.96 3071.0484

5.2. Percentage points of distribution

Certain percentage points wα of the distribution of W2 =
X1
X2

are obtained numerically by solving the
equation

∫ wα

0 fW2(w2)dw2 = α . By considering (14) some lower percentage points are calculated
for arbitrary parameters. Similar tabulations can be obtained for other values of the parameters. The
calculated values are given in Table 3. This distribution is considered since it may offer an alternative
approach to the well-known stress-strength model in the context of reliability, where the lifetime of
a random component with strength X2 is subjected to a random stress X1. The measure P(X1 < X2)

is thus of interest, and translates to P(X1/X2 < 1) = P(W2 < 1) thereby revealing the relevance of
this specific distribution.

Table 3: Percentage points for W2 (14), for n1 = 10, n2 = 12, and r = 2.

ξ θ1 θ2 α = 0.01 0.025 0.05 0.1

3 5 0.171788 0.221699 0.273741 0.346185
0.5 3 8 0.148046 0.190774 0.235201 0.296845

3 11 0.132922 0.171042 0.210582 0.265314

6. Conclusion

This paper explored the use of the compounding method as a distributional building tool to ob-
tain bivariate noncentral distributions. The process of obtaining a bivariate noncentral generalised
chi-square distribution from a conditional existing bivariate central generalised distribution was sys-
tematically described and motivated. The newly obtained noncentral distribution was shown to be
equivalent to the bivariate noncentral generalised chi-square distribution of Van Den Berg (2010)
by showing their respective mgfs to be equal. Furthermore, the corresponding bivariate noncentral
generalised F distribution was derived in a similar systematic way. In both these cases it is evident
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that the constructed form of the distribution isolates the noncentrality parameters continuously in a
mathematical convenient way; by retaining them in Poisson probability form.

Subsequently the product, ratio, and proportion of components in both chi-square and F distri-
butions were derived. An application to drought of Nebraska, USA, was given which illustrated the
versatility of the newly proposed models.
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