
Graduate Theses, Dissertations, and Problem Reports

2022

Top-Down & Bottom-Up Approaches to Robot Design Top-Down & Bottom-Up Approaches to Robot Design

Dylan Michael Covell
dmcovell@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Electro-Mechanical Systems Commons, Engineering Education Commons, and the

Systems Engineering Commons

Recommended Citation Recommended Citation
Covell, Dylan Michael, "Top-Down & Bottom-Up Approaches to Robot Design" (2022). Graduate Theses,
Dissertations, and Problem Reports. 11409.
https://researchrepository.wvu.edu/etd/11409

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F11409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/298?utm_source=researchrepository.wvu.edu%2Fetd%2F11409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1191?utm_source=researchrepository.wvu.edu%2Fetd%2F11409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=researchrepository.wvu.edu%2Fetd%2F11409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/11409?utm_source=researchrepository.wvu.edu%2Fetd%2F11409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

i

Top-Down & Bottom-Up Approaches to Robot Design

Dylan Covell

Thesis submitted

to the Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science in

Mechanical Engineering

Dr. Yu Gu, Ph.D., Chair

Dr. Jason Gross, Ph.D.

Dr. Guilherme Pereira, Ph.D.

Dr. Nicholas Szczecinski, Ph.D.

Dr. Xi Yu, Ph.D.

Department of Mechanical and Aerospace Engineering

Morgantown, West Virginia

2022

Keywords: Bottom-up, Top-down, Design Methodology, Robotics

Copyright 2022 Dylan Covell

ii

Abstract

Top-Down & Bottom-Up Approaches to Robot Design

Dylan Covell

This thesis presents a study of different engineering design methodologies and

demonstrates their effectiveness and limitations in actual robot designs. Some of these methods

were blended together with focus on providing an easily interpreted project design flow while

implementing more bottom-up, or feedback, elements into the design methodology. Typically

design methods are learned through experience, and design taught in academia aims to shape and

formalize previous experience. Usually, inexperienced engineers are taught approaches

resembling the Verein Deutscher Ingenieure (VDI) 2221 process. This method presented by the

Association of German Engineers in 2006 is regarded as the general system design process. This

introductory process is largely left open to interpretation, and it is often unclear when to

implement feedback in the design process. The objective of this thesis is to investigate the roles

of top-down and bottom-up processes, and how to integrate them in the robot design

methodology.

The proposed approach utilizes several components from existing design methods. There

are three main conditional loops within the proposed approach. The first loop focuses on

defining the problem in a top-down manner through logical decomposition, defining technical

requirements, researching solutions, and conducting a trade study. These four steps are done

iteratively until reaching the bottom of the system, the most primitive components. This is

followed by a modeling and analysis loop. This works from the bottom to the top of the design in

preparation for manufacturing and validation. The final loop of the proposed approach focuses

on validation and verification. The testing and manufacturing involved allows for alterations to

the design to fulfill the original technical requirements. These three loops occur until a proof of

concept is achieved. The proposed method is intended to be applied iteratively. The first pass of

the method results in a proof of concept, while the second results in a preproduction prototype,

and the third in a production model. This assembly of design elements provides a project flow

that leaves little to be interpreted and is suitable for small design teams while still flexible

enough to be applied to diverse robotics projects.

This thesis provides three case studies analyzing the application of the hybrid design

approach mentioned above to robotic system development. The first study showcases a

complicated system design with a small development team. The second case is of simpler

construction with a smaller developer team. This simpler case better demonstrates the benefits of

this hybrid approach in robotic system development due to the comparatively higher speed at

which the system matures. The third case study shows how this same proposed approach can be

applied to the design of a bottom-up controlled swarm. These case studies are for future

designers to reference as examples of the hybrid design methodology in application, and what

can happen when there is a lack of feedback in design. This proposed hybrid design method can

encourage design practices in new engineers that translate better to industrial applications, and

therefore encourage faster integration of new engineers into established design engineering

practices.

iii

Acknowledgements

This research was made possible by the NASA West Virginia Space Grant Consortium,

Grant # 80NSSC20M0055, NASA Project # 80NSSC17M0053, and Alpha Foundation Grant #

AFC820-69. I would also like to thank Yu Gu, Xi Yu, Jared Beard, Nicholas Ohi, and Trevor

Smith for their help with this research.

iv

Table of Contents

Top-Down and Bottom-Up Approaches to Robot Design .. i

Abstract ... ii

Acknowledgements .. iii

Table of Contents ... iv

List of Figures .. v

List of Abbreviations/Nomenclature ... vii

1. Introduction .. 1

2. Background ... 3

2.1. Bottom-Up and Top-Down .. 3

2.2. Design Methodology ... 4

2.3. Decentralized and Centralized .. 11

2.4. Consensus ... 13

3. Technical Approach ... 15

4. Case Study #1: Complicated Robot System Design ... 19

4.1. Introduction .. 19

4.2. Design Process .. 19

4.3. Results ... 27

5. Case Study #2: Simple Robot System Design .. 28

5.1. Introduction .. 28

5.2. Design Process .. 28

5.3. Results ... 33

6. Case Study #3: Simple Robot System Design and Bottom-up Control Software 34

6.1. Introduction .. 34

6.2. Design Process .. 34

6.2.1. Hardware .. 35

6.2.2. Hardware Interface ... 36

6.2.3. Bottom-up Shape Matching Control Algorithm... 37

6.3. Results ... 41

7. Conclusion ... 43

References .. 45

v

List of Figures

Figure 2.1: Diagram Reproduce by Author Based on Common Design Process from Association

of German Engineers, VDI 2221 [16]

Figure 2.2: Diagram Reproduce by Author Based on Spiral Model of Software Development [17]

(Left) and Forsberg-Mooz V Model of Software Development[18] (Right)

Figure 2.3: Diagram Reproduce by Author Based on VDI 2206 Micro Level (Left) and VDI

2206 Macro Level (Right) [20]

Figure 2.4: Diagram Reproduce by Author Based on VDI 2206 Product Maturity Cycle [20]

Figure 2.5: Diagram Reproduce by Author Based on NPR 7123.1 Systems Engineering Method

[21, 23]

Figure 2.6: Diagram Reproduce by Author Based on NASA Project Life Cycle [21]

Figure 3.1: Proposed Hybrid Design Methodology

Figure 3.2: Proposed Hybrid Design Approach Macro Level

Figure 4.1: First Sketch of Fast Traverse Rover Top View (Left) and Side View (Right) by Yu

 Gu

Figure 4.2: Body Assembly CAD (Left), Central Frame CAD (Middle), and First Frame

Assembly (Right) by Dylan Reynolds

Figure 4.3: Wheel Assembly CAD (Left), Section View of CAD (Middle), and Wheel Assembly

Prototype (Right) by Conner Castle

Figure 4.4: Steering Assembly CAD (Left) and Steering Assembly CAD Cross-Section (Right)

 by Chris Brindle

Figure 4.5: Actuated Suspension CAD (Left), Linear Servo Mount (Middle), Finite Element

 Analysis (Right) by Dylan Covell

Figure 4.6: Body Assembly and Test Servo Mount (Left), Leg Assembly Raised (Middle) and

Lowered (Right) by Dylan Covell and Chris Brindle

Figure 4.7: Completed Fast Traverse Rover CAD Model by Dylan Covell

Figure 4.8: Fast Traverse Rover Suspension and Steering System Assembly by Eric Swanson,

Jonas Bredu, and Dylan Covell

Figure 4.9: Automated Shearvane First Prototype (Left) and Version 2 CAD (Right) by Dylan

Covell

Figure 4.10: ZUPT First Prototype (Left) and Version 2 CAD (Right) by Spencer Reigner

Figure 4.11: Fast Traverse Rover Test Drive (Left and Middle) and Current Status (Right) by

 Jonas Bredu, Jared Beard, Nick Ohi, and Dylan Covell

Figure 5.1: Initial Sketch of the Surveillance System by Yu Gu

Figure 5.2: Geometric Model Iteration 1 (Left) and Iteration 2 (Right) by Dylan Covell

Figure 5.3: Visualization of FEA Analyses in Solidworks by Gio Molin

Figure 5.4: Manufacturable Model by Dylan Covell, Trevor Smith, and Gio Molin

Figure 5.5: Initial Prototype Assembly by Dylan Covell and Jonas Bredu

Figure 5.6: Integrated UGV Prototype by IRL Lab, Jonas Bredu, Dylan Covell, Henry Vos, and

vi

Chris Tatsch, UAV Prototype by FARO Lab, Bernardo Martinez, Rogerio Lima, and

Jeremy Rathjen

Figure 6.1: Configured in an Example Goal Shape (Left) and Complete System (Right)

Figure 6.2: MATLAB GUI

Figure 6.3: Single Servo Cluster (Left) and Three Servo Clusters in Loopy System (Right)

Figure 6.4: Block Diagram of Logic for Step 8

Figure 6.5: Block Diagram of Bottom-up Shape Matching Control Algorithm

Figure 6.6: Progression from Random Start to Sample Goal Shape over 6 Steps, Step 1 Top Left

 to Step 6 Bottom Right

vii

List of Abbreviations/Nomenclature

Accreditation Board for Engineering and Technology ABET

Bottom-Up BU

Computer Aided Design CAD

Coordinated Universal Time UTC

Degree of Freedom DOF

Field and Aerial Robotics Laboratory FARO

Global Navigation Satellite System GNSS

Global Positioning System GPS

Graphical User Interface GUI

Interactive Robotics Laboratory IRL

Internal Measurement Unit IMU

Lunar Roving Vehicle LRV

Mars Sample Return MSR

NASA Procedural Requirements NPR

National Air and Space Association NASA

Top-Down TD

West Virginia University WVU

Verein Deutscher Ingenieure VDI

1

1. Introduction
Every industry functions through the application of design methods. This essential

operation is both a science and an art. There are generalized systematic approaches for engineers

to follow. However, these processes still heavily rely on human creativity and experience to fill

in the gaps and modify the methods on a per case basis. This human aspect of design is formed

through practice, knowledge, and talent. These generalized methodological design approaches

are necessary to establish a baseline for new engineers and are what mold the experience they

accrue. These formal methods do well to provide direction, but must better reflect the practices

and needs of industry in order to increase acceptance of these academic approaches. The

evolution to these more practical academic methods will lead to faster integration of new

engineers into existing structures and encourage more systematic practices in industry.

There are many attempts to formalize the “science” of design through methodologies.

Most of these approaches can be boiled down to aspects from two major groups: top-down and

bottom-up. Top-down describes how a system is governed by a group with a particular intent.

These top-down methods are typically feed-forward in nature and focus on producing a result

through the goal decomposition of the given task. For example, designing a means of robotically

mowing a lawn can take many forms. However, this task can be broken down into simpler

components, such as the cutting apparatus, drive train, power, computational, control,

localization, perception, communications, and software subsystems. These subsystems can be

broken down even further with this top-down manner to the most primitive level to define the

system fully. Starting development at the bottom of these top-down primitive elements is where

one method of bottom-up approaches can be introduced into design.

Bottom-up governed systems rely on many separate processes to determine the outcome.

These methods are focused on iterative design and implementing feed-back from the interaction

with the environment to determine subsystem composition. This results in the overall system

taking form after these subsections are determined and the product essentially acting as an

adapter between these subsystems. For example, evolution has demonstrated the ability for

organisms to improve performance in their environments through mutation and natural selection

[1]. In nature, these adaptations are accomplished without top-down knowledge or input, and

success is determined by their behavior in the world.

This classification with two major classes encapsulates all formal design methods and a

majority are some fusion of the two approaches. Commonly applied design methods utilize a

core top-down approach with bottom-up elements, like feedback from experiments or

verification according to stakeholder requirements. These formal methods have left it up to the

user when to apply these checks. Some top-down approaches incorporate bottom-up elements

into the core operation of their methodology. This is demonstrated through internal loops of

synthesis and analysis, or periodic verification and validation of the system. Other methods

demonstrate the ability to utilize mostly bottom-up construction methods with segments of top-

down synthesis within the design levels.

2

A hybrid design between these top-down and bottom-up methods can be applied to nearly

any system. An example is provided through a theoretical pipe inspection robot. This process

starts with a top-down approach, by defining the task and breaking down that task into essential

features. Then the bottom-up approach with top-down periods of synthesis can occur. The

process specific components are defined and prototyped first, like the perception and drive train

subsystems. Then the supporting components for those primary systems can be defined and

implemented, like the computational, power, and communications subsystems. This process

continues to go up through the levels of definition to complete the design. This example leads to

the overall form of the system being determined by the subsystems, rather than the other way

around. However, engineers’ intuition is still needed to determine where to continue breaking

down a system into subsections and appropriately design system requirements to solve a given

task. This thesis strives to derive a practical and thorough hybrid top-down and bottom-up design

approach from existing methods geared toward robotics applications that is easy for new

engineers to interpret and utilize.

