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Abstract 

 

Top-Down & Bottom-Up Approaches to Robot Design 

 

Dylan Covell 

 

This thesis presents a study of different engineering design methodologies and 

demonstrates their effectiveness and limitations in actual robot designs. Some of these methods 

were blended together with focus on providing an easily interpreted project design flow while 

implementing more bottom-up, or feedback, elements into the design methodology. Typically 

design methods are learned through experience, and design taught in academia aims to shape and 

formalize previous experience. Usually, inexperienced engineers are taught approaches 

resembling the Verein Deutscher Ingenieure (VDI)  2221 process. This method presented by the 

Association of German Engineers in 2006 is regarded as the general system design process. This 

introductory process is largely left open to interpretation, and it is often unclear when to 

implement feedback in the design process. The objective of this thesis is to investigate the roles 

of top-down and bottom-up processes, and how to integrate them in the robot design 

methodology. 

The proposed approach utilizes several components from existing design methods. There 

are three main conditional loops within the proposed approach. The first loop focuses on 

defining the problem in a top-down manner through logical decomposition, defining technical 

requirements, researching solutions, and conducting a trade study. These four steps are done 

iteratively until reaching the bottom of the system, the most primitive components. This is 

followed by a modeling and analysis loop. This works from the bottom to the top of the design in 

preparation for manufacturing and validation. The final loop of the proposed approach focuses 

on validation and verification.  The testing and manufacturing involved allows for alterations to 

the design to fulfill the original technical requirements. These three loops occur until a proof of 

concept is achieved. The proposed method is intended to be applied iteratively. The first pass of 

the method results in a proof of concept, while the second results in a preproduction prototype, 

and the third in a production model. This assembly of design elements provides a project flow 

that leaves little to be interpreted and is suitable for small design teams while still flexible 

enough to be applied to diverse robotics projects.  

This thesis provides three case studies analyzing the application of the hybrid design 

approach mentioned above to robotic system development. The first study showcases a 

complicated system design with a small development team. The second case is of simpler 

construction with a smaller developer team. This simpler case better demonstrates the benefits of 

this hybrid approach in robotic system development due to the comparatively higher speed at 

which the system matures. The third case study shows how this same proposed approach can be 

applied to the design of a bottom-up controlled swarm. These case studies are for future 

designers to reference as examples of the hybrid design methodology in application, and what 

can happen when there is a lack of feedback in design. This proposed hybrid design method can 

encourage design practices in new engineers that translate better to industrial applications, and 

therefore encourage faster integration of new engineers into established design engineering 

practices. 
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1. Introduction 
Every industry functions through the application of design methods. This essential 

operation is both a science and an art. There are generalized systematic approaches for engineers 

to follow. However, these processes still heavily rely on human creativity and experience to fill 

in the gaps and modify the methods on a per case basis. This human aspect of design is formed 

through practice, knowledge, and talent. These generalized methodological design approaches 

are necessary to establish a baseline for new engineers and are what mold the experience they 

accrue. These formal methods do well to provide direction, but must better reflect the practices 

and needs of industry in order to increase acceptance of these academic approaches. The 

evolution to these more practical academic methods will lead to faster integration of new 

engineers into existing structures and encourage more systematic practices in industry. 

There are many attempts to formalize the “science” of design through methodologies. 

Most of these approaches can be boiled down to aspects from two major groups: top-down and 

bottom-up. Top-down describes how a system is governed by a group with a particular intent. 

These top-down methods are typically feed-forward in nature and focus on producing a result 

through the goal decomposition of the given task. For example, designing a means of robotically 

mowing a lawn can take many forms. However, this task can be broken down into simpler 

components, such as the cutting apparatus, drive train, power, computational, control, 

localization, perception, communications, and software subsystems. These subsystems can be 

broken down even further with this top-down manner to the most primitive level to define the 

system fully. Starting development at the bottom of these top-down primitive elements is where 

one method of bottom-up approaches can be introduced into design. 

Bottom-up governed systems rely on many separate processes to determine the outcome. 

These methods are focused on iterative design and implementing feed-back from the interaction 

with the environment to determine subsystem composition. This results in the overall system 

taking form after these subsections are determined and the product essentially acting as an 

adapter between these subsystems. For example, evolution has demonstrated the ability for 

organisms to improve performance in their environments through mutation and natural selection 

[1]. In nature, these adaptations are accomplished without top-down knowledge or input, and 

success is determined by their behavior in the world.  

This classification with two major classes encapsulates all formal design methods and a 

majority are some fusion of the two approaches. Commonly applied design methods utilize a 

core top-down approach with bottom-up elements, like feedback from experiments or 

verification according to stakeholder requirements. These formal methods have left it up to the 

user when to apply these checks. Some top-down approaches incorporate bottom-up elements 

into the core operation of their methodology. This is demonstrated through internal loops of 

synthesis and analysis, or periodic verification and validation of the system. Other methods 

demonstrate the ability to utilize mostly bottom-up construction methods with segments of top-

down synthesis within the design levels.  
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A hybrid design between these top-down and bottom-up methods can be applied to nearly 

any system. An example is provided through a theoretical pipe inspection robot. This process 

starts with a top-down approach, by defining the task and breaking down that task into essential 

features. Then the bottom-up approach with top-down periods of synthesis can occur. The 

process specific components are defined and prototyped first, like the perception and drive train 

subsystems. Then the supporting components for those primary systems can be defined and 

implemented, like the computational, power, and communications subsystems. This process 

continues to go up through the levels of definition to complete the design. This example leads to 

the overall form of the system being determined by the subsystems, rather than the other way 

around. However, engineers’ intuition is still needed to determine where to continue breaking 

down a system into subsections and appropriately design system requirements to solve a given 

task. This thesis strives to derive a practical and thorough hybrid top-down and bottom-up design 

approach from existing methods geared toward robotics applications that is easy for new 

engineers to interpret and utilize. 

 

Through the development of this hybrid design method this work contributes: 

● insight for the need and benefit of more application of bottom-up design concepts; 

● interpolating a design method from commonly accepted approaches; 

● applying this hybrid approach to three robot system design and development case 

studies; 

 

The rest of this thesis is structured as follows. Chapter 2 provides a background of 

relevant topics. Chapter 3 interpolates and discusses when to apply the proposed design method. 

Chapters  4, 5, and 6 are the case studies of this design method in practice. The rover in Chapter 

4 applies the hybrid design method to a complicated system construct with a small team of 

engineers. The rover in Chapter 5 applies this proposed method to a simpler system and 

demonstrates application over significant system maturity. The third robot in Chapter 6 

demonstrates this design method applied to the software development side of robotics. Finally, 

Chapter 7 wraps up with concluding remarks. 
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2. Background 
This background has been broken down into four sections. First, the Bottom-Up and Top-

Down section discusses the definition of these classifications and provides examples of these 

types of systems. Second, the Design Methodologies section explores commonly accepted 

formal design approaches and their prominent features. Third, the Decentralized and Centralized 

section defines and clarifies the distinction between these two types of systems in robotics. 

Fourth, the Consensus section discusses the principles of agreement protocols and their 

significance to robotics. 

 

2.1. Bottom-Up and Top-Down 

The terms top-down (TD) and bottom-up (BU) are often used to describe how a system is 

governed. These terminologies can apply to psychology, economics, engineering, management, 

politics, and many other disciplines. [3,4,5,6,7,8] In a general sense, TD can be denoted as 

something built, or controlled to achieve a specific goal determined by an individual or group. In 

engineering, TD methods are the traditional development approaches in industry. [9] Generally, 

the designer is given an objective, decomposes the problem into solvable goals, explores 

solutions, models the proposed solution, and synthesizes a system which is focused on achieving 

that original objective. This TD system only takes into account the situation as well as the 

designers’ account for the scenario. Additionally these systems may not do well in the presence 

of significant changes to the application [2]. For example, a logistical robot from a warehouse 

would struggle to operate in an unstructured environment without modification, or a robotic 

manipulator from an automotive assembly line would struggle to effectively pick apples without 

modification. In economics, TD can describe how a model is constructed from high level 

predictions [3,4,5] or even how policies are implemented as a blanket effect [6]. In psychology, 

TD can refer to how humans anticipate interactions with the world due to prior experience, rather 

than simply reacting[7]. In general, purely TD methods focus on feeding forward a detailed 

control or design to fulfill the objective and do not provide room for feedback from experiments, 

or modularity in application. 

In contrast, bottom-up (BU) typically refers to something that is determined in a more 

decentralized manner. As many separate processes determine the outcome, or design, of a system 

[8]. For example, a forest can be likened to a BU system in the sense that every plant, rock, and 

creature is not controlled or planned by any one group or individual. Instead their behavior is 

governed by their inherent biological and physical rules in response to external stimuli. BU 

approaches in engineering utilize the environment, or scenario, to determine the design of the 

modules to facilitate the overall system objectives. This feedback into the design is typically 

witnessed over several iterations [2]. Although the system may not operate well outside its 

intended application, the iterative design process and use of modules result in an adaptable 

design. In economics, BU can describe how a model is constructed based on gathered 

information [3,4] or even how policies are implemented on a per case basis [6]. In psychology, 

BU can refer to how humans react to the world through senses, rather than anticipating results 
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[7]. In general, purely BU methods focus on feedback into the policy, control, or design based on 

performance. Although this approach is much more practical in producing end results, it is more 

convoluted to synthesize an initial form to unify the subsections with a purely BU method. 

These polar opposite ideas of TD and BU are still very codependent on each other. There 

is no purely TD or BU system [2,8]. Every effective design method in industry utilizes TD and 

BU to some degree [10,11]. For example, the Spiral design model, discussed later in more detail, 

operates in a cycle of TD design and development with phases of BU feedback and validation 

over an iterative process. Even though this Spiral method would be regarded as a TD method it 

has BU elements present. The iterative prototyping step of generic TD processes is a core aspect 

of how BU is applied to design and BU designs still require some sort of TD synthesis after the 

analysis step [2]. Ultimately, BU designed systems are modeled by humans, introducing TD 

elements, but the compliance and modularity added to the system promote robust performance 

and potentially lead to new features, or behaviors, emerging during the BU design cycle.  

