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Abstract
Charge Dynamics of InAs Quantum Dots Under Resonant and Above-Band

Excitation

Gary Richard Lander

Research involving light-matter interactions in semiconductor nanostructures
has been an interesting topic of investigation for decades. Many systems have
been studied for not only probing fundamental physics of the solid state, but
also for direct development of technological advancements. Research regard-
ing self-assembled, epitaxially grown quantum dots (QDs) has proven to be
prominent in both regards. The development of a reliable, robust source for
the production of quantum bits to be utilized in quantum information protocols
is a leading venture in the world of condensed matter and solid-state physics.
Fluorescence from resonantly driven QDs is a promising candidate for the pro-
duction of single, indistinguishable photons to be utilized in quantum infor-
mation protocols, and the material/sample currently leading the research in re-
gards to this are indium-arsenide (InAs) QDs. However, a few obstacles exist
inhibiting InAs QDs’ ability to be an efficient and reliable source of single, in-
distinguishable photons. The root sources of these problems are mostly asso-
ciated with the dynamic electrical environment in the vicinity of the QDs. The
electrical environment is complex due to inevitable emergence of defects and
impurities in the bulk host material during epitaxial growth. The presence of
these defects results in a complicated network through which charges can mi-
grate around, into, and out of the QDs, resulting in time-dependent perturba-
tions to the electric potential by which QDs confine charge carriers. Inevitably,
this results in time-dependent fluctuations in the optical frequency of the emit-
ted fluorescence, and ultimately a broadening of the time-averaged absorption
and emission spectra, dubbed spectral diffusion. Additionally, blinking can oc-
cur, which is fluctuations of the fluorescence intensity on time scales that are
large relative to the lifetime of confined excited states. Both contribute to a loss
of applicability to use these samples as an efficient source of single, indistin-
guishable photons. The broadening of the time-averaged emission spectrum via
spectral diffusion results in a loss of indistinguishability amongst photons emit-
ted at different times, whereas blinking results in an abatement of a consistent



single photon source. Understanding the exact electrical environment in which
the QDs reside, as well as the complex environment through which carriers mi-
grate can help future implementation of both growth and excitation techniques
to minimize these undesirable effects. In this dissertation we explore the elec-
tric environment of our sample, the complex pathways through which carriers
migrate, and how the resulting charge dynamics affect the intensity and indis-
tinguishability of the emitted fluorescence from resonantly driven InAs QDs.
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1

Chapter 1

Sample Structure and Background
Information

1.1 Introduction

For the past few decades semiconductor quantum dots (QDs) have been a topic
of interest for not only the study of novel physics, but also have been imple-
mented in technological advancements. Fundamental physics has been probed
via experiments including their interaction with photonic cavities [1, 2], quan-
tum coupling in a quantum dot molecule [3–5], and observations of the ex-
change interaction of the nuclear spin reservoir with the QD spin [6, 7]. Research
regarding implementation of QDs into semiconductor heterostructures for illu-
mination purposes [8], such as in quantum dot light-emitting diodes (QLEDs)
in televisions [9], automobile lighting systems [10], and skin-mounted displays
to be utilized in the engineering of wearable electronics [11], have been thor-
oughly investigated. These heterostructures have potential to produce tighter
spectra for the core red, blue, and green primary combinations, resulting in
crisper images, as well as increased electrical efficiency when compared to stan-
dard LED arrays. A leading area of research regards QDs’ potential to be uti-
lized as a source of single, indistinguishable photons to create quantum bits and
be implemented into quantum information protocols. Significant progress has
been achieved in the past several years within the aforementioned field, includ-
ing the photonic quantum logic gate controlled via the coupling of a QD and
a nanocavity [12], QD spin entanglement through a spin-photon interface [13],
the coherent optical control of a single electron’s spin [14], as well as ultra-fast
single photon switching [15].

There exist many different types of quantum dots that are manufactured for



2 Chapter 1. Sample Structure and Background Information

different reasons. Colloidal QDs, which are synthesized from solutions, have
been being synthesized the longest. Typically, colloidal quantum dots are com-
posed of binary compounds such as cadmium selenide, cadmium sulfide, lead
selenide, indium arsenide, and indium phosphide [16, 17]. Nonthermal plasma
synthesis is one of the most popular gas-phase approaches for QD fabrication.
The size, shape, and composition are readily controlled in nonthermal plasma
[18]. Examples are germanium and silicon QDs [19]. Additionally, epitaxially
grown self-assembled QDs, such as the InAs QDs discussed in this dissertation,
are commonly synthesized. In regards to being a source for single, indistin-
guishable photons to be utilized in quantum information protocols, epitaxially
grown self-assembled QDs lie at the forefront. Due to their tight 3-dimensional
confinement, epitaxially grown self-assembled QDs allow for probing of specific
exciton bound states which emit single photons with very narrow line widths.
These kinds of quantum dots also are most easily incorporated into complex
photonic crystal nanostructures, enhancing the Purcell effect1 [21–25]. Such
qualities are attractive to the industrial community and thus have led to the de-
velopment of novel technologies, such as infrared single-photon detectors, and
quantum dot lasers [26].

All work discussed in this dissertation regards optical characterization of
self-assembled epitaxially grown InAs QDs. Due to the tight spatial confinement
of bound charges, resonant excitation of bound electronic transitions is a promi-
nent candidate to produce single, indistinguishable photons to be utilized for
quantum information protocols. However, challenges remain that inhibit these
QDs from being adequate photon sources for said protocols. Due to the nature
of epitaxial self-assembly, the QDs’ physical positioning, sizes, and inevitable
alloying throughout the sample have a degree of randomness [27]. The size and
alloying affects the precise resonant energy of the bound electronic transitions,
and thus the wavelength of the emitted fluorescence. The resulting ensemble of
QDs with different resonant energies allows addressing of specific QDs. How-
ever, dephasing of electron spin in the QD results in a relatively short spin co-
herence time, which restrains the time in which one may implement quantum
operations involving the electronic spin state [28]. The atoms throughout the
sample all have non-zero nuclear spin and those in the region around the QD

1The Purcell effect is enhancement of a quantum emitter’s spontaneous emission rate via
incorporation into a resonant cavity [20].
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produce a net nuclear spin in that region, the nuclear spin reservoir. Interactions
of the bound charges’ spins in the QD with the nuclear spin reservoir, as well
as charge fluctuations in the local environment cause the QD to emit photons of
slightly different frequencies at different times.

The interactions of the spin of the bound charges in the QD with the nuclear
spin reservoir is an ensemble effect described by a net magnetic field created
by all the magnetic moments within the nuclear spin reservoir, the Overhauser
field. The random fluctuations of the nuclear spins induce a time-dependency
of the Overhauser field, resulting in a dephasing of the bound charges’ spins.
One solution to this problem involves application of a strong magnetic field that
polarizes the nuclear spin reservoir, thus reducing the fluctuations of the Over-
hauser field in time. There are also optical techniques to implement that can
extend the coherence time on the order of microseconds, such as with a drag-
ging effect in which dynamical nuclear polarization aligns the nuclear spins [29,
30], and coherent population trapping which locks the nuclear spins [31].

The effect induced by the fluctuating local electric environment happens on
a slower timescale, roughly on the order of kilohertz [32]. The bound state en-
ergies in the QD fluctuate as charges migrate through the local environment,
resulting in a time-averaged broadening of the emission spectrum. This phe-
nomenon is called spectral diffusion [33–35]. Spectral diffusion destroys the
indistinguishability of subsequently emitted photons, which is crucial for the
photons to be implemented as quantum bits in quantum information protocols
[36–38]. Mechanisms that induce fluctuations of the local electrical environment
are Auger processes [39] and phonon-assisted migration of charge through local
defects states. Research has shown that these effects persist even under resonant
excitation, which is the most promising method by which single, indistinguish-
able photons may be produced [35, 39, 40]. Additionally, resonant excitation
often changes the charge state of the QD, resulting in a situation in which the ex-
citation laser is no longer resonant with the available charge transition, and the
QD fluorescence is quenched [41]. It has been known that application of a low-
power above-band laser creates charges in the local electrical environment that
can migrate to the QD, returning the initial charge state of which the resonant
laser is exciting [42]. However, the exact charging pathways and mechanisms
through which charge carriers migrate into and out of InAs QDs, including the
roles played by the bulk GaAs continuum states and the InAs wetting layer,
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are not well understood. Understanding the charge dynamics in InAs quantum
dots is crucial to help suppress these undesired effects. My more recent work
discussed in this dissertation involves studying the charge dynamics of InAs
QDs embedded in a planar micro-cavity under both resonant and above-band
excitation.

1.2 Growth of InAs Quantum Dots

The samples studied in this dissertation are composed of InAs QDs embedded
in a planar micro-cavity defined by two distributed Bragg reflectors (DBRs).
The QDs are made via molecular beam epitaxy (MBE) and Stranski-Krastanov
growth [43, 44] by Glenn Solomon of NIST, Gaithersburg. Molecular beam epi-
taxy is the physical vapor deposition technique that produces the highest purity
thin film heterostructures. Stranski-Krastanov growth involves a two-step pro-
cess. Initially, thin films of adsorbates, from one to several monolayers thick,
are grown layer-by-layer on a crystal substrate. The adsorbate material has a
slight lattice mismatch to that of the substrate, which induces locales of high
and low strain. After a certain thickness that depends on the given strain and
chemical potential of the deposited film2, further vapor deposition of the adsor-
bate tends to nucleate above locales of minimum strain, because these locales
correspond to the lowest energy states. As further deposition of the adsorbate
ensues, pyramid-like islands of the adsorbate material tend to form. Figure 1.1
illustrates the growth process of InAs QDs, as well as images depicting Stranski-
Krastanov island growth and a schematic of the ultimate sample heterostruc-
ture.

Figure 1.2 depicts an archetypal schematic regarding heterostructure growth
via MBE. In order to allow for vapor deposition of high-purity InAs QDs, MBE
is performed in an ultra-high vacuum chamber held at approximately 10−11 to
10−10 torr. Four coil-heated effusion cells contain each adsorbate used to grow
the complete heterostructure. The effusion cells are heated such that the con-
tained elements sublime and the gaseous atoms can be shot and deposited onto
the sample wafer where they can interact, forming molecular bonds and crys-
talline structure. For instance, simultaneous deposition of gaseous Ga and As

2For InAs QDs, this thickness is approximately 1.6 monolayers of InAs deposited on top of a
GaAs substrate.
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FIGURE 1.1: (a-d) Illustrations showing Stranski-Krastanov
growth induced by the lattice mismatch between GaAs and InAs.
(a) First, a GaAs substrate is deposited. (b) An InAs wetting layer
is deposited on the GaAs substrate. InAs has a larger lattice con-
stant than GaAs. (c) The lattice mismatch between InAs and GaAs
induces locales of higher and lower strain. As InAs is further de-
posited, it tends to coalesce in locations above low strain between
the GaAs substrate and InAs wetting layer, forming pyramid-like
islands in those locations. (d) Finally, a GaAs capping layer is de-
posited, forming the QDs. (e) Depiction of the full sample het-
erostructure. The InAs wetting layer and QDs are embedded in the
middle of a planar GaAs waveguide that is defined by two DBR su-
perlattices. The thicknesses of all layers, besides the InAs wetting
layer and QDs3, are drawn to scale. λ0 = 930 nm corresponds to
the center wavelength of the fluorescence of the QD ensemble in
the sample. n1 = nGaAs = 3.45 and n2 = nAlAs = 2.98 are the

refractive indices of GaAs and AlAs at λ0, respectively.
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FIGURE 1.2: MBE chamber for growing InAs QDs. The high-
purity group-III and group-V materials are contained and heated
in the effusion cells (K-cell) which supply regulated atomic flows
to allow epitaxial growth. The is rotated during growth to allow
for even deposition across the sample. The liquid-nitrogen cooled
shrouds condense the unwanted evaporants and improve the vac-
uum status around the sample. The sample is monitored by the
mass spectrometer. RHEED provides real-time monitoring of the
topography of the sample surface during the deposition process.
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form crystalline GaAs, which has a zincblende crystal structure. The deposition
rate can be controlled by the temperature of the effusion cells, as well as opening
and closing of a shutter aperture at the effusion cells’ outputs. The growth pro-
cess is monitored via reflection high-energy electron diffraction (RHEED), where
the sample surface topography is measured via diffraction of a beam of high-
energy electrons reflected from the sample surface and detected by a CCD cam-
era. A mass spectrometer is also mounted to conduct spectroscopic measure-
ments of the sample as it’s grown. Additionally, the sample is allowed to spin
during vapor deposition to allow for more even distributions of the deposited
adsorbates than if it wasn’t spun, since the effusion cells are not mounted per-
pendicular to the sample surface. Lastly, the growth chamber is surrounded
by a liquid-N2-cooled shroud that acts as a sink in the vacuum for undesired
impurities.

During the growth of our sample, a wafer is spun that initially has a 001-
oriented GaAs substrate held at 550 K. Then, the first distributed Bragg reflector
(DBR) that, in conjunction with the GaAs substrate, ultimately acts as a back-
mirror is deposited. The DBR consists of a 20.5 layer superlattice composed of
alternating layers of AlAs and GaAs, which have differing indices of refraction,
and thus allow for reflections at the interfaces. Each layer of AlAs and GaAs is
deposited to a thickness corresponding to an optical path length that is a quar-
ter of the center Fabry-Perot mode4 wavelength of the to-be-deposited planar
microcavity. The alternating indices of refraction and correct thickness of each
layer allow for reflections from different interfaces to interfere constructively,
ultimately allowing for a high effective reflectivity from the DBR for a given
wavelength range. The bottom DBR in our sample is engineered to have an ef-
fective reflectivity of 99.7%. After the first DBR is deposited, the first half of the
GaAs spacer in which the QDs are embedded is deposited. Ultimately, the GaAs
spacer’s thickness is set to correspond to an optical path length in the growth di-
rection that is four times the center wavelength of the microcavity’s Fabry-Perot

4The Fabry-Perot interferometer is discussed in detail later in this chapter. Ultimately, the
QDs are embedded in a planar microcavity that acts as a Fabry-Perot interferometer. This not
only amplifies QD resonance fluorescence intensity due to coupling with the Fabry-Perot mode
of the cavity, but is designed to preferentially emit the QD fluorescence perpendicular to the
sample surface.
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mode. The same wavelength is set to match the center of the resonant wave-
lengths of the QD ensemble to be grown in the GaAs spacer, which is approx-
imately 930 nm. After the first half of the GaAs spacer is deposited, approxi-
mately 1.6 monolayers of InAs, called the wetting layer, is deposited. Further
deposition of InAs induces Stranski-Krastanov growth, resulting in pyramid-
like islands that become the QDs [27, 45]. After the growth of the InAs islands
are complete, the second half of the GaAs spacer is deposited and the QDs are
established. Finally, a 14 period DBR of alternating AlAs and GaAs is deposited,
resulting in an effective reflectivity of 97.4%. The lower reflectivity of the top
DBR encourages the fluorescence from the QDs to preferentially exit the sample
from the sample surface on the side with the smaller DBR, parallel to the growth
direction.

Transmission out of the Fabry-Perot cavity, through the top DBR, corre-
sponds to the resonant Fabry-Perot modes of the planar microcavity. The thick-
ness of the GaAs spacer d is grown to be 4λ0/nGaAs, where nGaAs is the refractive
index of GaAs and λ0 is the wavelength of the Fabry-Perot mode in the growth
direction5. However, there is some finite bandwidth of wavelengths that are
transmitted through the top DBR that is governed by the finesse of the Fabry-
Perot cavity. Constructive interference in the planar microcavity corresponds to
when the following condition is matched:

mλ = 2d cos θ, (1.1)

where m is an integer, λ is the wavelength of the reflected light, d is the opti-
cal path length of the resonant cavity, and θ is the angle of the reflected light
with respect to the normal of the reflective surface. Thus, different wavelengths
within the transmission bandwidth of the Fabry-Perot cavity exit the sample in
a conical shape, with the angle of the cone being dependent on the wavelength.

Ultimately, a piece of the sample wafer a few millimeters square is cleaved,
exposing the wave-guide from the side, into which the resonant excitation laser
is focused. Figure 1.3 depicts the resonant excitation and fluorescence collection
scheme. Once focused into the planar waveguide, the resonant excitation light

5The Fabry-Perot mode corresponds to constructive interference of reflected light waves, re-
sulting in a gain of the signal. Resonance of the Fabry-Perot mode is achieved when the optical
path length of the cavity is an integer number of half wavelengths of the reflected light. The
Fabry-Perot Interferometer is discussed in further detail later in this chapter.
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FIGURE 1.3: Diagram showing the resonant side-excitation and
fluorescence collection geometry. The resonant laser is focused
through the side of a cleaved edge of the sample, into the GaAs
planar waveguide. The fluorescence exits the heterostructure from
the sample surface parallel to the growth direction. The angu-
lar dependence of the resonant Fabry-Perot mode as a function of
wavelength induces the fluorescence to exit the sample in a conical
shape, which is collected by a large numerical aperture lens. Due
to propagation of the resonant laser through the waveguide, and
the collection of the QD fluorescence via a high numerical aperture
lens, the FOV of the collected fluorescence can be isolated from
the sample edge, minimizing collection of laser scattering from the

sample edge.
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FIGURE 1.4: Optical transitions between two states in an atom: (a)
absorption, (b) spontaneous emission, (c) and stimulated emission.

is contained in the growth direction by the DBRs, and thus propagates perpen-
dicular to the growth direction. Any laser light that is not absorbed exits the
waveguide on the other side of the sample. Due to the resonant laser propagat-
ing through the waveguide, and the use of a large numerical aperture lens to
collect the QD fluorescence, the location on the sample that the QD fluorescence
is collected and set incident onto the collection path can be almost entirely iso-
lated from any resonant laser scattering from the cleaved sample’s edge6. Thus,
as long as one achieves good coupling of the resonant laser into the waveguide,
and chooses a FOV relatively far from the sample edge, very little laser scatter-
ing falls onto the optical axis of the fluorescence collection path. This method, as
opposed to a con-focal, cross-polarized configuration [46], helps maximize the
collection efficiency of QD fluorescence, while minimizing collection of same-
wavelength laser scattering from the edge of the sample.

