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ABSTRACT 

A Monte Carlo Simulation of Rat Choice Behavior with Interdependent Outcomes 

Michelle A. Frankot 

Preclinical behavioral neuroscience often uses choice paradigms to capture psychiatric 

symptoms. In particular, the subfield of operant research produces nested datasets with many 

discrete choices in a session. The standard analytic practice is to aggregate choice into a 

continuous variable and analyze using ANOVA or linear regression. However, choice data often 

have multiple interdependent outcomes of interest, violating an assumption of general linear 

models. The aim of the current study was to quantify the accuracy of linear mixed-effects 

regression (LMER) for analyzing data from a 4-choice operant task called the Rodent Gambling 

Task (RGT), which measures decision-making in the context of various manipulations (e.g., 

brain injury). Prior analysis of RGT data from intact rats (Sham; n = 58) and brain-injured rats 

(TBI; n = 51) revealed five distinct decision-making phenotypes for this task. To generate 

datasets for parametric analysis, trial-level data was simulated using a Monte Carlo approach 

recapitulating those phenotypes. Population parameters were defined from existing data, and 

repeated sampling was conducted to generate 1000 datasets for four sample sizes (n = 6, 10, 14, 

20) and four effect sizes (f = 0.0, 0.3, 0.4 and 0.5). Two LMER models were performed to 

compare TBI versus Sham across datasets: a full LMER where choice of all four outcomes was 

analyzed simultaneously, and a control LMER where choice of a single outcome was analyzed. 

The full LMER exceeded 75% false positives across all sample sizes, and the control LMER was 

underpowered to detect expected effects. These results suggest analyzing trial-level data in a 

mixed effects logistic regression will be necessary to accurately analyze RGT data. More 

broadly, these types of errors must be remedied to improve translation to clinical research.  
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A Monte Carlo Simulation of Rat Choice Behavior with Interdependent Outcomes 

Two major obstacles in basic scientific research are reproducibility and translation. 

Although the reproducibility crisis is a widespread phenomenon, the translation crisis is 

particularly pronounced in behavioral neuroscience. In fact, there are estimates that 90% of 

preclinical therapeutics in behavioral neuroscience fail to translate to humans (e.g., Garner, 

2014). Translation has been exceptionally difficult in the subfield of traumatic brain injury (TBI) 

where successful treatments in rodents largely fail in clinical trials (Bragge et al., 2016). There 

are many complex factors that contribute to this disconnect, such as poor preclinical models, 

inherent species differences, miscommunication across disciplines, and lack of funding 

incentives.  

Improper use of statistical tests may also contribute to the translation and reproducibility 

crises (Seyhan, 2019). In fact, a review of 125 peer-reviewed preclinical articles in the field of 

TBI and spinal cord injury found that 70% of papers contained an inappropriate statistical 

technique (e.g., incorrect post-hoc tests, incorrect use of parametric tests) (Burke, Whittemore, & 

Magnuson, 2013). Improper statistics at the preclinical level may produce findings that fail to 

translate to clinically-meaningful results. These types of data analytic issues are an excellent 

target for narrowing the translational gap because they do not require major scientific 

advancements to rectify. One particular analytic error that may create inaccuracies at the 

preclinical level is the use of parametric tests when core assumptions are violated. In the current 

study, we used a Monte Carlo approach to empirically identify any limitations in the traditional 

data analytic approach for a preclinical behavioral paradigm called the Rodent Gambling Task 

(RGT).  
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Violations of Parametric Statistics 

The General Linear Model (GLM) is the foundation of many parametric statistical tests 

(e.g., t-test, ANOVA, linear regression) used to analyze preclinical data. The GLM models a 

linear relationship between variables in the form of [y = β0 +β1X1 +β2X2 +… + βnXn + e] where y 

is the dependent variable, x is the independent variable(s), the slope (β) is the strength of the 

relationship associated with each independent variable, β0 is the intercept, and e represents the 

error term (Faraway, 2016). After fitting data to a linear model, the difference between the 

observed y-values and the predicted y-values are referred to as residuals. To analyze data using 

the GLM, the data must meet four explicit assumptions regarding the structure of the residuals: 

(1) the residuals must be independent of one another, (2) the residuals must be normally 

distributed (3), the residuals must have a mean of zero at all values of x, and (4) the residuals 

must have constant variance (i.e., homoscedasticity) (McCullagh, 1989).  

However, real data tend to violate these underlying assumptions to varying degrees. 

Assumption violations can bias parameter estimates and the errors of those parameter estimates, 

which in turn can increase the risk of false positives (i.e., Type I error) and reduce the ability to 

detect true differences between groups (i.e., power, Type II error) (Erceg-Hurn & Mirosevich, 

2008). Unfortunately, violations are often dismissed. When 30 PhD researchers in Psychology 

were given hypothetical datasets to analyze, fewer than 25% checked if assumptions were 

violated (Hoekstra, Kiers, & Johnson, 2012). Although the lack of awareness surrounding 

violations is concerning, assumption violations do not always have detrimental effects on data 

interpretation due to the robust nature of the GLM. Under certain conditions, data that violate 

assumptions (e.g., non-normal data void of substantial outliers) may still be analyzed 

appropriately using linear models (Knief & Forstmeier, 2020), although there is considerable 
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debate regarding the robustness of the GLM to violations (Bradley, 1978; Micceri, 1989). First, 

there is no operational definition of the “robustness” of the GLM. Second, there are no clear 

guidelines outlining what constitutes normal “enough” to analyze using the GLM. Thus, it is 

important to experimentally test whether violations in preclinical paradigms produce impactful 

errors. Specifically, we will consider violations of the assumption of independence of residuals, 

which occur frequently in preclinical choice paradigms. 

Choice Paradigms in the TBI Field 

Violations of the independence assumption often occur in behavioral neuroscience 

research due to the use of repeated measures. Fortunately, an easy remedy is to use an analysis 

that accounts for within-subject dependence, such as a repeated measures ANOVA or linear 

mixed model nested by subject.  However, more problematic independence violations may be 

unavoidable in experiments that use choice paradigms, where outcomes are often interdependent 

by nature. When outcomes are interdependent, this increases the likelihood that residuals will be 

interdependent, thus violating GLM assumptions. In choice paradigms, interdependent outcomes 

may artificially inflate parameter estimates for the coefficients representing the effects of 

predictors in the model because when choice of one outcome shifts, it inherently changes choice 

of other outcomes. When the magnitude of difference across conditions is artificially inflated, 

false positives may be more likely to occur (i.e., researchers are more likely to find significant 

effects when a true population-level effect does not exist).  

Choice paradigms are particularly relevant for modeling various psychiatric conditions 

(see Table 1 for a list of example paradigms). Psychiatric deficits, such as poor decision-making, 

are common after brain injury (Vaishnavi, Rao, & Fann, 2009), making preclinical TBI research 

susceptible to the independence violation because choice paradigms are often required. There are 
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two primary classifications of choice paradigms in preclinical TBI literature that violate the 

assumption of independence: (1) choice paradigms with two options and (2) choice paradigms 

with three or more options. It is important to distinguish between these because each requires a 

different solution. Specifically, violations in 2-choice paradigms can be easily remedied, while 

paradigms with additional choices require more consideration. 

Table 1.  

Common Preclinical Behavioral Paradigms with Interdependent Outcomes.  

Task Choice Parameters Pub-Med Hits 

Novel Object Test 2-Choice  4,638 

Elevated Plus Maze 2-Choice 8,972 

Conditioned Place Preference 2-Choice 5,192 

Delay Discounting Task 2-Choice 1,115 

Social Preference Test 2-Choice/3-Choice 8,114 

Forced Swim  3-Choice 9,564 

Rodent Gambling Task 4-Choice 159 

Morris Water Maze (Quadrant Analysis) 4-Choice 11,957 

Note: Search was conducted on October 12, 2021. Task names were used as search parameters. 

Choice Paradigms with Two Options 

In choice paradigms with two options, a preference score is typically used as a dependent 

variable. If preference is calculated as a ratio of one option divided by a total score, it does not 

violate the independence assumption. However, some researchers calculate preference as choice 

of one option compared against choice of another option (i.e., Preference =  
Option 1

Option 2
). This 

approach is used in a 2-choice paradigm called the Novel Object Recognition (NOR) task 
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(Ennaceur & Delacour, 1988).  During the task, rodents are presented with an object and given 

time to establish initial familiarity with it. Then, after some period of time (e.g., 1 hour), rodents 

are given time to choose to interact with either the familiar object or a novel object. The 

dependent variable is typically a preference index comparing time spent with each object, which 

is viewed as an indicator of the ability to discriminate between novel and familiar stimuli 

(Sivakumaran, Mackenzie, Callan, Ainge, & O’Connor, 2018). There are a variety of ways this 

index can be calculated (Antunes & Biala, 2012), some of which violate the independence 

assumption (but can be readily fixed). One common problematic calculation defines preference 

as  
% time with novel

% time with familiar
  (Antunes & Biala, 2012; Broadbent, Gaskin, Squire, & Clark, 2009). If not 

transformed or accounted for, this approach artificially inflates the preference index; as time with 

the novel object increases, time with the familiar object inherently decreases, which amplifies the 

resulting calculation. Unfortunately, this is a common approach used by many current papers in 

the field (e.g., Bahceci, Anderson, Occelli Hanbury Brown, Zhou, & Arnold, 2020; Bruijnzeel et 

al., 2019; Hornoiu, Gigg, & Talmi, 2020; Munyon, Eakin, Sweet, & Miller, 2014).  

However, this violation can be easily remedied with formulaic changes or minor 

transformations (e.g., percent or log transformation). For example, novel object preference could 

be calculated as 
time with novel

total time
. This simple change in formula prevents artificial inflation of 

group-level effects or deviations from baseline and has been implemented by some researchers in 

the field (Cole, Ziadé, Simundic, & Mumby, 2020; Moreton et al., 2019). In general, when there 

is only one outcome of interest, analyzing that single outcome as a dependent variable is the 

simplest option to prevent a statistical violation. Another option for tasks with discrete trials is to 

analyze the data using mixed-effects binomial logistic regression (Cohen, 2002; Young, 2018). 
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However, choice paradigms with three or more outcomes of interest cannot be fixed with minor 

formulaic changes and require the use of analytic techniques that account for non-independence.  

Choice Paradigms with Three or More Options 

When choice paradigms have three or more options, the solution to interdependence is 

contingent on the number of outcomes of true interest. This problem can be illustrated by 

comparing two preclinical paradigms, the Morris Water Maze (MWM) and the Forced Swim 

Task (FST).  The MWM is a measure of spatial memory (Morris, 1981) in which rodents are 

placed in a circular tank of opaque water and must locate (often using reference cues placed 

around the room) and swim to a platform just under the surface of the water. The maze can be 

divided into four equal quadrants, and a quadrant preference score is calculated. Traditionally, 

quadrant preference is defined as time spent in the target quadrant compared to time spent in 

other quadrants, and is used as a dependent variable in repeated measures ANOVA (Vorhees & 

Williams, 2006). This is problematic because it violates the assumption of independence; if 

percent time in one quadrant increases, percent time in the other quadrants inherently decreases. 

This is particularly important given the heavy reliance of the preclinical TBI field on MWM as a 

functional outcome. Some researchers have acknowledged this violation and use alternative 

types of analyses that do not rely on the GLM (Rogers, Churilov, Hannan, & Renoir, 2017). 