 

2.2. Design Methodology 

 Design can be regarded as an invisible study in society. Many take this research 

topic for granted due to its commonplace application in everyday life. Coordinated Universal 

Time (UTC), Global Navigation Satellite System (GNSS), or electrical grid management are 

considered invisible utilities to the general public. Most individuals learn their own design 

methodology through experience in industry and their personal life. Personal design methods 

vary greatly between professions. However, design in the engineering sense will be the focus in 

this section.  

The Accreditation Board for Engineering and Technology (ABET) defines Engineering 

Design as, “... identifying opportunities, developing requirements, performing analysis and 

synthesis, generating multiple solutions, evaluating solutions against requirements, considering 

risks, and making trade-offs, for the purpose of obtaining a high-quality solution under the given 

circumstances” [10]. All of these steps are top-down except for the “evaluating solutions against 

requirements” steps. The user takes in feedback from the design's characteristics at this stage, 

making it bottom-up. These common ideas of design are a great baseline, but this is still an 

abstract concept. There has been ample criticism in the design community of the state of design 

methodologies. It is a point of concern that students are not made aware that these methods 

should be taken with a grain of salt, or why the method is structured as such [12]. Many design 

methods in academia often omit how to go about the major steps of the process, or why, let alone 

take into account resource limitations seen in industry that completely alter steps found in the 

ideal, academic design process.  

Despite this criticism, Howard et. al’s summarization of the diverse design methods 

discuss that there are some common properties of the processes between vocations. A 

generalized process model consists of: “establishing a need, analysis of task, conceptual design 

phase, embodiment design phase, detailed design phase, and implementation phase” [12,13].  

These generalized stages of activities cover a wide range of design applications. It is generally 
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accepted that these methods must happen iteratively to produce good results. However, this non-

specific design process will not apply to every situation or profession. It is commonly regarded 

that the ability to modify these general processes is one of the most important skills of designers 

[14,15]. In fact, most applied engineering design processes are some variation of the “Verein 

Deutscher Ingenieure” (VDI), Association of German Engineers, 2221 design process shown in 

Figure 2.1 below, the Spiral Design Model by Boehm, or the V-Model by Forsberg and Mooz 

[12,15], shown in Fig. 2.2.  

 
Figure 2.1: Diagram Reproduced by Author Based on Common Design Process from 

Association of German Engineers, VDI 2221 [16] 

 
Figure 2.2: Diagram Reproduced by Author Based on Spiral Model of Software Development 

[17] (Left) and V Model of Software Development [18] (Right) 
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One of the main distinctions of design processes between professions is how much 

emphasis is placed on a particular step [19]. This allows other disciplines to better provide 

solutions for their industry’s needs. Gericke and Blessing stated, “Civil engineering may provide 

approaches to deal with the separation of development and production. Software and knowledge 

based engineering may provide approaches to include user issues more explicitly. The abstract, 

function-oriented approach in software and electrical engineering may provide solutions to deal 

with mechanical systems at a more abstract, functional level” [12]. 

In multi-disciplinary designs, like those found in mechatronics, the VDI 2221, Spiral, and 

V-Model methods do not encompass a practical process that applies to the entire project. As a 

result, VDI 2206, shown in Figure 2.3 below, was developed specifically for robotic 

applications. This method utilizes elements from the VDI 2221, Spiral model, and V-model 

processes.  

The macro level model is a flow to follow in the overall project and can help establish 

milestones for management to track progress. This is based on the traditional V-model, but 

emphasizes the need for parallel processes, flexibility of the design process, and constant 

verification of the design. The micro level model is geared towards the individual designer and 

operates within the system design, system integration, and domain-specific design sections of the 

macro level process. This begins with a parallel process that takes into account both client and 

designer defined goals. The synthesis/analysis loop allows for the exploration of multiple 

solutions within the same iteration. This micro level process emphasizes the need for repeating 

the process if the results are not satisfactory, and investigating alternative designs. The micro 

level process is where the VDI 2206 process gets inspiration from the VDI 2221 process. 

 

 
Figure 2.3: Diagram Reproduced by Author Based on VDI 2206 Micro Level (Left) and VDI 

2206 Macro Level (Right) [20] 
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Feedback from validation at the macro level helps to shape future iterations of the VDI 

2206 process. This intuitive feedback within the micro level should help to reduce the number of 

macro iterations. However, completing this macro level process does not necessarily result in a 

finished product. This process is intended to be implemented repetitively to increase system 

maturity and reach significant milestones, shown in Figure 2.4 below. This is where the VDI 

2206 process pulls in elements from the Spiral Model used in software development. For 

example, the first pass of this process could result in a concept model, the second pass could 

result in a functional model, and the third iteration could result in a first physical prototype.  

 
Figure 2.4: Diagram Reproduced by Author Based on VDI 2206 Product Maturity Cycle [20] 

 

Another commonly accepted design method is that of the NASA Procedural 

Requirements (NPR) 7123.1 method, shown in Figure 2.5. This outlines the method of Systems 

Engineering with mechatronic systems used in their Systems Engineering Handbook [21,22]. 

This NPR 7123.1 Systems Engineering method is broken down into three main processes: 

system design, product realization, and technical requirements. These three overarching 

processes are applied recursively to every level of decomposition of the system until reaching the 

most primitive elements.  

The system design portion focuses on establishing the task. This involves defining the 

stakeholders’ expectations of the product, then defining the corresponding requirements for those 

expectations, further decomposing those requirements into manageable problems, and selecting 

potential solution for exploration.  

The product realization section focuses on ensuring cohesive integration with adjacent 

components. Firstly this is done by implementing the realized end products from lower levels. 

Then, the primitive level solution is integrated with the overall system structure. This subsystem 

solution is then verified if it truly meets the criteria from earlier steps and meets stakeholders’ 

expectations. These are all done before transitioning to the next layer above the current 

component.  
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The technical requirements section acts as a tool for project management. These steps 

emphasize taking the time to plan future steps, checking overall project progress, assessing 

potential risks, clear communication between team members, and documenting results. All of 

these management steps assist in analyzing the progress and how to improve further. 

These seventeen steps do not all happen before proceeding down to the next level, 

otherwise called Work Breakdown Structures (WBS). A product design can be regarded as 

bottom-up if these lowest levels are defined first and work up through the WBSs from there. In 

contrast, a design can be regarded as top-down if the higher level WBSs are formulated first with 

the lower level components determined in subsequent steps.  

Following the flowchart in the figure below, the system design steps for all subsystems 

happen before working back up the chain through the product realization steps. All of these steps 

happen in parallel with the technical requirement steps, as project management is a constant 

endeavor.  

 
Figure 2.5: Diagram Reproduced by Author Based on NPR 7123.1 Systems Engineering Method 

[21,23] 

 

This NPR 7123.1 Systems Engineering Model works within the outlined NASA Project 

Life Cycle in Figure 2.5. The system design processes are represented as section 4.x. The need to 

implement these four steps recursively until reaching the lowest level of the project is clarified in 

Figure 2.5. Only then can the five product realization processes start progressing back up through 

the subsystems. This figure also emphasizes how the technical management is constantly in 

parallel to these nine steps. This documentation and formalization of the design process are 

increasingly necessary at each major design review.  

These iterations of the NPR method occur during each major design stage of the project. 

There are considered to be seven major stages to NASA’s projects. This begins with the “concept 

studies” to define the feasibility, challenges, cost, and other requirements to put together a first 

draft of the project. The project really begins with the “concept and technology development” 

stage determining the basic concepts, plans, and requirements to fulfill the project. The 
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“preliminary design and technology completion” stage aims to produce a barebones prototype to 

meet mission needs. The “final design and fabrication” phase occurs midway through the project 

life cycle. This stage focuses on actually producing the final product hardware and developing 

the initial software packages. The “system assembly, integration, test, and launch” phase brings 

the entire project together and ultimately producing the final product. The “Operation and 

Sustainment” stage executes the desired mission. Finally, NASA projects wrap up with a 

decommissioning procedure to close out the operation and compile data for analysis.  

 

 
Figure 2.6: Diagram Reproduced by Author Based on  NASA Project Life Cycle [21] 

 

The five major methods discussed thus far do not encompass all processes used in 

industry, but do cover the commonly applied design methodologies in practice. All of them share 

elements of bottom-up and top-down methods to varying degrees. VDI 2221 is a busy flow chart, 

but it consists of mostly parallel top-down processes. There is bottom-up feedback to the system 

design and system requirements, but it is not well defined when to apply these steps.  

The Spiral Model is much more detailed and practical, but is a very single threaded 

implementation of the design process. This also consists of mostly top-down steps with periods 

of feedback, a bottom-up feature, located on the lower vertical axis.  

The Forsberg-Mooz V model is also a very serial process that consists of mostly top-

down processes. The only feedback in the system is the general verification statement, and does 

not illustrate the need to update the system requirements. This bottom-up feature is haphazardly 

applied, leaving the designer to decide when feedback is necessary.  

The VDI 2206 model uses both top-down and bottom-up approaches throughout the 

process. The macro level emphasizes a constant feedback loop in the design process. This makes 
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the macro level top-down just as much as it is a bottom-up process. The micro level utilizes a 

top-down approach within a feedback loop. Although this is a bottom-up element, the micro 

level is still a mostly top-down component. Many robotic designs utilize off the shelf 

components with simplified interfaces between these systems. These subsystem parts drive the 

VDI 2206 process, resulting in a dominantly bottom-up design process. The form and function of 

the system is still a top-down process with periods of bottom-up feedback. This design method 

results in the robotic project becoming a glorified adapter for the modules that fulfill the mission 

objectives.  

The NASA System Engineer methodology emphasizes the top-down development of a 

system, and implies that bottom-up feedback is constant. This approach is thorough and effective 

at managing massive engineering development teams. However, this is not necessarily practical 

for smaller companies or design teams. Applying this method to smaller groups can lead to 

increased burden on team members to formalize steps they may intuitively do in the process. 

