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1. Introduction:

In spite of its simplicity, the Banach fixed point theorem still seems to be the most important result in metric
fixed point theory. Fixed point theorems are very useful in the existence theory of differential equations, integral
equations, functional equations and other related areas. In 1992, Matthews [1] introduced partial metric spaces.
In a partial metric space, the distance of a point from itself may not be zero. After the definition of partial metric
spaces, Matthews proved the partial metric version of Banach fixed point theorem. After that, many authors were
studied fixed point results in partial metric spaces. Existence of a fixed point for contraction type mappings in
partially metric spaces and its applications has been considered recently by many authors [2-10]. Consistent with
[1,5,11], the following definitions and results will be needed in the sequel. Throughout the article we denote
R+ = [0,∞).

Definition 1.1 [11] A partial metric on a nonempty set X is a function p : X × X −→ R+ such that for all
x, y, z ∈ X :

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(P2) p(x, x) ≤ p(x, y),

(P3) p(x, y) = p(y, x),

(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.
Remark 1.2 It is clear that, if p(x, y) = 0, then from (P1) and (P2) x = y. But if x = y, p(x, y) may not be

0.
Example 1.3 [11] Let a function p : R+×R+ −→ R+ be defined by p(x, y) = max{x, y} for any x, y ∈ R+.

Then (R+, p) is a partial metric space.
Example 1.4 [11] If X = {[a, b] : a, b ∈ R, a ≤ b}, then p : X × X −→ R+ defined by p([a, b], [c, d]) =

max{b, d}−min{a, c} is a partial metric onX. If p is a partial metric onX, then the function ps : X×X −→ R+

given by
ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1)

is a metric on X.
Definition 1.5 [11-13] Let (X, p) be a partial metric space. Then

(i) A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if and only if p(x, x) =
lim
n→∞

p(x, xn).
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(ii) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is finite)
lim

n,m→∞
p(xm, xn).

(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges to a
point x ∈ X, that is p(x, x) = lim

n,m→∞
p(xm, xn).

Remark 1.6 It is easy to see that every closed subset of a complete partial metric space is complete.
Lemma 1.7 [7,11,12] Let (X, p) be a partial metric space. Then

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps).

(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete. Furthermore,

lim
n→∞

ps(xn, x) = 0

if and only if

p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xm, xn).

Lemma 1.8 [3] A mapping f : X −→ X is said to be continuous at a ∈ X , if for every ϵ > 0, there exists
δ > 0 such that f(B(a, δ)) ⊂ B(f(a), ϵ). The following result is easy to check.

Lemma 1.9 Let (X, p) be a partial metric space. T : X −→ X is continuous if and only if given a sequence
{xn} ⊆ X and x ∈ X such that p(x, x) = lim

n→∞
p(xn, x), then p(Tx, Tx) = lim

n→∞
p(Txn, Tx).

Definition 1.10 Let X be a set, T and g are selfmaps of X. A point x in X is called a coincidence point of T
and g if Tx = gx. We shall call w = Tx = gx a point of coincidence of T and g.

2. Main Result:

Theorem 2.1 Let (X, p) be a complete partial metric space and T, g : X −→ X are such that TX ⊆ gX and

G(p(Tx, Ty)) ≤ αG(p(gx, gy)) + βG(p(gy, Ty))ψ(p(gx, gy), p(gx, Tx)), (2)

for all x, y ∈ X, where α, β are nonnegative real numbers with α + β < 1, ψ : R+ × R+ −→ R+ is a
continuous function such that ψ(t, t) = 1 for all t ∈ R+ and G : R+ −→ R+ is a continuous, non- descending
and subadditive function such that G(0) = 0. Also suppose gX is closed in (X, p). Then T and g have a unique
coincidence point, that is, there exists x ∈ X such that Tx = gx.Moreover, we have p(Tx, Tx) = p(gx, gx) = 0.

Proof. Let x0 be an arbitrary point. Construct the sequence {xn} such that Txn = gxn+1 for each n =
0, 1, 2, . . . which is possible since TX ⊆ gX. If there exists k0 ∈ N such that Txk0

= Txk0+1, then by
Txn = gxn+1,

gxk0+1 = Txk0+1,

that is, T and g have a coincidence at x = xk0+1, and so the proof is completed. So we are done in this case. Now
we suppose that

p(Txn, Txn+1) > 0,∀ n ≥ 1.