There is also another simple solution for this violation; rather than analyzing all four quadrants, 

researchers can quantify time spent in the target quadrant only. However, this only works 

because time spent in the target quadrant is generally the only outcome of interest.  

In choice paradigms that have multiple outcomes of interest, such as the FST, the solution 

is less straightforward. The FST is a measure of depressive behavior during which rodents are 

placed in a cylindrical tank of water and become immobile after an initial period of swimming 
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and escape behaviors (Porsolt, Anton, Blavet, & Jalfre, 1978). It is common for these behaviors 

(swimming, floating, active escape) to be analyzed separately (i.e., separate t-test or ANOVA for 

each behavior) even though they are interdependent outcomes (e.g., Mezadri, Batista, Portes, 

Marino-Neto, & Lino-de-Oliveira, 2011). This is problematic not only due to the inflated number 

of tests, but because as any one behavior increases, the other behaviors inherently decrease. In 

other words, if there is an effect of a manipulation on time spent swimming, it is more likely 

there will be effects on floating and/or escaping. In a 2-choice paradigm, a solution is to analyze 

a single choice only. However, reducing FST outcomes to swimming only might fail to capture 

important information, given that different antidepressants can have differential outcomes on 

time spent swimming, climbing, and escaping (Slattery, Desrayaud, & Cryan, 2005). Thus, 

choice paradigms with distinct outcomes of interest present a complex problem. Another such 

task with multiple, distinct outcomes of interest is the Rodent Gambling Task (RGT) (Zeeb & 

Winstanley, 2013), which the Vonder Haar lab uses to assess chronic behavioral outcomes after 

TBI.  

Rodent gambling task. The RGT is a choice paradigm with four interdependent 

outcomes of interest. It is a rat analogue of a neuropsychological assessment used to measure 

risky decision-making in clinical populations called the Iowa Gambling Task (Bechara, 

Damasio, Damasio, & Anderson, 1994). In the Iowa Gambling task, participants receive 

monetary gains and losses by choosing between four different decks of cards. In the RGT, rats 

can nosepoke in four different holes in an operant chamber. Each hole is associated with a 

different probability and magnitude of reinforcement (sucrose pellets) and punishment (timeout) 

and thus, a distinct distribution of risk and reward. As a result, there are four choice outcomes of 

interest: one optimal choice, two risky choices (with differential reinforcement/punishment), and 
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one suboptimal but non-risky choice. Most healthy control rats quickly learn to primarily choose 

the optimal hole (Zeeb & Winstanley, 2013), but TBI rats have persistent reductions in optimal 

choice (Shaver et al., 2019). 

Statistical Approaches to Analyzing Choice Behavior 

Traditionally, RGT data is analyzed by aggregating discrete trials into percent choice of 

each of the four options as the dependent variable for a repeated measures ANOVA or linear 

mixed-effects regression (LMER). Choice as a categorical variable (i.e., Choice 1, 2, 3, or 4, also 

referred to as P1, P2, P3, and P4 for the number of pellets delivered) is used as a predictor. If a 

manipulation (e.g., drug, injury) interacts with choice, dummy coding is used to relevel the 

choice variable and assess the effects of the manipulation on each choice option. A mixed model 

(also called multilevel, hierarchical, random effects) is typically used to analyze long-term 

outcomes on the RGT by incorporating both fixed effects and random effects. Fixed effects have 

a systematic effect on the outcome variable that is constant across individuals (e.g., group-level 

effects of TBI on symptoms). Random effects occur when levels of a variable are sampled from 

a larger population (e.g., individual patient effects, testing site effects). In repeated-measures 

RGT analyses, a mixed model can account for violations due to nested levels; LMER corrects the 

error by subtracting out variability that stems from individual-subject differences (Raudenbush & 

Bryk, 2001). Given the amount of between-subject variance seen on the RGT (Barrus, Hosking, 

Zeeb, Tremblay, & Winstanley, 2015), this is a major advantage. Another advantage of LMER is 

that it can effectively handle missing at random or missing completely at random data using 

restricted maximum likelihood estimation (Laird & Ware, 1982).  

However, RGT data also violate the independence assumption because choice of any one 

option necessitates a shift in choice of other options. Violations that occur in other tasks (e.g., 
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NOR, MWM) can be easily remedied because there is only one true outcome of interest (time 

spent with novel object and time in target quadrant, respectively). This solution does not apply to 

tasks with multiple outcomes of interest. For example, on the FST, it is important to measure 

time spent swimming, floating, and escaping; on the RGT, optimal, suboptimal, and risky choice 

are all outcomes of interest. Thus, LMER may not be the best approach to analyze data from 

these tasks, although it is important to note that RGT researchers do not currently know if this 

violation causes inaccuracies in practice.  

One way to experimentally determine if a statistical test is (in)accurate is to simulate 

data. In the case of normality assumptions, some data simulations suggest that linear models can 

be applied to non-normal data in certain cases (Knief & Forstmeier, 2020). However, other 

papers show that linear models should not be applied to non-normal data. For example, one 

simulation study compared linear versus logistic regression for analyzing accuracy data 

constrained between 0 and 1 (as is percent choice on the RGT). Logistic regression performed on 

the raw correct/incorrect data outperformed linear models that treated accuracy as a continuous 

outcome (Dixon, 2008). Thus, the robustness of the GLM to violations is context dependent, and 

we must use simulations to empirically test the effects of the independence violation within the 

specific context of the RGT. For the current study, we tested the accuracy of LMER for 

analyzing RGT choice behavior. Notably, a multinomial logistic regression is a more appropriate 

technique for RGT data because it allows for analysis of raw data without violating the model 

assumptions. However, a multinomial logistic regression becomes computationally intensive 

when mixed effects are incorporated. Coercing choice data into a quasi-continuous variable and 

analyzing it using LMER or repeated-measures ANOVA is a much less computationally 
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intensive approach, but may be less accurate. The current study empirically tests the accuracy of 

this data coercion approach via simulation. 

Data Simulations  

 Data simulations are an ideal method for testing the accuracy of different statistical tests. 

Monte Carlo methods are a common technique to simulate data through repeated sampling of 

random observations within a known probability distribution. This allows for the generation of 

data that mimic real-life processes (Kroese, Brereton, Taimre, & Botev, 2014). Monte Carlo 

methods are more prevalent in economics for determining the risk of different financial 

decisions; however, these methods have also been applied to psychological and biomedical 

sciences (e.g., Dixon, 2008; Meaney & Moineddin, 2014; Young, Cole, & Sutherland, 2012). 

One major advantage of Monte Carlo methods is that they can be used to evaluate the accuracy 

of different statistical tests because the researcher knows the “truth” of the data (i.e., whether 

data were sampled from equal or unequal distributions). For example, Monte Carlo simulations 

of MWM data demonstrated that both linear and non-linear mixed models identified real effects 

more accurately than ANOVA (Young, Clark, Goffus, & Hoane, 2009), and that a censored 

mixed model outperformed a linear mixed model (Young & Hoane, 2021).  

Another major advantage of Monte Carlo simulations is that they can be used to simulate 

outcomes under a variety of different scenarios (Kroese et al., 2014). In behavioral neuroscience, 

these scenarios could be different sample sizes, effect sizes, or transformations applied to the 

data. Statistical tests have different advantages depending on sample size and effect size, 

particularly when analyzing non-normal data. For example, a large effect size ( = 0.8) was used 

to overcome small sample sizes (n = 5 and 10 per group) when analyzing non-normal data with 

Pearson and Spearman correlations (Bishara & Hittner, 2012). Sample size can also have a 
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substantial effect on the accuracy of mixed-effects models above and beyond power. For 

example, a large sample size (>50 subjects per group) can overcome the influence of rare events 

on a mixed-effects logistic regression model (Moineddin, Matheson, & Glazier, 2007). Thus, 

RGT datasets with various sample sizes and effect sizes must be simulated to determine if there 

are conditions under which LMER fails to overcome independence violations.  

The Structure of Behavior 

To simulate datasets that mimic real-life behavior, some knowledge about the structure of 

behavior is required. In the context of an operant task, such as the RGT, this involves 

information about what is driving choice. Although one might predict choice would be driven by 

optimal reinforcement (i.e., exclusive choice of the option with the highest reinforcement rate), 

this is not the case on the RGT. The field of behavior analysis suggests that choice is driven by 

both molar and molecular forces (Baum, 1989). The molar view asserts that the aggregate of 

reinforcement and punishment over many trials can be used to predict behavior. This theoretical 

orientation is further described by a behavior principle called the matching law, which states that 

the rate of responding on concurrent options is proportional to the rate of reinforcement provided 

by those options (Herrnstein, 1970). For example, a basketball player whose behavior is 

predicted by the matching law would spend more time shooting three-point shots because the 

rate of reinforcement (points gained per shot) for three-point shots is the highest. However, if the 

opposing team had a particularly strong defense against three-point shots, that player might 

attempt more two-point shots, thus matching behavior to the potential reinforcement offered by 

each outcome. In the context of the RGT, the molar view would be supported if rats chose each 

option proportionally according to reinforcement rates (i.e., chose P2 on about 44% of trials, P1 

on about 31% of trials, and P3 on about 14% of trials and P4 on about 11% of trials).  
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In contrast, the molecular view states that immediate reinforcement and punishment on 

any single trial drives behavior (Shimp, 2020). This can be quantified in preclinical choice 

paradigms by examining “preference pulse,” which calculates the degree of choice preference as 

a function of time from reinforcement (Davison & Baum, 2002) or, as is common in behavioral 

neuroscience, by calculating instances when a reinforced response is repeated on the next trial 

(i.e., win-stay) and when a punished response is changed on the next trial (i.e., lose-shift) (e.g., 

Stopper & Floresco, 2011). In the context of a basketball game, behavior would be consistent 

with the molecular view if a player decided between two-point and three-point shots based on the 

result of their previous shot. For example, if a player missed a three-point shot, they may shift 

(i.e., lose-shift) to a two-point shot next time they were in scoring range. In the context of the 

RGT, the molecular view would be supported if previous reinforcement and punishment exerted 

an outsized influence on the next trial (i.e., choice was always dictated by the outcome of the 

previous trial).  

Structure of RGT Behavior.  

To determine how to simulate realistic RGT behavior, in a published dataset (Vonder 

Haar, 2022b), we tested whether the data were reflective of either the molar or molecular view of 

quantitative prediction. To test the molar view, the matching law was fit to individual Sham and 

TBI subjects. Some Sham rats showed high sensitivity to overall reinforcement (i.e., steep linear 

increase in choice rate as reinforcement rate increased). However, some individual Sham 

subjects deviated from the matching law, showing an indifference to reinforcement rates or 

preference for options with a lower average reinforcement rate. TBI rats were more likely to 

deviate from matching both at the aggregate and individual subject level. Thus, although 
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aggregate choice generally resembled the shape of the matching law, other influences were 

unaccounted for by the molar view.  

Next, we considered whether the molecular view accounted for RGT behavior by 

calculating the percentage of win-stay (e.g., if P2 choice was reinforced, the rat chose P2 on the 

next trial) and lose-shift trials (e.g., if P2 choice was punished, the rat chose a different option on 

the next trial). However, this theory of immediate reinforcement and punishment also did not 

account for behavior on the RGT. At the aggregate level, both Sham and TBI rats chose P2 more 

than chance regardless of whether the P2 option was previously reinforced or punished. 

