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Abstract: Accelerated life testing (ALT) is a practice for estimating unit reliability at normal use
conditions using failure data obtained under more severe test conditions. We focus on life tests
where a potential critical unit failure at X2 (unit lifetime) may be avoided by a degraded failure at
some random time X1. Degraded and critical failures are linked through the degradation process,
hence the situation under consideration is that of dependent competing risks. We apply the general
result that if the copula C(., .) of (X1,X2) is known, competing risks data uniquely determine the
marginal distributions at each stress level. Interest here (and in life testing studies in general) is in
unit lifetime. Accordingly, our target of estimation is to extrapolate a use-level lifetime distribution
from which important reliability measures such as mean lifetime, warranty period among others are
derived. The paper is based in part on a PhD thesis by Hove (2014).

1. Introduction

Highly reliable units rarely fail in a test of practical length under normal use conditions. To obtain
failure data required for reliability estimation within the allocated time for experiments, units are
tested at higher than usual stress conditions, called accelerated life testing (ALT). The way in which
data are generally censored in reliability and life testing gives rise to competing risks. Sometimes,
a unit may be removed from observation during testing for many different reasons (events). The
times at which these different events remove the unit from observation in a life test are modelled by
competing risks.
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1.1. Motivational modeling framework

Consider a situation where a potential critical unit failure at some random time X2 may be avoided
by other events such as the occurrence of a non-critical failure at some random time X1. Often X2

is the minimum of failure times corresponding to failure modes of primary interest whereas X1 is a
censoring time. For a new unit, the first event may either be a critical or non-critical failure. It occurs
at time Z = min(X1,X2). If X1 < X2, a non-critical failure is observed and repairing or replacing the
unit may act as a right censoring regarding the corresponding critical failure mode. But if X2 < X1,
the unit experiences a critical failure mode. Cooke (1996) developed the concept of random signs
censoring, a well-known competing risks model that is tailored for such situations.

We summarise random signs censoring in our notation as follows. Let X2 be the potential time
of occurrence of a critical failure for a unit that is subject to right censoring. During testing, a unit
will likely emit some kind of signal (warning of deterioration) such as inferior performance, noise,
vibration etc. before failing. Suppose the process of detecting these warnings is independent of the
time the unit has been on test. Then the event that the unit’s failure is preceded by some other event
is independent of the age X2 at which the unit fails or would have failed if it were not censored.
But given that a critical unit failure is censored, the censoring time X1 may depend on X2. This is
captured in Definition 1:

Definition 1 Let (X1,X2) be a pair of life variables. Then the observed variable Z = min(X1,X2)

along with the identity J ∈ (1,2) of which is smaller is a random signs censoring of X2 by X1 if the
event that a critical unit failure is preceded by a censoring variable is independent of X2.

Motivated by this modeling framework, the present paper applies the random signs censoring model
to ALT. Specifically, we consider life tests where unit failure is not a sudden occurrence, but the
end point of an underlying degradation process. We further assume that a dominant measurable
performance parameter of the unit exists and that its deterioration over time can be associated with
unit reliability. That is, the service life of a unit ends around the time the degradation has caused unit
performance to reach a specified failure threshold. Consequently, we define unit failure in a life test
as some observed level of unit performance.

Consider a light emitting diode (LED) for example. A complete loss of function in a life test
(critical failure) may be avoided by the luminosity of a LED falling below an acceptable limit even
though it still has some residual functionality (degraded failure). Because we defined unit failure
in terms of the observed level of performance, observation in a life test is stopped whenever a unit
experiences a degraded or critical failure. As such, a potential critical unit failure at X2 (unit lifetime)
in a life test may be avoided by a degraded failure at some random time X1.

Our main interest here (and in life testing studies in general) is in the potential time of occurrence
of a critical failure X2, the lifetime of the unit. We therefore regard X1 as censoring the event of
interest. That is, a degraded failure is a signal that a critical failure is likely to follow if the unit is
kept on test. If these signals are detected by the testing team, a competing risk X1 is observed and
unit lifetime X2 is censored.
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1.2. The problem

Under the random signs model, we observe Z = min(X1,X2) and the identity J ∈ (1,2) of the risk
that achieved the minimum at each stress level. It is well-known (Tsiatis, 1975) that these data
contain enough information to estimate subdistribution functions F∗X1

(t) = P(X1 ≤ t,X1 < X2) and
F∗X2

(t) = P(X2 ≤ t,X2 < X1) but not the marginal distributions FXJ (
.) unless X1 and X2 are stochas-

tically independent or some untestable assumptions about the nature of their stochastic dependence
are made. Assuming independence between X1 and X2 has no sound physical basis because degraded
and critical failures are linked through the degradation process of the unit.