1.3 Light-Matter Interactions

This sections follows the developments presented by Fox [47] and Foot [48]. The
reader is referred to them for further details.

1.3.1 Einstein Coefficients

In the quantum theory of radiation, light is absorbed or emitted whenever an
atom transitions between two quantum states. Figure 1.4 depicts such a two-
level system and its interaction with a photon. Absorption occurs when the
atom absorbs a photon and is excited to a higher-energy state, while emission
occurs when an atom relaxes from a higher-energy state to a lower-energy state

6That is, the collection field of view (FOV) can be chosen to be significantly far away from the
sample’s edge where the resonant laser is focused into the waveguide.
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via emission of a photon. Conservation of energy requires the photon involved
with either absorption or emission to process to have an energy equal to the
difference in energies of the two quantum states:

h̄ω = E2 − E1, (1.2)

where E1 and E2 are the energies of the lower- and higher-energy states, respec-
tively, ω is the angular frequency of the photon, and h̄ is the Planck constant. We
will later use quantum mechanics to calculate emission and absorption rates, but
will start with a simple phenomenological analysis based on the Einstein coeffi-
cients for the transition.

Figure 1.4(a) depicts the process of absorption. The atom is excited from a
lower energy state to a higher energy state via absorbing a photon that carries
an energy equal to the difference in energy between the two atomic states. Fol-
lowing Einstein’s formulation, we can write the time dependence of the excited
state population as:

dN1

dt
= −Bω

12N1u(ω). (1.3)

where N1(t) is the time-dependent population of the lower-energy state, Bω
12 is

the Einstein absorption coefficient, and u(ω) is the spectral energy density of
the electromagnetic field at angular frequency ω. The subscript on Bω

12 signifies
the transition is from the lower energy state (1) to the higher energy state (2),
and the superscript signifies the absorption coefficient is for a particular angular
frequency, i.e. energy. The factor u(ω) allows us to address that the excited state
is only populated by absorption of the part of the incoming electromagnetic dis-
tribution with an angular frequency close to ω. Equation 1.3 may be considered
as the definition of the Einstein B coefficient.

When an atom is in an excited state, it has a tendency to energetically relax
into the ground state, losing its excess energy. During radiative relaxation, the
energy of the system is conserved via emission of a photon that carries an energy
equal to the energy difference of the excited and ground state, i.e. spontaneous
emission (Depicted in Fig. 1.4(b)). The rate of spontaneous emission is defined
by the lifetime of the excited state, which is related to the average time the atom
stays in the excited state. The Einstein A coefficient is defined as the probability
per unit time that the electron will drop from the excited state to the ground
state via emission of a photon. The photon emission rate is thus proportional
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to the population of the excited state and to the A coefficient for the transition.
For an ensemble of atoms, the time dependence for the number of atoms in the
excited state, N2, is:

dN2

dt
= −A21N2. (1.4)

The subscript on the A coefficient signifies the system starts in the excited state
(2) and ends in the ground state (1). The solution to the above differential equa-
tion is a simple exponential:

N2(t) = −N2(0)e−A21t ≡ N2(0)e−t/τ, (1.5)

where
τ =

1
A21

. (1.6)

τ is the radiative lifetime of the excited state. Equation 1.5 states that the pop-
ulation of the excited state decreases with exponential time dependence with a
time constant τ due to spontaneous emission.

Einstein realized there was a third process to complete the analysis of types of
optical transitions of a two-level system. Stimulated emission happens when the
incoming electromagnetic field induces an electronic transition from the higher
energy state to the lower energy state, inducing emission of a photon that car-
ries an energy equal to the difference in energies of the two states (Depicted in
Fig. 1.4(c)). The rate of stimulated emission is characterized by a second Ein-
stein B coefficient, B21. We can then write the differential equation for the rate of
change of the excited state due to stimulated emission as:

dN2

dt
= −Bω

21N2u(ω). (1.7)

Stimulated emission is a coherent quantum-mechanical effect in which the pho-
tons that induce emission and the emitted photons are in phase with each other.
Under continuous excitation, the total rate of change of population from the
excited state to the ground state is the sum of spontaneous and stimulated emis-
sion rates.

The three Einstein coefficients relate to each other in a way such that if one
knows the value of one coefficient, one can calculate the other two. We will fol-
low Einstein’s analysis to work out these relations. Consider a gas of N atoms
in a closed volume with black-body radiation at temperature T. We assume the
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atoms interact with the black-body radiation, which induces both absorption
and stimulated emission, and not with each other. We assume stimulated emis-
sion occurs at a rate governed by the Einstein A coefficient. When the atoms are
in thermal equilibrium with the surrounding black-body radiation, the transi-
tion rate from the lower-energy state to the higher-energy state via absorption
is equal to the transition rate from the higher-energy state to the lower-energy
state via spontaneous and stimulated emission, i.e. dN1

dt = dN2
dt . This leads to the

following relation:

Bω
12N1u(ω) = A21N2 + Bω

21N2u(ω). (1.8)

Due to the laws of thermodynamics, since the atoms are in thermal equilibrium
with the surrounding black-body radiation at temperature T, the ratio N2 to N1

is governed by Boltzmann’s law:

N2

N1
=

g2

g1
e−

h̄ω
kBT , (1.9)

where g1 and g2 are the degeneracies of the energy states 1 and 2, respectively,
and kB is the Boltzmann constant. The spectral energy density u(ω) of the black-
body radiation is given by Planck’s law:

u(ω) =
h̄ω3

π2c3
1

e
h̄ω

kBT − 1
. (1.10)

Dividing Eqn. 1.8 by N2 and inserting Eqns. 1.9 and 1.10 gives the following
relations for the Einstein coefficients:

A21 =
h̄ω3

π2c3 Bω
21, (1.11)

and
g1Bω

12 = g2Bω
21. (1.12)

From these relations we see that the probabilities for absorption and stimulated
emission are equal if the degeneracy of the two states are equal. If the degener-
acy of the higher-energy state is larger than that of the lower-energy state, then
absorption will be preferred over stimulated emission. While if the degeneracy
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of the lower-energy state is larger, stimulated emission will be preferred. Ad-
ditionally, we see that as the spontaneous emission rate increases, so does the
stimulated emission rate, and vice versa.

1.3.2 Radiative Transition Rates

Quantum dots are often referred to as ‘artificial atoms’. Due to their confine-
ment, only a small number of discrete energy states are available for bound elec-
trons and holes. Consequently, relaxation of the bound electrons and holes, or
excitons, results in photon emission that is similar to optical transitions observed
in atoms. Due to this similarity, we will discuss how quantum mechanics can
be used to model radiative transitions in atoms. Time-dependent perturbation
theory is used to calculate radiative transition rates from a quantum mechanical
approach. The rate of spontaneous emission is calculated using Fermi’s golden
rule, which describes state transition probabilities:

W1→2 =
2π

h̄
|M12|2g(h̄ω), (1.13)

where M12 is the matrix element for the transition from state 1 to state 2, and
g(h̄ω) = g(E) is the density of states of the final state. The number of final states
per unit volume that fall within an energy range of E and E + dE is g(E)dE.
In the case of transitions between discrete electron states within an atom, the
density of states of the final state is the density of photon states.

Consider the incoming field induces a perturbation, H′, to the Hamiltonian
of the system, which causes an electronic transition from state 1 to state 2. The
matrix element for this transition is given by:

M12 = ⟨2| H′ |1⟩ =
∫

ψ∗
2 H′ (⃗r)ψ1 d3⃗r (1.14)

where H′ is the perturbation to the Hamiltonian induced by the incident electro-
magnetic field, and ψ1(r) and ψ2(r) are the spatial wave functions of the initial
and final states, respectively. Of course, it’s more convenient to write this using
standard Dirac notation with bras and kets.

We will use a semi-classical approach, where the light will be treated classi-
cally. The incident electromagnetic field interacts with multipoles of the atom,
which corresponds to inducing different transitions in the atom. The Einstein
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A coefficient is greatest for the transition corresponding to the electromagnetic
field coupling with the electric dipole, and is orders of magnitude smaller for ev-
ery increase in mulitpolarity. Additionally, the magnetic interactions are orders
of magnitude weaker than their electric counterpart interactions7. Lastly, due
to the electrons’ small effective mass with respect to the protons’, we assume
only the electrons respond to the incoming electromagnetic field. Thus, we only
consider the response of the electronic states to the perturbation caused by the
interaction of the incoming light with the atom’s electric dipole. The perturba-
tion takes on the following form:

H′ (⃗r) = − p⃗ · E⃗, (1.15)

where p⃗ is the electric dipole of the atom, and E⃗ is the electric field of the incom-
ing light. The electric dipole between an electron at position r⃗ and nucleus at the
origin is:

p⃗ = −e⃗r. (1.16)

In Cartesian coordinates, the perturbation is then:

H′ = e(xEx + yEy + zEz). (1.17)

The wavelength of the incoming light is much larger than the size of the atom,
thus we can assume E⃗ is constant over the spatial span of the atom. Plugging
Eqn. 1.17 into 1.14 we get:

M12 = e
∫

ψ∗
2(xEx + yEy + zEz)ψ1 d3⃗r, (1.18)

which can be written more compactly as:

M12 = −µ⃗12 · E⃗, (1.19)

where
µ⃗12 = −e ⟨2| r⃗ |1⟩ (1.20)

is the dipole moment of the atom associated with the transition. The dipole

7That is, the light field interacts much more strongly with the electric dipole than it does with
the magnetic dipole of the atom.
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moment is the key physical parameter that determines the transition rates asso-
ciated with the electric dipole’s interaction with the electromagnetic field.

If the initial and final wave functions are known, Eqn. 1.19 can be used to
evaluate the matrix elements for particular transitions. The absorption transi-
tion rate per atom can be calculated with Fermi’s golden rule and equated to
the transition probability Bω

12u(ω) in Eqn. 1.3. The electric field amplitude can
be eliminated from the transition rate since the energy density is proportional
to |E|2, and the Einstein spontaneous emission and absorption coefficients for
unpolarized light of angular frequency ω can be written as:

Bω
12 =

π

3ϵ0h̄2 |⃗µ12|2, (1.21)

and

A21 =
ω3

3πϵ0h̄c3 |⃗µ12|2. (1.22)

1.3.3 Resonant Light-Atom Interactions

Preliminary Information

As in the previous section, we consider electronic transitions between a lower-
energy state and a higher-energy state via emission and absorption of a photon
with energy equal to the difference in energies between the two states8. We as-
sume excitations induced by part of the light field with frequencies far from the
natural frequency (off-resonance) to be negligible compared to the on-resonance
coupling.

We must also introduce the concept of coherent superposition states, and
how they differ from classical statistical mixtures, to understand the interac-
tion of an incident light field and an atom. Consider a two-level quantum sys-
tem, such as the two-level higher-energy state and lower-energy state we’ve dis-
cussed so far. In Dirac notation, we can write the wave function of the system
as:

|ψ⟩ = c1 |1⟩+ c2 |2⟩ , (1.23)

where |1⟩ and |2⟩ are the wave functions of state 1 and state 2, respectively. c1

and c2 are the wave function amplitude coefficients for states 1 and 2, where
upon measurement of the quantum state, the probability to find the system in

8That is, on-resonance with a natural frequency of the atom.
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state |n⟩ is |cn|2. The wave function amplitudes of any coherent superposition
state must be normalized:

∑
n
|cn|2 = 1. (1.24)

Consider a statistical mixture of N identical gas particles with N1 particles
in the lower-energy state and N2 particles in the higher-energy state. If we set
|c1|2 = N1/N and |c2|2 = N2/N, we would obtain the same results as if we
performed many measurements on the coherent superposition state given by
Eqn. 1.23. The main difference between the statistical mixture and the coher-
ent superposition state is that each individual particle of the statistical mixture
is thought to be in either state 1 or state 2 upon measurement of the system,
while in the coherent superposition state, every particle is in some percentage
of both state 1 and state 2 before measurement. It is upon measurement that the
wave function collapses into one of the constituent wave functions of the super-
position. Additionally, in the coherent superposition state, inference between
wave functions somewhat analogous to interference between classical waves is
possible, while it is not in the classical statistical mixture.

A convenient mathematical representation of an N-level system utilizes the
density matrix, ρ⃗, of which the elements are defined by:

ρij =
〈

cic∗j
〉

, (1.25)

where ci is the wave function amplitude for the ith quantum level of the N-
level system. The bracket symbol ⟨⟩ indicates an average ensemble value for a
system that contains many particles. The difference between a coherent super-
position state and a classical statistical mixture is manifested in the existence of
off-diagonal terms in the density matrix. In regards to a classical statistical mix-
ture, each individual particle will be in a given energy state. This corresponds
to each individual atom having the absolute value of one given amplitude coef-
ficient equal to unity, and the rest equal to zero. Thus, the off-diagonal terms of
the density matrix are all zero for a statistical mixture. However, in regards to a
coherent superposition state, individual particles have wave functions in which
all wave function amplitudes of the N-level system can be non-zero, resulting in
non-zero off-diagonal elements of the density matrix. We mention the density
matrix here for completeness, but will not expand upon it further due to it not
being utilized in the investigations discussed in this dissertation.
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Time-dependent Schrödinger Equation

We continue to consider a two-level system and its interaction with an incoming
electromagnetic field. The time-dependent Schrodinger equation is as follows:

ĤΨ = ih̄
∂Ψ
∂t

. (1.26)

We assume the incoming light is close to resonance with the transition, such that:

ω = ω0 + ∆ω, (1.27)

where
h̄ω0 = E2 − E1. (1.28)

En is the energy of state n, and it is assumed ∆ω is very small compared to ω0

(near-resonance).
The Hamiltonian can be broken up into a time-independent term and a time-

dependent term:
Ĥ = Ĥ0(⃗r) + V̂(t), (1.29)

where Ĥ0(⃗r) is the unperturbed Hamiltonian and V̂(t) is the perturbation in-
duced by the incoming light field. For a two-level system, the general solution
to the Schrödinger equation is:

Ψ(⃗r, t) = c1(t)ψ1(⃗r)e−E1t/h̄ + c2(t)ψ2(⃗r)e−E2t/h̄ (1.30)

where, as before, cn(t) is the amplitude coefficient of energy state n and ψn (⃗r) is
the spatial wave function corresponding to state n. Upon substituting Eqn. 1.30
into 1.26, application of some steps of algebra that I will omit here, utilizing
a trick by multiplying by ψ∗

1 , integrating over space, and application of the or-
thonormality of the eigenfunctions, we obtain a differential equation describing
the time-dependence of c1:

ċ1(t) = − i
h̄
(
c1(t)V11 + c2(t)V12e−iω0t), (1.31)

where
Vij(t) ≡ ⟨i| V̂(t) |j⟩ . (1.32)
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Using the same trick, but multiplying by ψ∗
2 instead of ψ∗

1 , we obtain the time-
dependence of c2:

ċ2(t) = − i
h̄
(
c1(t)V21eiω0t + c2(t)V22

)
. (1.33)

As previously stated, the perturbation is described by the interaction of the in-
coming electric field and the electric dipole of the atom:

V̂(t) = e⃗r · E⃗(t). (1.34)

We can choose the polarization of the incoming light to be polarized along an
arbitrary direction, say the x-direction:

E⃗(t) = E0 cos(ωt)x̂. (1.35)

The perturbation to the Hamiltonian then becomes:

V̂(t) = exE0 cos ωt =
exE0

2
(eiωt + e−iωt). (1.36)

We now introduce the electric dipole matrix element µij:

µij ≡ −e ⟨i| x |j⟩ . (1.37)

We can then write the perturbation matrix elements as:

Vij(t) = −E0

2
(eiωt + e−iωt)µij. (1.38)

The diagonal elements of µ⃗ are equal to zero since x is an odd parity operator and
the atomic states have either even or odd parity. Additionally, since the matrix
elements of the electric dipole represent measurable quantities, µ21 = µ∗

12 and
consequently µ21 = µ12. Finally, we introduce the Rabi frequency as:

ΩR = |µ12E0/h̄|. (1.39)
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In the end, we obtain a set of coupled differential equations describing the time
dependence of the wave function amplitude coefficients:

ċ1(t) =
iΩR

2
(ei(ω−ω0)t + e−i(ω+ω0)t)c2(t),

ċ2(t) =
iΩR

2
(e−i(ω−ω0)t + ei(ω+ω0)t)c1(t).

(1.40)

There are two regimes for which these differential equations can be solved: the
weak-field limit and the strong-field limit.