Compared to Sham, TBI rats were less likely to stay regardless of a win or loss on the previous 

trial, potentially suggesting reduced molecular effects. This effect was moderated by choice 

option, such that TBI rats were more likely to stay on P1 but less likely to stay on P2. Overall, 

staying and shifting following wins and losses was inconsistent across individual subjects and 

did not explain deficits in TBI rats compared to Sham (Vonder Haar, 2022a; in press). Thus, 

neither the molar nor molecular view could account for behavior on the RGT, although molar 

forces did seem to outweigh molecular forces. It should also be noted that the aggregate data 

masked substantial individual subject variability in behavior which must be accounted for to 

understand choice. At the individual subject level, some intact rats actually preferred the riskier 

options. Thus, approaches that use behavioral theory to predict choice could not fully account for 

observed data on the RGT, and an alternative approach was needed. 

Exploration-exploitation approach. Neither molar nor molecular prediction alone 

would likely be capable of simulating realistic RGT data. An alternative approach was to simply 

describe existing patterns in the data without those underlying assumptions. Choice data can be 

described using a theoretical approach from computational science called the exploration-
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exploitation dilemma (Sutton, 1998). Exploitation can be defined as choice of the “best” option. 

Because rats on the RGT did not show consistent preference for the option with the highest 

overall reinforcement rate, we defined the “best” option as the most-preferred option based on 

our existing data. In an uncertain environment, identification of the most-preferred choice also 

requires exploration, or sampling different options. Visual inspection of our RGT data suggested 

that individual rats showed a different degree of preference for each option across repeated 

sessions and varied in the amount they exploited those preferences or explored among all the 

options. In human decision-making paradigms, this balance between exploitation and exploration 

has been quantified using an extension of Luce’s choice axiom (Luce, 1959). Luce’s choice 

axiom states that the probability of a response can be quantified by applying a weight (i.e., 

degree of saliency or preference) to that response. A set of weights may then be converted into 

probabilities using a mathematical function. A common application is the softmax transformation 

(Pj =  
𝑒

𝜃𝑗∗𝑤𝑒𝑖𝑔ℎ𝑡𝑗

∑ 𝜃𝑖∗𝑤𝑒𝑖𝑔ℎ𝑡𝑖
𝑘
𝑖=1

 ), which takes in a list of values and uses an exponential function to transform 

those values into probabilities. To study the exploration-exploitation dilemma, cognitive 

psychologists have extended this softmax transformation of Luce’s choice axiom to include a set 

of weights (or preferences) which is modified by a parameter representing the degree of 

exploitation versus exploration (Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006; Namiki, 

Oyo, & Takahashi, 2015).  

Although this softmax approach to the exploration-exploitation dilemma is rarely used in 

preclinical literature, it was used to explain choice behavior on an operant task by rats with 

frontal brain lesions (Dutech, Coutureau, & Marchand, 2011). Thus, a softmax function may be a 

good option to simulate data on other operant tasks, such as the RGT. Rather than using the 

molar and molecular theories of behavior to predict choice on the RGT, the softmax function can 
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be used to describe how individual subjects behave on the task. These descriptions can then be 

used to simulate data at the individual subject level. Applying the softmax function in this way 

would require knowledge of both the saliency/weight of each RGT choice and the degree of 

exploitation versus exploration for individual subjects. In the current study, we used existing data 

to quantify these softmax parameters to inform a simulation of RGT data. 

Current Study 

 The current study consisted of two experiments with an overall goal of determining how 

interdependencies impacted RGT data analysis. The goal of Experiment 1 was to develop an 

effective method to simulate RGT data that mimicked the structure of observed behavior for 

Sham (i.e., un-injured) and frontal TBI rats. To generate these data, a descriptive approach using 

k-means clustering was used to determine preference weights and degree of 

exploitation/exploration across heterogenous subjects. These data were then passed into the 

softmax function to simulate trial-by-trial data. The goal of Experiment 2 was to identify 

conditions under which intercept-only LMER generated false positive and/or false negative 

results. To do this, simulations were repeated 1000 times at different sample sizes and 

magnitudes of TBI-induced deficits. It was hypothesized that intercept-only LMER would result 

in higher rates of false positives (i.e., greater than 5%) due to the interdependencies among 

choice outcomes on the RGT. This hypothesis was empirically tested using multiple Chi-Square 

tests where the outcome was the number of true (i.e., true positives or true negatives) versus false 

(i.e., false positives or false negatives) cases for each sample size and effect size.   
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Common Methods 

Overview 

 RGT data was simulated (Experiment 1) and analyzed (Experiment 2) using R statistical 

software (https://www.r-project.org/). Simulations reflected actual rodent behavior on the task 

based on data we collected in the Vonder Haar lab. The methods (standardized across the field) 

for collecting RGT data are described below.  

Rodent Gambling Task 

The RGT was conducted in a standard operant chamber with a 5-hole array, but only four 

options (i.e., four holes) were presented in each trial. The one-pellet option (P1; non-risky but 

suboptimal) had a 90% probability of reinforcement and a 10% probability of a 5-s timeout from 

reinforcement. The two-pellet option (P2; optimal) had an 80% probability of reinforcement and 

a 20% probability of a 10-s timeout from reinforcement. The three-pellet option (P3; risky) had a 

50% probability of reinforcement and a 50% probability of a 30-s timeout, and the four-pellet 

option (P4; risky) had a 40% probability of reinforcement and a 60% probability of a 40-s 

timeout. During the timeout, no responses were reinforced, and the light in the previously-chosen 

hole slowly flashed for the duration (1 Hz). A schematic of the task can be seen in Figure 1 

(Shaver et al., 2019). The location of the P1, P2, P3, and P4 holes were counterbalanced across 

animals to account for potential side bias. All rats began with 7 sessions of a forced-choice 

procedure, which ensured each of the options were sampled equally. Then, rats progressed to the 

full task, where they were allowed to freely choose between the 4 choices for daily 30-min 

sessions with a maximum of 250 trials per session. The stimulus lights in the array were 

illuminated at the beginning of each trial. A response in any hole turned off the stimulus lights 



Running Head: SIMULATION OF CHOICE BEHAVIOR 17 

and resulted in either reinforcement (sucrose pellets) or punishment (timeout from 

reinforcement) according to the probabilistic schedule described above.  

Figure 1. 

A Schematic of Reinforcement and Punishment Rates on the RGT. 

 

A schematic of the Rodent Gambling Task (RGT). After initiating a trial, rats chose from any of 

the four holes. Each hole was associated with a different probability and magnitude of 

reinforcement and punishment (Shaver et al., 2019). As a result of varying reinforcement rates, 

the 1-pellet option (P1) was suboptimal, the 2-pellet option (P2) was optimal, and the 3- and 4-

pellet options (P3, P4) were risky.  
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Methods: Experiment 1 

Description and Design 

The purpose of Experiment 1 was to simulate behavioral data for both Sham and TBI rats 

on the RGT. A compilation of RGT data (Vonder Haar, 2022b) was used to understand the 

structure of behavior on the task. This dataset, subsequently referred to as the control set, 

contained pre- and post-injury RGT data from 5 preclinical experiments with 151 adult male 

subjects (n = 71 for TBI; n = 80 for Sham). The control set contained trial-by-trial data for each 

subject across several weeks of sessions ranging from 2 to 12 weeks post-injury. For the current 

study, pre-injury sessions and data involving experimental manipulations (e.g., drugs) other than 

brain injury were excluded. This resulted in a total of 109 subjects (n = 58 for TBI; n = 51 for 

Sham). Only stable data from these subjects (i.e., data collected outside of the initial task-

learning phase and acute injury phase) were considered. 

 To simulate trial-level data, the rmultinom function in R was used. This function takes in 

a list of probabilities and outputs multinomially distributed choices. To generate probabilities, 

weights (i.e., average rates of P1-4 choice) and an exploitation-exploration parameter (θ) were 

quantified from the control set, as per Luce’s law of decision-making (see formula below). These 

weights and θ values were converted into probabilities using a softmax transformation and 

passed through the rmultinom function to generate discrete choices. However, these parameters 

could not be generated uniformly across subjects due to heterogeneity in individual-subject 

behavior. To account for considerable variability across subjects, behavioral phenotypes were 

extracted using k-means clustering (see below), and softmax parameters were defined separately 

for each cluster, resulting in simulated rats with distinct choice profiles that reflected the 

heterogeneity of the control set.  
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K-Means Clustering 

 The control set was used to identify unique choice phenotypes on the RGT for both 

Sham and TBI rats to be recapitulated in the simulation. Phenotypes were extracted using k-

means clustering, an unsupervised learning algorithm that partitions data into k groups that 

cluster around a centroid, or cluster mean (Dwivedi, 2019). The number of clusters was 

determined using the elbow method, which involves fitting the data to a range for k (number of 

clusters) and plotting the error against k. The point of inflection in the plot determined the 

optimal number of clusters. Because the elbow method and supplemental techniques (e.g., 

average silhouette method) indicated a wide range of potential cluster numbers, additional 

considerations were used to determine cluster number as per our previous analysis of the control 

set (Vonder Haar, 2022a; in press). Specifically, a cluster number was only selected if the 

resulting clusters contained at least 5% of the total subjects. Each cluster was then considered a 

distinct behavioral phenotype and was referred to as a phenotype in text. The softmax function 

was fit to the control set data separately for each phenotype. 

Softmax Function 

A softmax function is a common machine learning transformation that takes in a list of 

values and returns probabilities. Modifications can be made to the softmax function to reflect the 

principles of the exploitation-exploration dilemma (Luce, 1959; Namiki et al., 2015). In the 

current study, probabilities of the four RGT choice options were calculated using the following 

softmax equation: Probabilityj =  
𝑒

𝜃𝑗∗𝑤𝑒𝑖𝑔ℎ𝑡𝑗

∑ 𝜃𝑖∗𝑤𝑒𝑖𝑔ℎ𝑡𝑖
4
𝑖=1

 ,  where the weight was a list of values 

representing the saliency or preference of each choice option and θ was the degree of exploitation 

versus exploration. Because each phenotype had different choice profiles and did not match the 
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true RGT reinforcement rates, average rates of choice by phenotype, rather than overall 

reinforcement rates, were used to calculate the weight parameter.  

To generate plausible data, three types of parameters for each phenotype were calculated 

for both the weights and θ: (1) the population-level phenotype parameters (2) the between-

subject variance, and (3) the within-subject variance. The population-level parameters were the 

average percent choice of P1-4 and average θ value for each phenotype calculated from the 

control set. Average choice was directly calculated from the control data (i.e., arithmetic mean 

for each phenotype), and the θ parameter was fit to individual subjects using the nls function in 

R, which determined the non-linear least-squares estimates of the parameters of a nonlinear 

model (in this case, the softmax function). To account for variance across subject and session, a 

between-subject and within-subject standard deviation (SD) were calculated for the weights and 

θ of each phenotype. Figure 2A shows the structure of the code where the population-level 

parameters and between-subject and within-subject variance were used, and Figure 2B shows 

more detailed pseudocode for using these parameters. For simplicity, functions were written 

outside the main body of the code to set the population-, subject-, and session-level parameters. 

These functions were then called within the code in an iterative fashion. 