A general way to overcome this problem is to assume a known dependence structure. Stochastic
dependence between the censoring variable X1 and unit lifetime X2 is the degree to which the occur-
rence of high (low) values of the one risk variable impacts on the probability of occurrence of values
of the other risk variable. This notion of the dependence structure is a matter of relative ranks and is
thus completely based on copulas. The copula function is obtained by making marginal probability
integral transforms on X1 and X2. That is

H(t1, t2) = P(X1 ≤ t1,X2 ≤ t2) = P(U1 ≤ FX1(t1),U2 ≤ FX2(t2)) =C (FX1(t1),FX2(t2))

where H(., .) is the joint distribution of (X1,X2), FXJ (
.), J = 1,2 are the marginal distribution func-

tions of XJ and C(., .) is the copula. Note that the copula C(., .) is a bivariate distribution function
with uniform margins. For a comprehensive treatment of copulas, see Nelsen (1999). We apply
the general result of Zheng and Klein (1995) that if the copula C(., .) of (X1,X2) is known, then the
competing risks data uniquely determine the marginal distributions FXJ (

.). More precisely, assume
the underlying copula C(., .) has continuous second-order partial derivatives with respect to its ar-
guments and that the marginal distributions FXJ (t) exist at each stress level. Then a straightforward
calculation (Bunea and Bedford, 2002) yields (1)

F∗X1
(t) ≡ P(X1 ≤ t,X1 < X2) =

∫ t

0

(∫
∞

x1

h(x1,x2)dx2

)
dx1 (1)

= FX1(t)−
∫ t

0
cu1 (FX1(x1),FX2(x1)) fX1(x1)dx1

where cu1 =
∂C(u1,u2)

∂u1
is calculated in (FX1(t),FX2(t)) and h(., .) is the joint density of (X1,X2). In the

same way,

F∗X2
(t) = FX2(t)−

∫ t

0
cu2 (FX1(x2),FX2(x2)) fX2(x2)dx2 (2)

where cu2 =
∂C(u1,u2)

∂u2
is also calculated in (FX1(t),FX2(t)). Equations (1) and (2) yield the non-linear

system of differential equations{
[1− cu1(FX1(t),FX2(t))]F

′
X1
(t) = F∗

′
X1
(t)

[1− cu2(FX1(t),FX2(t))]F
′
X2
(t) = F∗

′
X2
(t)

(3)

with initial conditions FX1(0) = FX2(0) = 0 where f ∗XJ
(t) = F∗

′
X1
(t) are subdensity functions. The

marginal distributions FXJ (
.), J = 1,2 are the solutions of the nonlinear system in (3). Our main

interest is in unit lifetime X2, and hence the identifiability from competing risks data of the lifetime
distribution FX2(

.) at all stress levels. We therefore consider a two fold problem in this paper:
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(1) We assume that stochastic dependence of X1 and X2 at all stress levels is captured by a known
copula and that we have a competing risks sample at each stress level. Because the compet-
ing risks sample (min(x11,x21)) ,(min(x12,x22)) , ...,(min(x1n,x2n)) from Z = min(X1,X2) is
incomplete, we use expert opinion to estimate the copula. We utilise the observed occurrences
of X1 and X2 in the competing risks samples to fit derived models of the subdensity functions
f ∗XJ

(t) to test data at each test stress level. The partial derivatives cuJ (
., .), j = J,2 of the es-

timated copula C(., .) and the fitted subdensity functions f ∗XJ
(t) = F∗

′
X1
(t) are our inputs in the

nonlinear system in (3).

(2) We select an efficient numerical method that solves the nonlinear system in (3) for the marginal
distribution functions FX1(

.) and FX2(
.) at each stress level. Noting that our main interest is in

unit lifetime X2, we use the resulting unit lifetime distributions FX2(
.) at the different test stress

levels to extrapolate the lifetime distribution of the unit at normal use conditions by applying
an ALT procedure.

The use-level lifetime distribution of the unit we obtain by applying an ALT procedure is our ulti-
mate result in this paper. It is from this extrapolated lifetime distribution that important reliability
measures of the unit such as mean life, warranty period etc. can be estimated.

1.3. Overview

The remainder of this article is organised as follows. In Section 2, we discuss the selection of the
copula model that captures stochastic dependence between the censoring variable X1 and unit life-
time X2 at all stress levels. We conclude the section by demonstrating using a simulation study how
the assumed copula is estimated from expert opinion if only a competing risk sample is available.
The model for subdensity functions f ∗XJ

(.) is derived in Section 3. In Section 4, we present a nu-
merical example. Test data on unit lifetime and the censoring variable are not readily available. We
simulate typical competing risk samples at different test stress levels based on the Class-H insulation
data and the estimated copula model. We utilize materials of Section 2 and Section 3 to solve for the
marginal distributions FX2(

.) of unit lifetime X2 (the variable of interest) at the different test stress
levels. We conclude the section by applying an ALT procedure to extrapolate the lifetime distribu-
tion at normal use conditions from the identified unit lifetime distributions FX2(

.) at the different test
stress levels. In Section 5, we study the sensitivity of the extrapolated survival function of the unit to
different degrees of stochastic dependence between X1 and X2. We conclude the paper in Section 6
by summarising our main results.

2. Copula model selection and estimation

Model choice is a difficult problem with no obvious answer. When modeling the dependence be-
tween competing risks (Zheng and Klein, 1995), the important factor is a reasonable estimate of the
copula dependence parameter, not the functional form of the copula. See also studies by Escarela
and Carriere (2003), Bunea and Mazzuchi (2007) and Kaishev, Dimitrova and Haberman (2007).
We follow the same approach in this paper but instead of assuming a known copula with known
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parameter(s) as in these studies and those by Chen (2010), Lo and Wilke (2010) and Dimitrova,
Haberman and Kaishev (2013), we use expert opinion to estimate the copula parameter(s).