We claim that for all n ∈ N, we have

p(gxn+1, gxn+2) ≤ λn+1p(gx0, gx1), where 0 < λ < 1. (3)

By (2), we have

G(p(gxn+1, gxn+2)) = G(p(Txn, Txn+1))

≤ αG(p(gxn, gxn+1)) + βG(p(gxn+1, Txn+1))ψ(p(gxn, gxn+1), p(gxn, Txn))

= αG(p(gxn, gxn+1)) + βG(p(gxn+1, gxn+2))ψ(p(gxn, gxn+1), p(gxn, gxn+1))

= αG(p(gxn, gxn+1)) + βG(p(gxn+1, gxn+2))

JAFS|ISSN 2395-5554 (Print)|ISSN 2395-5562 (Online)|Vol 7(2)|December 2021 113



Journal of Applied and Fundamental Sciences

which yields that

G(p(gxn+1, gxn+2)) ≤
α

1− β
G(p(gxn, gxn+1)).

Set λ =
α

1− β
. Thus we have

G(p(gxn+1, gxn+2))

≤ λG(p(gxn, gxn+1))

≤ λ2G(p(gxn−1, gxn))

...

≤ λn+1G(p(gx0, gx1)).

(4)

Next, we claim that {Txn} is a Cauchy sequence in the metric space (X, ps). Without loss of generality assume
that n > m. Then by using (4) and the triangle inequality for partial metrics, we have

G(p(Txn, Txn+m))

= G(p(gxn+1, gxn+m+1)) ≤ G(p(gxn+1, gxn+2)) +G(p(gxn+2, gxn+m+1))

≤ G(p(gxn+1, gxn+2)) +G(p(gxn+2, gxn+3)) +G(p(gxn+3, gxn+m+1)).

Inductively we have

0 ≤ G(p(Txn, Txn+m)) ≤ G(p(gxn+1, gxn+2)) +G(p(gxn+2, gxn+3)) + ...+G(p(gxn+m, gxn+m+1))

≤ (λn+1 + λn+2 + ...+ λn+m)G(p(gx0, gx1))

= λn+1(1 + λ+ λ2 + ...+ λm−1)G(p(gx0, gx1))

≤ λn+1

1− λ
G(p(gx0, gx1)).

Since α+ β < 1 then λ < 1. Thus

lim
n,m→∞

G(p(Txn, Txm)) = G( lim
n,m→∞

p(Txn, Txm)) = 0. (5)

We conclude that {Txn} is a Cauchy sequence in (X, p). By (1), we have ps(Txn, Txm) ≤ 2p(Txn, Txm).
Therefore

lim
n,m→∞

ps(Txn, Txm) = 0. (6)

Thus by Lemma 1.7, {Txn} is a Cauchy sequence in both (X, p) and (X, ps). Thus, there exists z ∈ X such that
lim
n→∞

ps(Txn, z) = 0 if and only if

p(z, z) = lim
n→∞

p(z, Txn) = lim
n→∞

p(gxn+1, z) = lim
n,m→∞

p(Txm, Txn) = 0. (7)

Since {Txn} ⊆ gX and gX is closed, there exists x ∈ X such that z = gx. Now we claim that x is a coincidence
point of T and g. We have

G(p(gx, Tx)) ≤ G(p(gx, gxn+1)) +G(p(gxn+1, Tx))

= G(p(z, gxn+1)) +G(p(Txn, Tx)),

≤ G(p(z, gxn+1)) + αG(p(gxn, gx)) + βG(p(gx, Tx))ψ(p(gxn, gx), p(gxn, Txn)).

Taking n→ ∞ in the above inequality, we have

G(p(gx, Tx)) ≤ βG(p(gx, Tx))

which is possible only when p(gx, Tx) = 0, which implies that Tx = gx, that is, x is a coincidence point of T
and g. Otherwise if p(gx, Tx) > 0, we obtain

G(p(gx, Tx)) ≤ βG(p(gx, Tx)) < G(p(gx, Tx))
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a contradiction. Assume that z, y be coincidence point of T and g in X such that y ̸= z. Then there exists t1, t2
in X such that Tt1 = gt1 = z and Tt2 = gt2 = y. Using 2, we have

G(p(gt1, gt2)) = G(p(Tt1, T t2)) ≤ αG(p(gt1, gt2)) + βG(p(gt2, T t2))ψ(p(gt1, gt2), p(gt1, T t1))

= αG(p(gt1, gt2)) + βG(p(gt2, gt2))ψ(p(gt1, gt2), p(gt1, gt1)).