Iterative Simulation 

Once the population-level parameters were calculated and varied by subject and session, 

the weights and θ were passed through the softmax function and converted into probabilities of 

each choice option on the RGT. Then, these probabilities were passed through the rmultinom 

function to generate discrete choices for each trial. To automate the process of varying weights 

and θ across subject and session, the data were simulated using a combination of the replicate 

function (which performs repeated evaluation of an expression) and nested for-loops (Figure 
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2A). The outermost loop created subjects, the middle loop created sessions, and the innermost 

loop created trials.  

Figure 2. 

Structure of R Syntax to Simulate Behavioral Data on the RGT. 

 

Nested for-loop structure for the data simulation. Panel A shows the overall logical steps of the 

code. Subjects were assigned an ID and a phenotype. Then, population-level weights and θ 

(green text) were assigned to that subject, based on their phenotype. The weights and θ were 

varied for each subject (red text) and for each session (blue text). On any given trial, the weights 

and θ were passed through the softmax function, which generated probabilities that were fed into 

the rmultinom function to generate a discrete choice (either P1, P2, P3, or P4). This repeated for 

the assigned number of trials, and then a new session was generated until 10 sessions were 

complete. Panel B shows an example of pseudocode, where the population-level parameters of a 

phenotype were varied by subject and session and ultimately fed into the rmultinom function to 

generate trial-by-trial data. The softmax parameters for n subjects and 10 sessions were created 

first. Then, the replicate function was used to repeatedly pass those parameters through the 

rmultinom function for each trial. Color coding is consistent across panels, such that green text 

represents the population-level parameters for weights/θ, red text represents the subject-level 

weights/θ, and blue text represents the session-level weights/θ. 
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ID generation. Starting at the outermost subject loop, an ID number was selected. Then, 

that subject was assigned a phenotype based on the probability of that phenotype existing in the 

control set. The phenotype remained the same for any given subject at all levels of code. Once a 

phenotype was selected, a list of weights and a single θ parameter were sampled from a truncated 

normal distribution, where the mean was the population-level mean for that phenotype, and the 

SD was the between-subjects SD. The minimum and maximum of the truncated normal 

distribution were the minimum and maximum of the weights and θ observed in the control set. 

This resulted in distinct choice profiles for each phenotype, where each subject within a 

phenotype varied slightly from one another.  

Session generation. Once a subject was assigned a phenotype, weights, and θ, the 

simulation progressed to the next loop. At this middle loop, 10 stable sessions of data were 

generated. To simulate variability across session, the weights and θ were varied slightly for each 

session, according to the within-subject SDs that were calculated from the control set. For each 

session, a new list of weights and a single θ parameter were sampled from a truncated normal 

distribution, where the mean was the weights/θ calculated in the subject loop and the SD was the 

within-subjects SD. This preserved the differences in choice profiles across phenotypes and 

subjects, while adding some variability across sessions.  

Trial generation. Lastly, the simulation progressed to the trial-level loop that iterated 

through each subject and session. Trial number was sampled from truncated normal distributions 

for each phenotype, so that the number of trials reflected the data in the control set. This 

accounted for subtle differences in trial number across phenotypes (i.e., rats with riskier 

preferences incurred more timeouts and had fewer trials on average). Within the body of the 

loop, an RGT choice of P1, P2, P3, or P4 was selected for each discrete trial by passing the 
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weights and θ through the softmax function, which generated a probability of each choice. These 

probabilities were passed through the rmultinom function, which selected a discrete choice as a 

function of those probabilities. The choice for each trial, session, and subject was written to a 

data frame. This process was then repeated for the selected number of trials using the replicate 

function. 

Data Processing and Visual Inspection.  

Trial-level data was aggregated to a frequency count of each choice option per session 

and then converted to percent choice. Choice profiles were plotted against the control set and 

visually inspected to determine if reasonable data were generated. Data were inspected at the 

aggregate level (faceted by injury and phenotype) and at the individual subject level to ensure 

that the patterns in the control set were recapitulated in the simulation. Distributions of the 

within-subject and between-subject standard deviations were also plotted for P2 (optimal) 

choice. These plots were visually inspected by one primary rater and confirmed by two other 

raters. Methods were updated when there were visual discrepancies between the simulated data 

and the control set. For example, session-level variability was included in the simulation because 

initial simulations did not fully capture the variance in the control set. 
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Methods: Experiment 2 

Description and Design 

The purpose of Experiment 2 was to determine how rates of false positives and negatives 

using LMER changed across sample size and magnitude of TBI effect. To achieve this, 1000 

datasets were simulated for each sample size and effect size as per similar designs (Burton, 

Altman, Royston, & Holder, 2006; Morris, White, & Crowther, 2019). Alpha () was set to 0.05 

to determine whether a predictor had a significant effect. 

Simulation Parameters 

Sample size. Data were simulated for 4 sample sizes (n = 6, 10, 14, and 20) relevant to 

preclinical literature. Different sample sizes were generated by manipulating the number of 

subjects created in the R code. Preliminary simulations for the most extreme sample sizes (i.e., n 

= 6 and n = 20) were conducted first. Based on these results, two intermediary sample sizes were 

tested (i.e., n = 10 and n = 14), and additional sample sizes were not necessary. 

Effect size. Effect size was less straightforward, given that we saw a shift in phenotypes 

rather than a net effect of TBI on each subject (Figure 3B). When considering the effect on P2 

choice only, the TBI effect size in the control set was Cohen’s f = 0.43. This effect size was 

recapitulated in the simulation by manipulating the probability that a subject belonged to a given 

phenotype. K-means clustering on the control set showed that TBI reduced the number of 

subjects that primarily selected the optimal P2 choice. Thus, the probability of belonging 

specifically to this high P2-preferring phenotype was used to generate various effect sizes. A 

standard TBI effect was generated by simulating TBI data with probabilities of phenotype 

prevalence that reflected the TBI data in the control set (i.e., a decrease in the high P2-preferring 

phenotype from approximately 60% to 20%). Then, an effect size of f = 0 was generated by 
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simulating TBI data with probabilities of phenotype prevalence that reflected the Sham data in 

the control set. Effect sizes above (f = 0.5) and below (f = 0.3) the observed TBI effect were 

generated by shifting the probability of the high P2-preferring phenotype and evenly distributing 

the difference across the other phenotypes, as observed in the control set (Figure 3B). However, 

this approach did not allow for the generation of exact effect sizes. To ensure that effect sizes 

were in a desired range, three datasets with n = 60 per injury condition (reflecting the size of the 

control set) were generated using an initial guess for the phenotype probability values. The size 

of the injury effect on P2 was then calculated using G*Power (Faul, Erdfelder, Lang, & Buchner, 

2007) for each dataset. If the calculated effect size was in the desired range (f = 0.3-0.35, f = 0.4-

0.45, and f = 0.5-0.55), for all three datasets those phenotype probability values were used for the 

1000 datasets. These datasets were generated for 16 different conditions in total (4 sample sizes x 

4 effect sizes). 

Analysis of 1000 Datasets 

Discrete trials were aggregated into percent choice of each RGT option as per 

Experiment 1, and an arcsine square-root transformation was applied to normalize data as in 

prior publications (Shaver et al., 2019). Then, LMER was conducted for each dataset using the 

lme4 library in R (Bates, 2015). To determine the effects of interdependencies, two LMER 

models were evaluated. The first model (i.e., the interdependent model) tested the effects of TBI, 

Choice Option, and session on the transformed percent choice of each outcome. This model is 

subsequently referred to as the “full” LMER model, meaning that all four choices were analyzed 

simultaneously with subject as a random intercept (as opposed to a “full” random-effects 

structure). In this full LMER model, the TBI*Choice Option interaction was isolated to 

determine whether injury had a significant effect on choice. The second model (control LMER) 
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was subsetted to P2 choice only to determine the effect of TBI and session on P2 choice. This 

subsetted model served as a control because effect size was generated from the P2 variable and 

because it did not violate the independence assumption. The TBI main effect was isolated to 

determine whether injury had a significant effect on choice for the control model. For both 

models, the random effect was subject, with only the intercept varying across individual subjects. 

The F-statistic and p-value for these variables of interest were written to a dataframe for each 

analysis. Warnings and error messages (e.g., convergence failures) for each analysis were also 

written to a dataframe using the error-catching functions in the purrr library (Henry, 2020). 

The two primary outcomes of interest were false positives and false negatives (Type I and 

Type II error respectively), which were calculated separately because they are independent. More 

specifically, when the simulated effect size was zero, there were two possible outcomes: TBI 

effect not expected/not observed (true negative) or TBI effect not expected/observed (false 

positive; Type I error). The frequency of false positives was visualized for each sample size, with 

an expected value of 50/1000 ( = 0.05). It was predicted that false positives would exceed this 

rate for the full LMER model only. For the other effect sizes, the two possible outcomes were 

TBI effect expected/observed (true positive) and TBI effect expected/not observed (false 

negative; Type II error). The frequency of false negatives was visualized for each sample size 

and effect size. The expected values were determined via power analysis using G*Power (Faul et 

al., 2007). Results from the full LMER and control LMER were compared against the expected 

values using Chi-Square tests. These comparisons were performed separately for each sample 

size and effect size, and Bonferroni corrections were applied to adjust the p-values for multiple 

comparisons (Table 2).  

Data Analysis on Single Datasets 
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To explore differences across multiple analytic techniques, a single dataset was randomly 

selected for each sample size and effect size (16 datasets total). Based on visual inspection, if a 

dataset was an outlier for the given effect size, a new set was selected at random. These datasets 

were analyzed using four approaches, and test statistics were reported in Tables 3-6. The first 

and second approaches were the full LMER model (Table 3) and the control LMER model 

(Table 4). The third approach was a generalized linear mixed model with a logit link function, 

subsequentially referred to as a binomial logistic regression. Choice data was recoded into a 

dichotomous variable where the two levels were P2 versus all other options and treated as a 

proportion (P2 choice/total choice). The fixed effect in the model was injury, the random effect 

was subject (intercept only), and the outcome was choice (P2 vs. others). The glmer function in 

R was used to perform a weighted binomial logistic regression, and the resulting test statistics 

(log odds) and p-values were reported in Table 5.  

The fourth analysis was a multinomial logistic regression with a Bayesian approach using 

the brms package in R (Bürkner, 2018). The fixed effect in the model was injury, the random 

effect was subject (intercept only), and the outcome was choice (categorical variable with four 

levels), which was also analyzed at the proportion level. The Bayesian models were generated 

with the default priors from the brms package. The range of parameters composing the prior and 

posterior distributions was selected using Markov chain Monte Carlo sampling with four chains. 