Through the development of this hybrid design method this work contributes:

● insight for the need and benefit of more application of bottom-up design concepts;

● interpolating a design method from commonly accepted approaches;

● applying this hybrid approach to three robot system design and development case

studies;

The rest of this thesis is structured as follows. Chapter 2 provides a background of

relevant topics. Chapter 3 interpolates and discusses when to apply the proposed design method.

Chapters 4, 5, and 6 are the case studies of this design method in practice. The rover in Chapter

4 applies the hybrid design method to a complicated system construct with a small team of

engineers. The rover in Chapter 5 applies this proposed method to a simpler system and

demonstrates application over significant system maturity. The third robot in Chapter 6

demonstrates this design method applied to the software development side of robotics. Finally,

Chapter 7 wraps up with concluding remarks.

3

2. Background
This background has been broken down into four sections. First, the Bottom-Up and Top-

Down section discusses the definition of these classifications and provides examples of these

types of systems. Second, the Design Methodologies section explores commonly accepted

formal design approaches and their prominent features. Third, the Decentralized and Centralized

section defines and clarifies the distinction between these two types of systems in robotics.

Fourth, the Consensus section discusses the principles of agreement protocols and their

significance to robotics.

2.1. Bottom-Up and Top-Down

The terms top-down (TD) and bottom-up (BU) are often used to describe how a system is

governed. These terminologies can apply to psychology, economics, engineering, management,

politics, and many other disciplines. [3,4,5,6,7,8] In a general sense, TD can be denoted as

something built, or controlled to achieve a specific goal determined by an individual or group. In

engineering, TD methods are the traditional development approaches in industry. [9] Generally,

the designer is given an objective, decomposes the problem into solvable goals, explores

solutions, models the proposed solution, and synthesizes a system which is focused on achieving

that original objective. This TD system only takes into account the situation as well as the

designers’ account for the scenario. Additionally these systems may not do well in the presence

of significant changes to the application [2]. For example, a logistical robot from a warehouse

would struggle to operate in an unstructured environment without modification, or a robotic

manipulator from an automotive assembly line would struggle to effectively pick apples without

modification. In economics, TD can describe how a model is constructed from high level

predictions [3,4,5] or even how policies are implemented as a blanket effect [6]. In psychology,

TD can refer to how humans anticipate interactions with the world due to prior experience, rather

than simply reacting[7]. In general, purely TD methods focus on feeding forward a detailed

control or design to fulfill the objective and do not provide room for feedback from experiments,

or modularity in application.

In contrast, bottom-up (BU) typically refers to something that is determined in a more

decentralized manner. As many separate processes determine the outcome, or design, of a system

[8]. For example, a forest can be likened to a BU system in the sense that every plant, rock, and

creature is not controlled or planned by any one group or individual. Instead their behavior is

governed by their inherent biological and physical rules in response to external stimuli. BU

approaches in engineering utilize the environment, or scenario, to determine the design of the

modules to facilitate the overall system objectives. This feedback into the design is typically

witnessed over several iterations [2]. Although the system may not operate well outside its

intended application, the iterative design process and use of modules result in an adaptable

design. In economics, BU can describe how a model is constructed based on gathered

information [3,4] or even how policies are implemented on a per case basis [6]. In psychology,

BU can refer to how humans react to the world through senses, rather than anticipating results

4

[7]. In general, purely BU methods focus on feedback into the policy, control, or design based on

performance. Although this approach is much more practical in producing end results, it is more

convoluted to synthesize an initial form to unify the subsections with a purely BU method.

These polar opposite ideas of TD and BU are still very codependent on each other. There

is no purely TD or BU system [2,8]. Every effective design method in industry utilizes TD and

BU to some degree [10,11]. For example, the Spiral design model, discussed later in more detail,

operates in a cycle of TD design and development with phases of BU feedback and validation

over an iterative process. Even though this Spiral method would be regarded as a TD method it

has BU elements present. The iterative prototyping step of generic TD processes is a core aspect

of how BU is applied to design and BU designs still require some sort of TD synthesis after the

analysis step [2]. Ultimately, BU designed systems are modeled by humans, introducing TD

elements, but the compliance and modularity added to the system promote robust performance

and potentially lead to new features, or behaviors, emerging during the BU design cycle.

2.2. Design Methodology

 Design can be regarded as an invisible study in society. Many take this research

topic for granted due to its commonplace application in everyday life. Coordinated Universal

Time (UTC), Global Navigation Satellite System (GNSS), or electrical grid management are

considered invisible utilities to the general public. Most individuals learn their own design

methodology through experience in industry and their personal life. Personal design methods

vary greatly between professions. However, design in the engineering sense will be the focus in

this section.

The Accreditation Board for Engineering and Technology (ABET) defines Engineering

Design as, “... identifying opportunities, developing requirements, performing analysis and

synthesis, generating multiple solutions, evaluating solutions against requirements, considering

risks, and making trade-offs, for the purpose of obtaining a high-quality solution under the given

circumstances” [10]. All of these steps are top-down except for the “evaluating solutions against

requirements” steps. The user takes in feedback from the design's characteristics at this stage,

making it bottom-up. These common ideas of design are a great baseline, but this is still an

abstract concept. There has been ample criticism in the design community of the state of design

methodologies. It is a point of concern that students are not made aware that these methods

should be taken with a grain of salt, or why the method is structured as such [12]. Many design

methods in academia often omit how to go about the major steps of the process, or why, let alone

take into account resource limitations seen in industry that completely alter steps found in the

ideal, academic design process.

Despite this criticism, Howard et. al’s summarization of the diverse design methods

discuss that there are some common properties of the processes between vocations. A

generalized process model consists of: “establishing a need, analysis of task, conceptual design

phase, embodiment design phase, detailed design phase, and implementation phase” [12,13].

These generalized stages of activities cover a wide range of design applications. It is generally

5

accepted that these methods must happen iteratively to produce good results. However, this non-

specific design process will not apply to every situation or profession. It is commonly regarded

that the ability to modify these general processes is one of the most important skills of designers

[14,15]. In fact, most applied engineering design processes are some variation of the “Verein

Deutscher Ingenieure” (VDI), Association of German Engineers, 2221 design process shown in

Figure 2.1 below, the Spiral Design Model by Boehm, or the V-Model by Forsberg and Mooz

[12,15], shown in Fig. 2.2.

Figure 2.1: Diagram Reproduced by Author Based on Common Design Process from

Association of German Engineers, VDI 2221 [16]

Figure 2.2: Diagram Reproduced by Author Based on Spiral Model of Software Development

[17] (Left) and V Model of Software Development [18] (Right)

6

One of the main distinctions of design processes between professions is how much

emphasis is placed on a particular step [19]. This allows other disciplines to better provide

solutions for their industry’s needs. Gericke and Blessing stated, “Civil engineering may provide

approaches to deal with the separation of development and production. Software and knowledge

based engineering may provide approaches to include user issues more explicitly. The abstract,

function-oriented approach in software and electrical engineering may provide solutions to deal

with mechanical systems at a more abstract, functional level” [12].

In multi-disciplinary designs, like those found in mechatronics, the VDI 2221, Spiral, and

V-Model methods do not encompass a practical process that applies to the entire project. As a

result, VDI 2206, shown in Figure 2.3 below, was developed specifically for robotic

applications. This method utilizes elements from the VDI 2221, Spiral model, and V-model

processes.

The macro level model is a flow to follow in the overall project and can help establish

milestones for management to track progress. This is based on the traditional V-model, but

emphasizes the need for parallel processes, flexibility of the design process, and constant

verification of the design. The micro level model is geared towards the individual designer and

operates within the system design, system integration, and domain-specific design sections of the

macro level process. This begins with a parallel process that takes into account both client and

designer defined goals. The synthesis/analysis loop allows for the exploration of multiple

solutions within the same iteration. This micro level process emphasizes the need for repeating

the process if the results are not satisfactory, and investigating alternative designs. The micro

level process is where the VDI 2206 process gets inspiration from the VDI 2221 process.

Figure 2.3: Diagram Reproduced by Author Based on VDI 2206 Micro Level (Left) and VDI

2206 Macro Level (Right) [20]

7

Feedback from validation at the macro level helps to shape future iterations of the VDI

2206 process. This intuitive feedback within the micro level should help to reduce the number of

macro iterations. However, completing this macro level process does not necessarily result in a

finished product. This process is intended to be implemented repetitively to increase system

maturity and reach significant milestones, shown in Figure 2.4 below. This is where the VDI

2206 process pulls in elements from the Spiral Model used in software development. For

example, the first pass of this process could result in a concept model, the second pass could

result in a functional model, and the third iteration could result in a first physical prototype.

Figure 2.4: Diagram Reproduced by Author Based on VDI 2206 Product Maturity Cycle [20]

Another commonly accepted design method is that of the NASA Procedural

Requirements (NPR) 7123.1 method, shown in Figure 2.5. This outlines the method of Systems

Engineering with mechatronic systems used in their Systems Engineering Handbook [21,22].

This NPR 7123.1 Systems Engineering method is broken down into three main processes:

system design, product realization, and technical requirements. These three overarching

processes are applied recursively to every level of decomposition of the system until reaching the

most primitive elements.

The system design portion focuses on establishing the task. This involves defining the

stakeholders’ expectations of the product, then defining the corresponding requirements for those

expectations, further decomposing those requirements into manageable problems, and selecting

potential solution for exploration.

The product realization section focuses on ensuring cohesive integration with adjacent

components. Firstly this is done by implementing the realized end products from lower levels.

Then, the primitive level solution is integrated with the overall system structure. This subsystem

solution is then verified if it truly meets the criteria from earlier steps and meets stakeholders’

expectations. These are all done before transitioning to the next layer above the current

component.

8

The technical requirements section acts as a tool for project management. These steps

emphasize taking the time to plan future steps, checking overall project progress, assessing

potential risks, clear communication between team members, and documenting results. All of

these management steps assist in analyzing the progress and how to improve further.

These seventeen steps do not all happen before proceeding down to the next level,

otherwise called Work Breakdown Structures (WBS). A product design can be regarded as

bottom-up if these lowest levels are defined first and work up through the WBSs from there. In

contrast, a design can be regarded as top-down if the higher level WBSs are formulated first with

the lower level components determined in subsequent steps.

Following the flowchart in the figure below, the system design steps for all subsystems

happen before working back up the chain through the product realization steps. All of these steps

happen in parallel with the technical requirement steps, as project management is a constant

endeavor.

Figure 2.5: Diagram Reproduced by Author Based on NPR 7123.1 Systems Engineering Method

[21,23]

This NPR 7123.1 Systems Engineering Model works within the outlined NASA Project

Life Cycle in Figure 2.5. The system design processes are represented as section 4.x. The need to

implement these four steps recursively until reaching the lowest level of the project is clarified in

Figure 2.5. Only then can the five product realization processes start progressing back up through

the subsystems. This figure also emphasizes how the technical management is constantly in

parallel to these nine steps. This documentation and formalization of the design process are

increasingly necessary at each major design review.

These iterations of the NPR method occur during each major design stage of the project.

There are considered to be seven major stages to NASA’s projects. This begins with the “concept

studies” to define the feasibility, challenges, cost, and other requirements to put together a first

draft of the project. The project really begins with the “concept and technology development”

stage determining the basic concepts, plans, and requirements to fulfill the project. The

9

“preliminary design and technology completion” stage aims to produce a barebones prototype to

meet mission needs. The “final design and fabrication” phase occurs midway through the project

life cycle. This stage focuses on actually producing the final product hardware and developing

the initial software packages. The “system assembly, integration, test, and launch” phase brings

the entire project together and ultimately producing the final product. The “Operation and

Sustainment” stage executes the desired mission. Finally, NASA projects wrap up with a

decommissioning procedure to close out the operation and compile data for analysis.

Figure 2.6: Diagram Reproduced by Author Based on NASA Project Life Cycle [21]

The five major methods discussed thus far do not encompass all processes used in

industry, but do cover the commonly applied design methodologies in practice. All of them share

elements of bottom-up and top-down methods to varying degrees. VDI 2221 is a busy flow chart,

but it consists of mostly parallel top-down processes. There is bottom-up feedback to the system

design and system requirements, but it is not well defined when to apply these steps.