These five major approaches demonstrate that design methods are predominately top-

down with bottom-up applied as an afterthought, or as a delayed form of verification. These 

methods also have various aspects that are either not appropriate for small team applications, 

leave too many details open to interpretation, or fail to incorporate essential aspects of the 

learned design methods. These self-learned methods strive to balance research, synthesis, and 

feedback while maintaining monetary, effort, and time constraints. Some of these intuitive 

constraints are often omitted from design methods taught in academia, and ultimately lead to 

industry reteaching design practices to new hires. 

Engineers are taught how to research and synthesize solutions via task decomposition in 

academia. These top-down methods are often instructed without reference to formal design 

methods, but typically resemble the synthesis focused VDI 2221 process. It is essential to 

understand this method as an engineer and cutting edge developments are made through 

synthesis. However, bad designs can originate from synthesis as well and this mindset focused 

on synthesis can often plague the development of products in industry. The lack of practicality 

and how to implement the steps outlined in this ideal method often leads to rejection by industry 

[15,24,25,26]. This results in employers often training new hires how to practically navigate 

product development. The higher standards of quality, need for economically and 

technologically competitive products, and desire for rapid progress force a different mindset onto 

these new engineers. However, there is often less opportunity to explore different prototypes in 

industry despite these requirements. This is mostly due to limited resources and the desire of 

experienced engineers to stick with the techniques already implemented. This restriction on 

prototype exploration and focus on top-down synthesis often leads to users continuing this habit 

for the entire project. This results in first prototypes heavily influencing the final product instead 

of experimenting with more diverse designs.  

Although it is good to pull ideas from experience, there are great benefits to veering from 

the status quo and re-evaluating design choices. These changes can seem minor at first glance, 

but may completely alter the quality and opinion of a product. For example, the original Boston 
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Dynamics Spot platform, now called Spot Classic, evolved from its hydraulic actuated origins to 

its fully electric system in the later 2010’s [27,28]. This advancement not only led to a simpler 

design, but the quiet system also improved public perception of Spot. This advantage of 

producing alternative designs to provide feedback is intuitive. However, these expensive full 

prototype explorations are usually undesirable in industry and it is often unclear when to do so in 

several formal design methods. Applying more feedback, or other bottom-up methods, in 

industry can provide pathways to improve products. 

 There is a lack of purely bottom-up design methods. This academic pursuit has been 

realized through the use of evolutionary and reinforcement learning based automated design 

methods to better imitate processes witnessed in nature. For example, an increasingly common 

method of exploring optimal solutions in simulation is through a genetic algorithm. In every 

generation, or iteration, agents attempt to complete the task. These agents all have properties 

resulting from mutation, selection, or crossbreeding of the dominant agents from the previous 

generation. This can be applied to a wide array of tasks that need optimizing. These projects can 

include: structural design [29], neural networks [30], printed circuit board design [31], and much 

more. These software generated designs are a good baseline for improving design practices, but 

it is difficult to completely automate the entire process. The need for co-designing the often 

conflicting interests of mechanical, electrical, and software systems in parallel tremendously 

complicates the design process. Even minor modifications to the mechanical design can have 

significant impacts on the electrical needs and software capabilities of the project. This is true for 

any of the involved disciplines of a mechatronic system. Utilizing general purpose hardware and 

making up the difference with software only goes so far. Designing complicated systems is still 

an art due to the need for adapting these formalized design processes to a particular project and 

knowing where to break down or probe the product further. 

This thesis explores a method interpolated from the NPR 7123.1, Spiral Model, and VDI 

2206 approaches to provide a straightforward method geared towards encouraging good design 

practices in new engineers. The NPR 7123.1 approach is thorough in nature and well defined. 

This begets an overall strong design methodology, but is not friendly to new students due to its 

definition of planning, management, analysis, and assessment occurring in parallel to the active 

design steps. The Spiral Model encompasses an excellent pathway from problem statement to 

product realization, but its open ended descriptions may prove confusing to students who have 

not done much design work before. The VDI 2206 model’s structure does cover a realistic design 

method, but also leaves feedback and subsections open to interpretation. A hybrid of these 

approaches would strive to be well defined and thorough like the NPR 7123.1 method, while 

being approachable and clear like the Spiral method, and resemble the structure and feedback 

loops of the VDI 2206 method. 

 

 

 

2.3. Decentralized and Centralized 
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In a general sense, the terms centralized and decentralized describe how a system is 

structured. A system is centralized when all actions are controlled by one member, or controlled 

by a distributed system with global knowledge. For example in robotic manipulators in a factory, 

each robot has a centralized controller that is aware of the robots state and collects information 

from sensors to decide what action to take next. This top-down knowledge of the system's status 

is by far the biggest advantage of centralized distributed systems. This global knowledge makes 

effective coordination of multi-robot systems much easier to achieve. However, this structure 

requires good connection between the agents in the distributed system. For example, sensors 

distributed across a factory can collect data for a centralized digital double. This connection 

requirement isn’t always feasible when operating in unstructured environments, or with mobile 

systems. These centralized systems do not scale well to large groups of agents due to 

communications and computation bottlenecks and may not be robust to failures.  

In contrast, a system is decentralized when it is composed of many units that make their 

own decisions based on local information. These agents do not necessarily have direct 

knowledge of the rest of the system. This decrease in the information communicated simplifies 

the processing each agent needs to do. For example, a swarm of birds flying in a flock while they 

can only observe immediate neighboring birds is an example of a decentralized system operating 

in a bottom-up control manner. These properties do well to scale with large systems, but come 

with their own challenges. These systems rely heavily on constant communication to provide 

agents with information for local interactions and localization is more difficult to achieve. These 

challenges are often worth the additional benefits that decentralized systems bring. These 

systems are typically more tolerant to failure of some units in the swarm. However, it is more 

difficult to accurately predict and coordinate the system as a whole due to this lack of global 

information. 

There are many systems that apply both centralized and decentralized structures. In 

electricity generation, power plants are part of the centralized power grid system. Residential 

solar panels contribute power to this same system without knowledge of the rest of the 

infrastructure, and are currently decentralized contributors [32]. The advent of new “smart” 

electric panels aims to change this decentralized nature of photovoltaic and other residential 

power systems [33,34]. In computer science, decentralized websites are mostly hosted in major 

data centers, or centralized facilities, and distributed via centralized internet service providers. 

However, the introduction of blockchain has brought about the idea of decentralized internet 

server facilities for the decentralized website services, otherwise called Web 3.0, to be 

distributed through these centralized internet service providers [35,36] . 

As seen in these examples, the opposing ideas of centralized and decentralized are still 

very codependent on each other. As there are no purely decentralized systems. For example, a 

drone swarm that utilizes decentralized computation, communication, and control would be 

declared a decentralized system. However, in most cooperative applications there still is a 

centralized knowledge that the other agents in the system are bound by the same rules. In many 
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decentralized systems, agents that follow different programs or physical rules will not be able to 

cooperate and can cause the whole system to not perform well [37,38].  

 

2.4. Consensus 

A means of agreement between units is needed to encourage cooperation within multi-

agent systems, referred to as consensus. The term consensus has applications in many fields, 

such as physics, computer science, robotics, politics, and much more. 

[39,40,41,42,43,44,45,46,47,48] The term consensus refers to the collective decision making of 

multiple agents in a system to agree on an outcome. In computer science, multiple users 

connected to a game server require a means of synchronizing the game world continuously for 

all users. This consensus of the game world is accomplished through continuous clock 

synchronization, state estimation, state prediction, and state reconciliation [39,40]. In politics, 

consensus is sometimes found, but not always achieved, in the process of formulating and 

passing legislation [41]. In multi-agent robotics, this can take on the form of rendezvous, 

formation stabilization, and formation movement (flocking) problems [42].  

There are two major schools of consensus in these multi-agent robotic systems: 

centralized and decentralized consensus. Centralized consensus is essentially an extension of the 

same approaches to coordinated control seen in single agent systems. The agents within the 

centralized multi-agent system are extensions of the central decision maker. Decentralized 

consensus methods are the more challenging and valuable approach for multi-agent systems. 

These decentralized systems are typically more robust to faults, able to scale to large systems 

more easily, and able to perform more complicated tasks with less system complexity as 

compared to centralized systems. Decentralized multi-agent system consensus has taken 

significant inspiration from equivalent scenarios in nature. These include the flocking of birds, 

ants working together, wolf packs hunting, and many other similar scenarios. 

There are several classifications of collective decision making in robotics. Leader-

follower consensus systems consist of agents listening to a selected leader. For example, a leader 

in a group of mobile robots could follow a high level path given to it while the followers in the 

group simply keep formation around the lead unit [43]. Variations of this task can dynamically 

select leaders of the swarm. This voting system is a core aspect of group consensus, another 

major classification of consensus tasks. These systems exchange information to determine an 

agreed truth. For example, distributed sensors measuring temperature need to agree on a correct 

value through consensus protocols [44]. Multi-consensus systems tend to resemble group 

consensus problems, but add the ability to track multiple truths in their protocol [45]. For 

example, a swarm of robots could observe multiple objects of interest traveling through their 

field of view. These robots can work together to keep track of the target while it is out of view of 

another robot [46]. These broad classifications of consensus in robotics utilizes agreement 

protocols to facilitate deciding on one output in the swarm. 

Some of these methods of group consensus are governed by simple mathematical 

functions that always converge. In group consensus, reaching convergence by difference and 
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differential equations are excellent examples of these primitive, but powerful equations that can 

reach agreement through a decentralized multi-agent system [42]. Average consensus algorithms 

are also quite simple and demonstrate the ability to accommodate many inputs [42,47]. Best-of-n 

decision making utilize increasingly complex protocols, but enable more intelligent decisions to 

be made by the decentralized swarm [48]. There are many methods of reaching consensus in 

computer science, but these approaches and classifications of consensus problems are of 

particular interest in robotics. 

  



15 

3. Technical Approach 
The proposed hybrid robot design method will be composed of several loops like the 

NPR 7123.1 method, but the internal steps of these loops better resemble the Spiral method and 

there are no parallel steps to the loops, as seen in the NPR 7123.1 approach. These are done to 

simplify the instruction of this method while remaining adaptable to different robotic projects. 