The weak-field regime applies to low-intensity light sources such as a black-
body lamp. In this regime, we assume the lamp is turned on at time t = 0
and the system initially starts out with its entire population in the lower-energy
state. The excited state is never significantly populated in the weak-field regime.
The probability of finding the atom in the higher-energy state 2 as a function of
times is9:

|c2(t)|2 =
π

ϵ0h̄2 µ2
12u(ω0)t. (1.41)

Here ϵ0 is the permittivity of free space and u(ω0) is the value of the excita-
tion spectral energy density at the resonant angular frequency. The transition
probability rate W1→2 in Eqn. 1.13 becomes:

Bω
12 =

π

3ϵ0h̄2 µ2
12. (1.42)

In the strong-field regime the higher-energy state is significantly populated.
This is the case under resonant excitation using laser light as the excitation
source. To start, we make the rotating wave approximation in which we can
neglect terms that oscillate at ±(ω + ω0), since the oscillations are fast com-
pared to those that oscillate at ±(ω − ω0), and thus average out to zero for long
times. If we consider the excitation source to be perfectly on-resonance, such
that ∆ω = 0, Eqn. 1.40 becomes:

ċ1(t) =
i
2

ΩRc2(t),

ċ2(t) =
i
2

ΩRc1(t).

9The following solution is reached by first considering that in the weak-field limit, c1(t) ≫
c2(t), such that c1(t) ≈ 1, setting c2(0) = 0, solving for c2(t) in Eqn. 1.40, and implementing the
rotating wave approximation.
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If we assume the system starts out entirely in the lower-energy state, i.e. c1(0) =
1 and c2(0) = 0, the solutions become sinusoidal oscillations:

c1(t) = cos(ΩRt/2),

c2(t) = i sin(ΩRt/2).
(1.43)

Upon measurement of the system, the time-dependence of the probabilities to
find the election in either the lower-energy or higher-energy states become:

|c1(t)|2 = cos2(ΩRt/2),

|c2(t)|2 = sin2(ΩRt/2).

One can see the electron oscillates between the lower-energy and higher-energy
states with a frequency of ΩR/2π. This oscillatory behavior in response to ap-
plication of a strong excitation field is called Rabi oscillations.

Under pulsed excitation, such as excitation using a pulsed Ti:Sapph laser
source, the electric field amplitude E0 varies with time, and consequently so
does the Rabi frequency. It becomes useful to define a dimensionless parameter,
the pulse area Θ:

Θ =
∣∣∣ µ12

h̄

∫ ∞

−∞
E0(t) dt

∣∣∣ . (1.44)

The pulse area is determined by the energy of the full pulse, which is propor-
tional to the integral of the the pulse intensity (or square of the electric field) as
a function of frequency. When the pulse area is equal to π, it’s called a π-pulse,
and completely converts the system from one state to the other. In other words,
if the system described is initially entirely in the lower-energy state, a π-pulse
will leave the system entirely in the higher-energy state and vice versa.

Damping

At low excitation powers, the Rabi oscillations will have a long period rela-
tive the radiative lifetime of the excited state. There are two classifications of
damping mechanisms for Rabi oscillations. First, spontaneous emission events
destroy the coherence of the electronic wave function, consequently causing a
damping of Rabi oscillations. These damping processes are called longitudinal
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relaxation, and are quantified by the time constant, T1. The value of T1 is gov-
erned by the lifetime of the excited state, which is dictated by both radiative and
non-radiate decay rates that bring the system out of the excited state to lower
energy state. If non-radiative processes are insignificant, the ultimate value of
T1 is dictated by radiative transitions to all possible lower-energy states.

There are other types of mechanisms related to dephasing processes. These
are called transverse relaxation and are quantified by the time constant, T2.
There exist possible events in which the electron in the excited state will undergo
elastic collisions which induce phase changes to the excited-state wave function,
but do not change the population of the excited state. These can include colli-
sions with other atoms or the walls of the container for gases, or interactions
with impurities/defects or phonons that induce electronic transitions. Induc-
ing a random phase to the wave function destroys effects which rely on phase
coherence, such as Rabi oscillations.

1.4 The Bloch Sphere

Although not used directly in my research, and thus not expanded upon in rich
detail in this dissertation, I would like to mention the convenience of using the
concept of the Bloch sphere to describe a two-level quantum state. The Bloch
sphere is depicted in Fig. 1.5. A pure state is represented by a vector starting
at the origin with a radius of unity. A Bloch vector pointing towards the south
pole of the Bloch sphere represents the system being entirely in the ground state
|Ψ⟩ = |0⟩, such as an InAs QD held at 4K before arrival of any excitation light.
A vector pointing straight to the north pole signifies the system is entirely in
the excited state |Ψ⟩ = |1⟩10. Quantum superpositions of the two states |Ψ⟩ =

c1 |0⟩ + c2 |1⟩ are represented by a vector with a latitude θ between 0 and π,
where a vector pointing along the equator (θ = π/2) implies c1 = c2 = 1/

√
2.

Of course, the coefficients c1 and c2 are complex numbers, where c2
1 + c2

2 = 1.
We can define c1 to be a real, positive number and the imaginary components
of the coefficients be incorporated into a phase ϕ between the two real parts of
the coefficients. The phase angle ϕ is represented by the longitudinal angle on
the Bloch sphere, and can have a value between 0 and 2π. Any pure state of the

10It’s arbitrary which pole is defined as |0⟩ and which as |1⟩. I think it more intuitive to define
the south pole as the system being entirely in the ground state.
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two-level quantum system can be written as11:

|Ψ⟩ = cos (θ/2) |0⟩+ eiϕ sin (θ/2) |1⟩ . (1.45)

A π-pulse mentioned in the previous section rotates θ by π, hence the name.
For any polarization state, the oscillatory term eiϕ will cause the Block vector to
precess about the z-axis as a function of time. Lastly, a mixed state is represented
by a Bloch vector with length less than unity, and a Bloch vector with length
greater than unity has no physical meaning. It is worth noting the potentially
useful generalized n-level Bloch vector [49]. Although a geometrical represen-
tation cannot be drawn for n-level systems with n > 2, the mathematics can still
be useful12. Often in an n-level system, certain optical transitions between given
states aren’t allowed. Prohibited transitions are represented mathematically by
rotations of the Bloch vector associated with those transitions being prohibited.

1.5 Spectral Line Characteristics

This section follows the development presented by Fox [47]. The spectrum
of radiation emitted during electronic transitions from a higher energy state
to a lower energy state in a two-level system are not delta functions in fre-
quency/wavelength, due to the finite lifetimes of any given transitions. There
are different mechanisms that can contribute to the exact width and shape of
the emission spectrum. The spectral lineshape gω(ω) describes the emission
spectrum’s shape. The center peak of the spectral lineshape ω0 is the optical fre-
quency associated with the on-resonance value of the excitation energy, i.e, the
energy difference between the higher and lower energy states of the transition:

ω0 =
(E2 − E1)

h̄
. (1.46)

The spectral lineshape is normalized as such:∫ ∞

0
gω(ω) dω = 1. (1.47)

11Note, the polar angle θ is conventionally measured with respect to the north pole of the
Bloch sphere, which is conventionally defined to represent |0⟩. I define the south pole of the
Bloch sphere as |0⟩, and θ is measured with respect to the south pole.

12For instance, an n = 3 system is represented by an 8-dimensional Bloch sphere.
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FIGURE 1.5: The Bloch sphere. The two-level quantum system
is represented by a vector |Ψ⟩ on a unit sphere. The system be-
ing entirely in the ground state |0⟩ is represented by a Bloch vector
pointing towards the south pole, while the system being entirely
in the excited state |1⟩ is represented by a Bloch vector pointing
towards the north pole. Any pure state that is a linear superpo-
sition of the ground state and excite state has a length of unity. θ
defines the relative magnitudes of the real part of the amplitude co-
efficients of the linear superposition. ϕ defines the complex phase
angle between the coefficients. Due to the two-level atom having
an intrinsic angular frequency, and in making the transformation to
the Block sphere representation, a Bloch vector will precess about
the vertical axis as a function of time. Mixed states are represented

by vectors with length less than unity.
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An important feature used to describe the lineshape is the full width at half
maximum (FWHM) ∆ω.

The two general classifications of types of spectral broadening are homo-
geneous and inhomogeneous broadening. Homogeneous broadening is some-
times referred to as ’natural broadening’. Homogeneous broadening affects each
emitting species in an environment equally, while inhomogeneous broadening
affects each one differently and is usually caused by inhomogeneities in the local
environment of the emitter(s), hence the name. A classic example of homoge-
neous broadening is caused by the finite lifetime of an electronic transition (life-
time broadening), which will be shown below to give the emission spectrum a
Lorentzian lineshape. On the other hand, the random fluctuations of the electri-
cal environment, such as the influence of nearby charge traps discussed in Chap-
ter 3, results in small fluctuations of the bound-state energies of the electrons
and holes in the QD, and hence fluctuations in center wavelength of the emitted
fluorescence. The charge traps are oriented stochastically about the sample and
their charge occupancy is time-dependent, resulting in a random jittering of the
color of the emitted fluorescence about some center value. This effect is called
spectral diffusion. In itself, the random jittering of the center wavelength of the
fluorescence about some mean value can in itself induce a Gaussian, Voigt13, or
broadened Lorentzian lineshape. Most homogeneous broadening mechanisms
result in Lorentzian lineshapes, whereas inhomogeneous broadening often leads
to Gaussian lineshapes. In the real world, often both types of broadening exist.
In the InAs QDs studied in this dissertation, a Lorentzian lineshape is induced
by the finite lifetime of the electronic transition, while the lineshape induced
solely by spectral diffusion is not well known, but often takes on a Voigt profile.

Lifetime (natural) broadening resulting in a Lorentzian lineshape is rather
simple to explain. The finite lifetime in a two-level quantum system leads to a
broadening of the emission spectrum in accordance with the energy-time uncer-
tainty principle:

∆E∆t ≥ h̄. (1.48)

Setting ∆t equal to the radiative lifetime τ, the resulting spectral width must
then satisfy:

∆ω =
∆E
h̄

≥ 1
τ.

(1.49)

13A Voigt profile is given by the convolution of a Lorentzian and a Gaussian profile.
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Equation 1.5 shows how the radiative lifetime τ induced by spontaneous emis-
sion takes on a decaying exponential form. The spontaneous emission can be
considered as a burst of light that decays exponentially with a time constant τ,
with maximum intensity at t = 0. The intensity as a function of time is sim-
ply I(t) = I(0)e−t/τ. The frequency profile of the intensity is naturally equal
to the Fourier transform of the temporal profile, which results in the spectral
lineshape:

g(ω) =
∆ω

2π

1(
ω − ω0

)2
+

(
∆ω/2

)2 , (1.50)

where the FWHM is:
∆ω =

1
τ

. (1.51)

Equation 1.50 is called a Lorentzian lineshape. Compared to a Gaussian, it is
tighter around the center peak, but its tails extend farther. The Lorentzian line-
shape is shown in Fig. 1.6.

We have shown that lifetime/natural broadening caused by spontaneous
emission results in a spectral lineshape that takes on a Lorentzian form. This
shape can be interpreted as being proportional to the probability distribution in
frequency space of measurable fluorescence frequencies for a given electronic
transition. In turn, this can be attributed to the energies of any given transition
not being completely discrete, but having some finite band of possible frequen-
cies centered about a mean frequency, dictated by the energy-time uncertainty
principle. It is then a logical progression that the probability of the excitation
laser populating the excited state as a function of excitation frequency takes on
the same Lorentzian shape, with a center at the resonant frequency and a FWHM
equal to the inverse of the radiative lifetime. Indeed, the excitation spectra of
near-resonant excitation of InAs QDs takes on a Lorentzian form. Acquisition of
excitation spectra in our lab is expanded on in Chapter 2.

1.6 Planar Fabry-Perot Interferometer

This section mostly follows the development presented by Fox [47]. The Fabry-
Perot interferometer (FPI) is important to our research for two major reasons.
The two DBRs of our sample discussed previously create an effective Fabry-
Perot cavity, promoting transmission of a particular window in frequency that
is engineered to be centered around the peak of emission wavelengths of the
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FWHM = 1/τ

FIGURE 1.6: The Lorentzian lineshape. The function has a center
peak at ω = ω0 and a FWHM of 1/τ. The function is normalized

such that the integral over all values of ω is unity.
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InAs QD ensemble. Additionally, our lab is working on constructing a fine-
tunable FPI that will be used to measure the fine structure of the QDs’ emission
spectra, making it possible to resolve phenomenon such as the emergence of the
Mollow triplet at high excitation powers [50]. Indeed, I constructed a custom
built FPI, in which the cavity’s optical path length was tuned via stepping the
pressure of nitrogen in a chamber in which the FPI was enclosed14, and hence
stepping the index of refraction of the medium inside the cavity, and ultimately
the optical path length. The device worked, but the pressure regulator used was
not sufficient to step the nitrogen pressure in small enough increments to give a
good enough resolution to adequately measure the fine-structure of the emission
spectra of our QDs. A new method using an optical cavity attached to a piezo-
electric and a shearing interferometer, which provides feedback regarding the
precise cavity length, is currently under development by Raju KC. The mirrors
used in our FPI to measure QD emission spectra are curved to help prevent loss
out of the sides of the cavity. The cavity described below is the simple planar
FPI, but the theory discussed still applies.

Consider a planar cavity defined by two mirrors with reflection coefficients
R1 and R2, and a cavity length L, that is filled with an optical medium with
index of refraction n. The mirrors are parallel to each other to allow for many
reflections within the cavity. Light of wavelength λ is sent into the cavity from
one side and is allowed to reflect back and forth between the mirrors. The finesse
of the cavity is defined as:

F =
π(R1R2)

1/4

1 −
√

R1R2
. (1.52)

Additionally, the phase shift of the light after one round trip is:

ϕ =
4πnL

λ
. (1.53)

The transmission through the cavity in terms of F and ϕ is:

T =
1

1 + (4F 2/π2) sin2(ϕ/2)
. (1.54)

The transmission is equal to 1 (full transmission) whenever ϕ = 2πℓ, where
ℓ can take on any integer value. Under these circumstances, the optical path

14This is further expanded upon in Chapter 8.
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length of the cavity is equal to an integer number of half wavelengths of the
light reflected within. That is, when:

nL = ℓ
λ

2
. (1.55)

In this situation the cavity is said to be on resonance.
The Fabry-Perot cavity will thus allow maximum transmission when the

light is on resonance with the cavity mode, and minimum transmission directly
in between resonances. The bandwidth of a transmission peak is dictated by
the finesse of the cavity, and characterized by the full width at half maximum
(FWHM) of the Fabry-Perot mode. To find the relation of the FWHM to the fi-
nesse, we solve Eqn. 1.54 for T = 0.5. In the limit of large F , and referring to
Eqn. 1.54, we find that:

ϕ = 2πm ± π/F . (1.56)

The FWHM is thus equal to

FWHM =
2π

F . (1.57)

The higher the finesse, the higher the resolution of the FPI when used for spec-
troscopic measurements, such as measurement of the fine details of the excita-
tion spectra of InAs QDs.

The resonant modes’ angular frequencies can be calculated from Eqn. 1.55:

ωℓ =
πcℓ
nL

. (1.58)

We can use Eqn. 1.57 to calculate the spectral width ∆ω of the resonant modes:

∆ω

ωℓ − ωℓ−1
=

FWHM
2π

=
1
F , (1.59)

resulting in:
∆ω =

πc
nFL

. (1.60)

We additionally consider the photon lifetime inside the cavity. Consider a
symmetric, high-finesse cavity where R1 = R2 = R ≈ 1. Suppose when the
light is first introduced into the cavity we start with N photons. After a time
equal to the optical path length divided by the speed of light, ∆t = nL/c, the
photons reach the far mirror and commence their first reflection. After every
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reflection, there exist RN photons (Recall, R is the reflection coefficient) in the
cavity. On average, in the time it takes the photons to travel from one side of the
cavity to the other we lose ∆N = (1 − R)N photons from the cavity. Thus, the
time rate of change of the number of photons can be written as:

dN
dt

= −∆N
∆t

= − c(1 − R)
nL

N. (1.61)

The solution to this differential equation is a simple decreasing exponential with
a characteristic decay time (lifetime) given by:

τcav =
nL

c(1 − R)
. (1.62)

If R ≈ 1, then the spectral line-width can be approximately written as:

∆ω =
1

τcav
≡ κ, (1.63)

where κ is defined as the photon decay rate. This shows that the width of the
spectral line is directly proportional to the photon decay rate, analogously to
how the width of an atomic emission line is proportional to the rate of sponta-
neous emission.

Lastly, for any type of cavity it is useful to define the cavity’s quality factor,
Q:

Q =
ω

∆ω
, (1.64)

which is the ratio between the frequency of a resonant mode and its linewidth.
From an experimentalist’s standpoint, it is convenient to define the finesse

as the ratio of the free spectral range (FSR) to the FWHM, or bandwidth of a
transmission peak. The FSR is defined as the distance between transmission
peaks in frequency space. The FSR is dictated by the optical path length of the
cavity by FSR = c/(2nL), which is the inverse of the average time it takes a
photon in the cavity to go through one round-trip15. For the two custom FPIs I
built and discuss in Chapter 8, this definition of the finesse was utilized during
characterization of the FPI cavities.