So

G(p(gt1, gt2)) ≤ αG(p(gt1, gt2)) < G(p(gt1, gt2)),

which is a contradiction which proves the uniqueness of point of coincidence. By taking ψ : R+ × R+ −→ R+

via ψ(t, s) =
1 + s

1 + t
in Theorem ??, we have the following result:

Corollary 2.2 Let (X, p) be a complete partial metric space and T, g : X −→ X are such that TX ⊆ gX and

G(p(Tx, Ty)) ≤ αG(p(gx, gy)) + βG(p(gy, Ty))
1 + p(gx, Tx)

1 + p(gx, gy)
,

for allx, y ∈ X, where α, β are nonnegative real numbers with α + β < 1 and G : R+ −→ R+ is a continuous,
non-descending and subadditive function such that G(0) = 0. Also suppose gX is closed in (X, p). Then T
and g have a unique coincidence point, that is, there exists x ∈ X such that Tx = gx. Moreover, we have
p(Tx, Tx) = p(gx, gx) = 0.

Corollary 2.3 Let (X, p) be a complete partial metric space and T : X −→ X be a mapping satisfying

G(p(Tx, Ty)) ≤ αG(p(x, y)) + βG(p(y, Ty))ψ(p(x, y), p(x, Tx)),

for allx, y ∈ X, where α, β are nonnegative real numbers with α + β < 1 and ψ : R+ × R+ −→ R+ is a
continuous function such that ψ(t, t) = 1 for all t ∈ R+ and G : R+ −→ R+ is a continuous, non- descending
and subadditive function such that G(0) = 0. Then T has a unique fixed point. As a special case of Corollary
2.3, we have the following result of Matthews [1,11].

Corollary 2.4 Let (X, p) be a complete partial metric space and T : X −→ X be a mapping satisfying
p(Tx, Ty) ≤ αp(x, y) for all x, y ∈ X. If 0 ≤ α < 1, then T has a unique fixed point. Now, we introduced an
example to support the useability of our results.

Example 2.5 Let X = [0, 1] and p(x, y) = max{x, y}, then it is clear that (X, p) is a complete partial metric
space. Indeed, for any x, y ∈ X,

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) = 2max{x, y} − (x+ y) = |x− y|.

Thus, (X, ps) = ([0, 1], |.|) is the usual metric space, which is complete. Again, we define G : R+ −→ R+,

T, g : X −→ X, by G(t) =
1

3
t, Tx = x3

3x+9 , gx = x2

x+3 and ψ : [0,∞) × [0,∞) −→ [0,∞) is a continuous

function such that ψ(t, t) = 1 for all t ∈ [0,∞). Take α = 1
3 and 0 ≤ β < 2

3 so that α + β < 1. We show that
condition (2) is satisfied.
If x, y ∈ X, then we have

G(p(Tx, Ty)) =
1

3
max {Tx, Ty} =

1

3
max

{
x3

3x+ 9
,

y3

3y + 9

}
≤ 1

9
max

{
x2

x+ 3
,
y2

y + 3

}
=

1

3
G(p(gx, gy))

≤ αp(gx, gy) + βp(gy, Ty)ψ(p(gx, gy), p(gx, Tx)).

Note that, T and g satisfy all the conditions given in Theorem 2.1. Moreover, 0 is a unique common fixed point of
T and g.

Theorem 2.6 Adding to the hypotheses of Theorem 2.1 the condition, if T and g commute at their coincidence
points, we obtain the uniqueness of the common fixed point of T and g.

Proof. Suppose that T and g commute at x. Set y = Tx = gx. Then

Ty = T (gx) = g(Tx) = gy, (8)
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from (2) we get

G(p(Tx, Ty)) ≤ αG(p(gx, gy)) + βG(p(gy, Ty))ψ(p(gx, gy), p(gx, Tx))

= αG(p(Tx, Ty)) + βG(p(Ty, Ty))ψ(p(Tx, Ty), p(Tx, Tx))

= αG(p(Tx, Ty))

(9)

Suppose that p(Tx, Ty) > 0, from (9), we get

G(p(Tx, Ty)) ≤ αG(p(Tx, Ty)) < G(p(Tx, Ty)),

which is a contradiction. Hence p(Tx, Ty) = 0, that is, p(y, Ty) = 0. Therefore

Ty = gy = y. (10)

Thus we proved that T and g have a common fixed point.
Uniqueness: Let v and w be two common fixed points of T and g. (i.e) v = Tv = gv and w = Tw = gw. Using
inequality (2.1), we have

G(p(w, v)) = G(p(Tw, Tv)) ≤ αG(p(gw, gv)) + βG(p(gy, Tv))ψ(p(gw, gv), p(gw, Tw))

= αG(p(w, v)),

which is possible only when w = v. Hence T and g have an unique common fixed point.
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