This hybrid of several formal methods aims to better align with the needs of flexible 

design in industry while remaining well defined enough for upcoming engineers to sufficiently 

understand and build up practical experience. To promote good design practices a method should 

balance research, synthesis, and feedback while respecting monetary, effort, and time constraints. 

The academic design methods resembling the VDI 2221 process typically neglect the feedback, a 

bottom-up feature, of these six golden traits. Inexperienced engineers still receive feedback from 

instructors, although that is usually after the end of a project. The application of validation, 

verification, and experimentation in the design process can drastically improve overall learning, 

even if less material is covered.  

Not all of the steps outlined in the previously mentioned methods in this thesis are 

appropriate for robotics projects. The VDI 2221 method is simple, and a good introduction to 

design as a whole. However, this method fails to mention how far to take each step in the 

process, or what should the end product be of that iteration of the process. This obscure 

description leaves the VDI 2221 method open to interpretation and results in significant 

variations in the application of this design method. The Forsberg-Mooz V model does resemble 

the structure of other accepted techniques, like the NPR 7123.1 process. Unfortunately, this less 

detailed process implies that it is only to be applied for one iteration, and focuses on progressing 

through the synthesis of the product. This lack of feedback in the methodology severely hampers 

the ability of the process. The NPR 7123.1 and NASA Project Life Cycle processes are very 

detailed. NASA has developed and proven these design methods over years of practice. These 

methods are thorough, but may be too much to manage for new engineers and small teams of 4 

or less. The VDI 2221, VDI 2206, Forsberg-Mooz V Model, and NPR 7123.1 all imply that 

feedback is constant. This unfortunately makes it unclear to less experienced designers when is 

the best time to apply feedback into the system design. The VDI 2206 and Spiral approaches at 

least make the effort of when to introduce feedback into the design process. The Spiral method is 

much more detailed and appears very approachable for students, but only discusses application to 

software. The VDI 2206 process has feedback cycles built into its core processes, but needs to 

further clarify when to stop a particular cycle. All of these methods have some aspect of them 

that make them more difficult for inexperienced engineers to digest, or not appropriate for 

applications to robotics. Many of these issues can stem from too much detail, not enough clarity 

in the definitions, obscure design flow, and where to integrate bottom-up methods.  

 There are still many useable components of these methods. The VDI 2206 micro level 

and Spiral methods are excellent examples of all six traits and integrate feedback as a core step 

in these methods, but still leave the many details and decisions of those steps up to the user. In 

contrast, the NPR 7123.1 method provides incredible amounts of detail, but implies that 
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feedback is a constant parallel process and ultimately still leaves it up to the user when to apply 

feedback in a small team setting. An interpolation of these three methods strives to provide 

detail, examples, and feedback loops like the NPR method while drawing steps and structure 

from the VDI 2206 and Spiral processes. These assets are compiled while keeping the hybrid 

approach defined in a way that reduces the need for interpretation and still flexible to diverse 

applications. 

 
Figure 3.1: Proposed Hybrid Design Methodology 

 

This proposed design method shown in Figure 3.1 begins a top-down focused process 

that iterates problem decomposition, requirement definition, solution synthesis, and trade studies 

through a loop. Logical decomposition is essential for any project, and makes for a collection of 

simpler problems to solve. That decomposition drives the technical requirements of this level in 

the design. These levels are the hierarchical breakdown of the system determined through 

decomposition. For example, this can start at the system as a whole, then proceed to the 

subsystems, and further to the components needed to make those subsystems function. These 

systems are continually broken down into more primitive components, like bolts, resistors, and 

other off the shelf products. The technical requirements of the system should be kept as broad as 

possible as to avoid defining a solution in the goals. Then the team conducts research of potential 

solutions, and considers all solutions, no matter how infeasible. The purpose of the trade studies 

is to explore the pros and cons of the systems, and reduce the role of human preferences in 
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decisions. This objective thought process should bring out the best fit solution of those found at 

the time, and justify why one or multiple options are considered for further analysis. This is done 

repeatedly until breaking down the system into the most primitive components. The steps up to 

this point should only be defining general features and properties of the system. Just like the 

technical requirements, the goal of the first loop is to define the system as broadly as possible. 

The technical requirements of the lower levels of the system will fill in the details through the 

following modeling loop. 

Only after these primitive components are defined can modeling and analysis begin. This 

modeling process starts at the lowest level and works bottom-up to define the overall design. 

This bottom-up approach allows the necessary equipment to dictate the structure and form of the 

system. Although this seems intuitive, it is not uncommon for a system's structure and form to be 

designed first and then attempting to find components to fit that system later. If this risky 

decision is used the system design is usually altered significantly, and this should not be done 

when designing and manufacturing in parallel. When designing these systems, it is important to 

keep modularity, manufacturability, assembly, maintenance, tolerance, and cable management in 

mind. These features will greatly increase the ability to adapt and improve the system as 

development and integration continues in later steps. Progressing onto the review phase only 

occurs once the model reaches a state of defining the overall system. The reviews are intended to 

verify the product design against the technical requirements defined earlier in the process. This 

can include finite element analysis, dynamic motion studies, thermal and vibration analyses, 

economic feasibility studies, sensor placement studies, scale model construction, simulating 

operation, manufacturing studies, and many other methods of validation. This cycle of reviewing 

and modeling occurs repetitively to provide feedback into the design from all the mechanical, 

electrical, computer science, various engineers and technicians involved in the project. This 

multidisciplinary review gradually defines the system from a geometric representation to a fully 

manufacturable CAD model of the product while balancing the needs of all the subsystems. 

The final assessment of the readiness of this system must be thorough before progressing 

onto full system manufacturing. It is best to include the other trades involved in the 

manufacturing and implementation of this system in the reviews to produce more feasible and 

realistic designs. There may be some need for improvising unforeseen issues on these initial 

prototypes, but the previous reviews should catch a majority of these potential issues. These 

prototypes are where a majority of learning and validation occurs. There may be some 

phenomena that simulations and analyses did not catch. These studies can only capture so much 

detail, and are limited based on any information omitted from their models. There may be a need 

for subtle alterations to the components or their manufacturing processes to increase quality or 

ease of assembly.  

These approaches handle individual levels of design, but a method of overall managing 

project flow is also needed to successfully apply the aforementioned process on a project-wide 

scale. NASA’s Project Life Cycle, Spiral, and VDI 2206 macro level all have reasonably defined 

project stages. Although the NASA proven method is thorough, it is often not practical to 
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implement on smaller scale projects, or with new engineers. The VDI 2206 macro level and 

Spiral methods provide an easy to understand course of action, but simply need more detailed 

descriptions and examples.  

 
Figure 3.2: Proposed Hybrid Design Approach Macro Level 

 

These three main loops shown in Figure 3.2 are inspired by the previously mentioned 

design methods. These identical loops are done over several iterations to achieve progressive 

milestones of the project like the VDI 2206 macro level process. These are not limited to any 

particular set of milestones. For example, the first iteration can start with a proof of concept 

prototype, the second pass could produce a preproduction prototype, and the third iteration could 

result in a final product that is ready for mass production. The number of prototypes within these 

loops really depends on the application of the system, level of quality needed, and the alternative 

subsystems considered. It may be beneficial to develop multiple proof of concepts for a 

particular subsystem, which benefit from the aforementioned modularity. This hybrid system 

design method is demonstrated through the case studies below. 

As a whole, design in robotics does benefit greatly from experience, but the method 

outlined in this section presents a means of producing results in small teams through cycles of 

synthesis and feedback while reducing the ambiguity of the order of operations. This method 

should still be approachable for student engineers, and transferable to application in industry.  
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4. Case Study #1: Complicated Robot System Design 
4.1. Introduction 

The West Virginia University (WVU) Interactive Robotics Laboratory (IRL) has 

developed a planetary rover research platform called “Fast Traverse”. This four wheeled robot is 

equipped with independent actuated suspension and steering mechanisms. Fast Traverse is a test 

bed for path planning autonomy and how scientific instruments can assist a rover in determining 

safe paths. 

The development team has included many members over the years. Yu Gu, Scott Harper, 

Nick Ohi, Conner Castle, Dylan Reynolds, Jared Beard, Benjamin Buzzo, Dylan Covell, Jonas 

Bredu, Chris Brindle, Eric Swanson, Gabrielle Hedrick, and Spencer Regnier have all 

contributed to the development of this rover and their specific works are emphasized in the 

design process below. 

 

4.2. Design Process 

This robot starts off with a significant challenge in the proposed design process. The very 

broad system constraints and considerations make it difficult to define the task to be fulfilled. 

Fast Traverse is to be a general purpose rover research platform aligned with NASA’s future 

planetary exploration concepts, like the Mars Sample Return mission [49], and accommodate 

other unforeseeable research needs that are similar in nature. These two vague requirements 

mean that the rover platform needs to be capable of accommodating a wide range of behaviors 

for algorithm testing and highly modular in nature for future mission configurations. Through 

deductive reasoning, this means that operation time between charges, weight, and complexity are 

of lower concern in the design considerations as compared to a robot designed for a specific 

application.  

These few requirements gave a lot of flexibility to system requirement conception and 

desired features of the robot. The drivetrain would have to loosely resemble the capabilities of a 

NASA rover, but any solution could be chosen that facilitates a wide range of behaviors and 

accommodates NASA’s research objectives. The ability for the rover to cover ground at higher 

speeds and to push path planning algorithms further than its Martian counterparts fulfilled the 

need for this system to align with NASA’s exploration concepts. 

To better align with these exploration concepts, NASA’s own work served as valuable 

input while researching potential solutions. Many rovers deployed by NASA demonstrate a few 

common traits, but the first dominant drivetrain trait that comes to mind is the modified rocker 

bogie suspension. This passive suspension system is very capable of conforming to terrain 

features, but increases system weight, cost, complexity and is only applicable to slow vehicles. 

All Mars rovers have some form of steering; for example, Curiosity and Perseverance rovers 

apply independent steering to the rocker-bogie suspension to provide agile movement and 

directional control at various speeds. Through observation of various planetary rover systems, it 

became clear that this independent steering system was a desired core feature of the robot. It was 
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less clear from the analyses on whether the commonly observed rocker-bogie system was 

adequate for the project's needs. 