We choose a copula class with an interpretation in terms of probabilities of observable quantities
that can be assessed by experts in a defensible way. The class of Archimedean copulas has these
properties since it has an interpretation in terms of probabilities of observing concordance and dis-
cordance pairs. Stochastic dependence between the censoring variable X1 and unit lifetime X2 may
vary from extreme negative through independence to extreme positive dependence. As such, the
chosen copula must capture the full range of dependence. Such copulas are called comprehensive
copulas and the only examples in the Archimedean class are the Clayton and the Frank families.
The former exhibits greater dependence in the negative tail than in the positive tail whereas the latter
is symmetric. There is however no physical justification to suggest asymmetries between the risk
variables. For this reason, we choose the Frank copula which was introduced by Genest (1987). It is
given by

CF
θ (u1,u2) =−

1
θ

ln
[

1+
(e−θu1 −1)(e−θu2 −1)

(e−θ −1)

]
where θ ∈ (−∞,+∞)\{0} is the copula dependence parameter.

2.1. Frank copula model estimation: Aspects of the problem to elicit

A copula associated with the pair (X1,X2) is invariant under strictly increasing transformations of its
marginal distributions. Rank correlation exhibits the same scale-invariance property and measures
the degree of monotone relationships between variables. The best known rank based measures of
dependence are Spearman’s ρ and Kendall’s τ . In terms of the copula function (Carriere, 1994;
Nelsen, 1999) where I2 = [0,1]2, Spearman’s ρ and Kendall’s τ are correspondingly given by

ρX1X2 = 12
∫ ∫

I2
CF(u1,u2)du1du2−3

and
τX1X2 = 4

∫ ∫
I2

CF(u1,u2)dCF(u1,u2)−1.

Parameterisations of copula families by the rank correlation implies that knowledge of the latter
identifies the copula. Hence, the rank correlation is the uncertain quantity to be elicited when es-
timating the chosen Frank copula model. Cooke (1991), Cooke and Goosens (2000) and Bedford
and Cooke (2001) all stress the need to elicit on observable quantities as experts are more com-
fortable answering questions on such quantities. The rank correlation is not an observable quantity.
Other quantities are therefore required to indirectly infer the rank correlation. Unlike Spearman’s
ρ , Kendall’s τ has a simple interpretation in terms of probabilities of observing concordance and
discordance pairs (Conover, 1999). Hence Kendall’s τ (rank correlation henceforth) is the uncertain
quantity to be elicited and concordance probability is the assessment variable. The relationship be-
tween Kendall’s τ and the Frank copula dependence parameter θ , (Escarela and Carriere, 2003) is
given by

τ = 1− 4
θ

(
1− 1

θ

∫
θ

0

t
et −1

dt
)
. (4)



86 HOVE & BEICHELT

2.2. The elicitation process

Elicitation is the process of formulating the beliefs of an expert about an uncertain quantity into a
probability distribution for that quantity. Typically, the elicitation process involves the following:

(1) The expert makes specific judgements about the summaries of his or her distribution.

(2) The analyst constructs a fully specified probability distribution from these summaries.

(3) The fitted distribution is checked to see if it adequately represents the expert’s beliefs.

We consider elicitation to be a success if the elicited distribution adequately represents the expert’s
knowledge, regardless of how good that knowledge is. For elicitation approaches regarding depen-
dence, see Clemen, Fischer and Winkler (2000). Instead of choosing experts and obtaining their
distributional summaries, we use a simulation study here. Crucially however, all stages of the elici-
tation process are followed.

2.2.1. Expert elicitation: A simulation study

Denote by
(

X (1)
1 ,X (1)

2

)
and

(
X (2)

1 ,X (2)
2

)
two random draws from a population (X1,X2) of test units.

Label them units 1 and 2 respectively where X (1)
1 and X (2)

1 are censoring times and X (1)
2 and X (2)

2 are
the respective unit lifetimes. We ask the expert the assessment question:

Suppose it turns out in a life test that unit 2 has a longer lifetime than unit 1, that is X (1)
2 < X (2)

2 .
What is your probability that a degraded failure for unit 1 would also occur before the degraded
failure for unit 2 in an ALT experiment?

Our assessment question is asking directly for a concordance probability

P
[(

X (1)
1 −X (2)

1

)(
X (1)

2 −X (2)
2

)
> 0
]
= pc.