Rather than converging on single regression parameter estimates and their uncertainty (standard 

errors) as per standard frequentist statistics, a range of values (called a posterior probability 

density distribution) most likely to contain the population-level regression parameters was 

generated. The emmeans library (Lenth, 2021) was used to calculate the most likely estimate (log 

odds) for the effect of injury on P2 choice and the 95% credible interval (Table 6). The credible 
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interval differs slightly from a confidence interval in null hypothesis testing. There is a 95% 

chance that the true population statistic falls within the range of values in a 95% credible interval 

(Kruschke, 2014; Young, 2019). Typically, the credible interval would not be used to make a 

categorical decision of significant versus non-significant effects. However, to compare the 

results of the Bayesian analysis with the binomial and linear models, an effect was considered 

significant if the credible interval did not contain zero.  
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Results: Experiment 1  

K-Means Clustering 

The goal of Experiment 1 was to simulate RGT data, which required k-means clustering 

to extract phenotypes from the control set. An elbow plot of the within sum of squares for a 

range of cluster numbers indicated that the optimal cluster number (k) was between 2 and 6 

clusters (Figure 3A-B). The number of subjects within each cluster was then calculated for this 

range of cluster numbers. To maximize the variance explained by clusters while also preventing 

overfitting, the largest cluster number k that resulted in at least 5% of subjects within each cluster 

was selected. When TBI and Sham data were clustered together, k = 6 resulted in some clusters 

that contained less than 5% of subjects. However, k = 4 resulted in imprecise group-level fits 

(i.e., there were visually apparent differences between Sham and TBI rats within the same 

cluster). Thus, five clusters (k = 5) were selected because it maximized variance explained in the 

data without overfitting and resulted in choice profiles that were consistent across Sham and TBI 

rats within a cluster.  

Based on visualizations of RGT choice profiles, each cluster was referred to as a 

phenotype and assigned a unique descriptor (Figure 3C). The phenotypes were (1) high P2-

preferring/optimal (2), low P2-preferring/exploratory, (3) P3-preferring/risky, (4) P4-

preferring/risky, and (5) P1-preferring/suboptimal. Sham rats primarily belonged to the optimal 

phenotype. After TBI, the prevalence of the optimal phenotype was reduced from approximately 

60% to 20% with roughly even redistributions to each of the other four phenotypes (Figure 3D). 

These results were then used to inform the simulation parameters for Experiment 1 and 2. 

Because TBI caused a shift in the distribution of individual choice profiles, rather than an overall 
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net reduction in optimal choice for each subject, the “effect size” in Experiment 2 was 

manipulated by adjusting the distribution of choice profiles.  

Figure 3 

 

K-Means Clustering on the Control Set of RGT Data. 

 

K-means clustering results for the control set. Panel A shows the elbow plot of the total within 

sum of squares as a function of cluster number. To create distinct clusters without overfitting that 

were consistent across Sham and TBI rats, the value k (number of clusters) was set at 5. Panel B 

shows the distinct choice profiles of each of the five phenotypes. The x- and y-axes show the z-

scores for the average choice of P1, P2, P3, and P4 within a phenotype to distinguish between the 

P2 high-preferring (optimal; shown in green circles), P2 low-preferring (exploratory; shown in 

blue diamonds), P3-preferring (risky; shown in red triangles), P4-preferring (risky; shown in 

burgundy inverted triangles), and P1-preferring (suboptimal; shown in yellow squares) 

phenotypes. Panel C shows the prevalence of each phenotype for Sham (black) versus TBI (red) 

rats in the control set. The optimal phenotype (P2 high-preferring) is most prevalent for Sham 

rats, but decreases in prevalence for TBI rats.  
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Preliminary Simulations 

Preliminary simulations were conducted using softmax parameters that varied by 

phenotype, subject, and session. Exemplar datasets were generated for Sham and TBI rats (n = 

60 per group). Simulated data closely approximated the observed data when plotted by injury 

(Figure 4A-B) and by phenotype (Figure 4C-D). The simulation captured effects that have been 

replicated in our observed data: TBI increased suboptimal choice, decreased optimal choice, and 

had inconsistent effects on risky choice. A minor discrepancy at the phenotype level was that 

simulated Sham and TBI rats appeared more similar (i.e., lines and points were more overlapping 

in Figure 4D) compared to the observed data (Figure 4C) in the control set. This discrepancy was 

expected because the same parameters were used to generate Sham and TBI rats (with the only 

difference being the probability of belonging to a given phenotype), which did not affect core 

questions surrounding power and false positive rates.  
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Figure 4.  

Preliminary Simulations of RGT Data 

  

Simulated RGT data compared against observed RGT data. Panel A shows observed choice of 

each option (P1, P2, P3, and P4) for Sham (black) versus TBI (red) rats in the control set. Panel 

B shows simulated choice of each option for Sham versus TBI rats. Data shown in Panels A and 

B are mean+SEM. Panels C and D show individual (points) and average (lines) choice of each 

option faceted by phenotype for observed data in the control set and simulated data, respectively.  

 

To further ensure that simulated data were consistent with observed data, visual 

inspection was performed for individual subject data and for the distributions of P2 choice. 

Visual inspection showed strong concordance between simulated and observed data at the 

individual subject level. Histograms were used to visualize P2 distributions and showed a close 

concordance between simulated and observed data for both Sham and TBI (Figure 5 A-B). 

Additional histograms were generated to view distributions of the within-subject and between-

subject standard deviation for P2 choice, as the variance heavily impacts subsequent statistical 
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analyses. These histograms also showed a reasonable concordance with some minor expected 

discrepancies between simulated and observed data for both Sham and TBI (Figure 6 A-D). All 

three raters agreed that the simulated data was an accurate reflection of the control set data. 

Figure 5.  

 

Distributions of P2 Choice in Preliminary Simulation 

 

Distributions of P2 choice in observed (Panel A) and simulated (Panel B) RGT data across the 

five phenotypes. The x-axis shows the number of trials within a session where P2 was selected, 

and the y-axis shows the frequency of each specific choice count ranging from 0-10%. The upper 

five panels contain the distributions for Sham rats, and the lower panels show TBI rats. In this 

single simulated dataset (Panel B), no suboptimal rats were generated for the Sham group due to 

the low prevalence of this phenotype in the control set (one subject only). However, some 

suboptimal sham rats were simulated separately to ensure that choice distributions reflected the 

control set data. 
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Figure 6.  

Distributions of P2 Standard Deviations in Preliminary Simulation 

 

 
Distributions of P2 standard deviations. The observed (Panel A) and simulated (Panel B) within-

subject standard deviations and observed (Panel C) and simulated (Panel D) between-subject 

standard deviations for P2 choice are shown for each phenotype. The upper five panels contain 

the distributions for Sham rats, and the lower panels show TBI rats. The SDs could not be 

calculated for the observed suboptimal Sham data (Panels A and C) because there was only one 

subject. The SDs were not shown for suboptimal Sham rats in the simulation (Panels B and D) 

because no rats were assigned this phenotype in the single simulation by chance. 
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Results: Experiment 2 

The goal of Experiment 2 was to determine how rates of false positives/negatives varied 

across sample sizes and effect sizes when using LMER to analyze RGT data. Two LMER 

approaches were tested on 1000 datasets per condition. The Chi-Square results comparing each 

approach to the expected values are provided in Table 2. The full LMER was significantly 

different than expected values across all sample sizes and effect sizes (Table 2), with a high 

propensity for “hits” (false positives and true positives) (Figure 7). The subsetted LMER was not 

significantly different than expected results for all sample and effect sizes (Table 2). Because of 

the substantial false positive rate observed with the full LMER, a subset of datasets (1 per 

condition; 16 total) was randomly selected to analyze with additional categorical methods. The 

two LMER approaches were also applied to these single datasets to serve as a comparison. Each 

model is described in further detail below. 
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Table 2. Chi Square Tests Comparing the Full and Control LMER Against Expected 

Results. 

  Full vs. Expected Control vs. Expected 
Effect Sample Chi-square Unadjusted 

p 

Corrected 

p 

Chi-square Unadjusted 

p 

Corrected 

p 

f = 0.0 n = 6 1161.797 <0.00001 <.001 1.163 0.281 >0.99 

 n = 10 1102.116 <0.00001 <.001 0.041 0.839 >0.99 

 n = 14 1068.942 <0.00001 <.001 1.163 0.281 >0.99 

 n = 20 1170.024 <0.00001 <.001 0.162 0.697 >0.99 

f = 0.3 n = 6 1072.477 <0.00001 <.001 1.016 0.313 >0.99 

 n = 10 901.774 <0.00001 <.001 0.039 0.843 >0.99 

 n = 14 742.402 <0.00001 <.001 0.354 0.552 >0.99 

 n = 20 523.777 <0.00001 <.001 1.257 0.262 >0.99 

f = 0.4 n = 6 971.837 <0.00001 <.001 1.107 0.293 >0.99 

 n = 10 691.553 <0.00001 <.001 0.073 0.787 >0.99 

 n = 14 482.218 <0.00001 <.001 0.074 0.785 >0.99 

 n = 20 260.611 <0.00001 <.001 1.040 0.308 >0.99 

f = 0.5 n = 6 744.043 <0.00001 <.001 0.539 0.463 >0.99 

 n = 10 448.039 <0.00001 <.001 0.415 0.520 >0.99 

 n = 14 256.662 <0.00001 <.001 0.741 0.389 >0.99 

 n = 20 102.201 <0.00001 <.001 0.064 0.801 >0.99 

Note: For the effect size f = 0.0, the outcome is false positive versus true negative. For all other 

effect sizes, the outcome is false negative versus true positive. Both unadjusted and Bonferroni-

corrected p-values (original p-value multiplied by 4) are provided. The full LMER was 

significantly different than expected values across all conditions. The control model was not 

significantly different than the expected values across all conditions. 
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Figure 7.  

LMER Analyses of Simulated RGT Data

 

Rate of false positives (Panel A) and false negatives at three effect sizes (Panel B). Expected 

values (red dashed line with square points) were compared to the subsetted LMER results 

(control LMER; gray solid line with circle points) and full LMER results (blue solid line with 

triangle points). For false positives, the control model was consistent with the expected error rate 

of 5% at all sample sizes. The full LMER model had a false positive rate exceeding 75% at all 

sample sizes. For false negatives, the control model was consistent with the expected power 

curve generated in G*Power, and false negatives decreased as sample size and effect size 

increased. The full LMER model had low false negative rates across all sample sizes and effect 

sizes. A jitter (width=0.15, height=1.0) was applied to the lines and points in both panels due to 

the overlap between the expected values and control model.  

 

Full LMER model 

 

The full LMER model was defined as Choice~Option*Injury*Session+(1|Subject). The 

main variable of interest was a significant Option*Injury interaction. At an effect size of zero, 

there were over 750 significant Option*Injury interactions (compared to the expected value of 

50) (Figure 7A). Across all other effect sizes, false negatives with the full LMER model were 

substantially lower than the expected values from G*Power (Figure 7B). The difference between 

the full LMER outcome and expected outcome was statistically significant across every sample 
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size and effect size (Table 2; p’s < 0.05). None of the models failed to converge, but all models 

had a singular fit warning. The beta coefficients, standard error, degrees of freedom, t-value, and 

p-value were provided for a single full LMER model for each sample size and effect size (Table 

3).  

Table 3. Single Dataset Evaluations: Full LMER Model (Injury Effect on P2) 

 

Effect Sample Estimate Error df t p 

f = 0.0 n = 6 -0.044 0.119 464 -0.367 0.713 

 n = 10 -0.040 0.091 784 -0.441 0.659 

 n = 14 0.243 0.073 1104 3.319 <0.001 

 n = 20 0.293 0.065 1584 4.523 <0.001 

f = 0.3 

 

 

 

f = 0.4 

n = 6 

n = 10 

n = 14 

n = 20 

n = 6 

n = 10 

n = 14 

-0.493 

-0.598 

-0.778 

-0.308 

-0.493 

-0.800 

-0.861 

0.129 

0.109 

0.094 

0.0769 

0.129 

0.110 

0.094 

464 

784 

1104 

1584 

464 

784 

1104 

-3.812 

-5.506 

-8.249 

-4.007 

-3.812 

-7.246 

-9.169 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

 n = 20 -0.788 0.083 1584 -9.524 <0.001 

f = 0.5 n = 6 

n = 10 

n = 14 

n = 20 

-1.170 

-1.018 

-1.030 

-0.664 

0.138 

0.111 

0.096 

0.0806 

464 

784 

1104 

1584 

-8.471 

-9.200 

-10.737 

-8.236 

<0.001 

<0.001 

<0.001 

<0.001 

Note: The test statistics and p-values for the full linear mixed-effects regression (LMER) model.  