Seeing that the system is intended at traveling faster than the current Mars rovers, what 

speed goal would the system aim for? At the time of designing this project, the record distance 

traveled in a single Sol was achieved by Curiosity was 143 m [50]. (That record has since 

increased to 320 m with Perseverance [51].) Future missions, like the Mars Sample Return 

(MSR) mission, have strict time constraints on the large distance to cover. MSR only has 687 

Earth days, or one Martian year, to bring samples back to the launch vehicle [52]. MSR may 

have to cover up to a 10 km distance[53] before reaching the region where samples have been 

cached by the Perseverance rover. This means that the MSR rover needs to travel at great 

distances over very few Sols to meet mission requirements. This combination of requirements 

led to a 1 m/s travel speed for Fast Traverse with goals of traveling 1 km in a Sol. To further 

enhance the system's ability to traverse terrain, the ability for the system to steer wheels 

independently to precisely navigate through obstacles would prove useful in expressing more 

diverse autonomy behaviors. 

These speeds are high enough that typical passive suspensions of current planetary rovers 

may not be adequate. These suspensions rely on gravity to maintain constant contact with the 

ground and this contact is used for wheel odometry localization and helping to prevent the rover 

from getting stuck in terrain. This means something similar to automobile suspension is better 

equipped for traveling at speed, much like the Lunar Roving Vehicles (LRVs) of the Apollo 

missions [54]. A spring suspension system allows for greater ability for maintaining ground 

contact while traveling over features in the terrain at speed. The introduction this spring 

suspension also provides an estimation of the load applied to a wheel through measuring the 

deflection distance. This suspension system combined with the independent steering system 

should fulfill the need for the system to achieve these speeds and test path planning algorithms. 

The needed modularity for the rover is achieved through the design phase to make 

components easily interchangeable, but the need for planning for unknown missions is much 

more challenging. This can be accounted for by leaving extra room for electronics, payloads and 

the like, but there will be limitations to what hardware the system can support. This means 

potential missions need to be considered for the rover. Seeing that the system is intended to 

primarily cover ground quickly and test path planning algorithms, it would be very beneficial to 

plan for potential payloads that can help accomplish that task. These could include adding the 

ability to survey terrain stability [55,56], calibrating internal measurement units (IMUs) while 

moving, collecting scientific samples via robotic arms, unique sensor arrays for the autonomy to 

work with, and many other potential functions. There is one glaring issue with these potential 

missions that conflicts with the need of the rover’s primary missions. Many of these payloads 

need to make contact with the ground, and some may need to do so while on sloped ground. This 

means there would be very little ground clearance for the rover which needs a high ground 

clearance to scale over obstacles more easily. Incorporating a telescoping mechanism into these 

payloads would cause the rovers compartment dedicated to these missions to either grow taller or 
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become an open top section. An open top is not acceptable due to the needed sensors of the 

system, like 3D lidar, GPS antennas, camera, inertial measurement units (IMUs), sun sensor, or 

any other sensors that would benefit from being near the robot's geometric, or gravitational 

center. The system growing taller is also not acceptable as this raises the overall center of gravity 

of the rover, and decreases the system’s stability to traverse terrain at speed. This culmination of 

requirements and considerations led to independent actuating the rover’s suspension to bring the 

scientific instruments closer to the ground. This actuated suspension system also contributes to 

the system’s ability to keep level despite the ground it is on and also provides potential 

functionality to traverse more challenging terrain. 

 Through the proposed design method, these requirements created through the 

logical decomposition of the broad needs of this rover have now constrained the system to a 

point where geometric assemblies of the system can be synthesized. A system that has an 

actuated independent suspension system with independent steering and a hollow compartment to 

harbor future payloads. Several means of accomplishing these requirements were considered in 

the trade study through deliberation amongst the design team. Discussions led to the 

consideration that it would be beneficial to make the rover symmetric to simplify the omni-

directional steering control and help reduce the need for spare parts. This led to a four wheeled 

design with all of the previously mentioned features this rover needs to accomplish the traversal 

goals. The logical method of actuated suspension with this platform geometry is through a four 

bar mechanism. The culmination of these requirements and desired features resulted in the paper 

sketch shown in the figure below.  

 
Figure 4.1: First Sketch of Fast Traverse Rover Top View (Left) and Side View (Right) by Yu 

Gu 

 

Now that the robot’s overall conceptual design has been determined, it is time to go 

through designing the subsystem components through the modeling-analysis loop. This was done 

progressively. An estimation of the components to be used was generated. This included 
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batteries, power management, computation, sensors, motors, and many other hardware 

components to fulfill the sketched design. Working from the top-down, the central frame was the 

first component to take shape. This primary structure determines how all of the other 

components work together, and quickly defines many details of the system. This component not 

only needs to take into account the technical requirements determined in the previous loop, but 

also the need for modularity, feasible assembly, ease of maintenance, simple manufacturing, and 

effective sensor placement. This criss-crossing body frame quickly took shape and analyzed for 

stresses according to weight estimates with healthy factors of safety. This assembly was sent out 

to be machined as soon as it was in a manufacturable state. The team's decision to have 

manufacturing and design occurring in parallel kept orders flowing to the shop throughout the 

project and allowed more time for prototypes of sections to be made. 

 
Figure 4.2: Body Assembly CAD (Left), Central Frame CAD (Middle), and First Frame 

Assembly (Right) by Dylan Reynolds 

 

Since the frame design was solidified, the wheels were the next component to take shape. 

This logical jump between components was necessary. The drive assembly was the next 

component to determine the properties of other components down the design tree, like the 

steering and actuated suspension assemblies which interface the wheels to the body. Since this 

was a complicated form, a prototype was ordered to validate this assembly’s application to the 

rover. This was a thoroughly designed prototype and little revision was made between the 

version shown in the figure below and the final version used.  
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Figure 4.3: Wheel Assembly CAD (Left), Section View of CAD (Middle), and Wheel Assembly 

Prototype (Right) by Conner Castle 

 

Then it was finally time the steering and actuated suspension took shape. These 

assemblies were all treated as one prototype to interface the components already made. It was 

clear from the previously established requirements that a spring suspension and a range of 

actuated travel for the rover to allow payloads to reach the ground were both needed.  

The compact need of the steering assembly greatly restricted the off the shelf options 

available for this spring suspension and steering mechanism. The addition of the rover is 

estimated to weigh around 360 lb from current CAD models further reduced options. This spring 

system had to remain stiff and compact while being able to have a considerable amount of 

compression. A gear driven steering system is a simple solution to make room for applying 

sensors, but the assembly continues to be complicated by the spring assembly to take the load of 

the rover. The necessary addition of depth sensors and encoders further crowded the assembly. 

 

 
Figure 4.4: Steering Assembly CAD (Left) and Steering Assembly CAD Cross-Section (Right) 

by Chris Brindle 
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The steering assembly was designed in parallel with the actuated suspension system. This 

electrically driven four bar mechanism had many constraints already put in place by the three 

major subsystems already defined, but also partially determined the constraints of components in 

the steering assembly. The development of these two subsystems in parallel promoted 

accommodation of their needs in the design without diminishing performance. 

The suspension subsystem shown in Figure 4.5 was designed to withstand half of the 

rover’s weight on each leg, and achieve as much travel as possible. This maximized geometry 

was determined experimentally through computing the four-bar mechanism geometry in a 

MATLAB simulation made by Nick Ohi. This strange location led to adapting the mount for the 

linear servo. 

 

 
Figure 4.5: Actuated Suspension CAD (Left), Linear Servo Mount (Middle), Finite Element 

Analysis (Right) by Dylan Covell 

 

These components were ordered to complete one “leg” of the rover. There were more 

minor revisions needed on this prototype as compared to the wheel assembly. After these quick 

adjustments, the final set of four steering and suspension assemblies were ordered and the CAD 

model of the rover was finally in a complete assembly. 

 

 
Figure 4.6: Body Assembly and Test Servo Mount (Left), Leg Assembly Raised (Middle) and 

Lowered (Right) by Dylan Covell and Chris Brindle 
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As seen in the figure below, many fine details and revisions were made throughout the 

design process. The geometric sketch from the early conceptual stage of this project did heavily 

inspire the form the system ended up taking. The feedback from the analysis of subsystem 

prototypes was a crucial feature of this design process.  

 
Figure 4.7: Completed Fast Traverse Rover CAD Model by Dylan Covell 

 

Assembling and integrating the Fast Traverse Rover was a long endeavor. This was 

gradually done to ensure fitment of components, routing of cables, and testing of electronics. 

This rover’s modularity was demonstrated through repeated assembly and disassembly to modify 

and test alternative components throughout this integration phase. 

 

 
Figure 4.8: Fast Traverse Rover Suspension and Steering System Assembly by Eric Swanson, 

Jonas Bredu, and Dylan Covell 

 

This rover’s testing is still ongoing with the Interactive Robotics Lab at WVU. Sensors, 

controllers, and internal components have been exchanged to better accommodate the general 

purpose nature of this system. Current plans for testing focus primarily on validation of 

controlling the rover’s drive and suspension system in the field. There are also plans to develop 

3D printed tires to have better control over tuning the systems performance in field applications. 
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Thus far there have been no scientific payloads tested with the rover, but two have been 

prototyped so far. The automated shear vane apparatus made was a proof of concept to document 

soil bearing capacity without human testing, and would need heavy revisions to be applied to the 

Fast Traverse Rover [56]. The Zero-velocity Updates (ZUPT) has successfully provided a 

reference to calibrate an IMU while the system is moving, but this payload proof of concept 

would also need heavy revisions to function on the rover. [57, 58] 

 

 
Figure 4.9: Automated Shearvane First Prototype (Left) and Version 2 CAD (Right) by Dylan 

Covell 

 

 
Figure 4.10: ZUPT First Prototype (Left) and Version 2 CAD (Right) by Spencer Reigner 
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Figure 4.11: Fast Traverse Rover Test Drive (Left and Middle) and Current Status (Right) by 

Jonas Bredu, Jared Beard, Nick Ohi, and Dylan Covell 

 

4.3. Results 

 This has been a long and arduous process to get the rover to this state. Fast 

Traverse will continue to progress through the time consuming integration and testing phase. 