Given the assessed concordance pc, we obtain Kendall’s τ (uncertain quantity) from

τ = 2pc−1. (5)

Any two independent draws from the population (X1,X2) of test units are either concordant or dis-
cordant. As such, pc is the relative frequency for

{
X (1)

1 < X (2)
1 |X

(1)
2 < X (2)

2

}
when a large sample

of pairs of independent draws from a population of test units is observed. It is thus an observable
quantity (physically realisable) and its assessment has a natural interpretation in frequency terms. To
yield the right data structure, failure times are simulated from a model tailored for situations where
the variable of interest is subject to right censoring. One such model is the alert-delay (AD) model
of Dijoux and Gaudoin (2009) in (6)

X1 = pX2 +ξ (6)

where unit lifetime X2 and ξ are independent. We simulate test data (Z,J) at each stress level as
follows:
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(1) To account for unit degradation, we simulate lifetimes X (1)
2 and X (2)

2 for the respective units(
X (1)

1 ,X (1)
2

)
and

(
X (2)

1 ,X (2)
2

)
from the Weibull distribution. For simplicity, we simulate the

life variable ξ from the exponential distribution.

(2) For a specified value of p, X (1)
1 and X (2)

1 are obtained from the AD model in (6). To fully
exploit the residual life of the unit, we choose a value of p close enough to one.

(3) Count cases where X (1)
2 < X (2)

2 , say m2. Out of these m2 cases, count how many are such that
{X (1)

1 < X (2)
1 }, say m1. Estimate pc by m1

m2
and obtain Kendall’s τ from (5).

(4) Repeat k times to obtain τ1, ...,τk. Use these k simulated Kendall’s τ values to estimate the
expert’s distribution by nonparametric methods such as a kernel density estimate.

Using the R code in Appendix A, we simulated k = 1000 Kendall’s τ values. From these, we ob-
tained summaries of the expert’s distribution, namely sample minimum=-0.1467; mode=0.1733
and maximum=0.5733. The elicited distribution constructed from these summaries and the kernel
estimate of the expert’s density from the simulated Kendall’s τ values are shown in Figure 1 respec-
tively. Subjective distributions are never precise. Hence the elicited distribution is only required to

Elicited distribution Expert’s distribution

Figure 1: Elicited and expert distribution plots.

closely match the expert’s distribution to be practically useful. Main features of the expert’s distri-
bution such as peakedness, skewness and spread are clearly captured by the elicited distribution in
Figure 1. We therefore consider elicitation to be a success and the parameters of the elicited distri-
bution are reported in Table 1. Our estimate of Kendall’s τ (uncertain quantity) is the 50th percentile
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Table 1: Parameters of the elicited distribution.

Parameter Plotted distribution
Mean 0.27816

Standard deviation 0.13823
50th percentile 0.29317

of the elicited distribution. That is τ̂ = 0.29317. Substituting τ̂ = 0.29317 into (4) yields

4
θ

(
1− 1

θ

∫
θ

0

t
et −1

dt
)
= 0.70683. (7)

Figure 2 is a plot of the left hand side of (7) from where θ̂ = 2.8405. This is our estimate of the
Frank copula parameter from expert opinion.

Figure 2: Numerical estimation of the Frank copula parameter.

3. Functional forms (models) for the subdensity functions

We derive in this section functional forms (models) for the subdensity functions f ∗XJ
(t) = F∗

′
X1
(t)

which together with the estimated Frank copula in Section 2 are inputs in the nonlinear system in
(3). Recall that unit failure in a life test is defined as the end point of some underlying degradation
process. Our estimation of F∗J (t) at all stress levels is also based on this failure causing process. A
degradation process is governed by some random mechanism that can be represented by a stochastic
process, say {X(t), t ∈R+}. In applications, {X(t), t ∈R+} is generally required to have continuous
sample paths. This is in part, why the simple Wiener process is the basic degradation model. For
applications where the degradation process is restricted to functions with monotone sample paths,
the gamma process is often preferred.
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We follow Singpurwalla’s (2006b) conceptualisation of degradation as an unobservable construct
that is viewed as causing observable surrogates such as unit performance. Hence we consider the
degradation process to be a bivariate stochastic process {M(t),R(t), t ∈ R+}, with {M(t), t ∈ R+}
the unobservable degradation process and {R(t), t ∈ R+} the observable marker process. There
is considerable research focusing on the probability structure of the bivariate stochastic process
{M(t),R(t), t ∈ R+}. Cinlar (1972) postulated a Markov additive process but this process still has
no developed statistical theory. Whitmore, Crowder and Lawless (1998) assumed a bivariate Wiener
process. Its drawback is that {M(t), t ∈ R+} is no longer non-decreasing in t when taken to be a
Wiener process and no probabilistic link exists between the two.

The probability structure, and one we adopt in this paper is motivated by (Singpurwalla, 2006a;
Singpurwalla, 2006b) as follows. Consider the survival function of T , that is P(T ≥ t), t ≥ 0 and
let h(t) be its hazard rate function. Denote by H(t) =

∫ t
0 h(u)du, the cumulative hazard at t. By the

exponentiation formula with H(t) is specified (Barlow and Proscham, 1975),

P(T ≥ t;H(t), t ≥ 0) = e−H(t). (8)

The right hand side of (8) is the survival function of some random variable, say S, distributed expo-
nentially with scale parameter λ = 1 and evaluated at H(t). That is

P(T ≥ t;H(t), t ≥ 0) = e−H(t) = P(S≥ H(t)|λ = 1). (9)

By (9), a test unit fails when its cumulative hazard H(t) first crosses a random threshold S distributed
as exponential with scale parameter λ = 1. A contraction of the clock time from t to H(t) signals
acceleration in a life test. Singpurwalla (2006b) describes the marker process {R(t), t ∈ R+} by a
Wiener process {W (t), t ∈ R+} and the latent failure causing process {H(t), t ∈ R+} by the Wiener
maximum process W (t)+ =

{
sup0≤u≤t W (u),u≥ 0

}
. This probability structure has two advantages.