The Spiral Model is much more detailed and practical, but is a very single threaded

implementation of the design process. This also consists of mostly top-down steps with periods

of feedback, a bottom-up feature, located on the lower vertical axis.

The Forsberg-Mooz V model is also a very serial process that consists of mostly top-

down processes. The only feedback in the system is the general verification statement, and does

not illustrate the need to update the system requirements. This bottom-up feature is haphazardly

applied, leaving the designer to decide when feedback is necessary.

The VDI 2206 model uses both top-down and bottom-up approaches throughout the

process. The macro level emphasizes a constant feedback loop in the design process. This makes

10

the macro level top-down just as much as it is a bottom-up process. The micro level utilizes a

top-down approach within a feedback loop. Although this is a bottom-up element, the micro

level is still a mostly top-down component. Many robotic designs utilize off the shelf

components with simplified interfaces between these systems. These subsystem parts drive the

VDI 2206 process, resulting in a dominantly bottom-up design process. The form and function of

the system is still a top-down process with periods of bottom-up feedback. This design method

results in the robotic project becoming a glorified adapter for the modules that fulfill the mission

objectives.

The NASA System Engineer methodology emphasizes the top-down development of a

system, and implies that bottom-up feedback is constant. This approach is thorough and effective

at managing massive engineering development teams. However, this is not necessarily practical

for smaller companies or design teams. Applying this method to smaller groups can lead to

increased burden on team members to formalize steps they may intuitively do in the process.

These five major approaches demonstrate that design methods are predominately top-

down with bottom-up applied as an afterthought, or as a delayed form of verification. These

methods also have various aspects that are either not appropriate for small team applications,

leave too many details open to interpretation, or fail to incorporate essential aspects of the

learned design methods. These self-learned methods strive to balance research, synthesis, and

feedback while maintaining monetary, effort, and time constraints. Some of these intuitive

constraints are often omitted from design methods taught in academia, and ultimately lead to

industry reteaching design practices to new hires.

Engineers are taught how to research and synthesize solutions via task decomposition in

academia. These top-down methods are often instructed without reference to formal design

methods, but typically resemble the synthesis focused VDI 2221 process. It is essential to

understand this method as an engineer and cutting edge developments are made through

synthesis. However, bad designs can originate from synthesis as well and this mindset focused

on synthesis can often plague the development of products in industry. The lack of practicality

and how to implement the steps outlined in this ideal method often leads to rejection by industry

[15,24,25,26]. This results in employers often training new hires how to practically navigate

product development. The higher standards of quality, need for economically and

technologically competitive products, and desire for rapid progress force a different mindset onto

these new engineers. However, there is often less opportunity to explore different prototypes in

industry despite these requirements. This is mostly due to limited resources and the desire of

experienced engineers to stick with the techniques already implemented. This restriction on

prototype exploration and focus on top-down synthesis often leads to users continuing this habit

for the entire project. This results in first prototypes heavily influencing the final product instead

of experimenting with more diverse designs.

Although it is good to pull ideas from experience, there are great benefits to veering from

the status quo and re-evaluating design choices. These changes can seem minor at first glance,

but may completely alter the quality and opinion of a product. For example, the original Boston

11

Dynamics Spot platform, now called Spot Classic, evolved from its hydraulic actuated origins to

its fully electric system in the later 2010’s [27,28]. This advancement not only led to a simpler

design, but the quiet system also improved public perception of Spot. This advantage of

producing alternative designs to provide feedback is intuitive. However, these expensive full

prototype explorations are usually undesirable in industry and it is often unclear when to do so in

several formal design methods. Applying more feedback, or other bottom-up methods, in

industry can provide pathways to improve products.

 There is a lack of purely bottom-up design methods. This academic pursuit has been

realized through the use of evolutionary and reinforcement learning based automated design

methods to better imitate processes witnessed in nature. For example, an increasingly common

method of exploring optimal solutions in simulation is through a genetic algorithm. In every

generation, or iteration, agents attempt to complete the task. These agents all have properties

resulting from mutation, selection, or crossbreeding of the dominant agents from the previous

generation. This can be applied to a wide array of tasks that need optimizing. These projects can

include: structural design [29], neural networks [30], printed circuit board design [31], and much

more. These software generated designs are a good baseline for improving design practices, but

it is difficult to completely automate the entire process. The need for co-designing the often

conflicting interests of mechanical, electrical, and software systems in parallel tremendously

complicates the design process. Even minor modifications to the mechanical design can have

significant impacts on the electrical needs and software capabilities of the project. This is true for

any of the involved disciplines of a mechatronic system. Utilizing general purpose hardware and

making up the difference with software only goes so far. Designing complicated systems is still

an art due to the need for adapting these formalized design processes to a particular project and

knowing where to break down or probe the product further.

This thesis explores a method interpolated from the NPR 7123.1, Spiral Model, and VDI

2206 approaches to provide a straightforward method geared towards encouraging good design

practices in new engineers. The NPR 7123.1 approach is thorough in nature and well defined.

This begets an overall strong design methodology, but is not friendly to new students due to its

definition of planning, management, analysis, and assessment occurring in parallel to the active

design steps. The Spiral Model encompasses an excellent pathway from problem statement to

product realization, but its open ended descriptions may prove confusing to students who have

not done much design work before. The VDI 2206 model’s structure does cover a realistic design

method, but also leaves feedback and subsections open to interpretation. A hybrid of these

approaches would strive to be well defined and thorough like the NPR 7123.1 method, while

being approachable and clear like the Spiral method, and resemble the structure and feedback

loops of the VDI 2206 method.

2.3. Decentralized and Centralized

12

In a general sense, the terms centralized and decentralized describe how a system is

structured. A system is centralized when all actions are controlled by one member, or controlled

by a distributed system with global knowledge. For example in robotic manipulators in a factory,

each robot has a centralized controller that is aware of the robots state and collects information

from sensors to decide what action to take next. This top-down knowledge of the system's status

is by far the biggest advantage of centralized distributed systems. This global knowledge makes

effective coordination of multi-robot systems much easier to achieve. However, this structure

requires good connection between the agents in the distributed system. For example, sensors

distributed across a factory can collect data for a centralized digital double. This connection

requirement isn’t always feasible when operating in unstructured environments, or with mobile

systems. These centralized systems do not scale well to large groups of agents due to

communications and computation bottlenecks and may not be robust to failures.

In contrast, a system is decentralized when it is composed of many units that make their

own decisions based on local information. These agents do not necessarily have direct

knowledge of the rest of the system. This decrease in the information communicated simplifies

the processing each agent needs to do. For example, a swarm of birds flying in a flock while they

can only observe immediate neighboring birds is an example of a decentralized system operating

in a bottom-up control manner. These properties do well to scale with large systems, but come

with their own challenges. These systems rely heavily on constant communication to provide

agents with information for local interactions and localization is more difficult to achieve. These

challenges are often worth the additional benefits that decentralized systems bring. These

systems are typically more tolerant to failure of some units in the swarm. However, it is more

difficult to accurately predict and coordinate the system as a whole due to this lack of global

information.

There are many systems that apply both centralized and decentralized structures. In

electricity generation, power plants are part of the centralized power grid system. Residential

solar panels contribute power to this same system without knowledge of the rest of the

infrastructure, and are currently decentralized contributors [32]. The advent of new “smart”

electric panels aims to change this decentralized nature of photovoltaic and other residential

power systems [33,34]. In computer science, decentralized websites are mostly hosted in major

data centers, or centralized facilities, and distributed via centralized internet service providers.

However, the introduction of blockchain has brought about the idea of decentralized internet

server facilities for the decentralized website services, otherwise called Web 3.0, to be

distributed through these centralized internet service providers [35,36] .

As seen in these examples, the opposing ideas of centralized and decentralized are still

very codependent on each other. As there are no purely decentralized systems. For example, a

drone swarm that utilizes decentralized computation, communication, and control would be

declared a decentralized system. However, in most cooperative applications there still is a

centralized knowledge that the other agents in the system are bound by the same rules. In many

13

decentralized systems, agents that follow different programs or physical rules will not be able to

cooperate and can cause the whole system to not perform well [37,38].

2.4. Consensus

A means of agreement between units is needed to encourage cooperation within multi-

agent systems, referred to as consensus. The term consensus has applications in many fields,

such as physics, computer science, robotics, politics, and much more.

[39,40,41,42,43,44,45,46,47,48] The term consensus refers to the collective decision making of

multiple agents in a system to agree on an outcome. In computer science, multiple users

connected to a game server require a means of synchronizing the game world continuously for

all users. This consensus of the game world is accomplished through continuous clock

synchronization, state estimation, state prediction, and state reconciliation [39,40]. In politics,

consensus is sometimes found, but not always achieved, in the process of formulating and

passing legislation [41]. In multi-agent robotics, this can take on the form of rendezvous,

formation stabilization, and formation movement (flocking) problems [42].

There are two major schools of consensus in these multi-agent robotic systems:

centralized and decentralized consensus. Centralized consensus is essentially an extension of the

same approaches to coordinated control seen in single agent systems. The agents within the

centralized multi-agent system are extensions of the central decision maker. Decentralized

consensus methods are the more challenging and valuable approach for multi-agent systems.

These decentralized systems are typically more robust to faults, able to scale to large systems

more easily, and able to perform more complicated tasks with less system complexity as

compared to centralized systems. Decentralized multi-agent system consensus has taken

significant inspiration from equivalent scenarios in nature. These include the flocking of birds,

ants working together, wolf packs hunting, and many other similar scenarios.

There are several classifications of collective decision making in robotics. Leader-

follower consensus systems consist of agents listening to a selected leader. For example, a leader

in a group of mobile robots could follow a high level path given to it while the followers in the

group simply keep formation around the lead unit [43]. Variations of this task can dynamically

select leaders of the swarm. This voting system is a core aspect of group consensus, another

major classification of consensus tasks. These systems exchange information to determine an

agreed truth. For example, distributed sensors measuring temperature need to agree on a correct

value through consensus protocols [44]. Multi-consensus systems tend to resemble group

consensus problems, but add the ability to track multiple truths in their protocol [45]. For

example, a swarm of robots could observe multiple objects of interest traveling through their

field of view. These robots can work together to keep track of the target while it is out of view of

another robot [46]. These broad classifications of consensus in robotics utilizes agreement

protocols to facilitate deciding on one output in the swarm.

Some of these methods of group consensus are governed by simple mathematical

functions that always converge. In group consensus, reaching convergence by difference and

14

differential equations are excellent examples of these primitive, but powerful equations that can

reach agreement through a decentralized multi-agent system [42]. Average consensus algorithms

are also quite simple and demonstrate the ability to accommodate many inputs [42,47]. Best-of-n

decision making utilize increasingly complex protocols, but enable more intelligent decisions to

be made by the decentralized swarm [48]. There are many methods of reaching consensus in

computer science, but these approaches and classifications of consensus problems are of

particular interest in robotics.

15

3. Technical Approach
The proposed hybrid robot design method will be composed of several loops like the

NPR 7123.1 method, but the internal steps of these loops better resemble the Spiral method and

there are no parallel steps to the loops, as seen in the NPR 7123.1 approach. These are done to

simplify the instruction of this method while remaining adaptable to different robotic projects.

This hybrid of several formal methods aims to better align with the needs of flexible

design in industry while remaining well defined enough for upcoming engineers to sufficiently

understand and build up practical experience. To promote good design practices a method should

balance research, synthesis, and feedback while respecting monetary, effort, and time constraints.

The academic design methods resembling the VDI 2221 process typically neglect the feedback, a

bottom-up feature, of these six golden traits. Inexperienced engineers still receive feedback from

instructors, although that is usually after the end of a project. The application of validation,

verification, and experimentation in the design process can drastically improve overall learning,

even if less material is covered.