15Or the average round-trip rate.
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1.7 Optical Transitions in InAs Quantum Dots

1.7.1 Charge Carrier Bound States

InAs QDs are dubbed "artificial atoms" because their quantum confinement of
charges leads to discrete optical transition frequencies in the emitted fluores-
cence, as is observed in atoms. The size of individual QDs varies, leading to
varying emission center frequencies. In general, as with the simple particle
in a box problem found in any introductory quantum mechanics textbook, the
tighter the quantum confinement, the higher the optical frequencies of the emit-
ted fluorescence for a given transition. The smaller band-gap InAs embedded
in the larger band-gap GaAs enables three-dimensional confinement of charge
carriers in a small volume. The de Broglie wavelength of a free charge carrier in
a bulk semiconductor is on the order of λ = 2πh̄/

√
2m∗E, where the kinetic en-

ergy of the particle E is approximated by the thermodynamic relation E = 3
2 kBT

and m∗ is the effective mass of the charge carrier. For the cryogenic temperatures
our samples are held at, the de Broglie wavelength of an electron in the conduc-
tion band of GaAs and InAs has a wavelength of approximately 340 nm and 200
nm, respectively. Whereas, for heavy holes the de Broglie wavelength is 80 and
70 nm in GaAs and InAs, respectively. The physical size of InAs QDs, and hence
the extent of the confinement potential, is on the order of 20 nm perpendicular
to the growth direction (base length) and 5 nm parallel to the growth direc-
tion. Thus, both electrons and holes experience strong confinement, resulting
in the creation of bound excitons, and the discrete ’atom-like’ energy structure
emerges.

The depth of the potential well that the QD provides, or in other words the
strength of the electric potential, is mostly dictated by the difference in band-gap
energies of the embedded QD material and surrounding bulk semiconductor.
However, the physical size of the QD dictates the number of possible bound
states. As previously mentioned, as the physical size of the QD is reduced, the
energies of the bound states are increased. In order for, say, an electron to be
bound in the potential well, the energy of the associated bound state must be
less than the energy of the bottom of the conduction band of the surrounding
bulk material. Thus, as the physical size of the QD is reduced, the bound state
energies increase and the energies of the higher-energy bound states become
greater than the energy of the bottom of the bulk semiconductor’s conduction
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FIGURE 1.7: Representation of energy levels of excited bound
states for electrons and holes in InAs QDs. The vertical direction is
energy and the horizontal is space. (a) An InAs QD showing three
possible excited bound state energies for the charge carriers. En
represents the energy of the nth excited state for an electron, where
the subscript 0 represents the first excited bound state. The hole
energies are depicted by Hn. (b) As the size of the QD is decreased,
the bound state energies increase until higher energy states have
associated energies greater than the bottom of the conduction band
of the bulk GaAs host, and thus represent free carrier states, leav-

ing only one possible bound state for electrons and holes.

band, resulting in those bound states no longer being possible (free carriers).
Theoretically, if the QD is made small enough, only one bound state is possible.
The same dynamics apply to the holes but in the opposite direction in energy
space. A bound hole in the QD has an energy greater than the energy of the top
of the valence band of the surrounding bulk material, which intuitively makes
sense since a hole is a lack of an electron in the valence band of the material in
which it resides. Figure 1.7 shows a qualitative depiction of bound state energies
in two differently sized QDs.

Additionally, the crystal symmetry is reduced by the strain induced by the
lattice mismatch between InAs wetting layer and GaAs substrate, which is uti-
lized to grow the QDs that provide the confinement potential for charge carriers
[51, 52]. The valence band states are p-states with angular momentum ℓ = 1
and spin s = 1/2, resulting in a total angular momentum quantum number
j that can take on a value of 1/2 or 3/2. Spin-orbit coupling lowers the en-
ergy of the electron j = 1/2 states and raises the energy of the hole j = 1/2
states, forming the ’split-off’ band. The j = 3/2 states can have z-projections
m = −3/2,−1/2, 1/2, 3/2, which have different effective masses. Light holes
(LH) have |m| = 1/2 and heavy holes (HH) have |m| = 3/2. Their energies are
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the same in bulk GaAs at the Gamma point (the center of the Brillouin zone of
reciprocal space). However, when carriers are confined, the different effective
masses change the resulting discrete energy levels. The splitting is a minimum
of tens of meV, and can be as large as 0.5 eV [53]. At the cryogenic temperature
of 4K, the energy difference is too large to allow thermal excitation, and con-
sequently the possible admixture of HH and LH states is significantly reduced.
Thus, the significantly high-energy LH states can be neglected due to little mix-
ing with HH states.

Ultimately, excitons are created by the significant overlap of wave functions
of bound electrons and HHs caused by the tight confining potential of the band
structure. Just as with atoms, the coupling of the electric dipole of the exci-
ton16 with the electric field of the excitation light induces electronic transitions
to excited states, creating bound excitons. Also as with atoms, the exciton state
decays back to the ground state via spontaneous emission. The electron in the
conduction band (CB) of the QD falls back into the empty valence band (VB)
state, i.e. the electron and hole recombine, and a photon carries an energy equal
to the difference in energy of the bound electron and hole. This process of radia-
tive recombination via resonance fluorescence is depicted in Fig. 1.8.

1.7.2 Optical Properties

The optical properties of QDs are almost exclusively dictated by the radiative
recombination induced by decay of the electron from the lowest-energy excited
bound state. Higher-energy states do not decay efficiently via emission of pho-
tons because decay from such states via emission of phonons happens on a much
faster time scale. For instance relaxation of higher energy states via phonon
emission happens on the order of 1-10 ps [54], as opposed to radiative recombi-
nation lifetimes on the order of 1 ns. Thus, almost any charges promoted to the
higher-energy bound states quickly decay to the lowest-energy bound state via
phonon emission where the exciton can then recombine via radiative recombi-
nation.

16Recall, the electric dipole in an atom exists due to the Coulomb field between the spatially
separated excited electron and atomic nucleus.



34 Chapter 1. Sample Structure and Background Information

radiative recombination

GaAs

conduction 
band (CB)

valence 
band (VB)

GaAs InAs

hole

electron

resonant laser

exciton

space
en

er
gy

FIGURE 1.8: Diagram showing resonant excitation and radiative
recombination in an InAs QD. Shown here is an electronic transi-
tion of a neutral exciton, as opposed to that of a charged QD (trion).
The resonant laser excites an electron in the InAs from the VB to the
CB, leaving behind a hole in the VB. Resonant excitation refers to
the photon energy of the laser being equal to the transition energy.
Due to quantum confinement of the charge carriers, bound exci-
tons are formed when an electron is excited to the CB of InAs. The
electron eventually decays from the excited state via spontaneous
emission and falls back to the VB, recombining with the hole. A
photon carriers an energy equal to the energy lost by the electron

during energetic decay, hence the term radiative recombination.
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There are a few major interactions between the electron and hole that con-
tribute to the optical properties of the emitted fluorescence. The center wave-
length of the emitted fluorescence is defined by the difference in energy be-
tween the lowest-energy bound electron state and highest-energy bound hole
state. The physical size of the QD plays the largest role in the energy of the
bound exciton. A physically smaller QD induces higher-energy bound states. As
previously mentioned, the spectral lineshape of the emitted fluorescence (emis-
sion spectrum) often takes on a Voigt lineshape, which is the convolution of
a Lorentzian and Gaussian. The Lorentzian component emerges from the fi-
nite lifetime of spontaneous emission, the shorter the lifetime the broader the
FWHM of the associated Lorentzian. The Gaussian component emerges from
spectral diffusion. The larger the fluctuations to the local electric environment,
the larger the FWHM of the associated Gaussian. Lastly, spin interactions of
the possibly optically active transitions dictate the polarization of the emitted
fluorescence.

In Dirac notation, we signify a spin-up electron as |↑⟩ and a spin-up hole as
|⇑⟩. For a given bound-state energy in the QD, there are two possible quantum
states for both electrons and holes. Due to the Pauli exclusion principle, two
particles cannot occupy the same quantum state, which results in like-charge
carriers with the same bound-state spatial wave function taking on opposite
spins. That is, the z-projection of the spin of a bound electron can take on the
value ±h̄/2 and the hole’s spin projection can take on a value of ±3h̄/2. An-
gular momentum of the entire system must be conserved, and photons carry an
angular momentum of ±h̄. For a neutral QD, and without considering the ex-
change interaction, both the electron and HH are doubly degenerate, resulting
in the confined exciton state being 4-fold degenerate. The excitonic states |↑⇑⟩
and |↓⇓⟩ are not optically active, because when the electron recombines with the
hole, there will be a total change in angular momentum of ±2h̄. Theoretically,
the momentum of the system could be conserved via simultaneous emission of
two photons, but this happens with a very small probability, and is thus negligi-
ble. Hence, these excitons are dubbed dark excitons. The states with the electron
and hole having oppositely signed spins |↑⇓⟩ and |↓⇑⟩, however are optically
active because when the electron falls into the hole, a change of ±h̄ in angular
momentum is carried by an emitted photon, and the angular momentum of the
entire system is conserved. These excitons are hence dubbed bright excitons.
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The exchange interaction between the HH spin Jh,i and electron spin Se,i lifts
the degeneracy between the dark and bright exciton manifolds. The part of the
Hamiltonian describing the exchange interaction takes on the form [55–57]:

Hexchange = − ∑
i=x,y,z

(
ai Jh,iSe,i + bi J3

j,iSe,i
)

(1.65)

where a and b are spin-spin coupling constants, Jh,i is the hole’s total angular
momentum along the Cartesian direction i, and Se,i is the electron’s spin along
the Cartesian direction i. The exchange interaction induces an energy splitting,
without mixing of the two manifolds, equal to δ0 = 3

2(az + 2.25bz) [58]. The
splitting of the doubly degenerate exciton states is δ1 = 3

4(bx + by) for the dark
excitons and δ2 = 3

4(bx − by) for the bright excitons. The splittings are accompa-
nied by mixing of the states within each manifold.

For a neutral QD with in-plane17 rotational symmetry bx = by, the splitting is
zero, and the eigenstates of Eqn. 1.65 are |↑⇓⟩z and |↓⇑⟩z. These two transitions
couple to circularly polarized light, represented by σ+ and σ−. Most real QDs
are not perfectly circularly symmetric in the x-y plane; asymmetric strain often
induces a uniaxial deformation. In this case bx ̸= by and even mixing of |↑⇓⟩z

and |↓⇑⟩z ensues, resulting in the new eigenstates |↓⇑⟩x and |↑⇓⟩y
18. The optical

emission from neutral transitions in most real-life QDs thus is linearly polarized
in the x-y plane.

For a charged QD, we will consider the negative trion19. The expectation
value of Hexchange is zero for a state with two electrons and one hole20. Conse-
quently, a charged QD shows no exchange splitting in the trion transitions. Simi-
lar to the neutral transition in a circularly symmetric QD, we find the eigenstates
to be |↑↓⇑⟩z and |↓↑⇓⟩z, and the optical transitions to be circularly polarized (σ+

and σ−) [58]. The optical transitions for a symmetric neutral QD, an asymmetric
neutral QD, and a negative trion are depicted in Fig. 1.9.

There are interesting interactions of InAs QDs with an applied external mag-
netic field. For instance, the interaction between an external magnetic field and

17z is in the growth direction. Here, in-plane refers to the perpendicular direction, or the x-y
plane.

18Note, here the subscripts x and y refer to the polarization of the emitted photons, not the
direction that spins point. However, for the kets with the subscript z, the subscript does indicate
the direction of the spin.

19The same argument applies to the positive trion.
20Or for two holes and one electron, i.e. the positive trion.
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FIGURE 1.9: Depiction of optical transitions for (a) a symmetric
neutral QD, (b) an asymmetric neutral QD, and (c) a negative trion.
Single blue arrows represent electrons, double red arrows repre-
sent holes, and the arrow directions represent spin projections. Op-
tical transitions depicted by purple double-sided arrows represent
circularly polarized light, while green double-sided arrows depict
linearly polarized light. The dotted double-sided arrows in (c) de-
pict transitions that are prohibited due to conservation of angular
momentum of the system, since photons carry angular momentum

equal to ±h̄.

charge carriers that have different spin z-projections lifts degeneracies of the
possible excitonic states. As an example, a neutral QD that is circularly sym-
metric in the direction perpendicular to the growth direction has two possible
lowest-energy bound states that are degenerate in energy. However, application
of an external magnetic field lifts this degeneracy. Another example involves
the interaction of a trion (excited charged state) with an external magnetic field.
Without an applied external magnetic field, there are two possible circularly
polarized optical transitions. There exist two transitions that are not optically
active due to conservation of angular momentum of the system and the fact
that a photon carriers an angular momentum of ±h̄. However, application of a
Voigt magnetic field, in which the magnetic field is perpendicular to the growth
direction, mixes the ground states and excitonic states, leading to four new lin-
early polarized optical transitions. However, I did not investigate any charge
dynamics nor optical properties of InAs QDs in an external magnetic field, so
only some effects are briefly mentioned here. If the reader would like detailed
information regarding the interactions of charge carrier spin with an external
field, and the induced effects on the optical transitions, they are encouraged to
refer to Ref. [58].

One of the optical properties of InAs QDs most relevant to my research in-
volves the difference in resonant energies of neutral and charged transitions.
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The excited state of a charged QD is dubbed a trion. A negative trion is com-
posed of two bound electrons and one bound hole, while a positive trion is com-
posed of one bound electron and two bound holes. The lowest energy trion state
involves all three charge carriers being in the lowest energy excited bound states,
with bound energies E0 and H0 depicted in Fig. 1.7. Due to Pauli’s Exclusion
Principle, the two carriers of the same charge must have opposite spin, while the
other carrier can take on either spin projection. The negative trion has a smaller
optical transition energy than the neutral exciton (red-shifted), while the posi-
tive trion has a larger (blue-shifted) [59]. The difference ultimately boils down to
the difference in effective masses for electrons and holes. The negative trion can
be visualized as an additional electron added to the neutral exciton. Compared
to the neutral exciton, there are two additional Coulomb interactions: attraction
felt between the additional electron and hole, and repulsion felt between the
two electrons. The same idea describes the positive trion but with an additional
electron-hole attraction and additional hole-hole repulsion. Due to the quantum
confinement and the larger effective mass of the hole, the wave function of holes
are more localized than that of electrons [60]. This leads to a tighter net charge
distribution for the positive trion compared to the neutral exciton and a broader
charge distribution for the negative trion. The tighter charge distribution is as-
sociated with a larger potential energy. Thus, relative to the neutral exciton the
positive trion has a negative binding energy and the negative trion a positive
binding energy. Figure 1.10 qualitatively depicts resonance fluorescence for dif-
ferent charge states of a given InAs QD.

The fact that a charged QD’s electronic/optical transitions have a different
energy than a neutral QD’s is an important characteristic that is relevant to the
investigations discussed in this dissertation. The resonant laser can, with a high
probability, change the charge state of the QD, causing a neutral state to become
charged and vice versa21. If the charge state is changed, the resonance fluores-
cence intensity is significantly or entirely diminished, since the resonant laser is
no longer resonant with the available transition. This is the case because the dif-
ference in energies of the trion transitions and neutral transition is much greater

21When I refer to charge state, I am referring to both the ground state and excited state of that
transition. That is, the negative charge state has an electron in the CB of InAs when there is no
incident excitation light, and has two electrons in the CB (with opposite spin) and one hole in
the VB when the resonant laser induces excitation.
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FIGURE 1.10: Depiction of resonance fluorescence for different
charge states of a given InAs QD. (a) Depicts the negative trion, (b)
the neutral exciton, and (c) the positive trion. Single blue arrows
represent electrons, while double red arrows represent holes. For a
given QD, the resonant energy of the negative trion is red-shifted
with respect to the neutral exciton, while that of the positive trion

is blue-shifted.

than the bandwidth of the laser. It has been known for quite some time that ap-
plication of a low-power above-band laser returns the QD to the initial charge
state, allowing the resonant laser to again populate the observed transition, and
ultimate reemergence of the fluorescence intensity ensues [42]. However, the
exact pathways through which the charge carriers migrate through the sample
to return the QD to its initial charge state are not well understood. The path-
ways/mechanisms by which they do so are investigated in Chapters 4 and 5.

1.8 Photon Statistics

This sections follows the developments presented by Fox [47] and Loudon [61].
The reader is referred to them for further details.

1.8.1 Introduction

In this section we consider the statistics affiliated with the particle nature of light,
i.e. that light is composed of individual, discrete quanta, or photons. Let us con-
sider a photon counting experiment in which we use a detector that is capable of
detecting single photons. An example is a single-photon avalanche photo-diode,
such as the ones we use in our lab, which outputs a measurable voltage pulse
upon detection of a photon. We consider a perfectly coherent monochromatic
beam of constant intensity that is incident on the detector. The photon flux is
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the number of photons passing through a given cross-section per unit time. The
flux incident on the detector is equal to the power of the beam divided by the
energy of an individual photon in the beam:

Φ ≡ P
h̄ω

. (1.66)

No single photon detector is perfect, and even the most efficient ones, such
as superconductor based detectors [62], will only detect a certain percentage of
incident photons. This effect is characterized by the quantum efficiency (QE) of
the detectors, which is defined as the percentage of photon arrival events that
generate a voltage output from the detector. Then, the count rate measured is:

R =
(QE)P

h̄ω
. (1.67)

Although a light beam may have a well-defined flux, an observer (detector)
witnesses fluctuations in the photon number, especially at short time scales. For
instance, if the window of time is shorter than the average time between adjacent
photons, the fluctuations in the photon number are high, since one will often not
detect a photon within the sampled time. These fluctuations are described by
the photon statistics of light. There are three main categories of light regarding
photon statistics: Poissonian, super-Poissonian, and sub-Poissonian.