First, the link between the marker and the unobservable processes is obvious from

W (t)+ =

{
max

0≤u≤t
W (u),u≥ 0

}
. (10)

Second, both {W (t), t ∈ R+} and
{

sup0≤u≤t W (u),u≥ 0
}

have continuous sample paths and the
latter is non-decreasing in t as required. Our point of departure from this derivation is that we
assume a fixed failure threshold as follows. Adequate unit performance is specified by industrial
standards and a unit fails whenever performance no longer conforms to set standards. Hence it is
reasonable to assume a deterministic failure threshold, otherwise failure during testing will not be
well defined in our formulation.

Thus a test unit experiences the Wiener maximum process during testing and its failure time is
the first passage time of {W+(t), t ≥ 0} to the deterministic failure threshold. Denoted by Ts the
failure time of the unit. Then

Ts = min
{

u ∈ R+ : max
0≤u≤t

W (u)≥ s
}

and no additional degradation data are necessarily required when deriving the model for subdensity
functions f ∗XJ

(t). As a consequence of (10), the first passage time of {W+(t), t ≥ 0} to a failure
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threshold coincides with the first crossing time of {W (t), t ≥ 0} to the same failure threshold. The
latter is well-known (Chhikara and Folks, 1989) to be inverse Gaussian with mean µ and scale λ .
Consequently, f ∗X j

(t), j ∈ (1,2) are distributed as inverse Gaussian with density

f ∗XJ
(t; µ,λ ) =

{ √
λ

2πt3 exp
(
−λ (t−µ)2

2µ2t

)
; t > 0, j ∈ (1,2)

0; otherwise

since X1 and X2 have the interpretation of first passage times to a failure threshold. Statistical infer-
ence when the failure threshold is assumed to be deterministic is presented in Appendix B.

4. Numerical example

4.1. Test data

We assume in this paper that we have a competing risk sample Z = min(X1,X2) along with the
cause J ∈ (1,2) that achieved the minimum at each of the k test stress levels. Let temperature be
the accelerating variable and that n1,n2, ...,nk units are tested at T1

◦C,T ◦2 C, ...,T ◦k C stress level re-
spectively. The general structure of competing risks test data is given in Table 2. Observe that

Table 2: General structure of competing risks test data.

T ◦1 C Z J T2
◦C Z J . . . T ◦k C Z J

1 z1 1 1 z1 2 . . . 1 z1 2
2 z2 2 2 z2 1 . . . 2 z2 1
3 z3 2 3 z3 2 . . . 3 z3 1
. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

n1 zn1 1 n2 zn2 2 . . . nk znk 1

if J = 1, the observed value of Z is the time of occurrence of a graded failure. If J = 2, the ob-
served value of Z is the time of occurrence of a critical failure. Test data of the form in Table 2
contain enough information to estimate subdistribution functions F∗X1

(t) = P(X1 ≤ t,X1 < X2) and
F∗X2

(t) = P(X2 ≤ t,X2 < X1) at each stress level. These data are however not enough to estimate the
distribution functions FX1(t) = P(X1 ≤ t) and FX2(t) = P(X2 ≤ t) which are of interest unless addi-
tional assumption on the relationship between X1 and X2 are imposed. We are particularly interested
in FX2(

.), the lifetime distribution of the unit.
Test data are confidential (commercially sensitive) and are generally difficult to access. We

do not have test data where the potential time of occurrence of a critical failure is subject to right
censoring as in Table 2. Our analysis relies on typical competing risk samples at different test stress
levels that we simulate based on the Class-H insulation data (Nelson, 2004) and the estimated Frank
copula model in Section 2. The Class-H insulation data are from a temperature-accelerated life test
of motorettes insulation that yielded three insulation failure modes; Turn, Phase and Ground failures.
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Bunea and Mazzuchi (2007) used the same data set and grouped the data into two competing risk
classes: Risk 1 (Turn failure mode) and Risk 2 (Phase and Ground failure modes). We group the
data the same way and consider the time of occurrence of Risk 2 as the minimum of the time of
occurrence of Phase and Ground failure modes.

An analysis of the Class-H insulation data (Nelson, 2004) found Turn failure to be the earliest
failure mode at the design temperature of 180◦C. The motorette was subsequently redesigned to
eliminate Turn failure mode. Hence the lifetime of the redesigned motorette is the minimum of
Phase and Ground failure modes. We consider Risk 2 analogous to critical failure mode because its
occurrence in a life test ends the useful life of the redesigned motorette. That is, Risk 2 is the failure
mode of interest. Risk 1 is considered analogous to degraded failure mode because its occurrence
would censor the failure mode of interest. Table 3 contains test data that we derived from the Class-
H insulation data. These data are not in the required general structure given in Table 2 because of

Table 3: Derived competing risks data at the different test stress levels.