Not all of the steps outlined in the previously mentioned methods in this thesis are

appropriate for robotics projects. The VDI 2221 method is simple, and a good introduction to

design as a whole. However, this method fails to mention how far to take each step in the

process, or what should the end product be of that iteration of the process. This obscure

description leaves the VDI 2221 method open to interpretation and results in significant

variations in the application of this design method. The Forsberg-Mooz V model does resemble

the structure of other accepted techniques, like the NPR 7123.1 process. Unfortunately, this less

detailed process implies that it is only to be applied for one iteration, and focuses on progressing

through the synthesis of the product. This lack of feedback in the methodology severely hampers

the ability of the process. The NPR 7123.1 and NASA Project Life Cycle processes are very

detailed. NASA has developed and proven these design methods over years of practice. These

methods are thorough, but may be too much to manage for new engineers and small teams of 4

or less. The VDI 2221, VDI 2206, Forsberg-Mooz V Model, and NPR 7123.1 all imply that

feedback is constant. This unfortunately makes it unclear to less experienced designers when is

the best time to apply feedback into the system design. The VDI 2206 and Spiral approaches at

least make the effort of when to introduce feedback into the design process. The Spiral method is

much more detailed and appears very approachable for students, but only discusses application to

software. The VDI 2206 process has feedback cycles built into its core processes, but needs to

further clarify when to stop a particular cycle. All of these methods have some aspect of them

that make them more difficult for inexperienced engineers to digest, or not appropriate for

applications to robotics. Many of these issues can stem from too much detail, not enough clarity

in the definitions, obscure design flow, and where to integrate bottom-up methods.

 There are still many useable components of these methods. The VDI 2206 micro level

and Spiral methods are excellent examples of all six traits and integrate feedback as a core step

in these methods, but still leave the many details and decisions of those steps up to the user. In

contrast, the NPR 7123.1 method provides incredible amounts of detail, but implies that

16

feedback is a constant parallel process and ultimately still leaves it up to the user when to apply

feedback in a small team setting. An interpolation of these three methods strives to provide

detail, examples, and feedback loops like the NPR method while drawing steps and structure

from the VDI 2206 and Spiral processes. These assets are compiled while keeping the hybrid

approach defined in a way that reduces the need for interpretation and still flexible to diverse

applications.

Figure 3.1: Proposed Hybrid Design Methodology

This proposed design method shown in Figure 3.1 begins a top-down focused process

that iterates problem decomposition, requirement definition, solution synthesis, and trade studies

through a loop. Logical decomposition is essential for any project, and makes for a collection of

simpler problems to solve. That decomposition drives the technical requirements of this level in

the design. These levels are the hierarchical breakdown of the system determined through

decomposition. For example, this can start at the system as a whole, then proceed to the

subsystems, and further to the components needed to make those subsystems function. These

systems are continually broken down into more primitive components, like bolts, resistors, and

other off the shelf products. The technical requirements of the system should be kept as broad as

possible as to avoid defining a solution in the goals. Then the team conducts research of potential

solutions, and considers all solutions, no matter how infeasible. The purpose of the trade studies

is to explore the pros and cons of the systems, and reduce the role of human preferences in

17

decisions. This objective thought process should bring out the best fit solution of those found at

the time, and justify why one or multiple options are considered for further analysis. This is done

repeatedly until breaking down the system into the most primitive components. The steps up to

this point should only be defining general features and properties of the system. Just like the

technical requirements, the goal of the first loop is to define the system as broadly as possible.

The technical requirements of the lower levels of the system will fill in the details through the

following modeling loop.

Only after these primitive components are defined can modeling and analysis begin. This

modeling process starts at the lowest level and works bottom-up to define the overall design.

This bottom-up approach allows the necessary equipment to dictate the structure and form of the

system. Although this seems intuitive, it is not uncommon for a system's structure and form to be

designed first and then attempting to find components to fit that system later. If this risky

decision is used the system design is usually altered significantly, and this should not be done

when designing and manufacturing in parallel. When designing these systems, it is important to

keep modularity, manufacturability, assembly, maintenance, tolerance, and cable management in

mind. These features will greatly increase the ability to adapt and improve the system as

development and integration continues in later steps. Progressing onto the review phase only

occurs once the model reaches a state of defining the overall system. The reviews are intended to

verify the product design against the technical requirements defined earlier in the process. This

can include finite element analysis, dynamic motion studies, thermal and vibration analyses,

economic feasibility studies, sensor placement studies, scale model construction, simulating

operation, manufacturing studies, and many other methods of validation. This cycle of reviewing

and modeling occurs repetitively to provide feedback into the design from all the mechanical,

electrical, computer science, various engineers and technicians involved in the project. This

multidisciplinary review gradually defines the system from a geometric representation to a fully

manufacturable CAD model of the product while balancing the needs of all the subsystems.

The final assessment of the readiness of this system must be thorough before progressing

onto full system manufacturing. It is best to include the other trades involved in the

manufacturing and implementation of this system in the reviews to produce more feasible and

realistic designs. There may be some need for improvising unforeseen issues on these initial

prototypes, but the previous reviews should catch a majority of these potential issues. These

prototypes are where a majority of learning and validation occurs. There may be some

phenomena that simulations and analyses did not catch. These studies can only capture so much

detail, and are limited based on any information omitted from their models. There may be a need

for subtle alterations to the components or their manufacturing processes to increase quality or

ease of assembly.

These approaches handle individual levels of design, but a method of overall managing

project flow is also needed to successfully apply the aforementioned process on a project-wide

scale. NASA’s Project Life Cycle, Spiral, and VDI 2206 macro level all have reasonably defined

project stages. Although the NASA proven method is thorough, it is often not practical to

18

implement on smaller scale projects, or with new engineers. The VDI 2206 macro level and

Spiral methods provide an easy to understand course of action, but simply need more detailed

descriptions and examples.

Figure 3.2: Proposed Hybrid Design Approach Macro Level

These three main loops shown in Figure 3.2 are inspired by the previously mentioned

design methods. These identical loops are done over several iterations to achieve progressive

milestones of the project like the VDI 2206 macro level process. These are not limited to any

particular set of milestones. For example, the first iteration can start with a proof of concept

prototype, the second pass could produce a preproduction prototype, and the third iteration could

result in a final product that is ready for mass production. The number of prototypes within these

loops really depends on the application of the system, level of quality needed, and the alternative

subsystems considered. It may be beneficial to develop multiple proof of concepts for a

particular subsystem, which benefit from the aforementioned modularity. This hybrid system

design method is demonstrated through the case studies below.

As a whole, design in robotics does benefit greatly from experience, but the method

outlined in this section presents a means of producing results in small teams through cycles of

synthesis and feedback while reducing the ambiguity of the order of operations. This method

should still be approachable for student engineers, and transferable to application in industry.

19

4. Case Study #1: Complicated Robot System Design
4.1. Introduction

The West Virginia University (WVU) Interactive Robotics Laboratory (IRL) has

developed a planetary rover research platform called “Fast Traverse”. This four wheeled robot is

equipped with independent actuated suspension and steering mechanisms. Fast Traverse is a test

bed for path planning autonomy and how scientific instruments can assist a rover in determining

safe paths.

The development team has included many members over the years. Yu Gu, Scott Harper,

Nick Ohi, Conner Castle, Dylan Reynolds, Jared Beard, Benjamin Buzzo, Dylan Covell, Jonas

Bredu, Chris Brindle, Eric Swanson, Gabrielle Hedrick, and Spencer Regnier have all

contributed to the development of this rover and their specific works are emphasized in the

design process below.

4.2. Design Process

This robot starts off with a significant challenge in the proposed design process. The very

broad system constraints and considerations make it difficult to define the task to be fulfilled.

Fast Traverse is to be a general purpose rover research platform aligned with NASA’s future

planetary exploration concepts, like the Mars Sample Return mission [49], and accommodate

other unforeseeable research needs that are similar in nature. These two vague requirements

mean that the rover platform needs to be capable of accommodating a wide range of behaviors

for algorithm testing and highly modular in nature for future mission configurations. Through

deductive reasoning, this means that operation time between charges, weight, and complexity are

of lower concern in the design considerations as compared to a robot designed for a specific

application.

These few requirements gave a lot of flexibility to system requirement conception and

desired features of the robot. The drivetrain would have to loosely resemble the capabilities of a

NASA rover, but any solution could be chosen that facilitates a wide range of behaviors and

accommodates NASA’s research objectives. The ability for the rover to cover ground at higher

speeds and to push path planning algorithms further than its Martian counterparts fulfilled the

need for this system to align with NASA’s exploration concepts.

To better align with these exploration concepts, NASA’s own work served as valuable

input while researching potential solutions. Many rovers deployed by NASA demonstrate a few

common traits, but the first dominant drivetrain trait that comes to mind is the modified rocker

bogie suspension. This passive suspension system is very capable of conforming to terrain

features, but increases system weight, cost, complexity and is only applicable to slow vehicles.

All Mars rovers have some form of steering; for example, Curiosity and Perseverance rovers

apply independent steering to the rocker-bogie suspension to provide agile movement and

directional control at various speeds. Through observation of various planetary rover systems, it

became clear that this independent steering system was a desired core feature of the robot. It was

20

less clear from the analyses on whether the commonly observed rocker-bogie system was

adequate for the project's needs.

Seeing that the system is intended at traveling faster than the current Mars rovers, what

speed goal would the system aim for? At the time of designing this project, the record distance

traveled in a single Sol was achieved by Curiosity was 143 m [50]. (That record has since

increased to 320 m with Perseverance [51].) Future missions, like the Mars Sample Return

(MSR) mission, have strict time constraints on the large distance to cover. MSR only has 687

Earth days, or one Martian year, to bring samples back to the launch vehicle [52]. MSR may

have to cover up to a 10 km distance[53] before reaching the region where samples have been

cached by the Perseverance rover. This means that the MSR rover needs to travel at great

distances over very few Sols to meet mission requirements. This combination of requirements

led to a 1 m/s travel speed for Fast Traverse with goals of traveling 1 km in a Sol. To further

enhance the system's ability to traverse terrain, the ability for the system to steer wheels

independently to precisely navigate through obstacles would prove useful in expressing more

diverse autonomy behaviors.

These speeds are high enough that typical passive suspensions of current planetary rovers

may not be adequate. These suspensions rely on gravity to maintain constant contact with the

ground and this contact is used for wheel odometry localization and helping to prevent the rover

from getting stuck in terrain. This means something similar to automobile suspension is better

equipped for traveling at speed, much like the Lunar Roving Vehicles (LRVs) of the Apollo

missions [54]. A spring suspension system allows for greater ability for maintaining ground

contact while traveling over features in the terrain at speed. The introduction this spring

suspension also provides an estimation of the load applied to a wheel through measuring the

deflection distance. This suspension system combined with the independent steering system

should fulfill the need for the system to achieve these speeds and test path planning algorithms.

The needed modularity for the rover is achieved through the design phase to make

components easily interchangeable, but the need for planning for unknown missions is much

more challenging. This can be accounted for by leaving extra room for electronics, payloads and

the like, but there will be limitations to what hardware the system can support. This means

potential missions need to be considered for the rover. Seeing that the system is intended to

primarily cover ground quickly and test path planning algorithms, it would be very beneficial to

plan for potential payloads that can help accomplish that task. These could include adding the

ability to survey terrain stability [55,56], calibrating internal measurement units (IMUs) while

moving, collecting scientific samples via robotic arms, unique sensor arrays for the autonomy to

work with, and many other potential functions. There is one glaring issue with these potential

missions that conflicts with the need of the rover’s primary missions. Many of these payloads

need to make contact with the ground, and some may need to do so while on sloped ground. This

means there would be very little ground clearance for the rover which needs a high ground

clearance to scale over obstacles more easily. Incorporating a telescoping mechanism into these

payloads would cause the rovers compartment dedicated to these missions to either grow taller or

21

become an open top section. An open top is not acceptable due to the needed sensors of the

system, like 3D lidar, GPS antennas, camera, inertial measurement units (IMUs), sun sensor, or

any other sensors that would benefit from being near the robot's geometric, or gravitational

center. The system growing taller is also not acceptable as this raises the overall center of gravity

of the rover, and decreases the system’s stability to traverse terrain at speed. This culmination of

requirements and considerations led to independent actuating the rover’s suspension to bring the

scientific instruments closer to the ground. This actuated suspension system also contributes to

the system’s ability to keep level despite the ground it is on and also provides potential

functionality to traverse more challenging terrain.

 Through the proposed design method, these requirements created through the

logical decomposition of the broad needs of this rover have now constrained the system to a

point where geometric assemblies of the system can be synthesized. A system that has an

actuated independent suspension system with independent steering and a hollow compartment to

harbor future payloads. Several means of accomplishing these requirements were considered in

the trade study through deliberation amongst the design team. Discussions led to the

consideration that it would be beneficial to make the rover symmetric to simplify the omni-

directional steering control and help reduce the need for spare parts. This led to a four wheeled

design with all of the previously mentioned features this rover needs to accomplish the traversal

goals. The logical method of actuated suspension with this platform geometry is through a four

bar mechanism. The culmination of these requirements and desired features resulted in the paper

sketch shown in the figure below.