1.8.2 Poissonian, Super-Poissonian, and Sub-Poissonian Light

Consider of beam of perfectly coherent light with a single angular frequency
ω, and a constant intensity along the entire beam. Although the photon flux
is constant in time, we would expect to see statistical fluctuations caused by
the discrete particle nature of the light. This light is described by Poissonian
statistics. The average number of photons n̄ within a length segment L of the
beam is given by:

n̄ =
ΦL
c

. (1.68)

Consider we chop this beam into N small subsegments, such that the proba-
bility of finding a photon within a subsegment is small enough that there is a
high probability of finding either one or zero photons within a given subseg-
ment. The probability of finding a photon within a given subsegment is simply
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p = n̄/N. Ultimately, the statistics are characterized by defining the probability
of finding n photons within the full length L containing N subsegments. The
probability is equivalent to the probability of finding n subsegments containing
one photon and N − n containing no photons. We use the binomial distribution
to give the probability:

P(n) =
N!

n!(N − n)!
pn(1 − p)N−n. (1.69)

Insertion of p = n̄/N into 1.69 gives:

P(n) =
1
n!

(
N!

(N − n)!Nn

)
n̄n

(
1 − n̄

N

)N−n
. (1.70)

Sterling’s formula tells us:

lim
N→∞

ln N! = N ln N − N. (1.71)

Application of Stirling’s formula to the first large-parenthesis term in 1.70, and
raising e to the resulting equation shows that:

lim
N→∞

(
N!

(N − n)!Nn

)
= 1. (1.72)

Additionally, one can show that the binomial expansion of the second large-
parenthesis term in 1.70 in the limit N → ∞ is equal to the series expansion of
exp(−n̄):

lim
N→∞

(
1 − n̄

N

)N−n
= e−n̄. (1.73)

Application of these two results to 1.70 gives the Poisson distribution:

P(n) =
n̄n

n!
e−n̄, n = 0, 1, 2, ... . (1.74)

Generally, random processes that involve counting integer numbers of parti-
cles or events will exhibit Poissonian statistics. The Poissonian distribution tell
us the probability of measuring n counts within a given time window. The av-
erage value n̄ dictates the width of P(n). The Poissonian distribution peaks at
n = n̄ and increases in width as n̄ increases. The variance of n is equal to the
average value n̄, and thus the standard deviation of the photon number is given



42 Chapter 1. Sample Structure and Background Information

by:
∆n =

√
n̄. (1.75)

Ultimately, we see that the relative size of the fluctuations, ∆n/n̄ decreases as
n̄−1/2.

The three types of photon statistics can be classified by their relation of the
standard deviation ∆n to the average photon number n̄ in the distribution as
follows:

• sub-Poissonian statistics: ∆n <
√

n̄,

• Poissonian statistics: ∆n =
√

n̄,

• super-Poissonian statistics: ∆n >
√

n̄.

Recall, a perfectly coherent beam with a constant intensity throughout (such
as light from a cw laser) is described by Poissonian statistics. Since a perfectly
stable intensity is described by Poissonian statistics, any classical light beam
that has a time-variant intensity will exhibit super-Poissonian statistics. Two
of the quintessential examples are thermal light from a black-body source and
chaotic light. In comparison to perfectly coherent light with a constant average
intensity, super-Poissonian light has larger fluctuations in the photon number,
and hence in the intensity. On the other hand, sub-Poissonian light has smaller
fluctuations in the photon number when compared to Poissonian light. We will
see in a later section how super-Poissonian light leads to the phenomenon of
photon bunching, while sub-Poissonian light leads to anti-bunching.

Super-Poissonian light does not pertain to the work described in this disser-
tation, but for completeness we will give the results for a given mode of black-
body radiation. Consider an enclosed cavity at constant temperature T. Using
Planck’s Law and Boltzmann’s Law, one can work out that the probability that
there will be n photons in the mode is given by the Bose-Einstein distribution
[47]:

Pω(n) =
1

n̄ + 1

(
n̄

n̄ + 1

)n
. (1.76)

We also find that the standard deviation of the number of photons for the Bose-
Einstein distribution is:

∆n =
√

n̄ + n̄2. (1.77)
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FIGURE 1.11: Comparison of sub-Poissonian, Poissonian, and
super-Poissonian photon number distributions for an average pho-
ton number n̄ = 80. Compared to the Poissonian distribution,
the sub-Poissonian distribution is narrower in n, while the super-

Poissonian is broader.
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This shows that the standard deviation is always greater than that of a Pois-
sonian distribution, i.e, exhibits super-Poissonian statistics. If we consider the
variance of the number of photons, which is the square of the standard devia-
tion, we can consider the first term to originate from the particle nature of light,
and the second to originate from thermal fluctuations of the electromagnetic ra-
diation’s energy.

Recall, light is described by sub-Poissonian statistics when:

∆n <
√

n̄. (1.78)

Since the standard deviation of the number of photons is smaller for sub-
Poissonian light as compared to Poissonian light, it is considered more stable
than Poissonian light. However, from a classical perspective a perfectly coher-
ent beam of constant intensity is the most stable possibility. Light characterized
by sub-Poissonian statistics has no classical counterpart, and is a signature of
the quantum nature of light.

The most extreme theoretical case we can conceived of is a stream of single
photons all separated by the same distance/time, with no fluctuations in the
distance/time between adjacent photons. In this case, the probability of mea-
suring n photons is simply a delta function centered on the average number of
photon n̄. Photon streams of this type are called photon number states. These
are the purest form of sub-Poissonian light. However, one can conceive of a
situation in which we have a beam of single photons with spacing that is less
regular than described above, but more regular than the random time intervals
associated with a beam described by Poissonian statistics. For instance, collected
resonance fluorescence of InAs QDs is composed of a stream of single photons
separated by distances dictated by the lifetime of the excited state in the QD.
However, since the lifetime is an average value, there exists small fluctuations
and ultimately small fluctuations in the time distance/time between adjacent
photons in the stream.

It is worth mentioning that the detector being used will affect the necessary
integration time needed to adequately observe the photon statistics. Recall, pre-
viously we mentioned the quantum efficiency of a photo-detector. A detector
with a low quantum efficiency will detect a small percentage of photon arrival
events. Thus, to study sources that are highly sub-Poissonian, such as resonance
fluorescence of InAs QDs, it’s advantageous to use detectors with both a short
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response time and high quantum efficiency, so we miss as little photon arrival
events as possible, and can implement reasonable integration times.

1.8.3 Hanbury Brown-Twiss

In the mid-1950s astronomers Hanbury Brown and Twiss (HBT) developed an
intensity interferometer to measure the diameters of distant stars. Since the
1920s, the Michelson stellar interferometer had previously been implemented
for this purpose. The Michelson stellar interferometer involved sending incom-
ing starlight to two mirrors separated in space and recombined at a telescope
objective. The spacing of the interference fringes gave information about the
solid angle of the incoming starlight. Although the distance between the initial
collection mirrors could be larger than the diameter of the telescope’s objective
lens, thus improving the angular resolution, efficiency was lost due to the rela-
tively small size of the initial collection mirrors. It thus could only be used for
observing bright stars.

The larger the distance d between the mirrors, the better the possible reso-
lution. However, as d is increased the stability of the Michelson interferometer
is compromised, and eventually the observation of interference fringes becomes
impossible. Hanbury Brown’s and Twiss’ interferometer involved two focusing
mirrors that each focused incoming starlight onto their own separate detectors.
Their interferometer did not produce any interference fringes; instead they were
able to simply measure the intensity correlations between the two detectors to
calculate the solid angle of incoming starlight. This allowed them to effectively
increase d greatly, providing an enormous improvement to the resolution of the
measured solid angle.

Hanbury Brown and Twiss decided to test the principles of their experiment
with a simple laboratory arrangement. They filtered light from a mercury lamp
such that only the 435.8 nm emission line was incident on a 50:50 beam-splitter
(BS). Two different photomultipliers then detected the reflected and transmitted
intensities I1(t) and I2(t). One detector was set on a translation stage, such that
the two detectors could register light separated by a distance d. The generated
photocurrents were sent through AC-coupled amplifiers, which generated sig-
nals proportional to the fluctuations in the photocurrents, ∆i1 and ∆i2. One sig-
nal was then electronically delayed by a time τ. Lastly, the two signals were con-
nected to a multiplier-integrator unit which calculated the time average of the
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product of the two signals, ⟨∆i1(t)∆i2(t + τ)⟩, where ⟨⟩ signifies a time average.
Since the photocurrents generated by the photomultipliers were proportional to
the incident intensities, the output was proportional to ⟨∆I1(t)∆I2(t + τ)⟩. This
experiment is similar to HBT experiments one would conduct in a quantum op-
tics laboratory setting.

The principle behind the HBT experiments was that a light beam’s coher-
ence is related to the intensity fluctuations. If the light incident on the detectors
is coherent, then the intensity fluctuations measured by the detectors will be cor-
related with each other. Using such a setup to measure the correlations of the
intensity fluctuations turned out much easier than setting up a classic Michelson
interferometry experiment.

Consider the case in which d = 0 and the beam splitter (BS) is a perfect 50:50
BS. The intensities measured by either detector are:

I1(t) = I2(t) ≡ I(t) = ⟨I⟩+ ∆I(t), (1.79)

where ∆I(t) is the fluctuation from the mean intensity ⟨I⟩. If we then set the
temporal delay between the two optical paths equal to zero (τ = 0), the output
of the HBT experiment is proportional to:

⟨∆I(t)∆I(t + τ)⟩τ=0 =
〈

∆I(t)2
〉

. (1.80)

Due to the intensity fluctuations in the chaotic light from the mercury lamp (as
was used by Hanbury Brown and Twiss),

〈
∆I(t)2〉 will be non-zero, and hence

a non-zero output for a zero time delay. However, if τ is much greater than
the correlation time of the light τc, the intensity fluctuations will be completely
uncorrelated, and consequently ∆I(t)∆I(t + τ) randomly changes sign in time
and averages to zero:

⟨∆I(t)∆I(t + τ)⟩τ>>τc
= 0. (1.81)

Since the output decreases to zero at times much larger than the coherence time
of the light, this regime can be used to calculate the coherence time τc.

1.8.4 The Second-Order Correlation Function

In order to quantify the results of the HBT experiment and ultimately quantify
the single photon nature of our InAs QDs’ fluorescence, we use the second order



1.8. Photon Statistics 47

correlation function. The second order correlation function is defined as:

g(2)(τ) =
⟨E∗(t)E∗(t + τ)E(t + τ)E(t)⟩
⟨E∗(t)E(t)⟩ ⟨E∗(t + τ)E(t + τ)⟩ =

⟨I(t)I(t + τ)⟩
⟨I(t)⟩ ⟨I(t + τ)⟩ , (1.82)

where E(t) and I(t) are the electric field amplitude and intensity of the light
beam as a function of time, respectively, and as usual ∗ represents the complex
conjugate.

We will first consider the measurement of g(2)(τ) using a coherent light
source with constant average intensity, such that ⟨I(t)⟩ = ⟨I(t + τ)⟩. If τ ≫ τc,
the intensity fluctuations at time t and t + τ will be completely uncorrelated
with each other. Using I(t) = ⟨I⟩+ ∆I(t) and ⟨∆I(t)⟩ = 0, we have:

⟨I(t)I(t + τ)⟩τ>>τc
= ⟨(⟨I⟩+ ∆I(t))(⟨I⟩+ ∆I(t + τ))⟩
= ⟨I⟩2 + ⟨I⟩ ⟨∆I(t)⟩+ ⟨I⟩ ⟨∆I(t + τ)⟩
+ ⟨∆I(t)∆I(t + τ)⟩
= ⟨I⟩2 .

(1.83)

It then follows that:

g(2)(τ)τ>>τc =
⟨I(t)I(t + τ)⟩

⟨I(t)⟩2 =
⟨I(t)⟩2

⟨I(t)⟩2 = 1. (1.84)

If we consider τ = 0, then there will exist correlations between the fluctuations
of the reflected and transmitted beams resulting in:

g(2)(0) =
〈

I(t)2〉
⟨I(t)⟩2 . (1.85)

For any light source in which the average intensity varies with time,〈
I(t)2〉 > ⟨I(t)⟩222, since the time average of the square of the intensity will

always be greater than the square of the time average of the intensity, and hence
g(2)(0) > 1. Thus, for chaotic or thermal light, we see a value of g(2)(τ) greater
than unity at τ = 0, which asymptotically falls to unity as τ increases. Due to
this relation of the second order correlation function, this type of light is said to
be ’bunched’ around τ = 0. One the other hand, if we were to have a perfectly

22There are equal positive and negative fluctuations about the average, and squaring exagger-
ates the fluctuations above the average value.
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coherent light source that has constant intensity throughout the beam, such as
light emitted from a cw laser,

〈
I(t)2〉 = ⟨I(t)⟩2 and g(2)(τ) = 1 for all values

of τ. However, we will see next that for non-classical light, such as a single
photon source, g(2)(0) can be less than unity, leading the phenomenon that is
antibunching.

Let us now consider the HBT experiment conducted on a stream of photons,
as opposed to a classical electromagnetic wave. The stream of photons is inci-
dent on a 50:50 BS and the reflected and transmitted beams are incident on two
separate single photon detectors, such as the avalanche photodiodes (APDs)23

used in our lab. The detectors’ photo-induced voltage pulses are then sent to an
electronic time-correlated single photon counting module (TCSPCM). One in-
put to the TCSPCM starts a clock, while the other stops the clock. The TCSPCM
measures the delay time τ between a photon detection event starting the clock
and another stopping the clock. The TCSPCM also measures the photon count
rates on each detector in real time.

We’ve discussed g(2)(τ) classically in terms of intensity correlations. The
count rates detected by the APDs are proportional to the incident intensities,
and we can write g(2)(τ) for the stream of photons as:

g(2)(τ) =
⟨n1(t)n2(t + τ)⟩
⟨n1(t)⟩ ⟨n2(t + τ)⟩ , (1.86)

where ni is the number of counts registered on detector i. Thus, g(2)(τ) describes
the relative probability of detecting a photon at detector 2 at a time delay of τ af-
ter a photon is detected at detector 1, compared with the probability of detecting
two photons separated by an infinitely long time.

Consider a situation in which the photon stream consists of single photons
all spaced in time larger than the response time of the detectors. When a photon
initiates the start clock upon registering at detector 1, there will be a zero percent
probability of simultaneously registering a photon at detector 2 and stopping the
clock. Thus, we see for this case g(2)(0) = 0. When a second photon arrives at

23Often the acronym SPAD is used, which stands for single-photon avalanche diode, which is
a type of APD. I tend to use the shorter APD acronym throughout this dissertation. Note, the
APDs used in the experiments discussed in this dissertation are, indeed, SPADs.
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50/50 BS

APD1

APD2

FIGURE 1.12: Schematic of a Hanbury Brown-Twiss setup used to
measure photon statistics. The photon stream is incident on a 50:50
BS. The reflected and transmitted streams are incident on two sepa-
rate single-photon avalanche diodes (APD1 and APD2). The detec-
tors output a voltage pulse upon detection of a photon. The pulses
are collected by a time-correlated single photon counting module
(TCSPCM). The pulses from APD1 start a clock and the those from
APD2 stop the clock. The TCSPCM then builds a histogram of time
arrival times τ equal to the time between start and stop events. The
TCSPCM also measures the photon count rates on each detector in

real time.
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the 50:50 BS, it has a 50% chance of going to detector 1, in which nothing hap-
pens24, and a 50% chance of going to detector 2, in which it will stop the clock.
After enough photon arrival events at the 50:50 BS, we are bound to register a
photon at detector 2 and stop the clock. Thus, as τ approaches infinity, g(2)(τ)
approaches unity. This type of light is known as antibunched light and has no
classical counterpart, since its existence is directly tied to the particle-nature of
light.

Now, consider a light source in which photons come in dense bunches. When
a photon starts the clock at detector 1, there is a very high probability that an-
other photon will simultaneously stop the clock at detector 2, and we will mea-
sure a large value for g(2)(0). After a time passes that is much longer than the
average temporal width of the bunches, the probability of registering a photon
arrival event at detector 2 and stopping the clock becomes constant, but with a
smaller probability than stopping the clock at τ = 0. Thus for this case, g(2)(τ)
starts at some value greater than unity and asymptotically decreases to unity as
τ → ∞. This type of light is known as bunched light.

Lastly, a photon source that is neither bunched nor anti-bunched, i.e, a light
source consisting of a completely random distribution of photons, has an equal
probability of stopping the clock at any delay time, and thus g(2)(τ) = 1. This
type of light is known as coherent light. We can then make the connection to
sub-Poissonian, Poisson, and super-Poissonian light discussed classically:

• antibunched light, sub-Poissonian: g(2)(0) < 1,

• coherent light, Poissonian: g(2)(0) = 1,

• bunched light, super-Poissonian: g(2)(0) > 1.

The three type of light are depicted in Fig. 1.13. Additionally, Fig. 1.14 depicts
example g(2)(τ) for the three types of light.