190◦C X1 X2 220◦C X1 X2 240◦C X1 X2 260◦C X1 X2
1 7228 10511 1 1764 2436 1 1175 1175 1 1632+ 600
2 7228 11855 2 2436 2436 2 1881+ 1175 2 1632+ 744
3 7228 11855 3 2436 2436 3 1521 1881+ 3 1632+ 744
. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

10 10511 12191+ 10 3108 4116+ 10 1953 1953+ 10 1896 1896

the test design which guarantees complete random samples (x11,x21),(x12,x22), ...,(x1n,x2n) from
(X1,X2) at all stress levels. Each of Turn, Phase and Ground failure modes occurred on a separate
part of the motorette. The first occurring failure mode was isolated while the unit was kept on test
until the second or third failure mode occurred. Hence Table 3 contains pseudo-competing risks
data with enough information to estimate the marginal distribution functions FX1(t) = P(X1 ≤ t)
and FX2(t) = P(X2 ≤ t) at each test stress level. Accordingly, an ALT procedure can be applied to
extrapolate a use-level lifetime distribution from test data in Table 3 in a straightforward way.

In a typical competing risks situation however, the first occurring failure mode terminates obser-
vation in a life test and incomplete random samples (min(x11,x21)) ,(min(x12,x22)) , ...,(min(x1n,x2n))

from Z = min(X1,X2) are observed at all stress levels. We use our estimated Frank copula in Sec-
tion 2 and test data in Table 3 to simulate typical competing risks samples that are in the required
general structure in Table 2 as follows:

(1) Fit life distributions to the derived competing risks data in Table 3 at each test stress level.

(2) Generate bivariate outcomes (X1,X2) from the estimated Frank copula model in Section 2
using the fitted life distributions from the first step when inverting. Obtain Z = min(X1,X2)

together with the identity J ∈ (1,2) of the mode that achieves the minimum.

We found the Weibull distribution with scale parameter α and shape parameter β to adequately de-
scribe test data in Table 3 for each failure mode and at each test stress level (Hove, 2014). Assuming
Weibull marginals (Genest, 1987), we generate observed occurrences of degraded and critical failure
times in a competing risks framework at each stress level using the following algorithm:
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Algorithm 4.1: Generating degraded and critical failure data using Frank’s copula

1. Generate independent uniform (0,1) random variables U1 and U2.

2. Set X1 = F−1
1 (U1) = α1

(
ln 1

1−U1

)1/β1
where α1 and β1 are the ML estimates of the Weibull

scale and shape parameters for the degraded failure mode at a stress level.

3. Calculate X2 as the solution to the equation

U2 = e−θU1

[
e−θF2(X2)−1

e−θ −1+(e−θU1 −1)(e−θF2(X2)−1)

]
.

That is calculate X2 = F−1
2 (U∗2) = α2

(
ln 1

1−U∗2

)1/β2
where U∗2 =− 1

θ
ln
[

U2e−θ+e−θU1 (1−U2)

U2+e−θU1 (1−U2)

]
.

The parameters α2 and β2 are the ML estimates of the Weibull scale and shape parameters for
the corresponding critical failure mode at a stress level. The parameter θ is the Frank copula
parameter estimated from expert opinion.

4. Obtain Z = min(X1,X2) and the identity of the mode that achieved the minimum.

This algorithm yields test data in Table 4:

Table 4: Simulated test data on unit lifetime under dependent right censoring.

190◦C Z J 220◦C Z J 240◦C Z J 260◦C Z J

1 8322 1 1 2362 2 1 915 2 1 1399 2
2 9491 1 2 2663 1 2 11751 2 2 1264 2
3 6329 1 3 1728 1 3 1548 1 3 1274 2
. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

20 9814 1 20 2801 1 20 1666 1 20 935 2

where column J indicates the identity of the mode that achieved the minimum. These data are in the
required general structure given in Table 2.

4.2. Identifiability of the marginal distributions

Our analysis assumes that we have a competing risks sample in hand at each stress level as shown
in Table 4. We now apply the general result of Zheng and Klein (1995) that if the copula C(., .)
of (X1,X2) is known, competing risks data in Table 4 uniquely determine the marginal distributions
FXJ (

.). For test data in Table 4, we know the copula since they are simulated from the Frank copula
that we estimated using expert opinion in Section 2. The observed occurrences in Table 4 of X1

(observed when J = 1) and X2 (observed when J = 2) allow one to estimate subdensity functions
f ∗XJ

(t) = F∗
′

X1
(t). These are postulated to be inverse Gaussian in Section 3. Estimates for the inverse
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Table 5: Inverse Gaussian parameter estimates for the simulated test data.