Figure 4.1: First Sketch of Fast Traverse Rover Top View (Left) and Side View (Right) by Yu

Gu

Now that the robot’s overall conceptual design has been determined, it is time to go

through designing the subsystem components through the modeling-analysis loop. This was done

progressively. An estimation of the components to be used was generated. This included

22

batteries, power management, computation, sensors, motors, and many other hardware

components to fulfill the sketched design. Working from the top-down, the central frame was the

first component to take shape. This primary structure determines how all of the other

components work together, and quickly defines many details of the system. This component not

only needs to take into account the technical requirements determined in the previous loop, but

also the need for modularity, feasible assembly, ease of maintenance, simple manufacturing, and

effective sensor placement. This criss-crossing body frame quickly took shape and analyzed for

stresses according to weight estimates with healthy factors of safety. This assembly was sent out

to be machined as soon as it was in a manufacturable state. The team's decision to have

manufacturing and design occurring in parallel kept orders flowing to the shop throughout the

project and allowed more time for prototypes of sections to be made.

Figure 4.2: Body Assembly CAD (Left), Central Frame CAD (Middle), and First Frame

Assembly (Right) by Dylan Reynolds

Since the frame design was solidified, the wheels were the next component to take shape.

This logical jump between components was necessary. The drive assembly was the next

component to determine the properties of other components down the design tree, like the

steering and actuated suspension assemblies which interface the wheels to the body. Since this

was a complicated form, a prototype was ordered to validate this assembly’s application to the

rover. This was a thoroughly designed prototype and little revision was made between the

version shown in the figure below and the final version used.

23

Figure 4.3: Wheel Assembly CAD (Left), Section View of CAD (Middle), and Wheel Assembly

Prototype (Right) by Conner Castle

Then it was finally time the steering and actuated suspension took shape. These

assemblies were all treated as one prototype to interface the components already made. It was

clear from the previously established requirements that a spring suspension and a range of

actuated travel for the rover to allow payloads to reach the ground were both needed.

The compact need of the steering assembly greatly restricted the off the shelf options

available for this spring suspension and steering mechanism. The addition of the rover is

estimated to weigh around 360 lb from current CAD models further reduced options. This spring

system had to remain stiff and compact while being able to have a considerable amount of

compression. A gear driven steering system is a simple solution to make room for applying

sensors, but the assembly continues to be complicated by the spring assembly to take the load of

the rover. The necessary addition of depth sensors and encoders further crowded the assembly.

Figure 4.4: Steering Assembly CAD (Left) and Steering Assembly CAD Cross-Section (Right)

by Chris Brindle

24

The steering assembly was designed in parallel with the actuated suspension system. This

electrically driven four bar mechanism had many constraints already put in place by the three

major subsystems already defined, but also partially determined the constraints of components in

the steering assembly. The development of these two subsystems in parallel promoted

accommodation of their needs in the design without diminishing performance.

The suspension subsystem shown in Figure 4.5 was designed to withstand half of the

rover’s weight on each leg, and achieve as much travel as possible. This maximized geometry

was determined experimentally through computing the four-bar mechanism geometry in a

MATLAB simulation made by Nick Ohi. This strange location led to adapting the mount for the

linear servo.

Figure 4.5: Actuated Suspension CAD (Left), Linear Servo Mount (Middle), Finite Element

Analysis (Right) by Dylan Covell

These components were ordered to complete one “leg” of the rover. There were more

minor revisions needed on this prototype as compared to the wheel assembly. After these quick

adjustments, the final set of four steering and suspension assemblies were ordered and the CAD

model of the rover was finally in a complete assembly.

Figure 4.6: Body Assembly and Test Servo Mount (Left), Leg Assembly Raised (Middle) and

Lowered (Right) by Dylan Covell and Chris Brindle

25

As seen in the figure below, many fine details and revisions were made throughout the

design process. The geometric sketch from the early conceptual stage of this project did heavily

inspire the form the system ended up taking. The feedback from the analysis of subsystem

prototypes was a crucial feature of this design process.

Figure 4.7: Completed Fast Traverse Rover CAD Model by Dylan Covell

Assembling and integrating the Fast Traverse Rover was a long endeavor. This was

gradually done to ensure fitment of components, routing of cables, and testing of electronics.

This rover’s modularity was demonstrated through repeated assembly and disassembly to modify

and test alternative components throughout this integration phase.

Figure 4.8: Fast Traverse Rover Suspension and Steering System Assembly by Eric Swanson,

Jonas Bredu, and Dylan Covell

This rover’s testing is still ongoing with the Interactive Robotics Lab at WVU. Sensors,

controllers, and internal components have been exchanged to better accommodate the general

purpose nature of this system. Current plans for testing focus primarily on validation of

controlling the rover’s drive and suspension system in the field. There are also plans to develop

3D printed tires to have better control over tuning the systems performance in field applications.

26

Thus far there have been no scientific payloads tested with the rover, but two have been

prototyped so far. The automated shear vane apparatus made was a proof of concept to document

soil bearing capacity without human testing, and would need heavy revisions to be applied to the

Fast Traverse Rover [56]. The Zero-velocity Updates (ZUPT) has successfully provided a

reference to calibrate an IMU while the system is moving, but this payload proof of concept

would also need heavy revisions to function on the rover. [57, 58]

Figure 4.9: Automated Shearvane First Prototype (Left) and Version 2 CAD (Right) by Dylan

Covell

Figure 4.10: ZUPT First Prototype (Left) and Version 2 CAD (Right) by Spencer Reigner

27

Figure 4.11: Fast Traverse Rover Test Drive (Left and Middle) and Current Status (Right) by

Jonas Bredu, Jared Beard, Nick Ohi, and Dylan Covell

4.3. Results

 This has been a long and arduous process to get the rover to this state. Fast

Traverse will continue to progress through the time consuming integration and testing phase.

There may be further alterations and improvements made as payloads work their way onto the

rover. It is somewhat unknown how the project will progress in the future, but the application of

the hybrid design process discussed in this paper has provided a good foundation for future

exploration experiments at the Interactive Robotics Laboratory.

 The biggest takeaway from this exploration of applying the proposed design

method is the choice to develop subsystem designs and manufacturing higher up hierarchical

systems in parallel. This did accelerate the project's progress, but the risk of subsystem’s

conflicting needs became evident at the interface of subsystems. The mounting of the linear

servos for the actuated suspension required a rather unique assembly to accommodate the

geometry needed to maximize suspension travel. The ability for the proposed design method to

accommodate this conflicting decision within the development process is a limitation of the

method. Applying this parallel design-manufacturing decision in the future requires significant

experience and thoroughly thought out modular design to reduce the friction this decision

introduces.

28

5. Case Study #2: Simple Robot System Design
5.1. Introduction

The WVU Interactive Robotics Laboratory (IRL), Field and Aerial Robotics (FARO)

Lab, Navigation Lab, and Mining Department have developed a proof of concept mine

surveillance system to automate safety inspections in cooperation with the Alpha Foundation.

The system helps make this time consuming, highly repetitive, and dangerous job easier for

human workers. The unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV)

robot pair scan a mine’s structure via Lidar mapping. The UGV navigates to surveillance points

and the tethered UAV is deployed once stopped. [59] The UAV constructs a SLAM map of the

structure and the feature recognition algorithm from the Mining Department documents the

environment for easier processing by the operator [60].

This project has been the culmination of work amongst the involved research labs. The

members involved with the UGV development are: Yu Gu, Dylan Covell, Jonas Bredu, Trevor

Smith, Henry Vos, Nick Ohi, Chris Tastch, and Gio Molin. Their specific contributions are

detailed in the design process below.

5.2. Design Process

This robot must survey mine support columns with LIDAR for signs of degradation. This

objective puts very few constraints on the system accomplishing the mine surveillance task.

Further decomposition is applied to better define the system’s goals. These considerations

include: what geometry of mine should this system survey, how much area does the system need

to survey, and how long does the system have to survey the area. The test mine is a stone mine

and consists of 12 meter tall columns that are about 70 meters wide. The inactive sections are to

be inspected by this system, and these sections span approximately 2.5 km2 of the mine. This

system would need significant amounts of time to collect data on the region and additional time

is needed for the system to navigate and return to the entrance of the mine. Additionally, the test

mine is only available for inspection less than once a week. In order to maximize data collection,

the development team decided that the system needs to operate for up to 8 hours at a time under

the assumption that on average the system is traveling around 0.5 m/s during fully autonomous

operations.

There are several potential system designs that can service this need. Among the design

considerations in the trade study, two major system structures seemed appealing. An UGV with a

telescoping boom could survey the mine, but this system structure could introduce significant

deployment challenge. An UAV could survey the region quickly, but this system would not meet

the operation time without a means of recharging. In the end, the design team decided to take on

the UAV based system due to their prior experience with drone systems and the potential for

UAVs to survey regions quickly. This added the requirement of incorporating a charging system

into the design.

Further breaking down these requirements, it was clear that the 8 hour working period is

too great for any one drone, and charging drones would result in more down time for the

29

hardware. Additionally the large area within the mine would result in increased time flying to

locations from the deployment area than scanning the mine. The combination of these needs

introduced a ground support vehicle to the system requirements to fill the performance gap. This

better maximizes the drone’s time scanning while in flight.

Despite the addition of the carrier, the UAV’s total flight time was still tremendously

limiting. There was a trade study to consider several ideas to extend the drone’s operation time.

These ideas included battery swapping, wireless charging, tethered power, and even employing

several drones to scan the area. The battery swapping is very precise and complicated to do

reliably. The wireless charging cannot charge the battery fast enough to sustain the flight of the

drone over the time given. Using several drones does maximize the data collected in the given

time, but this complicates system coordination with the UGV. The tether is a complicated control

problem, but ended up being the most practical for our application due to its ability to provide

the UAV power as long as the UGV was operational and that the ceiling’s height makes the

tether a manageable length. This design decision also helped to simplify the system by reducing

the number of potential UAVs in the system to one.

This repetitive loop of logical decomposition, defining technical requirements,

researching potential solutions, and conducting trade studies has gradually defined the major

system features. This left the supporting features to facilitate the operation of this hybrid multi-

agent system. This system needs to operate in the mine and lab conditions. The UGV and UAV

should therefore have some tolerance to moist and dusty environments and fit into a standard

freight elevator (48” wide). The UGV should possess a passive suspension system to maintain

traction and traverse small obstacles. In this trade study, there are several considerations for the

suspension. To further narrow the options, this suspension should focus on remaining strong and

simple to make. This eliminated the options for independent steering and Ackerman steering in

the suspension due to their added complexity. Passive rover suspensions for skid steering

applications can become complicated rather quickly due to their mechanical connections. The

simplest of these rover suspension systems is the split body design. Which relies on a single

point of rotation for two rigid bodies. This highly desirable simplicity of the steering and

suspension features in addition to the ability to easily harbor large amounts of equipment for a

given volume are the factors that cemented this design layout for further development.

These features are all to be accomplished while remaining simple to manufacture,

assemble, and service. The multidisciplinary brainstorming sessions rapidly progressed through

the trade studies of the first loop in the proposed design process and defined a concept of

operations. These features are further recognized and defined in the modeling-analysis loop of

the hybrid design process. To simplify the reading flow of the remaining steps, we will be

focusing on the design of the UGV.

The second stage of the proposed design process focuses on further defining the ground

robot to the point of a manufacturable model. To begin, a geometric model accounting with all of

the major subsystem components is constructed. These components were recognized by breaking

down the robot into major subsystem modules, and selecting parts to fulfill the capabilities

30

outlined in the first loop. The drive system required motors that are compact and powerful

enough to propel a heavy robot. Powering these demanding motors and other electronics requires

large amounts of power. To simplify the power management of the system, the power supply can

match the voltage of the motors. This 24 volt system would be supplied from an array of 12 volt

batteries, and these batteries dominated the UGV’s geometric and weight needs. This estimated

weight driven by component selection in turn drove the needs of the motors. This feedback loop

ceased when the theoretical battery capacity matched the power needs to operate all electronics

for the 8 hour period. The computer, sensors, work lights, and other electronics needed to operate

a rover system were picked from what the lab was most familiar with to further accelerate

integration.

The rover’s form prioritized interfacing these initially picked components. The first

geometric model was purely a translation of the previous requirements with estimations of the

dimensions and weights in hand. This sketch was developed into a geometric model in the

Computer Aided Design (CAD) workspace with these key features and subsystems to further

refine part placement.