1.8.5 Hong-Ou-Mandel Interference and the Mach-Zehnder In-

terferometer

In 1987 Hong, Ou, and Mandel published a paper that described the relation be-
tween the input and output states described by photon number states, or Fock

24Nothing happens because arrival of a photon at detector 1 starts the clock, while it is arrival
of a photon at detector 2 that stops the clock.
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FIGURE 1.13: Representation of the three types of light as depicted
with streams of photons.
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FIGURE 1.14: Examples of g(2)(τ) for the three types of light.
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states, of single photons incident on a beam-splitter (BS) [36]. They showed
that two completely indistinguishable photons simultaneously incident on the
two different inputs of a 50:50 BS will always leave together in the same output
mode. It is equally likely for the photons to exit either port, but they will always
exit the same port if they are indistinguishable. Consequently, if one were to
conduct a correlation measurement of the two outputs, which utilizes the start
and stop clocks previously discussed, then one would measure zero coincidence
counts for τ = 0, since when the clock is started, there is a zero percent probabil-
ity that another photon simultaneously initiates the stop clock. This two-photon
interference is a manifestation of the quantum nature of light, and is essential for
quantifying a photon source’s indistinguishability. Although not studied in this
dissertation, this quantum effect is essential to provide the physical mechanisms
for logic gates in linear optical quantum computation [63].

Let us describe the Hong-Ou-Mandel (HOM) effect mathematically. De-
picted in Fig. 1.15, we consider two single photons simultaneously incident on a
50:50 BS in perpendicular input modes. For a 50:50 BS, the reflection and trans-
mission coefficients are equal, |r| = |t| = 1/

√
2. The probabilities for reflection

or transmission are equal to the square of the corresponding coefficient, i.e. 50%.
We assign labels a and b to the two input modes and labels c and d to the two
output modes. From a classical standpoint, the electric field amplitudes of the
output modes can be written as linear superpositions of the electric field ampli-
tudes of the input modes as follows:

Ec =
Ea + Eb√

2

Ed =
Ea − Eb√

2

(1.87)

Standard plate beam-splitters have one face coated with a dielectric. The
minus sign in the relation of Ed in Eqn. 1.87 arises due to reflection from the
dielectric surface from air. Consider a polarized light wave with a polarization
parallel to the reflecting dielectric surface. For the side of the BS in which there is
the dielectric coating, Fresnel equations [61] dictate that the reflected wave will
acquire a phase shift of π, hence introducing the negative sign in the associated
reflective term in the appropriate output mode. One can also think about this
as reflection from opposite sides of the 50:50 BS induce a relative phase shift of
π between the two cases. We shall see this plays a crucial role in the ultimate
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FIGURE 1.15: Depiction of possibilities when two photons are inci-
dent on a BS from perpendicular input ports. Green arrows signify
the path of the photon incident on the BS from the top and red ar-
rows signify the photon incident from the bottom. Each photon has
a 50% chance of either transmission or reflection. When the pho-
tons are identical, the probability amplitudes associated with both
photons reflecting and both transmitting cancel, and the photons

always leave the BS into the same output mode.

outcome of the two-photon interference.
Let us now consider the system from a quantum mechanical point of view.

We shall utilize a second-quantized Fock state formalization. We first introduce
a set of bosonic annihilation and creation operators, â and â† respectively, which
represent annihilation and creation of a photon. The annihilation and creation
operators have the following commutation relation: [âi, â†

j ] = δij, where δij is the
Kronecker delta, and the indices i and j represent specific photon modes. The
creation operator acting n times on the vacuum gives:

(â†
i )

n |0⟩ =
√

n! |n⟩i , (1.88)

where |n⟩i represents an n-photon Fock state in mode i and |0⟩ is the vacuum
state, i.e. no photons. In conjunction with our previous assignment of mode la-
belling for the classical standpoint, it’s convenient to drop the conventional sub-
script that signifies specific photon modes, and use â†, b̂†, ĉ†, and d̂† to represent
creation operators in the input modes a and b and output modes c and d [64].
Analogous to the electric field amplitudes of the output modes in terms of the in-
put modes when approached classically, we can write the annihilation/creation
operators for the output modes in terms of the input modes, and vice versa. For
our mathematical development here, it is convenient to write the input modes’
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creation operators in terms of the output modes’ creation operators:

â† =
1√
2

(
ĉ† + d̂†

)
b̂† =

1√
2
(ĉ† − d̂†)

(1.89)

Let us first consider the case in which two perfectly distinguishable photons
are simultaneously incident on a 50:50 BS, one in mode a the other in mode b.
They may be able to be distinguished from each other via a number of degrees
of freedom: polarization, spatial modes, center frequency, arrival time25, etc. Let
us assume one photon is polarized horizontally relative to some arbitrary coor-
dinate system, while the other is polarized vertically. For instance, the photon
in mode a is horizontally polarized, while that in mode b is vertically polarized.
We can write the input state as â†

H b̂†
V |0⟩. Upon interaction with the BS, this can

be written in terms of the output creations operators as follows:

â†
H b̂†

V |0⟩ = 1
2

(
ĉ†

H + d̂†
H

)(
ĉ†

V − d̂†
V

)
|0⟩

=
1
2

(
ĉ†

H ĉ†
V − ĉ†

H d̂†
V + d̂†

H ĉ†
V − d̂†

H d̂†
V

)
|0⟩ .

(1.90)

The two photon interference occurs when the photons are identical, that is
identical in polarization, wavelength, etc. There is no longer a need to specify
the polarization with subscripts V and H. Then, the system can be described as
follows:

â†b̂† |0⟩ = 1
2

(
ĉ† ĉ† −�

��ĉ†d̂† +�
��d̂† ĉ† − d̂†d̂†

)
|0⟩

=
1
2

(
(ĉ)2 − (d̂)2

)
|0⟩

=
1√
2

(
|2⟩c − |2⟩d

)
.

(1.91)

What this equation signifies is that when the two simultaneously arriving pho-
tons are indistinguishable, there is destructive interference of the components of
the two-photon output state that correspond to the photons exiting in different
modes, and constructive interference of the components that correspond to the

25Timing can serve as a metric of distinguishability, but here we are concerned with the situa-
tion in which the photons arrive simultaneously.
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photons leaving in the same mode. We see that upon measurement, it is equally
likely to find the photons in mode c or mode d, but they will always exit the BS
into the same mode.

In the experiment described in Chapter 6, I use an unbalanced Mach-
Zehnder interferometer (MZI) and the HOM effect to quantify photon indis-
tinguishability via correlation measurements at the two outputs of the MZI. A
conventional MZI consists of an input photon source that is incident on a 50:50
BS. The two separate arms are each reflected off of a mirror and recombined at
a second BS. Ultimately, correlation measurements can be conducted at the two
outputs.

Depicted in Fig. 1.16, we will first consider the classic balanced MZI, which
uses simple plate BSs. Reflection from a plate BS from the front26, in which the
incident medium has a lower index of refraction than that behind the reflecting
surface, results in a π phase shift. Reflection from the backside does not, since
the incident medium’s index of refraction (glass) is greater than that on the other
side of the reflective surface (air). The first BS has the dielectric coating facing
forward. The second BS has the dielectric coating facing forward in the path that
transmitted through the first BS. Thus, the path that reflected off of the first BS
hits the backside of the second BS. At the input of the second BS, the path that
transmitted through the first BS has acquired a phase shift of π27 and the other
2π. If one observes the output that corresponds to the path that has acquired a
phase shift of π reflecting from the front of the second BS, both paths will have
acquired a phase shift of 2π, and the beams will constructively interfere. If we
observe the path that corresponds to the beam that transmitted through the first
BS transmitting through the second BS, then one path will have acquired a phase
shift of π and the other 2π, resulting in destructive interfere.

A common classical use of an MZI involves insertion of a medium into one
of the arms, and the intensity measured at the two outputs can be used to cal-
culate the phase shift induced by the inserted medium. Additionally, one of the
MZI’s arms can be varied in length. As the optical path length of one arm is
shifted by a half wavelength relative to the other arm, one will observe a shift
in which output experiences complete constructive interference, and which ex-
periences complete destructive interference. An optical path length difference

26I am referring to the front as the side for the BS that has the dielectric coating. The back is
referred to the side without the dielectric coating.

27Reflection from the regular mirrors in either arm results in an additional phase shift of π.
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FIGURE 1.16: Schematic of a classic balanced MZI. The blue ar-
rows represent the propagation of a collimated light beam through
either arm. The red sides of the 50:50 BSs represent the dielectric

surfaces.

of nλ, where λ is the wavelength of the light, will induce the same state of the
interference at the two outputs as to when the two arms are equal in length. As
the optical path length difference between the two arms is varied, one observes
interference fringes at the outputs. The distances/times between peaks are cor-
related with the optical path length difference of nλ. This type of MZI can be
used to measure precise distances when the wavelength of a monochromatic
source is well-known.

In our lab, we use an unbalanced MZI to measure photon indistinguisha-
bility via utilization of the HOM effect. I constructed a custom fiber-based MZI,
which is in some ways easier to use than a free-space MZI, to acquire data for the
experiment described in Chapter 6. Figure 1.17 depicts our custom fiber-based
MZI. The QD fluorescence is first sent through a spectrometer for spectral filter-
ing of light other than that of the fluorescence. The fluorescence is then coupled
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FIGURE 1.17: Schematic of our fiber-based Mach-Zehnder inter-
ferometer. The QD fluorescence is first sent through a spectrom-
eter acting as a spectral filter before being sent to the MZI. The
fluorescence is coupled into the fiber shown on the bottom left of
the figure. The light hits the first 50:50 BS, sending light through
two separate arms that have different lengths. Two fibers are inter-
changeable for the long arm: one that maintains polarization (rep-
resented by the blue fiber) and one that rotates the polarization by
90 degrees (represented by the yellow fiber). The photons travel-
ing in the two arms then recombine at the second BS and correla-
tion measurements are conducted at the two outputs. APD stands
for avalanche photo-diode and TCSPCM for time-correlated single

photon counting module.

into one of the inputs of a fiber BS, while the other input is unused. The fiber
BSs are composed of polarization maintaining fibers, so that the polarization is
preserved during propagation through the MZI. The QD fluorescence hits the
first 50:50 BS and is split into the two arms of the MZI, one short arm and one
long arm (unbalanced MZI). The light is recombined at the second BS and cor-
relation measurements can be conducted at the two outputs. The polarization
maintaining fibers ensure that the photons will interfere with maximum fidelity
when they meet at the second BS.

Two different interchangeable fibers are used in the long arm of the MZI. One
fiber is a polarization maintaining fiber. The other fiber is a single-mode fiber
that is not polarization maintaining. Depending on the orientation of the fiber
that does not maintain polarization, the output polarization will be changed. In-
deed, simply lightly shaking the fiber will induce measurable effects. This fiber
is mounted in a custom-built polarization controller, surprisingly, adequately
constructed using Lego pieces. The Lego chassis consists of three square pad-
dles that one can coil the optical fiber through, and are such that the angles of
the paddles can be set and maintained. Figure 1.18 is a schematic of the po-
larization controller. The first paddle contains one coil of the optical fiber, the
second two coils, and the third three coils. The first paddle effectively behaves
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(a) (b)

FIGURE 1.18: Schematic of our polarization controller. (a) Side
view: The light traveling through the optical fiber is sent into the
polarization controller from the right and exits from the left. It first
goes through one loop in the first paddle, two in the second, and
three in the third. (b) Front/back view: The paddles are able to
pivot such that the user can set a maintained angle for each pad-
dle. Since the output polarization is dictated by the spatial config-
uration of the single-mode fiber coiled within, any input polariza-
tion can be converted to any other polarization via carefully setting
each paddle’s angle. In our measurement of the CTW discussed
in Chapter 6, we use the polarization controller to rotate linear-

polarized fluorescence by 90 degrees.

similarly to an approximate half-wave plate (HWP), the second an approximate
quarter-wave plate (QWP), and the third an approximate three-quarter-wave
plate, which is essentially another quarter wave-plate. With a perfect quarter-
wave and half-wave plate, one can rotate any polarization to any other polar-
ization28. The third paddle helps to compensate for the fact that the first two
paddles don’t act as a perfect HWP and QWP. The polarization controller lets us
rotate the polarization by 90 degrees, making the photons between the two arms
completely distinguishable when they combine at the second 50:50 BS. Use of
the two interchangeable fibers allows for the comparison of the correlation mea-
surements at the outputs when the photons hitting the second BS are nominally
distinguishable or nominally indistinguishable. Ultimately, the coalescence time
window (CTW) is calculated to quantify the degree of indistinguishability of a
given photon source. This is expanded upon in further detail in Chapter 6.

28It is convenient to represent a given polarization as a vector within or on the Poincaré sphere,
which is illustrated in Appendix B. The polarization state is mathematically represented by the
components of the associated Stokes vector. Changes in polarization can be represented as ro-
tations of the Stokes vector and changes in its length. The degree of polarization is represented
by the length of the vector, where a length of unity signifies completely polarized light (whether
that be linear or elliptical), and a zero vector represents completely un-polarized light.
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Chapter 2

Experimental Techniques

2.1 Introduction

The core experimental techniques used during the investigations discussed
in this dissertation include time-resolved resonance fluorescence (TRRF) and
Hong-Ou-Mandel (HOM) correlation measurements involving a custom-built
fiber-based Mach-Zehnder interferometer (MZI).

Resonant excitation of exciton states in InAs QDs is the best method to min-
imize inhomogeneous broadening of the QDs’ emission spectra, hence produc-
ing the optimal source of indistinguishable photons. However, since under res-
onant excitation the laser wavelength matches that of the emitted fluorescence,
techniques must be implemented to minimize incidence of laser scattering onto
the optical collection path associated with the QDs’ fluorescence. There exist two
major techniques to minimize the collection of laser scattering. One technique
involves using a cross-polarization setup. Orthogonally-oriented polarizers in
the excitation and collection paths can force the excitation laser polarization to
be perpendicular to the collected fluorescence, which enables the laser scatter-
ing to be filtered from the collection path. However, via this method, at best
only 50 percent of the emitted fluorescence collected by the initial objective lens
at the sample can be detected. Under this circumstance, the resonant excita-
tion laser’s polarization is set 45 degrees with respect to the dipole moment of
the trapped exciton via the polarizer in the excitation path. The emitted fluo-
rescence has a polarization that matches the dipole moment of the exciton, and
thus when filtered by an additional polarizer in the collection path that is ori-
ented perpendicular to the excitation laser’s polarizer, optimally only 50 percent
of the fluorescence set incident on the collection path can be collected, excluding
any losses due to other optical elements and geometries.
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The other major method to filter scattered laser light from the collection path
involves a perpendicular geometry. The InAs QDs we study are embedded in
bulk GaAs which is contained on two sides by distributed Bragg reflectors com-
posed of alternating layers of AlAs and GaAs, which is depicted in Fig. 1.1(e).
This geometry creates a planar waveguide for the excitation laser and also acts
as a Fabry-Perot cavity, which induces the QD fluorescence to preferentially exit
the sample parallel to the growth direction, normal to the sample surface (up-
ward in the figure shown)1. We focus resonant excitation laser light into the
waveguide from the side. A low-power above-band laser is incident onto the
sample surface parallel to the growth direction (perpendicular to the optical axis
of the resonant laser light). The QD fluorescence is collected confocal with the
above-band laser by a high numerical aperture lens. The high numerical aper-
ture of the collection lens, along with the resonant laser’s propagation through
the waveguide, allows for a collection FOV that is far displaced from the sam-
ple’s edge, where scattering of the focused resonant laser is inevitable. This
allows for very little laser scattering to fall onto the fluorescence collection path.
The back-reflected above-band laser is filtered from the collection path via a 900
nm long-pass filter. Very little laser scattering from the resonant laser falls in-
cident onto the collection path due to this perpendicular geometry of resonant
excitation and fluorescence collection, and the collected fluorescence intensity is
not compromised as is filtering via the crossed-polarization technique.

The QD fluorescence can then be collected and analyzed via multiple differ-
ent methods. The fluorescence can be sent through a Fabry-Perot interferometer
to measure the fine structure of the emission spectrum, sent to a CCD camera
attached to a spectrometer for coarse measurement of the emission spectrum or
direct spatial imaging, sent to an avalanche photodiode (APD) to measure time-
resolved resonance fluorescence measured relative to different possible tempo-
ral triggers (start clocks), or sent through a Mach-Zehnder interferometer (MZI)
with its two outputs set incident on two APDs from which correlation mea-
surements can be made, such as the second order correlation function, and ulti-
mately the photon coalescence time window (CTW).

1This is expanded upon further in Chapter 1.
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2.2 Full Experimental Configuration

The sample is enclosed in a cryostat held at approximately 4.2 K to minimize
thermally induced excitations. The resonant excitation laser is first coupled into
a fiber. The light emitted from the fiber’s output is sent through a beam ex-
pander to increase the numerical aperture at the excitation objective lens that
focuses the laser into the planar waveguide of the sample. Before being focused
into the waveguide via the excitation objective lens, the excitation light is trans-
mitted through a polarizer to force the polarization to be parallel to the waveg-
uide direction (perpendicular to the growth direction), which ensures that the
excitation polarization is in the same plane as the QDs’ transition dipole mo-
ments. An additional, low-power laser with a photon energy greater than the
band-gap energy of the bulk GaAs host, hence named the above-band laser, is
incident on the sample perpendicular to the sample surface. The above-band
laser creates hot, free charge carriers mostly in the top DBR. These carriers
move through the environment via two effective mechanisms (expanded upon
in Chapters 4 and 5) to make their way into the adjacent vicinity of the QD,
where they can be captured by the QD. The resonant laser often changes the
charge state of the QD, diminishing the fluorescence intensity from the probed
optical transition. The above-band laser’s introduction of carriers to the environ-
ment allows for ultimate capture of carriers by the QD, returning the QD to the
initial charge state being resonantly driven, and hence returning the intensity of
the QD’s fluorescence from said transition.