190◦C X1 X2 220◦C X1 X2

µ 8835.214 7578.5 µ 2694.417 2033
λ 589669.5 402153.6 λ 87582.48 17499.47

240◦C X1 X2 260◦C X1 X2

µ 1682.429 3061.833 µ NA 1187.421
λ 80450.86 2744.643 λ NA 4519.269

Gaussian scale parameter λ and mean µ for test data in Table 4 are reported in Table 5. No parameter
estimates are reported for the censoring variable at 260◦C stress level because the event {X1 < X2}
was observed only once with the rest corresponding to the event {X2 < X1}. Simulated test data
at the 260◦C stress level are dropped in further analysis as we could not fit the assumed inverse
Gaussian distribution to a single data point. The partial derivatives cuJ (

., .) of the estimated Frank
copula C(., .) in Section 2 and estimates of the subdensity functions f ∗XJ

(t) = F∗
′

X1
(t) in Table 5 are

our inputs in the nonlinear system in (3). Figure 3 shows our numerical solutions of the marginal
survival functions of unit lifetime X2 at the different stress levels. We used the Mathematica built-in
function NDSolve to numerically solve the nonlinear system in (3) for the marginal distributions
FXJ (

.) reported in Figure 3. For a similar application in biostatistics, see Kaishev et al. (2007) and
Dimitrova et al. (2013) for example. Numerical solutions of the marginal survival functions of the
censoring variable X1 are not reported at all stress levels because it is not the variable of interest.

4.3. ALT procedure: Extrapolating the use-level lifetime distribution

Having identified the marginal survival functions of unit lifetime X2 at the different stress levels in
Section 4.2, we apply an ALT procedure to extrapolate the lifetime distribution of the unit at the use-
level temperature of 180◦C. We assume the Arrhenius life-stress relationship because it is derived
for temperature dependence and is well-known (Nelson, 2004) to be a valid model in insulation
work. Under the assumed Arrhenius model, we found the scatter in unit lifetime to be adequately
described by a Weibull distribution. This suggests that the Arrhenius-Weibull model is appropriate
ALT model. It assumes that

(1) The Weibull distribution adequately describes the scatter in unit lifetime data at each stress
level.

(2) The Weibull shape parameter β does not change with stress and the relationship between the
Weibull scale parameter α (quantifiable life measure) and temperature (stress) is linear.

We used both graphical and analytical methods to check the adequacy of the Arrhenius-Weibull
model. The life-stress relationship and the extrapolated survival function of the unit at the use-level
temperature of 180◦C are displayed in Figure 4. The estimated Weibull distribution parameters at
the use-level temperature of 180◦C are α̂ = 13876Hr and β̂ = 4.411 where the former estimates
the lifetime of the redesigned unit. Selected reliability measures calculated from the extrapolated
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Survival function of X2 at 190◦C Survival function of X2 at 220◦C

Survival function of X2 at 240◦C Survival functions of X1 and X2 at 220◦C

Figure 3: Numerical solutions of survival functions of unit lifetime at different stress level. The
bottom right plot shows survival functions of both the censoring variable and unit lifetime.

Life-stress relationship Extrapolated use-level survival function

Figure 4: Life-stress relationship and use-level survival function plots.
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use-level survival function are given in Table 6 where B50% life is the time by which 50% of the

Table 6: Selected reliability measures at use-level temperature.

Reliability measure 90% Confidence limits

B50% life 12770Hr (11178,14590)
Mean life 12649Hr (11066,14458)

Warranty time 7077Hr (5736,8732)

units in a population will have failed.

5. Sensitivity analysis

The adopted copula-based competing risks methodology largely depends on the elicited rank corre-
lation and hence, the estimated copula model parameter. We present in Figure 5 the sensitivity of

Survival function: τ = 0.25, θ = 2.371 Survival function: τ = 0.5, θ = 5.736

Survival function: τ = 0.75, θ = 14.138 Survival function: τ = 0.9, θ = 38.281

Figure 5: Use-level survival functions of the unit assuming different degrees of dependence.

the extrapolated use-level survival function of the unit with respect to different degrees of stochastic
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dependence between the risk variables. These survival functions are obtained by solving the non-
linear system in (3) for values of θ that correspond to Kendall’s τ values equal to 0.25, 0.5, 0.75
and 0.9. The extrapolated use-level survival functions in Figure 5 reveal an apparent shift to the
left as the stochastic dependence between the risks increases. That is, as the strength of the rank
correlation increases, there is poor survival with respect to the remaining failure mode. This is made
clearer by looking at estimated reliability measures in Table 7. Assuming strong stochastic depen-

Table 7: Sensitivity of estimated reliability measures to different degrees of dependence.

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

B50% Life 12456Hr 12270Hr 12092Hr 11881Hr
Mean life 12704Hr 12190Hr 12011Hr 11745Hr

dence between the censoring variable X1 and unit lifetime X2, the latter will continue to operate in
the same way following the removal of the former. As a result, cause removal will not significantly
improve survival with respect to the remaining modes. However, our results in Table 7 show slight
differences in selected reliability measures for different rank correlation values. In particular, B50%
Life is approximately 12000Hr for the considered four rank correlation values.

This somewhat surprising result of slight differences in reliability measures for different degrees
of dependence was also obtained by Meeker, Escober and Hong (2009). In their analysis how-
ever, they assumed a bivariate lognormal model for the competing risks whereas our investigation
assumes a copula model. The practical implication of our result is the conclusion that when estimat-
ing the marginal survival functions from dependent competing risk data, one may use a degree of
dependence believed to be realistic to admit for the application under consideration.