There may be further alterations and improvements made as payloads work their way onto the 

rover. It is somewhat unknown how the project will progress in the future, but the application of 

the hybrid design process discussed in this paper has provided a good foundation for future 

exploration experiments at the Interactive Robotics Laboratory. 

 The biggest takeaway from this exploration of applying the proposed design 

method is the choice to develop subsystem designs and manufacturing higher up hierarchical 

systems in parallel. This did accelerate the project's progress, but the risk of subsystem’s 

conflicting needs became evident at the interface of subsystems. The mounting of the linear 

servos for the actuated suspension required a rather unique assembly to accommodate the 

geometry needed to maximize suspension travel. The ability for the proposed design method to 

accommodate this conflicting decision within the development process is a limitation of the 

method. Applying this parallel design-manufacturing decision in the future requires significant 

experience and thoroughly thought out modular design to reduce the friction this decision 

introduces. 
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5. Case Study #2: Simple Robot System Design 
5.1. Introduction 

The WVU Interactive Robotics Laboratory (IRL), Field and Aerial Robotics (FARO) 

Lab, Navigation Lab, and Mining Department have developed a proof of concept mine 

surveillance system to automate safety inspections in cooperation with the Alpha Foundation. 

The system helps make this time consuming, highly repetitive, and dangerous job easier for 

human workers. The unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) 

robot pair scan a mine’s structure via Lidar mapping. The UGV navigates to surveillance points 

and the tethered UAV is deployed once stopped. [59] The UAV constructs a SLAM map of the 

structure and the feature recognition algorithm from the Mining Department documents the 

environment for easier processing by the operator [60]. 

This project has been the culmination of work amongst the involved research labs. The 

members involved with the UGV development are: Yu Gu, Dylan Covell, Jonas Bredu, Trevor 

Smith, Henry Vos, Nick Ohi, Chris Tastch, and Gio Molin. Their specific contributions are 

detailed in the design process below. 

 

5.2. Design Process 

This robot must survey mine support columns with LIDAR for signs of degradation. This 

objective puts very few constraints on the system accomplishing the mine surveillance task. 

Further decomposition is applied to better define the system’s goals. These considerations 

include: what geometry of mine should this system survey, how much area does the system need 

to survey, and how long does the system have to survey the area. The test mine is a stone mine 

and consists of 12 meter tall columns that are about 70 meters wide. The inactive sections are to 

be inspected by this system, and these sections span approximately 2.5 km2 of the mine. This 

system would need significant amounts of time to collect data on the region and additional time 

is needed for the system to navigate and return to the entrance of the mine. Additionally, the test 

mine is only available for inspection less than once a week. In order to maximize data collection, 

the development team decided that the system needs to operate for up to 8 hours at a time under 

the assumption that on average the system is traveling around 0.5 m/s during fully autonomous 

operations. 

There are several potential system designs that can service this need. Among the design 

considerations in the trade study, two major system structures seemed appealing. An UGV with a 

telescoping boom could survey the mine, but this system structure could introduce significant 

deployment challenge. An UAV could survey the region quickly, but this system would not meet 

the operation time without a means of recharging. In the end, the design team decided to take on 

the UAV based system due to their prior experience with drone systems and the potential for 

UAVs to survey regions quickly. This added the requirement of incorporating a charging system 

into the design. 

Further breaking down these requirements, it was clear that the 8 hour working period is 

too great for any one drone, and charging drones would result in more down time for the 
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hardware. Additionally the large area within the mine would result in increased time flying to 

locations from the deployment area than scanning the mine. The combination of these needs 

introduced a ground support vehicle to the system requirements to fill the performance gap. This 

better maximizes the drone’s time scanning while in flight. 

Despite the addition of the carrier, the UAV’s total flight time was still tremendously 

limiting. There was a trade study to consider several ideas to extend the drone’s operation time. 

These ideas included battery swapping, wireless charging, tethered power, and even employing 

several drones to scan the area. The battery swapping is very precise and complicated to do 

reliably. The wireless charging cannot charge the battery fast enough to sustain the flight of the 

drone over the time given. Using several drones does maximize the data collected in the given 

time, but this complicates system coordination with the UGV. The tether is a complicated control 

problem, but ended up being the most practical for our application due to its ability to provide 

the UAV power as long as the UGV was operational and that the ceiling’s height makes the 

tether a manageable length. This design decision also helped to simplify the system by reducing 

the number of potential UAVs in the system to one.  

This repetitive loop of logical decomposition, defining technical requirements, 

researching potential solutions, and conducting trade studies has gradually defined the major 

system features. This left the supporting features to facilitate the operation of this hybrid multi-

agent system. This system needs to operate in the mine and lab conditions. The UGV and UAV 

should therefore have some tolerance to moist and dusty environments and fit into a standard 

freight elevator (48” wide). The UGV should possess a passive suspension system to maintain 

traction and traverse small obstacles. In this trade study, there are several considerations for the 

suspension. To further narrow the options, this suspension should focus on remaining strong and 

simple to make. This eliminated the options for independent steering and Ackerman steering in 

the suspension due to their added complexity. Passive rover suspensions for skid steering 

applications can become complicated rather quickly due to their mechanical connections. The 

simplest of these rover suspension systems is the split body design. Which relies on a single 

point of rotation for two rigid bodies. This highly desirable simplicity of the steering and 

suspension features in addition to the ability to easily harbor large amounts of equipment for a 

given volume are the factors that cemented this design layout for further development. 

These features are all to be accomplished while remaining simple to manufacture, 

assemble, and service. The multidisciplinary brainstorming sessions rapidly progressed through 

the trade studies of the first loop in the proposed design process and defined a concept of 

operations. These features are further recognized and defined in the modeling-analysis loop of 

the hybrid design process. To simplify the reading flow of the remaining steps, we will be 

focusing on the design of the UGV.  

The second stage of the proposed design process focuses on further defining the ground 

robot to the point of a manufacturable model. To begin, a geometric model accounting with all of 

the major subsystem components is constructed. These components were recognized by breaking 

down the robot into major subsystem modules, and selecting parts to fulfill the capabilities 
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outlined in the first loop. The drive system required motors that are compact and powerful 

enough to propel a heavy robot. Powering these demanding motors and other electronics requires 

large amounts of power. To simplify the power management of the system, the power supply can 

match the voltage of the motors. This 24 volt system would be supplied from an array of 12 volt 

batteries, and these batteries dominated the UGV’s geometric and weight needs. This estimated 

weight driven by component selection in turn drove the needs of the motors. This feedback loop 

ceased when the theoretical battery capacity matched the power needs to operate all electronics 

for the 8 hour period. The computer, sensors, work lights, and other electronics needed to operate 

a rover system were picked from what the lab was most familiar with to further accelerate 

integration.  

The rover’s form prioritized interfacing these initially picked components. The first 

geometric model was purely a translation of the previous requirements with estimations of the 

dimensions and weights in hand. This sketch was developed into a geometric model in the 

Computer Aided Design (CAD) workspace with these key features and subsystems to further 

refine part placement. 

 
Figure 5.1: Initial Sketch of the Surveillance System by Yu Gu 

 

 
Figure 5.2: Geometric Model Iteration 1 (Left) and Iteration 2 (Right) by Dylan Covell 
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This cycle of refining the CAD model continues first with focus on adding more 

hardware and then structural detail to the model. This gradual process aims to incorporate all 

anticipated components and planning for future expansion while considering cable management, 

fastener placement, and how to assemble the components. 

Analyses are conducted with Finite Element Analysis (FEA) to decrease mass where 

possible and validate the designs ability to facilitate operation in several worse case scenarios. 

Multidisciplinary studies of the systems feasibility were conducted in parallel to system synthesis 

with emphasis on manufacturability and serviceability. The design from all of these inputs 

resulted in the manufacturable model seen in Figure 5.4 below. 

 

 
Figure 5.3: Visualization of FEA Analyses in Solidworks by Gio Molin 

 

 
Figure 5.4: Manufacturable Model by Dylan Covell, Trevor Smith, and Gio Molin 

 

The completion of the manufacturable model and sufficient digital validation of the 

systems to fulfill the technical requirement has signaled the transition to the manufacturing, 

integration, and testing phase. A majority of the custom mechanical components were waterjet 

thanks to the consideration of manufacturability in early steps. This combination of easy to make 

parts with fastening methods that use other parts as reference ensures good fitment. Further 
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integration of electronics with this simple chassis quickly filled the internal volume and leaving 

room for additional components in earlier steps made installation and rearrangement of 

components in these compartments manageable. This is the resulting operational prototype of the 

UGV, called “Rhino”, is shown in Figure 5.5 below and concludes the first pass of the proposed 

design methodology. 

 

 
Figure 5.5: Initial Prototype Assembly by Dylan Covell and Jonas Bredu 

 

Testing and integration of this system continued past this initial assembly. Reassessing 

the task and the technical requirements with more knowledge of the system greatly benefited the 

maturity and qualities of the system. This bottom-up feedback led to new components being 

added or exchanged to better achieve those goals. A stronger power management system was 

introduced to handle the current draw of the motors. The original power management solution 

buckled under the load of the motors. Motors with a higher gear ratio were acquired to better 

scale slopes under the system’s weight while still achieving reasonable speeds. The addition of 

charging ports for the batteries, improved camera systems, and a smaller computer motherboard 

were quality of life improvements implemented in this stage. The modularity of the UGV system 

made this iteration of subsystem components manageable. 
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Figure 5.6: Integrated UGV Prototype by IRL Lab, Jonas Bredu, Dylan Covell, Henry Vos, and 

Chris Tatsch, UAV Prototype by FARO Lab, Bernardo Martinez, Rogerio Lima, and Jeremy 

Rathjen 

 

5.3. Results 

Currently the Rhino UGV and “OxPecker” UAV are to continue testing at the mine 

facility. This testing will provide feedback to further mature the system performance. Future 

integration of the two systems will bring the project's original goal to reality. 