The QD fluorescence is captured confocal with the above-band excitation via
a 10 millimeter focal length lens. The fluorescence exits through a cryostat win-
dow, and is first sent through a 1x magnification telescope with one lens in an
x-y mount that can translate perpendicular to the optical axis. Translation of
said lens permits one to change the FOV at the sample without changing the po-
sition on the ultimate image plane onto which the QD fluorescence is focused.
It is then sent through a 3x beam expander, a long-pass filter used to filter back-
scattered above-band laser light, two liquid crystal variable retarders (LCVRs),
and a polarizer, and eventually is focused onto the image plane of the spectrom-
eter (input slit) with a 200 mm lens. The collection lens, 3x beam expander, and
lens that focuses the fluorescence onto the image plane of the spectrometer cre-
ate an overall magnification of 60. The two LCVRs and polarizer are used in
conjunction to select the detection polarization. The two LCVRs can rotate any
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polarization to any other on the Poincaré sphere. Thus, their input voltages can
be set to rotate a given polarization of the collected fluorescence onto that of the
polarizer preceding the spectrometer, allowing for collection of a specific polar-
ization with minimal loss of intensity. The polarizer preceding the spectrometer
is set to force the polarization of light to be perpendicular to the groove direction
of the grating inside the spectrometer, optimizing the diffraction efficiency. The
QD fluorescence can then be collected via a CCD camera attached to one of the
two spectrometer outputs, or can be sent out of the spectrometer via the other
output for additional analysis.

The fluorescence transmitted through the spectrometer is coupled into a
single-mode, polarization-maintaining fiber that is the input to a fiber-based
MZI. A HWP is used before the input of the fiber to rotate the fluorescence’s
polarization to match that of one of the two propagation modes of the fiber. One
of the arms of the MZI can be disconnected so that HBT or TRRF measurements
using just the second beam-splitter can be conducted. However, both arms can
be left intact, allowing for HOM interference measurements, such as the second-
order correlation measurements used to calculate the CTW to characterize pho-
ton indistinguishability. Further details regarding TRRF measurements are dis-
cussed in Chapters 4 and 5, while further details regarding measurement of the
CTW is discussed in Chapter 6.

2.3 Excitation Spectrum

In Chapter1 we made the argument that the excitation spectrum of a resonantly
excited QD often takes on a Lorentzian lineshape. I will rewrite the Lorentzian
in a slightly different form here, but the mathematical shape remains the same.
The intensity of the observed fluorescence of a given transition as a function of
resonant laser wavelength ωL is given by:

I(ωL) =
AΓ

2π
(
(ωL − ω0)2 + 1

4 Γ2
) , (2.1)
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where ω0 is the on-resonance frequency, Γ is the FWHM of the lineshape, and A
is the area under the curve2.

Acquiring an excitation spectrum is quite straight-forward. The intensity
of the fluorescence is monitored, in our case by a CCD camera. The excitation
laser is then stepped in frequency about the on-resonance frequency ω0 (laser
frequency in which the QD fluorescence is brightest). The intensity is recorded
as a function of excitation laser frequency over the full range of frequencies in
which a measureable intensity of the probed optical transition exists. The curve
is fit with the above Lorentzian function from which on-resonance frequency
and FWHM can be extracted.

2.4 Saturation Curve

Investigations of low-power dynamics of course requires minimization of high-
power effects, such as observation of Rabi oscillations under high-power reso-
nant excitation. The low-power regime is often defined to be established when
an excitation power less than the saturation power of the probed optical transi-
tion is used. As the excitation power is increased, the maximum time-averaged
population of the excited state saturates, because the absorption rate and stim-
ulated emission rate increase by the same proportion with laser power3. This
results in a saturation of fluorescence intensity as a function of excitation power
with the following form:

I = Imax
P

P + Ps
, (2.2)

where Imax is the maximum fluorescence intensity at high power, P is the exci-
tation power, and Ps is the saturation power, which is defined as the power that
results in the fluorescence intensity taking on a value equal to half its maximum
value.

2Recall, without the coefficient A, the integral over the full Lorentzian is unity, thus A is
the area under the curve. Multiplication of the Lorentzian by A allows us to fit any general
Lorentzian lineshape without normalization.

3That is, the two rates become balanced at high power.
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2.5 Excited State Lifetime

For lifetime measurements, we excite a QD using a pulsed titanium-sapphire
laser. Each pulse is a couple of picoseconds (tens of GHz) in duration and ad-
jacent pulses are separated by 12.5 ns. A typical lifetime for InAs QDs in our
sample is on the order of 1 ns or less, resulting in absorption (excitation) and
emission bandwidths on the order of a few GHz. The laser power is optimized
to maximize the fluorescence of a given transition in a QD, and due to its pulse
width, covers the full excitation spectrum for a given transition, regardless of the
degree of spectral diffusion. Additionally, the pulsed laser has a narrow enough
bandwidth that it does not couple with optical transitions of other charge states
of the QD. An incoming pulse populates the excited state, which is allowed
to decay entirely before the arrival of the next pulse, due to the time between
pulses being roughly an order of magnitude longer than the lifetime of the ex-
cited state. The TRRF is then recorded relative to a trigger signal that is synced
with the pulse arrival time, and the entire decay of the fluorescence is recorded.

In the optical path of the excitation laser, a sampler is used to pick off a small
amount of intensity sent to a fast-photodiode (FPD). The FPD outputs a volt-
age signal relative to the incident intensity. As long as the FPD’s response time
is faster than the time between pulses, the FPD creates consequential voltage
pulses that are synced temporally with the pulses of the laser. The voltage sig-
nal is sent through a passive inverter that creates negative delta-function-like
pulses that are used to trigger the TCSPCM and start the clock. The fluorescence
from the QD is then sent to an APD and the TCSPCM constructs a histogram of
photon arrival times at the APD relative to the start clock that is in sync with the
pulse arrival time.

For optical and near-infrared frequencies at 4.2 K, the photon energy is much
higher than the energy kBT associated with black-body radiation, thus stimu-
lated emission and absorption induced from any thermal radiation can be ig-
nored. The decay of the excited-state population is thus dominated by spon-
taneous emission. The time-evolution of the excited state, and hence the flu-
orescence intensity, is then given by Eqn. 1.4. Consequently, the fluorescence
intensity caused by decay of the excited state population takes on a simple de-
caying exponential form, as in Eqn. 1.5. We thus fit the decaying TRRF with a
simple exponential convolved with the instrument response function (IRF) of
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the measurement system to extract the lifetime (τ in Eqn. 1.5)4.

4Note that although the life time is τ in Eqn. 1.5, T1 is often used to represent the lifetime.
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Chapter 3

Characterization of the Local Charge
Environment of a Single Quantum
Dot via Resonance Fluorescence

3.1 Introduction

In this chapter we study the photon-statistical behavior of resonance fluores-
cence from self-assembled InAs quantum dots (QDs) as a function of the den-
sity of free charge carriers introduced by an above band-gap laser. Second-order
correlation measurements show bunching behavior that changes with above-
band laser power and is absent in purely above-band excited emission. Res-
onant photoluminescence excitation spectra indicate that the QD experiences
discrete spectral shifts and continuous drift due to changes in the local charge
environment. These spectral changes, combined with tunneling of charges from
the environment to the QD, provide an explanation of the bunching observed in
the correlations.

Indistinguishable single photons are potentially important in a number
of quantum information processing applications, for example linear optical
quantum computation [63], entanglement swapping [65–67], and quantum re-
peaters [68, 69]. Indistinguishable photons are those with identical properties
(e.g., wavelength, bandwidth, polarization), which allows them to demonstrate
Hong-Ou-Mandel interference [36]. Semiconductor quantum dots (QDs) have
been shown to be good sources of single photons [70–72], and photons emit-
ted from the same QD in rapid succession have been shown to have very high
indistinguishability when the QD is in an optical cavity [42, 73] or is excited
resonantly [74]. Photons spaced more widely in time and those from separate
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QDs, however, do not show the same degree of indistinguishability [32, 75, 76]
due to the inhomogeneous distribution of photon energies emitted by one QD
state at different times. This inhomogeneous distribution is called spectral dif-
fusion, and it is likely caused by fluctuating occupation of charge traps in the
environment of the QD [33, 35, 77–80]. In order to produce indistinguishable
single photons, the causes of spectral diffusion must be investigated and miti-
gated. One step in this process is to measure the dynamics and the influence on
the QD of fluctuating charge traps in the environment.

The subtle fluctuations of the local electric field environment modify the en-
ergy levels of the QD through the quantum-confined Stark effect because of the
QD’s large DC electric polarizability. Spectroscopically, this effect manifests as
a discrete jump, continuous drift or spectral broadening of the QD’s absorption
(excitation) and emission lines depending on the relative position of the charge
traps and characteristic time of the electric fluctuations. A charge trap close to
a QD will result in a discrete shift of the peak in the QD absorption spectrum
when the trap’s occupation state changes. A single trap far from a QD will have
an unnoticeable effect on the QD by itself, but a change in mean occupation of
a large ensemble of traps will cause a continuous drift or broadening of the QD
spectrum. In this study, we show that all of these effects are present in one QD’s
excitation spectrum when its local environment is perturbed by above band-gap
optical excitation.

To resolve the fine change in the QD energy levels, we use resonant pho-
toluminescence excitation (RPLE) spectroscopy, which measures the excitation
spectrum by collecting the total resonant fluorescence from the QD using differ-
ent excitation wavelengths. The resolution of this technique is solely dependent
on the linewidth of the excitation laser, which is ∼1 MHz in our case. RPLE
spectra with additional variable-intensity above-band excitation illustrate dis-
crete spectral jumps in the QD resonance due to Stark shifts caused by nearby
occupied charge traps. The number, relative position, and average occupation of
the nearby charge traps can be deduced from the data. No electrical contacts are
necessary as the measurement is entirely optical. Second-order correlation mea-
surements of the emitted fluorescence show photon bunching that characterizes
the time-scale of the charge trap dynamics. We found that the switching rate of
the charge traps between occupied and unoccupied configurations increases by
five orders of magnitude with increasing above band-gap excitation power even
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below the threshold where the above-band excitation produces photolumines-
cence (PL) on its own.

3.2 Sample and Experimental Setup

The sample consists of InAs self-assembled QDs grown in the center of a 4-λ
GaAs spacer between two AlAs/GaAs distributed Bragg reflectors (DBRs) with
14 and 20.5 periods on the top and bottom, respectively. The DBRs form a pla-
nar microcavity with a transmission mode from 923 ∼ 930 nm and a waveg-
uide mode that confines light within the plane of the sample. The thickness of
the GaAs spacer that defines the cavity is 1.06 um, leaving the QDs more than
500 nm away from either DBR. As discussed later, this relatively large distance
rules out the possibility that the observed discrete Stark shifts in the RPLE data
are caused by charging of defects at the hetero-interfaces or the sample surface.
The sample is maintained at 5 K in a closed-cycle cryostat. The optical excita-
tion and collection scheme is depicted in Fig. 3.1. Laser light resonant with a
QD transition is introduced into the waveguide mode of the sample via free-
space coupling from the side; the QD is approximately 100 µm from the cleaved
sample edge. When the QD transition is resonant with the cavity mode, the
fluorescence is preferentially directed normal to the sample surface where it is
collected by a 0.5 NA aspheric lens. The resonant excitation is provided by ei-
ther a tunable continuous-wave (CW) diode laser or a mode-locked Ti:sapphire
laser with a pulse length of 2.1 ps. Simultaneous with the resonant laser, an
above band-gap excitation laser with a wavelength of 633 nm can be introduced
normal to the surface. The fluorescence is directed through a 0.75 m spectrom-
eter and thence either to a TE-cooled CCD camera or through an exit slit to a
time-correlated single-photon counting (TCSPC) system. The second-order cor-
relation function, g(2)(τ), of the CW-excited fluorescence is calculated from the
time-tagged photon detection data.
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Resonant 
Excitation Path

Resonant Fluor. 
Collection Path

Above Band-gap 
Excitation

Quantum Dots4
λ0

FIGURE 3.1: Quantum dot sample with optical excitation and col-
lection geometry. The resonant laser is focused on the cleaved face
of the sample in order to couple into the waveguide mode of the
cavity. The fluorescence is collected normal to the sample surface.
The above band laser at 633 nm is focused through the collection
lens onto the QD location. λ0 is the cavity resonance wavelength
in vacuum (930 nm) and n is the refractive index of GaAs (∼ 3.5).
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3.3 Experimental Results

3.3.1 Time-Resolved Fluorescence

The QD lifetime T1 is obtained from time-resolved fluorescence measurements
where the QD is resonantly excited by the pulsed laser and the fluorescence is
directed to a single-photon counting module (SPCM). The pulse has an energy
of 0.17 pJ and a bandwidth of 76 GHz in linear frequency. This is two orders
of magnitude wider than the QD’s ground state transition linewidth, and well
covers the observed spectral shifts due to the charge traps. Figure 3.2 shows an
example time-resolved measurement without above-band excitation. The data
are fit with an exponential decay convolved with the measured instrument re-
sponse function of the SPCM. We measured resonantly excited time-resolved
fluorescence for different powers of above-band excitation and extracted an av-
erage lifetime of T1 = (518 ± 3) ps. The extracted lifetimes show no trend with
increasing above-band excitation power (inset of Fig. 3.2). Coupled with ad-
ditional measurements discussed below, this suggests that the lifetime is not
affected by the fluctuations of the local charge environment.

3.3.2 Resonant Photoluminescence Excitation Spectroscopy

We use RPLE spectroscopy to quantify the discrete shifts and continuous drifts
of the QD energy levels caused by both nearby and distant charge carrier traps.
The capture rate of charge carriers at these traps is expected to depend on the
local free charge carrier density, which is controlled by adjusting the power of
an above band-gap laser through 6 orders of magnitude. For each power, two
RPLE spectra with orthogonal detection polarizations (H & V) are collected by
scanning the frequency of a tunable 1 MHz bandwidth CW laser through the QD
resonance at 10% of the saturation power P0 = 4.7µW. The two spectra are then
summed to give a final spectrum whose amplitude is proportional to the exciton
population in the QD. In the summation, the polarization-dependent absorption
due to the optics in the collection path is corrected.

Figure 3.3(a)–(c) shows three examples of summed spectra in three differ-
ent power regimes of the above-band laser, i.e. low, medium and high power.
Each spectrum is fitted with 8 Voigt profile peaks whose Lorentzian linewidth is
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FIGURE 3.2: (Color online) Time-resolved fluorescence from a
single QD under pulsed resonant excitation and without above-
band excitation. The data (orange dots) are fit by an exponential
decay model convolved with the measured instrument response
function of the SPCM (black curve). The blue curve is the con-
volved result. The inset shows the lifetimes extracted from simi-
lar time-resolved fluorescence measurements with different levels
of above-band laser power represented as a fraction of the satura-
tion power P1 = 28.5µW. The lifetime varies little with above-band
laser power, with an average value of T1 = 518± 3 ps. The average
T1 is depicted by the dark line in the inset, while the gray area is

the standard uncertainty range.
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FIGURE 3.3: (Color online) (a)–(c) Three examples of normalized
resonant photoluminescence excitation spectra (RPLE) at above-
band laser powers of zero, 3.1×10−7 P1 and 7.7×10−5 P1 respec-
tively. The filled curves are the individual Voigt peaks used to do
the fitting; the blue curve along the orange data points is the sum
of these individual peaks. Zero detuning is defined as the middle
point of the two Voigt peaks with largest amplitude (green) in (a),
which corresponds to 928.3713 nm. Each curve is normalized to its
own maximum. (d) 2D plot of 16 RPLE spectra taken at different
above-band laser powers plotted in a logarithmic scale on the ver-
tical axis. The color–scaled spectral intensity is normalized to the
overall maximum of the measured fluorescence intensity. The grey
lines denote the three spectra in (a), (b) and (c). The black dots are
the positions where correlation data are collected. Box A denotes
the data shown in Fig. 3.5(a) and box B those in Fig. 3.5(b). The
white dashed lines indicate the boundaries for the different above-
band power regimes. (e) An example of polarization-dependent
RPLE without above-band laser. Two RPLE spectra were recorded
using a linear polarizer oriented at 114◦ (blue) and 27◦ (red) from
the horizontal. Their sum is displayed as the orange curve with
grey filled area. The red and blue peaks are the same shape but
displaced and with different amplitudes, which implies that the
two peaks are the orthogonally polarized emission from the two

fine structure split states of a neutral QD.
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restricted to be not less than the lifetime-limited value of 308 MHz in linear fre-
quency according to T1. Polarization dependent RPLE (Fig. 3.3(e)) suggests that
these emission lines are from a neutral QD. Thus, 8 Voigt peaks gives 4 pairs
corresponding to four different discrete Stark shifts (including the case where
the shift is zero) experienced by the QD during the measurement.