Figure 5.1: Initial Sketch of the Surveillance System by Yu Gu

Figure 5.2: Geometric Model Iteration 1 (Left) and Iteration 2 (Right) by Dylan Covell

31

This cycle of refining the CAD model continues first with focus on adding more

hardware and then structural detail to the model. This gradual process aims to incorporate all

anticipated components and planning for future expansion while considering cable management,

fastener placement, and how to assemble the components.

Analyses are conducted with Finite Element Analysis (FEA) to decrease mass where

possible and validate the designs ability to facilitate operation in several worse case scenarios.

Multidisciplinary studies of the systems feasibility were conducted in parallel to system synthesis

with emphasis on manufacturability and serviceability. The design from all of these inputs

resulted in the manufacturable model seen in Figure 5.4 below.

Figure 5.3: Visualization of FEA Analyses in Solidworks by Gio Molin

Figure 5.4: Manufacturable Model by Dylan Covell, Trevor Smith, and Gio Molin

The completion of the manufacturable model and sufficient digital validation of the

systems to fulfill the technical requirement has signaled the transition to the manufacturing,

integration, and testing phase. A majority of the custom mechanical components were waterjet

thanks to the consideration of manufacturability in early steps. This combination of easy to make

parts with fastening methods that use other parts as reference ensures good fitment. Further

32

integration of electronics with this simple chassis quickly filled the internal volume and leaving

room for additional components in earlier steps made installation and rearrangement of

components in these compartments manageable. This is the resulting operational prototype of the

UGV, called “Rhino”, is shown in Figure 5.5 below and concludes the first pass of the proposed

design methodology.

Figure 5.5: Initial Prototype Assembly by Dylan Covell and Jonas Bredu

Testing and integration of this system continued past this initial assembly. Reassessing

the task and the technical requirements with more knowledge of the system greatly benefited the

maturity and qualities of the system. This bottom-up feedback led to new components being

added or exchanged to better achieve those goals. A stronger power management system was

introduced to handle the current draw of the motors. The original power management solution

buckled under the load of the motors. Motors with a higher gear ratio were acquired to better

scale slopes under the system’s weight while still achieving reasonable speeds. The addition of

charging ports for the batteries, improved camera systems, and a smaller computer motherboard

were quality of life improvements implemented in this stage. The modularity of the UGV system

made this iteration of subsystem components manageable.

33

Figure 5.6: Integrated UGV Prototype by IRL Lab, Jonas Bredu, Dylan Covell, Henry Vos, and

Chris Tatsch, UAV Prototype by FARO Lab, Bernardo Martinez, Rogerio Lima, and Jeremy

Rathjen

5.3. Results

Currently the Rhino UGV and “OxPecker” UAV are to continue testing at the mine

facility. This testing will provide feedback to further mature the system performance. Future

integration of the two systems will bring the project's original goal to reality.

As seen from the proposed design process detailed thus far, the Rhino UGV has matured

very quickly over the course of its project life. This repetitive assessment and validation of the

system have emphasized where Rhino needed improvement. Modeling and calculations only

capture so much detail in their evaluation of the design. A lot of learning is done through these

prototypes. Alterations to the project’s qualities and definitions are a sign of experience. This

proposed design method supplies opportunities to conduct this reassessment at times where

significant experience has been accrued. Future applications of this method should strive to

complete their first prototype before moving on to this reassessment phase to better maximize the

improvements made between iterations.

34

6. Case Study #3: Simple Robot System Design and

Bottom-up Control Software

6.1. Introduction

The WVU Interactive Robotics Laboratory (IRL) has developed a swarm-of-one platform

nicknamed “Loopy”. The objective of this system is to study bottom-up methods in design and

bottom-up methods of swarm control. These two concepts are heavily related in the sense that

both definitions of bottom-up take in environmental stimuli to guide the decision making

process. Whether that stimuli is driving a design decision, or the action a robot is to take next. It

is difficult to begin designing a bottom up system from scratch. As a result, a modular design

utilizing repetitive units and a bottom-up control software enable the formation of simple

designs. This robot system is composed of 36 Dynamixel servos configured in a 2D closed loop.

Although these servos are all controlled from a single computer, these servos operate as if they

can only communicate with their adjacent neighbors. This allows each servo to function as

independent agents with only local interactions. A decentralized system relies on environmental

and agent interactions to determine system behavior. This exploration of swarm interactions in

design is realized through shape matching. Bottom-up shape matching relies on agreement

between units to operate effectively and reach the global goal shape provided by the user. This

case study focuses on an extremely simple system design to provide more focus on the software

side of robotic system development.

6.2. Design Process

This project began with the goal of exploring the control of decentralized swarms with

simple connections. It was clear from this requirement that the mechanical system needed to be

composed of many simple robots. Single degree of freedom (DOF) robots are a perfect fit for

this simple agent requirement. These servos need to gather information to feed the control

algorithm with external influences. The sensor that first comes to mind are absolute encoders for

position feedback. There is also a need for some means of monitoring the load on a servo due to

the rigid connections and risk for lack of cooperative movement occuring. These servos also

need to be relatively easy to work with in order to promote progress in the system’s

development. These three criteria were sufficiently fulfilled with the Dynamixel servos with

ample sensors and software support.

System structure of these servos also needed to remain simple to keep the software

control simplified and in focus. This decentralized swarm system can better demonstrate its

potential when the structure is difficult to control with typical inverse kinematics and

mathematical modeling. This complex agent interaction while remaining overall simple in

structure had several designs considered. A 2D sheet of hexagons, like graphene, would be very

difficult to control with inverse kinematics, but its overall construction quickly became too

complicated as the idea was explored. An alternative and much simpler solution was found with

35

a simple closed loop. This closed 2D chain effectively puts all of these servos in parallel and in

series. This complex interaction is even more difficult to generate inverse kinematic models of

when there are many redundant joints in the loop. Thirty six of these servos in this loop fulfilled

the simple construction and simple interactions requirement while providing a system structure

that benefits from decentralized control.

There needs to be an experiment, or achievable goal, to apply this decentralized and

rigidly connected swarm. There are several options considered for this case study. One

promising experiment focusing on locomotion on a non-linear friction surface. This gives ample

opportunity for unintended behaviors to emerge, but has many risks revolving around that

friction performance. Another experiment option is shape matching. This has been an

experimental application for robotic swarms before [61], and this is relatively lower risk due to

relying on the servos encoders and integrated load sensors. The user provides a goal shape for

the system to pursue in this case. This experiment assumes that the agents have perfect

communication with their neighbors and that they are synchronized. It is also assumed that all

agents within the swarm operate with the same rules and can only communicate with their direct

neighbors in the loop. This results in a single agent only being aware of its own angle and load

while communicating with adjacent units the error of their angle compared to the potential goal

shapes. This swarm experiment quickly gained favor due to its comparative simplicity and is

explained further in this paper.

There are many approaches to governing swarm behaviors, but the rigid agent

interactions in this 2D loop applied to the shape matching experiment made swarm consensus a

strong solution. These agreement protocols promote cooperation between agents to reach the

goal shape and reduce the strain on the servos. The decentralized agreement protocols considered

are relatively simple in nature. They can consist of taking the difference between two values

amongst the agents in discrete time or a differential equation for continuous time. This discrete

time agreement protocol makes the most senese due to this system does not prioritize speed and

takes time to think and process information. However, the average of these differences are taken

to apply this concept for multiple inputs.

The overall design and initial pursuit have now been solidified through the deliberation of

the hardware and software requirements according to the original pursuit of studying the

interactions of a decentralized robotic swarm with rigidly connected bodies. This resulting

concept of operations for the project concludes the first and second loop of the proposed design

method.

6.2.1. Hardware

The next loop of the proposed design process focuses on manufacturing and testing the

system. The general model of this system is a 2D loop of 36 servos. The Robotis Dynamixel

XL430-W250-T robotic servos are the preferred choice for this project due to their relatively low

cost when compared to others. These are all mechanically linked together via Dynamixel

brackets and wires to keep assembly simple. These servos require a 12V power supply, and one

36

with sufficient wattage to supply all 36 servos at peak was chosen for this system. All of these

servos are being controlled by one computer through U2D2 controllers. The testing of this 2D

loop, nicknamed “Loopy”, determined that only 30 of the 36 servos were controllable with one

controller in this assembly. A second controller was added to the system to resolve this issue.

The cables connecting to the controllers and power supply were lengthened to give the robot

room to operate.

Figure 6.1: Configured in an Example Goal Shape (Left) and Complete System (Right)

6.2.2. Hardware Interface

The manufacturing and testing loop continues with interfacing the hardware with the

computer and creating an easy means of testing and conducting experiments. MATLAB is the

programming language of choice to keep software development and data processing simple.

Initial control was achieved through examples and functions provided by the Dynamixel SDK

package enabling communication with the Robotis U2D2 [62,63]. Control for experiments are

done through the MATLAB Graphical User Interface (GUI) made for this robot through

MATLAB App Designer. There are several features considered for this GUI to provide adequate

feedback for troubleshooting and ease of conducting experiments. There needs to be a live feed

of relevant data from all servos at a glance to help the user keep track of each servos state. The

important values to monitor are the angle and load of the servo. The load is a measure of how

many amps the servo is consuming and estimating the force being applied by the servo as a ratio

of the maximum amperage these servos are set to consume. There also needs to be an easy way

to manipulate the system by the user to promote initial experimentation and testing before

algorithms are implemented. This is achieved via writing a goal angle to each servo and a switch

to “turn on, or off” the servo. Dynamixel calls this setting torque. This setting simply means that

when the servo is “on” it goes to the goal position until it is overloaded. These servos are limp

when in the torque “off” setting. These are the major initial features of the GUI and helped

manual manipulation of the servos.

This manual experimentation with the servos is only a stepping stone to the

implementation of the control algorithms. The code of these control algorithms utilize the

37

functions and commands learned through the manual control portion of the GUI. There are some

essential features needed to support rapid experimentation and data collection with these

algorithms in the future. An interpretation of the system's shape to provide feedback to the

operator during testing is nice to have, but also makes screen captures of the GUI more

beneficial. Being able to save the data of the decisions made by the control algorithms is

essential to allow for interpretation of the data after the experiment. The ability to save new goal

shapes is also beneficial for testing and experimentation to better validate the algorithm’s

performance. Being able to reboot servos is also needed, as this resets their overloaded state and

restores operation. The other major feature of the GUI is to turn on, or off, control algorithms

easily. For example, writing the goal positions directly from the goal shape can provide easy

validation of the algorithm’s ability to converge to a solution over time. This can be done with

two switches, one is able to turn on and off this direct command and then the other for the

control algorithm being tested.

The combination of these features outlined in this design of the GUI greatly enables

testing the system prior to the implementation of the bottom-up controls and can help validate

considerations that need to be made in the controls. There have also been several quality of life

features to increase the rate of experimentation. This resulting GUI is shown in the Figure 6.2

below.

Figure 6.2: MATLAB GUI

6.2.3. Bottom-up Shape Matching Control Algorithm

The shape matching experiment entails that the system of independent servo agents are

working together to progressively form the provided goal shape while minimizing the change in

angle for the overall system. Breaking down this goal further, this means the system will

38

converge to the goal shape in different orientations due to the proximity to the goal angles. Each

of these different orientations will be called formations. There are 36 possible formations for the

system to select and act on. This shape matching task can be accomplished with the assumption

that each agent is aware of all possible formations, its own angle in degrees (θ) and load as a

percentage of the servo’s maximum (γ), and is only able to communicate with its direct

neighbors in the loop. Agents communicate their proximity to the 36 possible formations based

on their own angle to neighboring units, called “Self Error”.

Each servo measures their angle (θ) in degrees to determine the Present Position (𝑃, 𝜃𝑃)

and compares it to all 36 Goal Positions (𝐺, 𝜃𝐺) in degrees. This difference is used as an error (ε)

for each servo (K). This difference between the Present and Goal positions is called a “Self

Error” (𝑆, 𝜀𝐾
𝑆). This Self Error is the Present Position subtracted from the Goal Position and

divided by 360 in Equation 6.1, a difference of angle with no units. This results in values ranging

between 0 and 1, where 0 is a complete to the Goal Position. In this specific case, a Goal Shape

is given by the user. While the Present Position is read from the servo at each time step.