As seen from the proposed design process detailed thus far, the Rhino UGV has matured 

very quickly over the course of its project life. This repetitive assessment and validation of the 

system have emphasized where Rhino needed improvement. Modeling and calculations only 

capture so much detail in their evaluation of the design. A lot of learning is done through these 

prototypes. Alterations to the project’s qualities and definitions are a sign of experience. This 

proposed design method supplies opportunities to conduct this reassessment at times where 

significant experience has been accrued. Future applications of this method should strive to 

complete their first prototype before moving on to this reassessment phase to better maximize the 

improvements made between iterations.  
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6. Case Study #3: Simple Robot System Design and 

Bottom-up Control Software 

6.1. Introduction 

The WVU Interactive Robotics Laboratory (IRL) has developed a swarm-of-one platform 

nicknamed “Loopy”. The objective of this system is to study bottom-up methods in design and 

bottom-up methods of swarm control. These two concepts are heavily related in the sense that 

both definitions of bottom-up take in environmental stimuli to guide the decision making 

process. Whether that stimuli is driving a design decision, or the action a robot is to take next. It 

is difficult to begin designing a bottom up system from scratch. As a result, a modular design 

utilizing repetitive units and a bottom-up control software enable the formation of simple 

designs. This robot system is composed of 36 Dynamixel servos configured in a 2D closed loop. 

Although these servos are all controlled from a single computer, these servos operate as if they 

can only communicate with their adjacent neighbors. This allows each servo to function as 

independent agents with only local interactions. A decentralized system relies on environmental 

and agent interactions to determine system behavior. This exploration of swarm interactions in 

design is realized through shape matching. Bottom-up shape matching relies on agreement 

between units to operate effectively and reach the global goal shape provided by the user. This 

case study focuses on an extremely simple system design to provide more focus on the software 

side of robotic system development. 

 

6.2. Design Process 

 

This project began with the goal of exploring the control of decentralized swarms with 

simple connections. It was clear from this requirement that the mechanical system needed to be 

composed of many simple robots. Single degree of freedom (DOF) robots are a perfect fit for 

this simple agent requirement. These servos need to gather information to feed the control 

algorithm with external influences. The sensor that first comes to mind are absolute encoders for 

position feedback. There is also a need for some means of monitoring the load on a servo due to 

the rigid connections and risk for lack of cooperative movement occuring. These servos also 

need to be relatively easy to work with in order to promote progress in the system’s 

development. These three criteria were sufficiently fulfilled with the Dynamixel servos with 

ample sensors and software support.  

System structure of these servos also needed to remain simple to keep the software 

control simplified and in focus. This decentralized swarm system can better demonstrate its 

potential when the structure is difficult to control with typical inverse kinematics and 

mathematical modeling. This complex agent interaction while remaining overall simple in 

structure had several designs considered. A 2D sheet of hexagons, like graphene, would be very 

difficult to control with inverse kinematics, but its overall construction quickly became too 

complicated as the idea was explored. An alternative and much simpler solution was found with 
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a simple closed loop. This closed 2D chain effectively puts all of these servos in parallel and in 

series. This complex interaction is even more difficult to generate inverse kinematic models of 

when there are many redundant joints in the loop. Thirty six of these servos in this loop fulfilled 

the simple construction and simple interactions requirement while providing a system structure 

that benefits from decentralized control. 

There needs to be an experiment, or achievable goal, to apply this decentralized and 

rigidly connected swarm. There are several options considered for this case study. One 

promising experiment focusing on locomotion on a non-linear friction surface. This gives ample 

opportunity for unintended behaviors to emerge, but has many risks revolving around that 

friction performance. Another experiment option is shape matching. This has been an 

experimental application for robotic swarms before [61], and this is relatively lower risk due to 

relying on the servos encoders and integrated load sensors. The user provides a goal shape for 

the system to pursue in this case. This experiment assumes that the agents have perfect 

communication with their neighbors and that they are synchronized. It is also assumed that all 

agents within the swarm operate with the same rules and can only communicate with their direct 

neighbors in the loop. This results in a single agent only being aware of its own angle and load 

while communicating with adjacent units the error of their angle compared to the potential goal 

shapes. This swarm experiment quickly gained favor due to its comparative simplicity and is 

explained further in this paper. 

There are many approaches to governing swarm behaviors, but the rigid agent 

interactions in this 2D loop applied to the shape matching experiment made swarm consensus a 

strong solution. These agreement protocols promote cooperation between agents to reach the 

goal shape and reduce the strain on the servos. The decentralized agreement protocols considered 

are relatively simple in nature. They can consist of taking the difference between two values 

amongst the agents in discrete time or a differential equation for continuous time. This discrete 

time agreement protocol makes the most senese due to this system does not prioritize speed and 

takes time to think and process information. However, the average of these differences are taken 

to apply this concept for multiple inputs. 

The overall design and initial pursuit have now been solidified through the deliberation of 

the hardware and software requirements according to the original pursuit of studying the 

interactions of a decentralized robotic swarm with rigidly connected bodies. This resulting 

concept of operations for the project concludes the first and second loop of the proposed design 

method. 

 

6.2.1. Hardware 

The next loop of the proposed design process focuses on manufacturing and testing the 

system. The general model of this system is a 2D loop of 36 servos. The Robotis Dynamixel 

XL430-W250-T robotic servos are the preferred choice for this project due to their relatively low 

cost when compared to others. These are all mechanically linked together via Dynamixel 

brackets and wires to keep assembly simple. These servos require a 12V power supply, and one 
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with sufficient wattage to supply all 36 servos at peak was chosen for this system. All of these 

servos are being controlled by one computer through U2D2 controllers. The testing of this 2D 

loop, nicknamed “Loopy”, determined that only 30 of the 36 servos were controllable with one 

controller in this assembly. A second controller was added to the system to resolve this issue. 

The cables connecting to the controllers and power supply were lengthened to give the robot 

room to operate. 

 

 
Figure 6.1: Configured in an Example Goal Shape (Left) and Complete System (Right) 

 

6.2.2. Hardware Interface 

The manufacturing and testing loop continues with interfacing the hardware with the 

computer and creating an easy means of testing and conducting experiments. MATLAB is the 

programming language of choice to keep software development and data processing simple. 

Initial control was achieved through examples and functions provided by the Dynamixel SDK 

package enabling communication with the Robotis U2D2 [62,63]. Control for experiments are 

done through the MATLAB Graphical User Interface (GUI) made for this robot through 

MATLAB App Designer. There are several features considered for this GUI to provide adequate 

feedback for troubleshooting and ease of conducting experiments. There needs to be a live feed 

of relevant data from all servos at a glance to help the user keep track of each servos state. The 

important values to monitor are the angle and load of the servo. The load is a measure of how 

many amps the servo is consuming and estimating the force being applied by the servo as a ratio 

of the maximum amperage these servos are set to consume. There also needs to be an easy way 

to manipulate the system by the user to promote initial experimentation and testing before 

algorithms are implemented. This is achieved via writing a goal angle to each servo and a switch 

to “turn on, or off” the servo. Dynamixel calls this setting torque. This setting simply means that 

when the servo is “on” it goes to the goal position until it is overloaded. These servos are limp 

when in the torque “off” setting. These are the major initial features of the GUI and helped 

manual manipulation of the servos. 

This manual experimentation with the servos is only a stepping stone to the 

implementation of the control algorithms. The code of these control algorithms utilize the 
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functions and commands learned through the manual control portion of the GUI. There are some 

essential features needed to support rapid experimentation and data collection with these 

algorithms in the future. An interpretation of the system's shape to provide feedback to the 

operator during testing is nice to have, but also makes screen captures of the GUI more 

beneficial. Being able to save the data of the decisions made by the control algorithms is 

essential to allow for interpretation of the data after the experiment. The ability to save new goal 

shapes is also beneficial for testing and experimentation to better validate the algorithm’s 

performance. Being able to reboot servos is also needed, as this resets their overloaded state and 

restores operation. The other major feature of the GUI is to turn on, or off, control algorithms 

easily. For example, writing the goal positions directly from the goal shape can provide easy 

validation of the algorithm’s ability to converge to a solution over time. This can be done with 

two switches, one is able to turn on and off this direct command and then the other for the 

control algorithm being tested.  

The combination of these features outlined in this design of the GUI greatly enables 

testing the system prior to the implementation of the bottom-up controls and can help validate 

considerations that need to be made in the controls. There have also been several quality of life 

features to increase the rate of experimentation. This resulting GUI is shown in the Figure 6.2 

below. 

 

 

 
Figure 6.2: MATLAB GUI 

 

6.2.3. Bottom-up Shape Matching Control Algorithm 

The shape matching experiment entails that the system of independent servo agents are 

working together to progressively form the provided goal shape while minimizing the change in 

angle for the overall system. Breaking down this goal further, this means the system will 
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converge to the goal shape in different orientations due to the proximity to the goal angles. Each 

of these different orientations will be called formations. There are 36 possible formations for the 

system to select and act on. This shape matching task can be accomplished with the assumption 

that each agent is aware of all possible formations, its own angle in degrees (θ) and load as a 

percentage of the servo’s maximum (γ), and is only able to communicate with its direct 

neighbors in the loop. Agents communicate their proximity to the 36 possible formations based 

on their own angle to neighboring units, called “Self Error”. 

Each servo measures their angle (θ) in degrees to determine the Present Position (𝑃, 𝜃𝑃) 

and compares it to all 36 Goal Positions (𝐺, 𝜃𝐺) in degrees. This difference is used as an error (ε) 

for each servo (K). This difference between the Present and Goal positions is called  a “Self 

Error” (𝑆, 𝜀𝐾
𝑆). This Self Error is the Present Position subtracted from the Goal Position and 

divided by 360 in Equation 6.1, a difference of angle with no units. This results in values ranging 

between 0 and 1, where 0 is a complete to the Goal Position. In this specific case, a Goal Shape 

is given by the user. While the Present Position is read from the servo at each time step. 