 

Control LMER Model 

The control LMER model (subsetted to P2 choice only) was defined as 

P2Choice~Injury*Session+(1|Subject). The outcome of interest was a significant main effect of 

injury. At an effect size of zero, false positives closely mapped onto the expected value of 50 

(Figure 7A). At all other effect sizes, false negatives were consistent with expected values from 

G*Power (Figure 7B). There were no statistically significant differences between the control 

LMER results and expected results across any sample sizes or effect sizes (Table 2; p’s > 0.05). 

None of the models failed to converge or produced any warnings or messages. The beta 
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coefficients, standard error, degrees of freedom, t-value, and p-value are provided for a single 

control LMER model for each sample size and effect size (Table 4). 

Table 4. Single Dataset Evaluations: Control LMER Model (Injury Effect on P2) 

 

Effect Sample Estimate Error df t p 

f = 0.0 n = 6 0.011 0.580 12.176 0.020 0.985 

 n = 10 -0.147 0.437 21.751 -0.336 0.740 

 n = 14 0.243 0.373 28.573 0.650 0.521 

 n = 20 0.292 0.304 43.654 0.963 0.341 

f = 0.3 

 

 

 

f = 0.4 

n = 6 

n = 10 

n = 14 

n = 20 

n = 6 

n = 10 

n = 14 

-0.470 

-0.589 

-0.704 

-0.245 

-0.470 

-0.707 

-0.786 

0.546 

0.429 

0.349 

0.307 

0.546 

0.409 

0.342 

13.153 

20.471 

29.378 

42.794 

13.153 

21.196 

29.564 

-0.862 

-1.372 

-2.015 

-0.799 

-0.862 

-1.726 

-2.297 

0.404 

0.185 

0.053 

0.428 

0.404 

0.099 

0.029 

 n = 20 -0.749 0.290 42.861 -2.582 0.013 

f = 0.5 n = 6 

n = 10 

n = 14 

n = 20 

-0.794 

-0.927 

-0.970 

-0.589 

0.449 

0.388 

0.324 

0.293 

15.522 

22.095 

31.158 

43.405 

-1.768 

-2.386 

-2.990 

-2.011 

0.097 

0.026 

0.005 

0.051 

Note: The test statistics and p-values for the control linear mixed-effects regression (LMER) 

model.  

 

Binomial Logistic Regression Model 

The binomial logistic model was performed to determine the effect of injury on P2 choice 

versus all other choices for a single dataset at each sample size and effect size. The estimates (log 

odds), errors, z-test, and p-values are provided in Table 5. There were no false positives, but 

there were some false negatives at effect sizes of f = 0.3 and f = 0.4 only. This model was in 

strong agreement (87.5% concordance) with the Bayesian multinomial model.  
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Table 5. Single Dataset Evaluations: Binomial Logistic Regression (Injury Effect on P2) 

 

Effect Sample Estimate Error z p 

f = 0.0 n = 6 0.007 0.681 0.011 0.991 

 n = 10 -0.081 0.511 -0.159 0.874 

 n = 14 0.476 0.537 0.886 0.375 

 n = 20 0.507 0.427 1.186 0.235 

f = 0.3 

 

 

 

f = 0.4 

n = 6 

n = 10 

n = 14 

n = 20 

n = 6 

n = 10 

n = 14 

-0.642 

-0.989 

-1.187 

-0.534 

-0.642 

-1.178 

-1.323 

0.627 

0.626 

0.555 

0.458 

0.627 

0.554 

0.535 

-1.025 

-1.580 

-2.140 

-1.165 

-1.025 

-2.124 

-2.479 

0.305 

0.114 

0.032 

0.244 

0.305 

0.034 

0.013 

 n = 20 -1.242 0.481 -2.582 0.009 

f = 0.5 n = 6 

n = 10 

n = 14 

n = 20 

-1.382 

-1.494 

-1.567 

-1.039 

0.510 

0.568 

0.508 

0.442 

-2.711 

-2.631 

-3.084 

-2.353 

0.007 

0.009 

0.002 

0.019 

Note: The estimates, errors, z-values, and p-values for the binomial logistic regression using the 

glmer function with a logit link in R. 

 

Bayesian Multinomial Logistic Regression Model 

The multinomial model was performed to determine the effect of injury on choice for a 

single dataset at each sample size and effect size. All Rhat values were less than 1.2, showing 

consistent convergence among the four chains. This was confirmed by visual inspection of the 

Markov chain traceplots. The estimates (log odds) and credible intervals are provided in Table 6. 

There were no false positives at any sample size. However, there were some false negatives at 

effect sizes of f = 0.3 and f = 0.4, There were no false negatives at f = 0.5. These results were 

compared against the full LMER, control LMER (subsetted to P2), and binomial logistic 

regression (Table 7). The full LMER model was in 50% concordance with the Bayesian model, 

whereas the control LMER and binomial model were in 87.5% concordance (Figure 8).  
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Table 6. Single Dataset Evaluations: Multinomial Logistic Regression (Injury Effect on P2) 

 

Effect Sample Estimate Lower Upper “Significant” 

f = 0.0 n = 6 0.122 -1.550 1.720 No 

 n = 10 0.099 -1.020 1.210 No 

 n = 14 -0.473 -1.540 0.500 No 

 n = 20 -0.379 -1.060 0.239 No 

f = 0.3 

 

 

 

f = 0.4 

n = 6 

n = 10 

n = 14 

n = 20 

n = 6 

n = 10 

n = 14 

0.323 

1.170 

0.827 

0.597 

0.337 

1.080 

1.290 

-1.070 

-0.380 

-0.268 

-0.201 

-1.000 

-0.180 

0.070 

1.660 

2.710 

1.870 

1.430 

1.680 

2.280 

2.490 

No 

No 

No 

No 

No 

No 

Yes 

 n = 20 1.510 0.627 2.500 Yes 

f = 0.5 n = 6 

n = 10 

n = 14 

n = 20 

1.390 

1.880 

1.440 

1.070 

0.027 

0.509 

0.285 

0.316 

2.820 

3.200 

2.550 

1.860 

Yes 

Yes 

Yes 

Yes 

Note: The estimates and lower and upper confidence interval for the multinomial logistic 

regression analyses. The “Significant” column is marked as “no” if the confidence interval 

contained zero and marked “yes” if the interval did not contain zero. The latter was classified as 

a significant effect to allow for direct comparison with the other models. 
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Table 7. Single Dataset Evaluations: Comparisons Across Techniques 

Effect Sample Full LMER Control LMER Binomial Multinomial 

f = 0.0 n = 6 TN TN TN TN 

 n = 10 TN TN TN TN 

 n = 14 FP TN TN TN 

 n = 20 FP TN TN TN 

f = 0.3 

 

 

 

f = 0.4 

n = 6 

n = 10 

n = 14 

n = 20 

n = 6 

n = 10 

n = 14 

TP 

TP 

TP 

TP 

TP 

TP 

TP 

FN 

FN 

FN 

FN 

FN 

FN 

TP 

FN  

FN  

TP 

FN  

FN  

TP 

TP 

FN  

FN  

FN  

FN  

FN  

FN  

TP 

 n = 20 TP TP TP TP 

f = 0.5 n = 6 

n = 10 

n = 14 

n = 20 

TP 

TP 

TP 

TP 

FN 

TP 

TP 

FN 

TP 

TP 

TP 

TP 

TP 

TP 

TP 

TP 

Note: The abbreviations in the table specify whether a true negative (TN), false positive (FP), 

true positive (TP), or false negative (FN) occurred for each sample size and effect size across 

different analytic techniques. Results that are inconsistent with the multinomial logistic 

regression are bolded. 
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Figure 8.  

Single Dataset Analyses: Accuracy and Concordance with Multinomial Logistic Regression 

 

 
Results of the single dataset analyses for the four analytic models: full LMER, control LMER, 

binomial logistic regression, and Bayesian multinomial logistic regression. The three outcomes 

shown are sensitivity (percentage of true positives; red), specificity (percentage of true negatives; 

blue) and concordance with the multinomial logistic regression (black). Although the full LMER 

had the highest sensitivity, it had the lowest specificity and was least concordant with 

multinomial logistic regression. The control LMER had the lowest sensitivity, but was more 

consistent with the multinomial model. The binomial logistic model had the best balance in 

sensitivity, specificity, and concordance.   
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Discussion 

The goal of the current study was to empirically determine if simultaneously analyzing 

multiple choice outcomes on the RGT using a linear model was problematic and thus may 

implicate broader problems with analysis of choice behavior. The results demonstrated that a 

linear model using choice as a predictor and random subject intercepts was not suitable for the 

conditions tested. This 4-choice linear model exceeded 75% false positives for all sample sizes 

(Figure 7A). The comparison of this full LMER to the control LMER (subsetted to P2 choice 

only), which had approximately 5% false positives, provides further evidence that the 

independence violation artificially inflates effects to a very meaningful degree when using 

certain linear models to analyze RGT choice. Although the control model had an acceptable rate 

of false positives, it only accounted for one outcome. Because there are four outcomes of interest 

on the RGT (one suboptimal, one optimal, and two risky), the control LMER would need to be 

repeated four times, which would inflate the false positive rate to about 18.5%. To account for 

this increased family-wise error, corrections would be required, which is problematic due to the 

lower power of the control model. The control LMER was underpowered to detect the typical 

TBI effect size (f = 0.4) even at 20 subjects per group, a sample size much higher than the 

preclinical norm. In place of the full LMER model, two potential alternative approaches are (1) 

improving the accuracy of the control LMER and (2) using categorical analyses that do not 

assume independent outcomes. 

Alternative Approaches 

Improving LMER Accuracy 

It is possible that a linear mixed-model can still be used to analyze RGT data. First, other 

parameters not tested in the current study could potentially increase the power of the control 
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model. These may be of interest to explore due to the heavy reliance of the behavior analysis 

field on linear models. It has been known for several decades that behavioral outcomes are often 

best described by non-linear models (Meddings, Scott, & Fick, 1989). Nonetheless, most 

behavior analysts have still not adopted non-linear approaches and continue to transform data 

into a quasi-continuous structure (e.g., aggregating trials into a percent choice). Thus, it may be 

useful to explore options that increase the power of the control LMER, such as additional 

sessions. Only 10 sessions of data were simulated in the current study, but we often conduct 

behavioral testing for over 50 sessions post injury. It is possible that increasing session number 

might increase the power of the control LMER, and thus decrease the false negative rate.  

Another option for improving LMER accuracy is to change the random effects structure. 