6. Concluding remarks

We have demonstrated in this paper how the knowledge of the copula identifies the marginal distri-
butions if all one has is a competing risks sample. The paper extends the earlier work of:

(1) Zheng and Klein (1995) and Bunea and Mazzuchi (2007) by answering the question of how to
estimate the rank correlation between competing causes of failure. We used expert opinion to
estimate the rank correlation, and hence the assumed copula model. Our quantitative method
for modeling expert opinion may be applied to other application areas.

(2) Kaishev et al. (2007) and Dimitrova et al. (2013) by deriving the model for the subdistribution
functions from the degradation process of the unit.

We further extended the general result of Zheng and Klein (1995) to accelerated testing by extrap-
olating a use-level lifetime distribution from the survival functions of unit lifetime at the different
stress levels. Our study of the sensitivity of the extrapolated use-level lifetime distribution to dif-
ferent degrees of stochastic dependence reveal poor survival with respect to the remaining failure
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mode (unit lifetime) as the strength of rank correlation increases. We conclude that assuming strong
stochastic dependence between the risks, cause removal will not significantly improve survival with
respect to the remaining failure mode since it will continue to operate in the same way as the removed
mode (censoring variable).
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Appendix A

The R code for assessing pc and generating an estimated value of Kendall’s τ .

simwei=function(n,a,b,p,e){
x2=rweibull(n,shape=a,scale=b)
y2=rep(0,n)
z1=rexp(n,e)
z2=rexp(n,e)
count=1
repeat{
if(count==(n+1)) break
y=rweibull(1,shape=a,scale=b)
if(y>x2[count]){
y2[count]=y
count=count+1
}
}
x1=p*x2+z1
y1=p*y2+z2
k=0
for(i in 1:n){
if(y1[i]>x1[i]) k=k+1
}
prob=k/n
tau=2*prob-1
list(x2=x2,y2=y2,z1=z1,z2=z2,x1=x1,y1=y1,n=n,k=k,prob=prob, tau=tau)
}
sim1=simwei(n=75,a=3,b=1,p=0.85,e=1)
simN=1000
output=c(0,0,0)
for(s in 1:simN){
out=simwei(n=75,a=3,b=1,p=0.85,e=1)
output=rbind(output,c(out$n,out$k,out$prob,out$tau))
}
output=output[-1,]
colnames(output)=c("n","k","prob","tau")
output=as.data.frame(output)
x=output$tau
min(x)
names(sort(-table(x)))[1]
max(x)
plot(density(x),main="Kernel density estimate",xlab="Kendall’s tau")
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Appendix B

Statistical inference when the failure threshold is assumed known.

Let θ = (µ,λ )T be a vector of the inverse Gaussian distribution parameters. Assuming t1, t2, ..., tn
are inverse Gaussian distributed test data for the jth failure mode at a stress level, the log-likelihood
function is given by

`n(θ |t1, ..., tn) =
n
2

lnλ − n
2

ln(2π)− 3
2

n

∑
i=1

ln(ti)−
λ

2µ2

n

∑
i=1

(ti−µ)2

ti
.

Maximum likelihood (ML) estimates of µ and λ are well-known (Chhikara and Folks, 1989) to be
given by

µ̂ = T =
1
n

n

∑
i=1

Ti and λ̂ =
n

∑
n
i=1

(
1
Ti
− 1

T

) ,
respectively. In a competing risk situation however, the contribution to the likelihood function when
unit lifetime is censored during testing is the subdensity function of X1. It is given by

f ∗1 (x1; µ1,λ1) = q

√
λ1

2πx3
1

exp
(
−λ1(x1−µ1)

2

2µ2
1 x1

)
.

Similarly, the contribution to the likelihood function when a the occurrence of a critical failure
removed a unit from observation during testing is the subdensity function of X2 given by

f ∗2 (x2; µ2,λ2) = (1−q)

√
λ2

2πx3
2

exp
(
−λ2(x2−µ2)

2

2µ2
2 x2

)
.

Lindqvist and Skogsrud (2009) gives a different parameterisation of the inverse Gaussian distribu-
tion. Let (z1, ...,zN) = (x11, ...,x1n;x21, ...,x2m) be the observed competing risks data at each test
stress level. Then the likelihood function is given by

L =
n

∏
i=1

f ∗1 (x1i)
m

∏
k=1

f ∗2 (x2k)

= qn(1−q)m λ n
1 λ m

2

2π
n+m

2

(
n

∏
i=1

x1i

)−3/2( m

∏
k=1

x2k

)−3/2

× exp

(
−

n

∑
i=1

λ1(x1i−µ1)
2

2µ2
1 x1i

−
m

∑
k=1

λ2(x2k−µ2)
2

2µ2
2 x2k

)
.

Thus ML estimates of model parameters are obtained by calculating the loglikelihood function,
taking partial derivatives with respect to the parameter and solving the resulting likelihood equations.
For example, the likelihood equation for the probability q of observing a degraded failure in a life
test before the unit reaches the end of its useful life is n(1−q)−mq = 0. Hence the ML estimate q̂
of q is given by q̂ = n

n+m while in practice, readily available optimisation software are used to obtain
parameter estimates.
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