 

Inputs: 

Robot #: 𝐾 = [1, 2, … , 36] Goal Shape (Degrees): 𝜃𝐺 = [𝜃1
𝐺 , 𝜃2

𝐺 , … , 𝜃36
𝐺 ]  

Present Position (Degrees): 𝜃𝑃 = [𝜃1
𝑃, 𝜃2

𝑃, … , 𝜃36
𝑃 ] Present Load (%): 𝛾 = [𝛾1, 𝛾2, … , 𝛾36] 

Step 1: Self Error (𝜀𝐾
𝑆) (36 Calculations per servo) 

𝜀𝐾
𝑆 =

[𝜃𝐾
𝐺−𝜃𝐾

𝑃]

360
  𝜀1

𝑆 = [𝜀1
𝑆(1)

, 𝜀1
𝑆(2)

, … , 𝜀1
𝑆(36)

]      (6.1) 

 

These local observations of error are communicated to neighboring units. These errors 

are summed together to gather how well the cluster of three servos fit in the 36 possible 

solutions. This summation generates a “Local Error” (𝑳,  𝜺𝑲
𝑳 ) for all 36 clusters around the loop 

in Equation 6.2. This Local Error is an estimate of the servo’s global formation based on local 

information. The red circle on the left of Figure 6.3 below represents a single cluster of three 

servos. There are 3 clusters shown in the same figure below. Here 2 servos within a given cluster 

are observed to be shared between neighboring clusters. 

 

Step 2: Local Error (𝜀𝐾
𝐿 ) (36 Calculations per servo) 

𝜀𝐾
𝐿 = [𝜀𝐾−1

𝑆 + 𝜀𝐾
𝑆 + 𝜀𝐾+1

𝑆 ]       𝜀1
𝐿 = [𝜀1

𝐿(1)
, 𝜀1

𝐿(2)
, … , 𝜀1

𝐿(36)
]       (6.2) 

e.g.   𝜀1
𝐿(15)

= [𝜀36
𝑆(15)

+ 𝜀1
𝑆(15)

+ 𝜀2
𝑆(15)

] 

 

 
Figure 6.3: Single Servo Cluster (Left) and Three Servo Clusters in Loopy System (Right) 
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These units will use a decentralized consensus algorithm to reach an agreement of what is 

the best formation from these Local Errors. An average consensus algorithm is used for this 

application due to its ability to take in multiple information inputs and generate a single output 

[47]. This average consensus is generated each time step for 500 iterations. This number of 

iterations was determined experimentally.  Where each servo takes the summation of these Local 

Errors (𝐿, 𝜀𝐾
𝐿 ) for itself and its neighbors in a cluster of 3 to create an “Average Local Error” 

(𝑳, 𝜺𝑲
𝑳 ) in Equation 6.3 below. 

 

Step 3: Average of Local Errors (𝜀𝐾
𝐿 ) (36 Calculations per servo) 

𝜀𝑲
𝑳  =

[𝜀𝐾−1
𝐿 +𝜀𝐾

𝐿 +𝜀𝐾+1
𝐿 ]

3
           (6.3) 

 

This Average Local Error is intended to replace the Local Error after each iteration. This 

Average Local Error is not applied to replace the actual Local Error until after iteration has 

concluded. This is to avoid giving bias to neighboring servos when they do their calculations, as 

these occur sequentially. 

During these 500 iterations, the identity of which formation has the least error for each 

servo is documented as a means to track the system’s performance. The “Iteration Number” (t) is 

a means of keeping track of the “Minimum Local Error” (I, 𝐼𝐾
𝑡 ) from Equation 6.4 throughout 

these iterations.  

 

Step 4: Minimum Local Error (1 Calculation per servo) 

𝐼𝐾
𝑡 = 𝑚𝑖𝑛 𝜀𝐾

𝐿    𝐼𝐾
𝑡 = [𝐼1

𝑡 , 𝐼2
𝑡 , … , 𝐼36

𝑡 ]      (6.4) 

 

A Target Position in degrees(𝑇, 𝜃𝑇) is selected for each servo after finishing these 

iterations and finally cataloging which formation to pursue. Equation 6.5 simply pulls the 

position from the provided Goal Positions (𝐺, 𝜃𝐺) according to the Minimum Local Error (I, 𝐼𝐾
𝑡 ) 

and provides it for the servo to reference. 

 

Step 5: Target Position (1 Calculation per servo) 

𝜃𝐾
𝑇 = 𝜃

𝐼𝐾
𝑡

𝐺    𝜃𝐾
𝑇 = [𝜃1

𝑇 , 𝜃2
𝑇 , … , 𝜃36

𝑇 ]     (6.5) 

 

After declaring a Target Position (𝜃𝑇), a step is generated towards that Target from the 

Present Position otherwise called “New Position” (𝜃𝑃+1), in the logic below.This allows the 

servo to progressively get closer to the Target Position, and avoid overloading the system’s 

servos. Currently a step is 100 ticks of the 4096 position encoder, equal to 8.8 degrees, or less. 

 

Step 6: Generate Step Towards Target Pose (1 Calculation per servo) 

if 𝜃𝑇 − 𝜃𝑃 > 8.8         
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𝜃𝑃+1= 𝜃𝑃 + 8.8 

elseif 𝜃𝑇 − 𝜃𝑃 < -8.8  

𝜃𝑃+1= 𝜃𝑃 - 8.8 

elseif 𝜃𝑇 − 𝜃𝑃 < 8.8  and 𝜃𝑇 − 𝜃𝑃 ≥ 0 

𝜃𝑃+1= 𝜃𝑇 − 𝜃𝑃 

elseif 𝜃𝑇 − 𝜃𝑃 > -8.8  and 𝜃𝑇 − 𝜃𝑃 < 0 

𝜃𝑃+1= −(𝜃𝑇 − 𝜃𝑃) 

end 

 

The system only moves to the New Positions once all are generated, as shown in 

Equation 6.6. 

 

Step 7: Step Towards Target Pose (1 Calculation per servo) 

𝜃𝑃= 𝜃𝑃+1           (6.6)  

 

Finally the system determines if it has met the conditions to reach a “Finish” state. This 

occurs when a servo has had the same Target Position for 10 time steps, and is tracked through a 

variable called “finish”. When this occurs, the servo turns off its “Torque”, or the ability for it to 

exert force. This essentially renders the servo passive, and any disturbance will cause it to turn 

back on and continue the process of stepping back towards its goal. This logic gate is represented 

in the block diagram figure below. 

 

Step 8:  Decide to “Finish” 

 
Figure 6.4: Block Diagram of Logic for Step 8 

 

Now the steps outlined repeat indefinitely. This feature allows the system to reduce strain 

on the servos while continuously maintaining formation. This flow of the steps above is 

illustrated in Figure 6.5 below. 
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Figure 6.5: Block Diagram of Bottom-up Shape Matching Control Algorithm 

 

6.3. Results 

The hybrid design process utilized in this case study has provided an excellent means of 

determining a simple system and experiment to explore bottom-up control in application. This 

robot has demonstrated the ability to fulfill the needs of the shape matching experiment, and 

provide demonstration of swarm interactions in Figure 6.6. Further exploration of bottom-up 

control in robotics is needed due to the increased application of high degree of freedom systems, 

and systems with redundant degrees of freedom for increased robustness. This robot could stand 

to go through more iterations of refinement of the hybrid design method in future works to 

explore this method of control. Potential increasingly difficult bottom-up control applications 

include tasks like decentralized locomotion, environment exploration, or interactive design tool 

experiments. 

In these future experiments, the proposed hybrid design method should be employed to 

reassess the structure of this swarm system. The repetitiveness of this method is necessary to 

establish properties that improve the quality and speed at which experiments can be conducted. 

These new iterations of the proposed method should progress quickly as compared to the first 

iteration shown in this case study. Future applications of this method should aim to have a well 

defined system objective to provide more direction to the definition of system requirements and 

efficiently narrow down potential solutions in trade studies. 
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Figure 6.6: Progression from Random Start to Sample Goal Shape over 6 Steps, Step 1 Top Left 

to Step 6 Bottom Right 
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7. Conclusion 
The proposed design method’s flexibility has been demonstrated over several 

applications to real robots and has shown promising results for the small development teams seen 

in academia. In the first case study, the decision to apply the modeling-analysis loop in parallel 

with the manufacturing-integration loop did provide valuable feedback to complicated designs 

with risks. However, this also significantly complicated the further integration of subsequent 

systems and future application of this parallel method should only be applied to either narrowly 

defined systems, or projects with accelerated life cycles. The second case study emphasized the 

importance of iteration in product design. A significant amount of learning is accomplished 

through prototypes. The design team’s experience is demonstrated through component additions 

and revisions conducted throughout a project. Future applications of this method will greatly 

benefit from completing a first functional prototype before beginning the next iteration. This 

time invested in the prototype will further inform and refine future works. The third case study 

showed the application of the proposed design method to the software side of robot design. This 

project did well to explore bottom-up control, but further improvements can elevate this system 

to a robotic design tool. Design teams employing this method in the future need to define their 

system objectives well in order to provide good direction to the projects’ conception and 

therefore better narrow down potential solutions.  

The culmination of this work has provided a few examples of systematic robot design, 

but this method is encouraged to be applied to more projects to further validate its effectiveness. 

For example, this design method was shaped by the experience from the case studies in this 

thesis and future application of this methodology should attempt to rigidly adhere to the 

proposed design method to validate its structure. Further studies may also include a scientific 

validation of this design approach through the application of this method by many separate 

design teams composed of diverse skill sets with the same problem. This experiment looks to see 

if teams produce similar results to validate this method's systematic design method and its ability 

to guide inexperienced engineers. 

The application of this proposed design method in academia promotes the use of 

systematic design methods with clear periods of feedback. This incorporation of bottom-up input 

into the top-down design synthesis can improve the rate at which a system matures. The 

repetition of these design loops provides opportunities for the design team to apply lessons 

learned and encourages further removal of human bias from design. The work flow and 

examples of this method in this work leave little to be interpreted. This provides a 

comprehensible baseline for new engineers to work with. Continued practice of this method 

promotes the growth of inexperienced engineers in a way that better accommodates the needs of 

industry. 

Extensions of this thesis can further apply the proposed design approach to robotic 

system design for more validation and verification of its methods. Additionally, the case studies 

seen in this thesis will continue to progress as part of their own projects. A future update of these 

developments guided by the proposed design process can provide a more complete picture of 
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these examples for inexperienced engineers and help validate the approaches explored in this 

thesis. 
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