Additionally, the current study used a random intercept-only model for both LMERs, which 

likely leaves some unexplained variance due to the exclusion of random slopes (Heisig & 

Schaeffer, 2018). Session as a random slope would likely have little influence on the results 

because no systematic effect of session was simulated. This is further supported by the fact that 

the control analysis (which was also an intercept-only model) mapped onto expected values for 

both false positives and false negatives. However, adding choice preference as a random slope 

(i.e., allowing the difference between P2 versus the other options to vary by subject) might 

attenuate the elevated false positive rate of the full intercept-only LMER. This is particularly 

important given that mixed models with a maximal random effects structure are more 

generalizable than intercept-only models (Barr, Levy, Scheepers, & Tily, 2013), although caution 

must be exercised to prevent convergence issues and uninterpretable models when expanding the 

random-effects structure (Bates, Kliegl, Vasishth, & Baayen, 2015). Nonetheless, it may be 

beneficial to explore how LMER accuracy for RGT data is affected by random slopes. 
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Categorical Approaches 

However, there may not be any conditions that allow for the use of linear models to 

analyze RGT data. Thus, it is also important to explore categorical analyses, which are a truer fit 

to the raw structure of RGT data. An ordinal logistic regression theoretically fits the data given 

that the reinforcement rates on the RGT dictate an ordinal structure ranging from highest to 

lowest average reinforcement rate. However, the control set data, and particularly the 

phenotyping, demonstrated that choice does not always reflect an ordinal data structure for intact 

rats (Vonder Haar, 2022a; in press). Thus, a multinomial logistic regression is likely the truest fit 

to the data, as the outcome variable is categorical with more than two levels. A drawback is that 

this type of analysis is unfamiliar to most behavioral researchers. It is also computationally 

intensive to incorporate mixed effects into a multinomial logistic regression and was 

accomplished in the current study by using a Bayesian approach with the brms package in R. 

Some preclinical researchers might be reluctant to learn these types of Bayesian techniques, but 

biostatisticians might be engaged by the complexities of choice analysis and eager to collaborate. 

Furthermore, pilot analyses from the current study suggest that a mixed-effects binomial logistic 

regression may closely approximate the findings of a similar multinomial analysis (Figure 8). A 

Begg and Gray approach (Begg & Gray, 1984) could be used to compare P2 against all other 

choices, P1 against all other choices, etc. Ideally, this repeated pairwise approach might closely 

approximate a mixed-effects multinomial analysis without the computational intensity. However, 

this question remains unanswered because multinomial and binomial logistic regression were 

only compared for a single dataset per sample size and effect size in the current study.  

To empirically determine if binomial logistic regression is suitable for RGT data analysis, 

a full examination of its accuracy with 1000 datasets will be required. If the binomial model has 
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a reasonable rate of false positives, it may be the most appealing approach. First, it may 

outperform the control LMER because it fits the categorical structure of RGT outcomes, and 

prior simulations have demonstrated that binomial logistic regression generally outperforms the 

percent choice approach for data bound between zero and one (Dixon, 2008). It is also preferable 

to the multinomial logistic regression because it is less computationally intensive and more 

familiar to behavioral researchers. However, a drawback of binomial logistic regression is that it 

requires multiple comparisons (i.e., P2 vs. other options, P1 vs. other options, etc.). Another 

drawback is that it is also outside of standard practice for behavioral researchers. Regardless, the 

full LMER is not a suitable approach for analyzing RGT data, and published data may contain 

inaccurate results. 

Published RGT Literature 

 Based on the findings of the current study, a review of existing RGT literature was 

conducted. Broadly, it seems that statistically significant choice interactions in RGT papers are 

often unsupported by visual inspection of the data. The simulations in the current project suggest 

many of these significant findings could be false positives. For example, there were significant 

dose by choice interactions in a repeated-measures ANOVA that examined the effects of 

disulfiram, a drug that affects both dopamine and norepinephrine, on RGT behavior (Di Ciano et 

al., 2018).  However, all post hoc tests examining the dose effects on each individual RGT 

choice were non-significant. First, this highlights the importance of using the correct post hoc 

tests. This is notable given that 56% of brain and spinal cord injury researchers used incorrect 

post hoc tests in a review of 125 published articles (Burke et al., 2013). A second issue is that 

researchers may seek alternative analytic techniques to support statistically significant 

interactions when post hoc tests are non-significant. In the disulfiram paper, the authors 
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subdivided rats into “optimizers” and “sub-optimizers” based on their choice profiles. They 

found that 25 and 50 mg/kg of disulfiram increased advantageous choice (P1 and P2) for sub-

optimizers only. In this case, visual inspection of the figures does corroborate the statistics, 

although the effect sizes were relatively small. In the papers described below, alternative data 

analytic techniques were used to find statistically significant results that were not corroborated 

by visual inspection of the data.  

 In another recent paper that assessed cue reactivity as a predictor of RGT choice, rats 

were divided into sign trackers (interacted more with conditioned stimuli associated with 

reinforcement; i.e., pressed levers that were extended prior to reinforcer delivery in operant 

chamber) or goal trackers (interacted more directly with reinforcer delivery; i.e., nosepoked in 

food hopper of operant chamber where reinforcers were delivered) (Swintosky, Brennan, Koziel, 

Paulus, & Morrison, 2021). A repeated-measures ANOVA with choice as a within-subject factor 

(roughly equivalent to the full LMER model in the current study) was used to determine that sign 

and goal trackers only differed on choice of one option on the RGT. However, correlations were 

also used to predict RGT performance using a metric of cue reactivity. The authors concluded 

that cue reactivity was predictive of RGT performance. The actual r-values for the correlations 

ranged between 0.2 and 0.3, and the plots of the data would likely be interpreted as “no 

correlation” if significant p-values did not accompany them. From these data, the authors 

concluded that sign-tracking may be a useful method for predicting vulnerability to pathological 

gambling in clinical populations. In this paper, an amphetamine challenge was also conducted. 

The statistics (repeated measures ANOVA with choice as a within-subjects factor) were used to 

assert that amphetamine decreased optimal choice and risky choice. However, most doses of 

amphetamine had unclear effects on choice, as visually demonstrated by small dose-level effects 
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with overlapping error bars. Although the small magnitude of effects was addressed in the 

discussion, the abstract states “amphetamine increased choices of a low-risk/low-reward option 

at the expense of optimal and high-risk choices” (Swintosky et al., 2021). To avoid overstating 

RGT findings, a more nuanced interpretation would be beneficial.  

Similarly, in a paper assessing the effects of amphetamine on the mouse version of the 

RGT, a repeated-measures ANOVA (with choice as a within-subjects factor) showed that a high 

dose increased P1 and decreased P2 and P3 choice. However, the error bars across the high dose 

and saline were overlapping, and the drug reduced the number of trials by over 50% (van 

Enkhuizen, Geyer, & Young, 2013). The authors claimed these findings suggested that the RGT 

had translational validity for mouse models of drug-induced mania. Thus, some published 

findings on decision-making using the RGT, particularly with pharmacological manipulations, 

may be overstated. For RGT researchers that use linear models for data analysis, there are 

several strategies that should be used to prevent false positives. First, choice interactions must 

always be further inspected with post-hoc testing. If post hoc tests are non-significant, the use of 

additional techniques to explain the interaction (e.g., correlations) should not be performed 

except as exploratory analysis needing further study. Second, all results should be corroborated 

through visual inspection of the data. Lastly, more emphasis should be placed on effect sizes, 

rather than p-values. Several published papers found statistically significant effects of drugs on 

the RGT, but needed a more thorough discussion of the small effect size (Di Ciano et al., 2018; 

Silveira, Murch, Clark, & Winstanley, 2016; van Enkhuizen et al., 2013).  

One strategy that has been used in published literature to account for interdependencies 

among options and low effect sizes is the use of a score variable as a single outcome in a 

repeated-measures ANOVA or intercept-only LMER (e.g., Daniel et al., 2017 Di Ciano, 2015). 
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The score variable is calculated as the difference score between “safe” choices (P1+P2) minus 

risky choices (P3+P4). The drawback of this approach is that it lacks power to differentiate 

between shifts in optimal and suboptimal choice. For example, after TBI, there is a decrease in 

optimal choice (P2) and an increase in suboptimal choice (P1) (Shaver et al., 2019). If P1 and P2 

were collapsed together into a score variable, there might be no detectable effect of TBI. Recent 

work provided additional evidence that a frontal TBI effect could not be fully captured simply by 

dissociating between safe and risky choices. Rather, TBI seemed to reduce sensitivity to 

reinforcement on the RGT rather than increasing preference for risky choices (Vonder Haar, 

2022a; in press). Therefore, collapsing the outcomes into safe versus risky choices may not be a 

useful strategy for analyzing the effects of TBI (and potentially other CNS manipulations). A 

more powerful strategy to account for all four choices simultaneously may be to treat the choice 

variable as a categorical outcome.  

Limitations 

 In the current study, we found that a commonly-used intercept-only LMER model (and 

by extension, repeated measures ANOVA) was a poor strategy for RGT data analysis. Although 

we have proposed that a binomial or multinomial logistic regression may be superior, this 

hypothesis has not yet been empirically tested. Future studies should identify the superior 

method through Monte Carlo simulation and provide reproducible code/instructions for data 

analysis. The other major limitation is generalizability. First, the findings were task-specific, and 

second, statistical literacy and resistance to change may hinder methodological changes. 

Generalizability 

One limitation of the project is that the findings are only directly applicable to RGT 

users. However, these results still provide evidence that the broader practice in behavior analysis 
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of coercing discrete trials into a continuous variable is problematic. There are several common 

behavior analytic choice paradigms with categorical interdependent outcomes, such as the delay 

discounting task, where rodents choose between two levers, one of which provides a small, 

immediate reinforcer, and the other provides a larger but delayed reinforcer (Mazur, 1987). Other 

common tasks include discrimination, effort discounting, and reversal learning. In theory, the 

interdependencies on a 2-choice or 3-choice task should be exacerbated compared to a 4-choice 

task such as the RGT. Nonetheless, it is still standard practice to analyze choice at the aggregate 

level using linear models. This practice likely developed because non-linear regression was once 

too computationally intensive to perform with repeated-measures outcomes (Meddings et al., 

1989).  

Importantly, 2-choice outcomes can still be transformed and analyzed using linear models 

without violating the independence assumption if only one option is considered. However, these 

techniques may be less powered to detect effects compared to categorical analyses, which better 

fit the raw structure of the data. There are now accessible methods and software for relatively 

simple and efficient categorical analysis of repeated measures data (e.g., glmer in R; for example 

syntax, see the supplement for Young, 2018). Monte Carlo simulations have demonstrated that 

mixed-effects logistic regression outperformed linear regression for binary data, even when an 

arcsine-squareroot transformation was applied for the linear model (Dixon, 2008). Mixed-effects 

logistic regression has also been proposed as the best method for analyzing delay discounting 

data (Young, 2018). Thus, although this project does not directly translate to other behavior 

analytic paradigms, it contributes to a body of literature showing that choice data with discrete 

trials should be analyzed in raw form using categorical methods. 
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Choice paradigms with continuous, interdependent outcomes present a more complex 

problem. For example, time spent swimming, floating, versus escaping on the FST would be 

more difficult to analyze using a multinomial or binomial logistic regression. Technically, 

performance could be collapsed into a single value per subject, but this approach may reduce 

power and fail to capture the more continuous nature of the outcome variables. Outcomes could 

also be collapsed into a proportion of total time and analyzed using a weighted glmer model in 

the same fashion as the binomial mixed-effects regression in the current study. Thus, the findings 

here may generalize to a variety of other behavioral neuroscience tasks, and other analyses 

outside of ANOVA and linear regression should be explored for these tasks.  