Inputs:

Robot #: 𝐾 = [1, 2, … , 36] Goal Shape (Degrees): 𝜃𝐺 = [𝜃1
𝐺 , 𝜃2

𝐺 , … , 𝜃36
𝐺]

Present Position (Degrees): 𝜃𝑃 = [𝜃1
𝑃, 𝜃2

𝑃, … , 𝜃36
𝑃] Present Load (%): 𝛾 = [𝛾1, 𝛾2, … , 𝛾36]

Step 1: Self Error (𝜀𝐾
𝑆) (36 Calculations per servo)

𝜀𝐾
𝑆 =

[𝜃𝐾
𝐺−𝜃𝐾

𝑃]

360
 𝜀1

𝑆 = [𝜀1
𝑆(1)

, 𝜀1
𝑆(2)

, … , 𝜀1
𝑆(36)

] (6.1)

These local observations of error are communicated to neighboring units. These errors

are summed together to gather how well the cluster of three servos fit in the 36 possible

solutions. This summation generates a “Local Error” (𝑳, 𝜺𝑲
𝑳) for all 36 clusters around the loop

in Equation 6.2. This Local Error is an estimate of the servo’s global formation based on local

information. The red circle on the left of Figure 6.3 below represents a single cluster of three

servos. There are 3 clusters shown in the same figure below. Here 2 servos within a given cluster

are observed to be shared between neighboring clusters.

Step 2: Local Error (𝜀𝐾
𝐿) (36 Calculations per servo)

𝜀𝐾
𝐿 = [𝜀𝐾−1

𝑆 + 𝜀𝐾
𝑆 + 𝜀𝐾+1

𝑆] 𝜀1
𝐿 = [𝜀1

𝐿(1)
, 𝜀1

𝐿(2)
, … , 𝜀1

𝐿(36)
] (6.2)

e.g. 𝜀1
𝐿(15)

= [𝜀36
𝑆(15)

+ 𝜀1
𝑆(15)

+ 𝜀2
𝑆(15)

]

Figure 6.3: Single Servo Cluster (Left) and Three Servo Clusters in Loopy System (Right)

39

These units will use a decentralized consensus algorithm to reach an agreement of what is

the best formation from these Local Errors. An average consensus algorithm is used for this

application due to its ability to take in multiple information inputs and generate a single output

[47]. This average consensus is generated each time step for 500 iterations. This number of

iterations was determined experimentally. Where each servo takes the summation of these Local

Errors (𝐿, 𝜀𝐾
𝐿) for itself and its neighbors in a cluster of 3 to create an “Average Local Error”

(𝑳, 𝜺𝑲
𝑳) in Equation 6.3 below.

Step 3: Average of Local Errors (𝜀𝐾
𝐿) (36 Calculations per servo)

𝜀𝑲
𝑳 =

[𝜀𝐾−1
𝐿 +𝜀𝐾

𝐿 +𝜀𝐾+1
𝐿]

3
 (6.3)

This Average Local Error is intended to replace the Local Error after each iteration. This

Average Local Error is not applied to replace the actual Local Error until after iteration has

concluded. This is to avoid giving bias to neighboring servos when they do their calculations, as

these occur sequentially.

During these 500 iterations, the identity of which formation has the least error for each

servo is documented as a means to track the system’s performance. The “Iteration Number” (t) is

a means of keeping track of the “Minimum Local Error” (I, 𝐼𝐾
𝑡) from Equation 6.4 throughout

these iterations.

Step 4: Minimum Local Error (1 Calculation per servo)

𝐼𝐾
𝑡 = 𝑚𝑖𝑛 𝜀𝐾

𝐿 𝐼𝐾
𝑡 = [𝐼1

𝑡 , 𝐼2
𝑡 , … , 𝐼36

𝑡] (6.4)

A Target Position in degrees(𝑇, 𝜃𝑇) is selected for each servo after finishing these

iterations and finally cataloging which formation to pursue. Equation 6.5 simply pulls the

position from the provided Goal Positions (𝐺, 𝜃𝐺) according to the Minimum Local Error (I, 𝐼𝐾
𝑡)

and provides it for the servo to reference.

Step 5: Target Position (1 Calculation per servo)

𝜃𝐾
𝑇 = 𝜃

𝐼𝐾
𝑡

𝐺 𝜃𝐾
𝑇 = [𝜃1

𝑇 , 𝜃2
𝑇 , … , 𝜃36

𝑇] (6.5)

After declaring a Target Position (𝜃𝑇), a step is generated towards that Target from the

Present Position otherwise called “New Position” (𝜃𝑃+1), in the logic below.This allows the

servo to progressively get closer to the Target Position, and avoid overloading the system’s

servos. Currently a step is 100 ticks of the 4096 position encoder, equal to 8.8 degrees, or less.

Step 6: Generate Step Towards Target Pose (1 Calculation per servo)

if 𝜃𝑇 − 𝜃𝑃 > 8.8

40

𝜃𝑃+1= 𝜃𝑃 + 8.8

elseif 𝜃𝑇 − 𝜃𝑃 < -8.8

𝜃𝑃+1= 𝜃𝑃 - 8.8

elseif 𝜃𝑇 − 𝜃𝑃 < 8.8 and 𝜃𝑇 − 𝜃𝑃 ≥ 0

𝜃𝑃+1= 𝜃𝑇 − 𝜃𝑃

elseif 𝜃𝑇 − 𝜃𝑃 > -8.8 and 𝜃𝑇 − 𝜃𝑃 < 0

𝜃𝑃+1= −(𝜃𝑇 − 𝜃𝑃)

end

The system only moves to the New Positions once all are generated, as shown in

Equation 6.6.

Step 7: Step Towards Target Pose (1 Calculation per servo)

𝜃𝑃= 𝜃𝑃+1 (6.6)

Finally the system determines if it has met the conditions to reach a “Finish” state. This

occurs when a servo has had the same Target Position for 10 time steps, and is tracked through a

variable called “finish”. When this occurs, the servo turns off its “Torque”, or the ability for it to

exert force. This essentially renders the servo passive, and any disturbance will cause it to turn

back on and continue the process of stepping back towards its goal. This logic gate is represented

in the block diagram figure below.

Step 8: Decide to “Finish”

Figure 6.4: Block Diagram of Logic for Step 8

Now the steps outlined repeat indefinitely. This feature allows the system to reduce strain

on the servos while continuously maintaining formation. This flow of the steps above is

illustrated in Figure 6.5 below.

41

Figure 6.5: Block Diagram of Bottom-up Shape Matching Control Algorithm

6.3. Results

The hybrid design process utilized in this case study has provided an excellent means of

determining a simple system and experiment to explore bottom-up control in application. This

robot has demonstrated the ability to fulfill the needs of the shape matching experiment, and

provide demonstration of swarm interactions in Figure 6.6. Further exploration of bottom-up

control in robotics is needed due to the increased application of high degree of freedom systems,

and systems with redundant degrees of freedom for increased robustness. This robot could stand

to go through more iterations of refinement of the hybrid design method in future works to

explore this method of control. Potential increasingly difficult bottom-up control applications

include tasks like decentralized locomotion, environment exploration, or interactive design tool

experiments.

In these future experiments, the proposed hybrid design method should be employed to

reassess the structure of this swarm system. The repetitiveness of this method is necessary to

establish properties that improve the quality and speed at which experiments can be conducted.

These new iterations of the proposed method should progress quickly as compared to the first

iteration shown in this case study. Future applications of this method should aim to have a well

defined system objective to provide more direction to the definition of system requirements and

efficiently narrow down potential solutions in trade studies.

42

Figure 6.6: Progression from Random Start to Sample Goal Shape over 6 Steps, Step 1 Top Left

to Step 6 Bottom Right

43

7. Conclusion
The proposed design method’s flexibility has been demonstrated over several

applications to real robots and has shown promising results for the small development teams seen

in academia. In the first case study, the decision to apply the modeling-analysis loop in parallel

with the manufacturing-integration loop did provide valuable feedback to complicated designs

with risks. However, this also significantly complicated the further integration of subsequent

systems and future application of this parallel method should only be applied to either narrowly

defined systems, or projects with accelerated life cycles. The second case study emphasized the

importance of iteration in product design. A significant amount of learning is accomplished

through prototypes. The design team’s experience is demonstrated through component additions

and revisions conducted throughout a project. Future applications of this method will greatly

benefit from completing a first functional prototype before beginning the next iteration. This

time invested in the prototype will further inform and refine future works. The third case study

showed the application of the proposed design method to the software side of robot design. This

project did well to explore bottom-up control, but further improvements can elevate this system

to a robotic design tool. Design teams employing this method in the future need to define their

system objectives well in order to provide good direction to the projects’ conception and

therefore better narrow down potential solutions.

The culmination of this work has provided a few examples of systematic robot design,

but this method is encouraged to be applied to more projects to further validate its effectiveness.

For example, this design method was shaped by the experience from the case studies in this

thesis and future application of this methodology should attempt to rigidly adhere to the

proposed design method to validate its structure. Further studies may also include a scientific

validation of this design approach through the application of this method by many separate

design teams composed of diverse skill sets with the same problem. This experiment looks to see

if teams produce similar results to validate this method's systematic design method and its ability

to guide inexperienced engineers.

The application of this proposed design method in academia promotes the use of

systematic design methods with clear periods of feedback. This incorporation of bottom-up input

into the top-down design synthesis can improve the rate at which a system matures. The

repetition of these design loops provides opportunities for the design team to apply lessons

learned and encourages further removal of human bias from design. The work flow and

examples of this method in this work leave little to be interpreted. This provides a

comprehensible baseline for new engineers to work with. Continued practice of this method

promotes the growth of inexperienced engineers in a way that better accommodates the needs of

industry.

Extensions of this thesis can further apply the proposed design approach to robotic

system design for more validation and verification of its methods. Additionally, the case studies

seen in this thesis will continue to progress as part of their own projects. A future update of these

developments guided by the proposed design process can provide a more complete picture of

44

these examples for inexperienced engineers and help validate the approaches explored in this

thesis.

45

References
1. Roughgarden, J. (1979). Theory of Population Genetics and Evolutionary Ecology: An

Introduction. Macmillan.

2. Crespi, V., Galstyan, A., and Lerman, K. (2008). Top-down vs bottom-up methodologies

in multi-agent system design - Autonomous Robots. SpringerLink. Retrieved from

https://doi.org/10.1007/s10514-007-9080-5

3. Böhringer, C., and Rutherford, T. F. (2007). Combining bottom-up and top-down. Energy

Economics. Retrieved from

https://www.sciencedirect.com/science/article/pii/S014098830700059X

4. Kahn, K. B. (1998). Revisiting Top-Down Versus Bottom-Up Forecasting. ProQuest.

Retrieved from https://www.proquest.com/docview/226914424

5. Böhringer, C., and Rutherford, T. F. (2007). Combining Bottom-Up and Top-Down.

Energy Economics. Retrieved from

https://www.sciencedirect.com/science/article/pii/S014098830700059X

6. Sabatier, P. A. (1986). Top-down and Bottom-up Approaches to Implementation

Research: A Critical Analysis and Suggested Synthesis. JSTOR. Retrieved from

https://www.jstor.org/stable/pdf/3998354.pdf

7. Stokes, D., Matthen, M., Biggs, S., and Shea, N. (2017). Distinguishing Top-Down from

Bottom-Up Effects. In Perception and its modalities (pp. 73–94). essay, Oxford

University Press.

8. Fritz, B. R., Timmerman, L. E., Daringer, N. M., Leonard, J. N., andamp; Jewett, M. C.

(2010). Biology by Design: From Top to Bottom and Back. Journal of Biomedicine and

Biotechnology, 2010, 1–11. Retrieved from https://doi.org/10.1155/2010/232016

9. Birkhofer, H., Jänsch, J., and Kloberdanz, H. (2005). An extensive and detailed view of

the application of design methods and methodology in industry. In DS 35: Proceedings

ICED 05, the 15th International Conference on Engineering Design, Melbourne,

Australia, 15.-18.08. 2005 (pp. 276-277).

10. Engineering Accreditation Commission. (2018). Criteria for Accrediting Engineering

Programs, 2019 – 2020. ABET. Retrieved from

https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-

engineering-programs-2019-2020/#definitions

11. Haik, Y., Sivaloganathan, S., and M., S. T. M. (2018). Engineering Design Process.

Cengage Learning.

12. Blessing, L., and Gericke, K. (2011). Comparisons of design methodologies and process

models across disciplines: A literature review Research Gate. Retrieved from

https://www.researchgate.net/publication/237049562

13. Howard, T. J.; Culley, S. J.; Dekoninck, E. (2008): Describing the creative design

process by the integration of engineering design and cognitive psychology literature. In

Design Studies 29 (4), pp. 160–180.

https://doi.org/10.1007/s10514-007-9080-5
https://doi.org/10.1155/2010/232016

46

14. Lawson, B. (2006). How designers think the design process demystified. Elsevier

Architectural Press.