Another potential analytic technique for the FST and similar measures with 

interdependent outcomes stemming from continuous data is beta regression, which deals with 

proportion variables that are quasi-continuous because they are bound between 0 and 1 (Douma 

& Weedon, 2019). This technique may be more powerful than a binomial logistic regression 

because it is an extension of logit models specifically for responses continuous on the 0-1 

interval, and thus, may be a better fit to analyzing variables like proportion of time spent 

swimming. However, beta regression use is sparse in preclinical literature; it has been used for 

some biological analyses (e.g., microbiome composition; Chai, Jiang, Lin, & Liu, 2018), but 

does not seem to be used for behavior analysis. Preclinical research would likely benefit from 

considering these alternative techniques rather than using linear models to analyze variables that 

do not have a truly linear relationship.  

Another obstacle to generalizability is missing data. In the control set, missing data was 

minimal and primarily fell under the category of missing completely at random (e.g., missing 

due to an acute technical issue with an operant chamber). Data simulations were conducted 
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without any missingness. Thus, these findings might not generalize as well to data with high 

missingness or data that is systematically missing, particularly given that mixed-effects models 

are designed to handle data missing completely at random. Nonetheless, these RGT findings may 

be relevant for other choice paradigms used in behavioral neuroscience research to study 

psychiatric deficits. Identifying the best analytic technique for these various tasks remains an 

open question in the field. After identifying the best practices, the next major concern is 

implementing those practices. 

Implementation 

 In addition to limitations of generalizability, the implementation of new analytic 

techniques is a major barrier to generating scientific impact. There are published papers from as 

early as the 1980s encouraging behavior analysts to use non-linear rather than linear models 

when analyzing dose-response curves (Meddings et al., 1989). Despite the growing body of 

literature demonstrating the advantages of non-linear models (and generalized linear models 

using nonlinear link functions) for preclinical choice paradigms (e.g., Dixon, 2008; Young, 

2018), linear models on aggregate data remain the prevalent approach. This resistance to change 

is a major barrier to scientific advancement and is particularly pronounced for statistical 

methods. Reasons for resistance to statistical innovation include lack of awareness of recent 

developments, usability of statistical software, inadequate education, and lack of mandates for 

statistical rigor in publications (Sharpe, 2013). In the context of operant data analysis, linear 

regression is much more familiar to the average RGT user than a multinomial logistic regression, 

for example. Although multinomial logistic regression is theoretically the best approach for 

analyzing RGT data, it requires advanced statistical knowledge and may necessitate a Bayesian 

approach to incorporate repeated measures with mixed effects. There are published protocols for 
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Bayesian analysis in R, but many behavior analysts are unfamiliar with these methods and 

particularly resistant to the specification of priors (Young, 2019). Thus, it is important for future 

projects to determine if a simpler model, such as a mixed-effects binomial logistic regression is 

suitable for RGT data analysis.  

Unfortunately, the sparse use of binomial logistic regression (or Poisson regression at the 

count level) for 2-choice tasks (e.g., delay discounting) suggests that implementation of new 

statistical techniques will be difficult. Advancements in statistics will greatly benefit the field of 

behavior analysis and help establish it as a valuable modern science. The survival of behavior 

analysis is particularly important for behavioral neuroscience due to the robust nature of 

behavior analytic methods for chronic measurement of psychiatric symptoms. Particularly, in the 

field of TBI, spatial learning measures, such as the Morris Water Maze dominate the field. These 

assays are less suited to repeated-measures testing and only capture a small subset of psychiatric 

symptoms caused by brain injury. By contrast, operant methods are more powerful for extended 

measurement of various psychiatric symptoms, including risky decision-making, motor/choice 

impulsivity, attention, and behavioral flexibility. For example, when rats were tested on various 

behavioral paradigms at 10-12 months after a frontal TBI, deficits were detected on differential 

reinforcement of low rate behavior (operant measure of impulsivity) but not on the rotarod task 

(non-operant sensorimotor task) (Lindner et al., 1998). Behavioral neuroscience benefits from 

the use of operant methods, and improvements in statistical methods may help narrow the 

translational gap between preclinical and clinical research. 

Implications 

 In the current study, we identified substantial weaknesses in a common analytic approach 

to RGT data. The false positive rate was over 75% when analyzing choice of all four outcomes 
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as the dependent variable, and this was consistent across sample sizes. Some researchers have 

combatted this by analyzing a single score variable as the ratio of safe choices (P1 and P2) to 

risky choices (P3 and P4). Both approaches have major drawbacks that may hinder translation of 

RGT findings. The high false positive rate of the full LMER analysis suggests that at the 

preclinical level, there may be statistically significant findings that will inevitably fail to become 

clinically meaningful when translated. The score variable approach lacks power to detect subtle 

behavioral effects, such as the dissociation between suboptimal and optimal choice; however, 

this approach does translate more directly to the Iowa Gambling Task (IGT), which is used to 

measure similar constructs in humans.  

 There are a few obstacles to direct translation between the RGT and IGT. Some of these 

barriers are broadly applicable to a variety of translational tasks (e.g., inherent differences across 

species), and others are more task specific. One task-specific challenge is that the RGT and IGT 

can capture slightly different constructs. As discussed previously, the RGT can dissociate 

between optimal, suboptimal, and risky decisions, whereas the IGT only dissociates between 

optimal and risky decisions. This may be particularly difficult to reconcile because patients with 

large frontal brain lesions increased specifically in risky decisions on the IGT (Manes et al., 

2002), whereas rats with a prefrontal brain injury had more robust increases in suboptimal but 

non-risky choice (Vonder Haar, 2022a; in press). It is difficult to discern whether IGT findings 

truly reflect a shift in risk preference as opposed to broader changes in the ability to discriminate 

between outcomes. The IGT may benefit from adding a suboptimal but non-risky option to better 

detect changes in discrimination. Furthermore, the RGT is also able to capture additional 

psychiatric deficits, such as motor impulsivity and psychomotor deficits, which cannot be 

detected by the IGT.  
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 However, there are similarities across RGT and IGT research that suggest that preclinical 

findings can be useful. In particular, we see substantial variability across intact subjects on the 

RGT. The k-means clustering approach demonstrated that multiple phenotypes of non-optimal 

decision-makers exist, even among intact rats. This phenomenon is recapitulated in the clinical 

literature; there is considerable variability across individuals, and many healthy participants 

perform at an “impaired” level (Bull, Tippett, & Addis, 2015). The clustering approach in the 

current study may be useful for IGT researchers interesting in exploring individual subject 

variability. Another preclinical challenge with RGT research is determining whether shifts in 

behavior are driven by changes in risk preference or if results reflect a reduction in sensitivity to 

contingencies of reinforcement and punishment. We found that TBI rats have reduced sensitivity 

to reinforcement and may be less able to discriminate between outcomes (Vonder Haar, 2022a; 

in press). This question also applies to IGT research, and alternative decision-making tasks have 

been used to determine whether deficits on the IGT are reflective of reduced sensitivity to 

reinforcement and punishment. In a study of healthy participants, individuals that performed 

poorly on the IGT did have a reduced sensitivity to magnitude of reinforcement and punishment 

(Bull et al., 2015). Thus, there are many unique questions that can be answered using both the 

RGT and IGT and compared across the two. The similarities between the RGT and IGT also 

provide an excellent opportunity to glean insights into individual subject variability and identify 

risk and resilience factors and potential therapeutics. However, inappropriate statistical 

techniques may continue to hinder translation, and future work may be more likely to translate if 

more accurate data analytic techniques are used at the preclinical level.    

Future Directions 
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The current approaches for RGT data analyses are flawed, and it will be important to 

identify superior techniques via data simulation in future studies. Specifically, binomial and 

multinomial logistic regression should be compared to determine the power of each test for RGT 

analysis. It may also be prudent to test the accuracy of LMER with additional sessions and with 

random slopes. Given the constraints of convincing the field to adopt new techniques, the “best” 

method may not be the method with the highest accuracy; rather, it is important to balance both 

accuracy and feasibility. For example, a multinomial logistic regression using the brms package 

is time-consuming and requires skills that are unfamiliar to most behavioral researchers. Fitting 

the Bayesian multinomial regression for a single dataset (n = 20 per group) in the current study 

took approximately 20 minutes. Notably, this analysis was performed on proportion level data, 

which reduces computing time. If a researcher wanted to assess learning effects within a session 

across individual trials, the computing time would increase even further. If a researcher has one 

specific model to run, it might be reasonable to perform the Bayesian multinomial logistic 

regression; however, the computation time may grow prohibitively lengthy for multiple model 

comparisons. Further, any errors in the process may take considerable time to isolate. Because of 

these obstacles, a more familiar and less computationally intensive analysis (i.e., binomial 

logistic regression) may be more desirable. If results across both binomial and multinomial 

analyses are reasonably similar, it would be advantageous to promote the technique that is easier 

to implement.  

In addition to eventual publication of these analyses in a peer-reviewed journal, it is 

important to disseminate results through other forums. There have recently been calls for more 

transparency in science, with the NIH stating that “data should be made as widely and freely 

available as possible while safeguarding the privacy of participants, and protecting confidential 
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and proprietary data” (Health, 2020). Given that published methods should be reproducible, 

sharing code and data (when ethical) are essential for statistical advancement. The code for this 

project will be shared at https://github.com/mfrankz at the time of publication. When the best 

method for RGT data analysis is identified in future projects, that code will also be shared freely 

to promote the adoption of accurate statistical practices. Forums such as GitHub allow for easy 

sharing of code and will continue to play a major role in scientific advancement.  

In addition to these actions that can be taken by individual researchers, there are also 

more systemic changes that would facilitate better statistical practices. First, journals should 

implement and expand requirements for data sharing and code availability (Walters, 2020). 

Second, the curriculum for statistics classes in psychology departments should be evaluated to 

determine if students are gaining an accurate understanding of statistics and their limitations. The 

focus on null-hypothesis testing and surface-level skills (e.g., memorizing formulas, following 

instructions in SPSS) without an emphasis on critical thinking may promote the implementation 

of poor statistical practices and discourage scientific advancement. Although these types of 

changes can be slow to implement, it is important to note that behavioral neuroscientists are 

frequently eager to adopt the most advanced techniques in the field. Several techniques recently 

considered novel (e.g., optogenetics, single-cell sequencing, advanced microscopy) have been 

quickly and enthusiastically adopted. This same desire for innovation should be applied to 

statistical techniques as well. It may be challenging to adopt more accurate statistical practices, 

but it will likely improve translation and ultimately benefit the field.  

Concluding Remarks 

Poor translation between preclinical and clinical research is one of the most consequential 

problems in behavioral neuroscience. For RGT researchers specifically, the use of inappropriate 

https://github.com/mfrankz
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statistical techniques has likely resulted in both false positives and reduced power. Although the 

current study only provided evidence for inaccuracies in RGT analysis, these problems are most 

likely pervasive across many preclinical choice paradigms. Statistical practices must evolve to 

improve the accuracy of preclinical data analysis and narrow the gap in translation. Simulation 

projects are crucial for identifying the best statistical practices. Dissemination of these practices 

presents a more complex issue and will require publication, open code sharing, and critical 

reflection on how statistical techniques should be taught to students and early-career researchers.  
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