15. Tomiyama, Tetsuo and Gu, P. and Jin, Yan and Lutters, Eric and Kind, Christian and

Kimura, Fumihiko. (2009). Design methodologies: Industrial and educational

applications. CIRP Annals-Manufacturing Technology. 58. 543-565.

10.1016/j.cirp.2009.09.003.

16. VDI. (1993). VDI 2221: Systematic Approach to the Development and Design of

Technical Systems and Products. Beuth Verlag.

17. Boehm, B. W. (1988). A Spiral Model of Software Development and Enhancement.

TRW Defense Systems Group.

18. Forsberg, Kevin and Mooz, H.. (1992). The Relationship of System Engineering to the

Project Cycle. Engineering Management Journal. 4. 36-43.

10.1080/10429247.1992.11414684.

19. Eckert, C. M.; Clarkson, P. J. (2005). The reality of design. In P. J. Clarkson, C. M.

Eckert (Eds.): Design Process Improvement A review of current practice. London, pp. 1–

29.

20. Gausemeier, J., and Moehringer, S. (2003). NEW GUIDELINE VDI 2206 – A FLEXIBLE

PROCEDURE MODEL FOR THE DESIGN OF MECHATRONIC SYSTEMS. ICED23 -

24th International Conference on Engineering Design. Retrieved May 12, 2022, from

https://iced.designsociety.org/publication/23949/

21. National Aeronautics and Space Administration. (2017). NASA Systems Engineering

Handbook. NASA. Retrieved from

https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handbook

_0.pdf

22. National Aeronautics and Space Administration. (2006). NPR 7123.1 Systems

Engineering Procedural Requirements. NASA. Retrieved from

https://nodis3.gsfc.nasa.gov/displayCA.cfm?Internal_ID=N_PR_7123_0001_andpage_na

me=main

23. National Aeronautics and Space Administration. (2006). NPR 7123.1 - Chapter 3.

NASA. Retrieved from

https://nodis3.gsfc.nasa.gov/displayCA.cfm?Internal_ID=N_PR_7123_0001_andpage_na

me=Chapter3#_Toc119904307

24. Gericke, K., and Blessing, L. (2011). COMPARISONS OF DESIGN METHODOLOGIES

AND PROCESS MODELS ACROSS DOMAINS: A LITERATURE REVIEW. The Design

Society - a worldwide community. Retrieved from

https://www.designsociety.org/publication/30438/COMPARISONS+OF+DESIGN+MET

HODOLOGIES+AND+PROCESS+MODELS+ACROSS+DOMAINS%3A+A+LITERA

TURE+REVIEW

25. Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., and Saleem, J.

(2013). Engineering Design Processes: A Comparison of Students and Expert

https://iced.designsociety.org/publication/23949/

47

Practitioners. Wiley Online Library. Retrieved from

https://onlinelibrary.wiley.com/doi/10.1002/j.2168-9830.2007.tb00945.x

26. Lehtonen, T., Juuti, T., Oja, H., Suistoranta, S., Pulkkinen, A., and Riitahuhta, A. (2011).

A FRAMEWORK FOR DEVELOPING VIABLE DESIGN METHODOLOGIES FOR

INDUSTRY . The Design Society. Retrieved from

https://www.designsociety.org/publication/30439/A+FRAMEWORK+FOR+DEVELOPI

NG+VIABLE+DESIGN+METHODOLOGIES+FOR+INDUSTRY

27. Boston Dynamics. (2015). Introducing Spot Classic (previously Spot). YouTube.

Retrieved from https://www.youtube.com/watch?v=M8YjvHYbZ9w

28. Boston Dynamics. (2016). Introducing Spot (previously SpotMini). YouTube. Retrieved

from https://www.youtube.com/watch?v=tf7IEVTDjng

29. Goldberg, D. E., and Samtani, M. P. (1986). Engineering Optimization Via Genetic

Algorithm. cedb.asce.org. Retrieved from

https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0047877

30. Baldominos, A., Saez, Y., and Isasi, P. (2019). On the automated, evolutionary design of

neural networks: past, present, and future. SpringerLink. Retrieved from

https://link.springer.com/article/10.1007/s00521-019-04160-6

31. Weile, D. S., and Michielssen, E. (1997). Genetic Algorithm Optimization Applied to

Electromagnetics: A Review. IEEE Xplore. Retrieved from

https://ieeexplore.ieee.org/abstract/document/558650

32. Burger, S. P., Jenkins, J. D., Huntington, S. C., and Perez-Arriaga, I. J. (2019). Why

Distributed? A Critical Review of the Tradeoffs Between Centralized and Decentralized

Resources. IEEE Xplore. Retrieved from

https://ieeexplore.ieee.org/abstract/document/8643507

33. Span.IO. (2022). A Smarter Electric Panel. Span. Retrieved from https://www.span.io/

34. Lumin. (2022). Lumin : Responsive Energy Management Platform. Lumin. Retrieved

from https://www.luminsmart.com/platform/smart-electrical-panel

35. Rudman, R., and Bruwer, R. (2016). Defining web 3.0: Opportunities and challenges.

The Electronic Library. Retrieved from

https://www.emerald.com/insight/content/doi/10.1108/EL-08-2014-

0140/full/pdf?title=defining-web-30-opportunities-and-challenges

36. Anderson, M. (2019). Exploring Decentralization: Blockchain Technology and Complex

Coordination. Journal of Design and Science. Retrieved from

https://jods.mitpress.mit.edu/pub/7vxemtm3/release/2

37. Kumar, V., Prorok, A., and Guerrero-Bonilla, L. (2017). Formations for Resilient Robot

Teams. IEEE Xplore. Retrieved from https://doi.org/10.1109/LRA.2017.2654550

38. Kumar, V., Saldaña, D., and Guerrero-Bonilla, L. (2018). Design guarantees for resilient

robot formations on lattices. IEEE Xplore. Retrieved from

https://doi.org/10.1109/LRA.2018.2881231

48

39. Lim, Q. W. (2019). How do multiplayer games sync their state? Part 1. Medium.

Retrieved from https://medium.com/@qingweilim/how-do-multiplayer-games-sync-their-

state-part-1-ab72d6a54043

40. Lim, Q. W. (2019). How do Multiplayer Game sync their state? Part 2. Medium.

Retrieved from https://medium.com/@qingweilim/how-do-multiplayer-game-sync-their-

state-part-2-d746fa303950

41. Eklund, P., Rusinowska, A., and de Swart, H. (2007). A consensus model of political

decision-making. Springer. Retrieved from

https://link.springer.com/content/pdf/10.1007/s10479-007-0249-2.pdf

42. Ren, W., Beard, R. W., and Atkins, E. M. (2007). Information Consensus in Multivehicle

Cooperative Control. IEEE Xplore. Retrieved from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=andarnumber=4140748andtag=1

43. Tanner, H. G., Pappas, G. J., and Kumar, V. (2004). Leader-to-Formation Stability. IEEE

Xplore. Retrieved from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=andarnumber=1303690

44. Mesbahi, M., and Egerstedt, M. (2010). Graph Theoretic Methods in Multiagent

Networks. Princeton University Press. Retrieved from

https://www.jstor.org/stable/j.ctt1287k9b

45. Li, Y., and Tan, C. (2019). A survey of the consensus for multi-agent systems. Taylor and

Francis Online. Retrieved from https://doi.org/10.1080/21642583.2019.1695689

46. Castanedo, F., Patricio, M. A., Garcia, J., and Molina, J. M. (2007). Bottom-Up/Top-

Down Coordination in a MultiAgent Visual Sensor Network. IEEE Xplore. Retrieved

from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=andarnumber=4425292

47. Kriegleder, M., Oung, R., and D'Andrea, R. (2013). Asynchronous Implementation of a

Distributed Average Consensus Algorithm. IEEE Xplore. Retrieved from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=andarnumber=6696598

48. Parker, C. A. C., and Zhang, H. (2009). Cooperative decision-making in decentralized

multiple-robot systems: The best-of-N problem. IEEE Xplore. Retrieved from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=andarnumber=4801702

49. National Aeronautics and Space Administration. (2022). Mars Sample Return Campaign.

NASA. Retrieved from https://mars.nasa.gov/msr/

50. Corum, J., and White, J. (2014). MARS CURIOSITY ROVER TRACKER. The New York

Times. Retrieved from

https://archive.nytimes.com/www.nytimes.com/interactive/science/space/mars-curiosity-

rover-tracker.html#sol665

51. National Aeronautics and Space Administration. (2022). NASA's Perseverance

Celebrates First Year on Mars by Learning to Run. NASA. Retrieved from

https://mars.nasa.gov/news/9134/nasas-perseverance-celebrates-first-year-on-mars-by-

learning-to-run/

49

52. National Aeronautics and Space Administration. (2008). Science Priorities for Mars

Sample Return. NASA JPL MEPAG. Retrieved from

https://mepag.jpl.nasa.gov/reports/ND-SAGreport_FINALb1.pdf

53. Golombek, M. P., Otero, R. E., Heverly, M. C., Ono, M., Willford, K. H., Rothrock, B.,

Milkovich, S., Almeida, E., Calef, F., Williams, N., Ashley, J., and Chen, A. (2017).

CHARACTERIZATION OF MARS ROVER 2020 PROSPECTIVE LANDING SITES

LEADING UP TO THE SECOND DOWNSELECTION. Universities Space Research

Association. Retrieved from https://www.hou.usra.edu/meetings/lpsc2017/pdf/2333.pdf

54. The Boeing Company. (1971). LUNAR ROVING VEHICLE

OPERATION$ HANDBOOK: CONTRACT NASB-25145. NASA. Retrieved from

https://www.hq.nasa.gov/alsj/lrvhand.html

55. Hedrick, G., Ohi, N., and Gu, Y. (2020). Terrain-Aware Path Planning and Map Update

for Mars Sample Return Mission. IEEE Xplore. Retrieved from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=andarnumber=9126145

56. Hedrick, G., Covell, D., and Gu, Y. (2020). IN-SITU TERRAIN ANALYSIS FOR

PLANETARY ROVERS. West Virginia University. Retrieved from

https://yugu.faculty.wvu.edu/files/d/432f8ea8-5dae-40e0-8665-

19944d772d54/instrumentation_slip_istvs__owner_gabrielle_.pdf

57. Kilic, C., Gross, J. N., Ohi, N., Watson, R., Strader, J., Swiger, T., Harper, S., andamp;

Gu, Y. (2019). Improved Planetary Rover Inertial Navigation and Wheel Odometry

Performance through Periodic Use of Zero-Type Constraints. IEEE Xplore. Retrieved

from https://ieeexplore.ieee.org/abstract/document/8967634

58. Kilic, C., Ohi, N., Gu, Y., and Gross, J. (2021). Slip-Based Autonomous ZUPT Through

Gaussian Process to Improve Planetary Rover Localization. IEEE Xplore. Retrieved

from https://ieeexplore.ieee.org/abstract/document/9387093

59. Samarakoon, K., Pereira, G., and Gross, J. (n.d.). Impact of the Trajectory on the

Performance of RGB-D SLAM Executed by a UAV in a Subterranean Environment.

ICUAS'22, 2022. Retrieved from

https://controls.papercept.net/conferences/scripts/abstract.pl?ConfID=325andNumber=13

1

60. Bendezu de la Cruz, M. A. (2021). Evaluation of LIDAR systems for rock mass

discontinuity identification in underground stone mines from 3D point cloud data. The

Research Repository @ WVU. Retrieved from

https://researchrepository.wvu.edu/etd/10243/

61. Nagpal, R., and Kavli, F. (2014). A self-organizing thousand-robot swarm. Wyss

Institute. Retrieved from https://wyss.harvard.edu/news/a-self-organizing-thousand-

robot-swarm/

62. ROBOTIS-GIT. (2016). Robotis Dynamixel SDK. GitHub. Retrieved from

https://github.com/ROBOTIS-GIT/DynamixelSDK

63. ROBOTIS. (2018). U2D2. ROBOTIS. Retrieved from https://www.robotis.us/u2d2/

https://ieeexplore.ieee.org/abstract/document/8967634

	Top-Down & Bottom-Up Approaches to Robot Design
	Recommended Citation

	tmp.1658440047.pdf.3LnOh