We measured RPLE spectra for a number of QDs, and all those we surveyed
showed either 1, 2, or 4 different Stark shifts. These are all powers of 2, which is
consistent with an integer number of nearby 2-level charge traps. For example,
two charge traps would result in 22 = 4 different configurations. None of the
QDs we surveyed showed 3 or 5 Stark shifts. Regarding the QD detailed here,
to match the 4 discrete shifts observed in the RPLE data, the only possible trap
arrangement is either two 2-level traps or one 4-level trap. Candidates for 2-
level traps abound – for example, dopant impurities and other crystal defects
– while to the authors’ knowledge no 4-level traps have been reported in the
literature. Thus we discard the latter possibility and conclude that there are two
nearby 2-level charge traps influencing the QD. We denote the first trap as α, the
second as β, and the possible trap configurations as (αβ), where α, β can take a
value of 0 or 1 representing the empty (neutral) or occupied (ionized) state of
each trap.

In Fig. 3.3(a)–(c), the 8 Voigt peaks are color coded into 4 pairs so that each
pair stands for one trap configuration: the green peaks correspond to charge
configuration (00), black peaks to configuration (01), blue peaks to configuration
(10), and red peaks to configuration (11). Below we discuss the underlying rea-
soning for the assignment of these labels. There may be additional charge carrier
traps far from the QD and randomly distributed, but their influences on the QD
energies are limited. Their effect on the RPLE spectra is described by spectral
line broadening, which consists of two parts: Gaussian widths of the Voigt pro-
files for inhomogeneous environmental broadening and additional Lorentzian
widths for homogeneous non-radiative broadening. Due to the significant over-
lapping of multiple peaks in the spectra, the fitting is too ambiguous to distin-
guish these two sources definitively. But the Voigt line widths of all peaks are
broadened by about a factor of 4 compared to the lifetime-limited value. Con-
sidering the relatively weak effect on the electric field at the QD from the free
charge carriers and distant charge traps, the orientation of the asymmetry axis
of the confinement potential of the QD will remain the same for all above-band



3.3. Experimental Results 75

powers. Therefore the amplitude ratio of the two fine structure peaks in each
pair of Voigt profiles is constant for all above-band powers. We perform a global
fitting of four spectra from different power regimes simultaneously to deter-
mine the ratios. Afterwards, each spectrum is fitted individually with the fixed
amplitude ratios.

With no above-band excitation, one pair of peaks dominates the RPLE spec-
trum (the green peaks in Fig. 3.3(a)) showing that 83% of the time the traps are in
the corresponding configuration. Without above-band excitation, the traps are
expected to be in thermal equilibrium. If the traps are either shallow donor or
acceptor impurities, in bulk GaAs at 5 K the fraction that are ionized is approx-
imately zero. The fraction of ionized dopants near the QD may be increased by
the proximity of the wetting layer quasi-continuum states, but it is still expected
to be low. Therefore, we assign the neutral trap configuration (00) to the green
peaks dominating the spectrum in Fig. 3.3(a).

At high above-band laser power we expect the free charge carrier density
to be greater, and the charge traps correspondingly more likely to be charged
compared to the case of low above-band power. Therefore, we assign trap con-
figuration (11) to the pair of peaks that dominates the spectrum in Fig. 3.3(c),
which is displayed in red. The other two configurations (01) and (10) are arbi-
trarily assigned to the black peaks which are shifted by about 1 GHz from the
green, and to the blue peaks which are shifted by about –3 GHz from the green.

Figure 3.3(d) shows all 16 RPLE spectra at different above-band laser pow-
ers which span 6 orders of magnitude. We identify four regimes of above-band
power based on the different patterns in the RPLE spectra: low power regime
(zero ∼ 1.7×10−7 P1), medium power regime (0.17 P1 ∼ 2.5×10−6 P1), high
power regime (0.025 P1 ∼ 3.5×10−4 P1) and ultra-high power regime (above
3.5×10−4 P1). Note that even in the high end of the ultra-high power regime the
above-band laser is less than 1% of the saturation power.

Figure 3.4(a) shows the best-fit Voigt peak positions of the spectra in
Fig. 3.3(d). In the medium power regime, there is a continuous but quick peak
shift of about ∼1 GHz for trap configurations (11), (01) and (10). This is pos-
sibly caused by partial screening of the electric fields of the trapped charges
by the free charge carriers introduced by the above-band excitation. Fig. 3.4(b)
shows the spectrally integrated RPLE of the QD as a function of above-band
laser power. It reaches its maximum value at 1.2×10−6 P1, indicating that the
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FIGURE 3.4: (Color online) (a) Center detunings of resonance
peaks. For the RPLE spectra that comprise Fig. 3.3(d), the center
detuning of each Voigt profile in the fit is plotted versus the corre-
sponding above-band laser power. The green square curve corre-
sponds to trap configuration (00), the red circle for trap configura-
tion (11), the blue up-triangle for trap configuration (10) and black
down-triangle for trap configuration (01). The lines are guides for
the eye. The horizontal dashed lines give the boundaries of differ-
ent above-band power regimes. (b) Spectrally integrated intensity
of RPLE spectra in Fig. 3.3(d). The baseline offset due to the above-
band excitation has been subtracted so that the curve represents the
emission solely due to resonant excitation; this effect is only signif-
icant in the ultra-high power regime. The error-bars correspond to
experimental fluctuation and shot noise. The curve is normalized
to its maximum value. The grey vertical dashed lines correspond

to the boundaries of different above-band power regimes.
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local charge environment around the QD most favors neutral exciton emission
(over trion or biexciton emission) at that power. When the above-band laser
goes over this threshold, the QD fluorescence starts to decrease, reflecting the
fact that more free charge carriers are available for the QD to capture in favor
of trion and biexciton emission, which reduces neutral exciton emission. As the
data shows, the QD resonant emission is suppressed by a factor of 2 in the ultra-
high power regime compared to the maximum emission intensity at medium
power.

All the RPLE peaks show a gradual spectral drift from the low power regime
to the ultra-high power regime. This is possibly caused by an asymmetric dis-
tribution of many distant charge traps that are far from the QD. By investigating
the evolution of the green peaks (configuration (00)), we determined the drift
to be an approximately 0.6 GHz red-shift. This red-shift happens to follow the
same trend of QD energy drift when the local temperature is increased by a
small amount, about 0.2 K [81]. However, other dots show a blue-shift of similar
amount over the same above-band excitation power range. Therefore, thermal
heating by the laser is not sufficient to explain these observations. In addition,
a calculation with a simple two-dimensional thermal conductance model with
the maximum above-band power used here (thermal conductivity of GaAs at 4
K is 10 W·cm−1·K−1, and absorption coefficient at 633 nm is 4×104 cm−1) shows
that the temperature rise would be less than 0.2 mK. This is too small to account
for the observed spectral shift.

3.3.3 Correlation Function of Resonance Fluorescence

The RPLE data quantify both the magnitude of the Stark shifts experienced by
the QD and the time-averaged occupation probability of the charge traps that
cause them. The time-dependent behavior of the charge traps can be character-
ized by the photon statistics of the resonance fluorescence. When the resonant
laser is tuned to one of the peaks in the RPLE spectrum, the QD will emit strong
fluorescence. If a nearby charge trap switches from unoccupied to occupied,
or vice versa, the QD resonance will shift and the fluorescence intensity will
be reduced. This effect manifests as bunching in the second-order correlation
function of the fluorescence, g(2)(τ), on the time scale of the trap switching rate.

Another effect that manifests as bunching in g(2)(τ) is charging of the QD.
In contrast with QDs in a diode structure [82–84], here the charge state of the
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QD in the sample is uncontrolled, and the QD may capture a charge from the
environment. The resonant laser is tuned to the neutral exciton transition and
when the QD is charged that transition is not available. Thus, when the QD is
charged there will be no resonance fluorescence. The charged QD may capture
another charge of the opposite polarity from the environment, forming an ex-
citon and returning to a neutral condition. Thus the QD may switch between
charged and neutral states, emitting resonance fluorescence while neutral and
no fluorescence while charged. Therefore, the emitted photons will be bunched
on a time-scale similar to the time it takes the QD to capture a charge.

Figure 3.5(a) and Figure 3.5(b) show how g(2)(τ) is affected by the variations
of the environmental free charge carrier density introduced by the above-band
laser. All correlation data are normalized to the long time value at 0.2 seconds
and plotted on a logarithmic time scale so both the short-time and long-time
behavior can be clearly seen. All data show a clear dip near τ = 0 and an
exponential decay at longer times down to an asymptotic value. In a linear-
log plot, an exponential decay is characterized by a high plateau followed by a
sharp decay at the characteristic time of the exponential, finishing with another
lower plateau. The dip is a sign of antibunching, and the decay is a sign of
bunching, with the height of the plateau at intermediate τ values indicating the
degree of bunching. Correlation functions like this indicate that on short time
scales the emitted photons are antibunched (i.e. two photons are unlikely to be
emitted within one lifetime), but that on long time scales the photon stream is
separated into bunches. The antibunching is expected of emission from a single
QD, and the bunching indicates that there are phenomena that cause the QD
to intermittently stop being excited by the resonant laser. Due to the finite re-
sponse time of the detectors (∼0.8 ns), the bunching plateau is convolved with
the anti-bunching dip to result in the measured g(2)(0) ≥ 1. This observation
is further supported by the fact that a higher bunching plateau accompanies a
larger g(2)(0) value. All g(2)(τ) data presented here show not a single exponen-
tial decay, but multiple exponential decays with different characteristic times
(10−7 s ∼ 10−2 s). These decays probably originate from both the charging of the
QD and the fluctuation of the charge configuration of nearby traps, as discussed
above.

To obtain the maximum signal-to-noise ratio in g(2)(τ), we followed the
brightest peak position in the RPLE map to collect the correlation data; the
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FIGURE 3.5: (Color online) Second-order correlation function of
the fluorescence, g(2)(τ). The legends list the above-band laser
power in fractions of the saturation power P1. (a) The g(2)(τ) mea-
sured at the black dots in box A in Fig. 3.3(d). The resonant laser is
tuned to ∼1.96 GHz detuning with power of 0.1 P0 and the above-
band laser power is varied from zero to 6.32×10−7 P1. A significant
increase of bunching amplitude and small shrinking of bunching
time can be seen. The inset is the correlation data measured with
only above band-gap laser excitation at 0.23 P1. (b) The g(2)(τ)
from box B in Fig. 3.3(d). The resonant laser is at ∼0.56 GHz de-
tuning with a power of 0.1 P0. The power of above-band laser is

varied from 1.24×10−6 P1 to 7.69×10−3 P1.
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points of collection are marked by black dots in Fig. 3.3(d). Figure 3.5(a) shows
the g(2)(τ) results measured at the points in box A and Fig. 3.5(b) for those from
box B. According to the fits to the RPLE data, when recording the correlations in
Figs. 3.5(a) and 3.5(b) the resonant laser is mostly exciting the high energy peak
of the fine structure doublet for either trap configuration (00) for box A or trap
configuration (11) for box B.

As the above-band laser power increases, the bunching amplitude in
Fig. 3.5(a) increases monotonically up to 14 due to the decrease of the proba-
bility of trap configuration (00) as indicated by the decreasing of fluorescence in
Fig. 3.3(d). Bunching means that the overall emission is grouped into clumps of
photons, and there is a dearth of photons between the bunches. An increase of
the bunching amplitude reflects a reduction in the relative probability of detect-
ing two photons separated by a long time interval. This indicates that the QD
is turned into an “off" state or low count-rate state more frequently. If the QD
turns “off" more frequently, it reduces the number of photon pairs with a long
separation interval compared to those with a short separation interval. This un-
balanced change leads to an increase of the relative probability to find a photon
pair with a short separation interval, i.e. the increase of the g(2)(τ) bunching am-
plitude. Pronounced intensity fluctuation (high bunching level) for the medium
power regime in both Figs. 3.5(a) and 3.5(b) is associated with accelerated tran-
sitions between the different charge trap configurations. This leads to strong in-
tensity fluctuations of the PL that monitors one of the particular configurations,
e.g., the (00) state for Fig. 3.5(a) and the (11) state for Fig. 3.5(b). This acceleration
is reflected in the shortening of the characteristic decay time of the bunching in
g(2)(τ), from 10 ms to 1 ms for Fig. 3.5(a) and from a few milliseconds to a few
microseconds for Fig. 3.5(b) up to the top of the high power regime.

In contrast to the decay time, in this power range (1.2×10−6 P1 ∼ 2.5×10−4

P1) the bunching amplitude shows a non-monotonic behavior. First it decreases
from 5 to 3 when the above-band power increases up to 3.3×10−6 P1, then it rises
back up to 5 at 2.5×10−4 P1, and finally it decreases again. The first decrease is
due to the increasing probability for the traps to be in configuration (11), which
is the charge configuration with which the laser is in resonance. In fact, an in-
crease in PL at the same above-band power in the RPLE spectra gives a direct
support for this argument; see Fig. 3.3(d). The following increase of bunching
amplitude is associated with decrease of time-averaged total PL (Fig. 3.4(b)) in
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the same power range: the QD starts to capture another charge, and the neutral
exciton emission becomes less favored while trion or biexciton population get
correspondingly increased.

Fluorescence from the trion and biexciton are filtered out by the monochro-
mator, and so do not contribute to the measured correlation. Therefore, one
would expect a greater bunching amplitude for a higher above-band power.
However, the opposite trend is observed in Fig. 3.5(b) when the above-band
power is more than 2.5×10−4 P1. It seems that the anti-bunching dip prevents
the bunching amplitude from increasing further at short time scales. Physically
this is because there are rarely photon pairs with time interval shorter than the
lifetime of the QD. If the lifetime of the QD was shorter, one would expect the
bunching amplitude to continue rising. In addition, the high density of free
charge carriers in the ultra-high power regime enables both the QD and other
sources (e.g., the continuum tail of wetting layer defect states) to emit photons
without resonant excitation. These extra photons would fill the gaps between
the bunching of the resonant-excited-QD emitted photons, leading to a slight
decrease of the anti-bunching dip depth and a decrease of the bunching ampli-
tude.

As a comparison, we did a similar correlation measurement with only above
band-gap excitation and found that there is no bunching at all for all the excita-
tion powers used from 7.0×10−3 P1 to 6.3 P1 and the inset of Fig. 3.5(a) gives one
example of those measurements at 0.23 P1. Although that excitation power is
far above the threshold for obtaining emitters aside from the QD, a well-defined
anti-bunching dip down to 0.2 is still present. It is possible that the decrease
of the dip depth in the resonantly excited correlations in Fig. 3.5(a) is mostly
due to the finite response time of the detectors rather than simultaneous pho-
tons from multiple sources. Thus the resonantly excited QD even including its
environment as a whole would still be a good single photon source at this point.

We note that several essential studies on closely related topics were pub-
lished in the past few years, such as quantum dot charging [40] and nearby
charge trap dynamics [39]. A brief summary of those works and a comparison
to our study are provided here. The QD studied by Nguyen et al. [40] has an
above band excitation saturation power of 30 µW, which is consistent with our
value of 28.5 µW. They also note that their QD emits no resonance fluorescence
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without a particular very small amount of above-band laser power. This is sim-
ilar in kind if not degree to our observation that the resonance fluorescence is
a maximum with a non-zero above-band laser power. Without above-band ex-
citation, Ngugen et al. extract a charge trap ionization and neutralization rate
on the order of 104 s−1 while our results show a large range of bunching decay
rates from 103 s−1 to 105 s−1. This difference is probably due to the fact that
our QD can emit resonance fluorescence without above-band excitation, leading
to a g(2)(τ) measuring both effects of QD ionization and charge trap dynamics.
Nevertheless, this rate range is consistent with the study by Arnold et al. [39],
where the trap loading/unloading rate varies from 4×103 s−1to 6×104 s−1, al-
though their QD shows much larger discrete Stark shift (∼18 GHz) indicating
either a much larger QD dipole moment or a much closer charge trap. Nguyen
et al. also extracted a QD charging rate of ∼104 s−1 at low above band power
(0.01 nW), and of 107 s−1 at high above-band power (230 nW). Correspondingly
at the same above-band power, our transition rate is ∼104 s−1 at 6.3×10−7 P1

and ∼108 s−1 at 7.7×10−3 P1. This is a difference of one order of magnitude
at high above band power, which can be understood by noticing that our QD
experiences two sources of fluctuation, charging of QD itself and ionization of
nearby charge traps, while Nguyen’s QD only experiences the former one. Thus,
the fluctuation of nearby charge traps increases the bunching decay rate. From
Arnold’s study, the transition rate of the charge trap is found to be ∼1.6×106

s−1 for resonant excitation at 230 nW. This value is too low to explain the rate
difference between our study and Nguyen’s study at high above band power.
But it is possible that this number would be significantly higher when using
above-band excitation rather than below band gap resonant excitation, and thus
bridging the difference. Qualitatively, our g(2)(τ) bunching decay rate shows
a linear relationship with the above-band excitation power, which is consistent
with the results of both Nguyen et al. and Arnold et al.. There the extracted
transition rate is proportional to either the above-band power or the square root
of the power, but at the powers of interest here the larger linear term dominates
if all effects are present in the data. Two other works observing discrete Stark
shifts are Houel et al. [34] using differential reflection spectroscopy and Hauck
et al. [85] using differential transmission spectroscopy. Both studied a sample
with a Schottky diode structure that is different from ours, but the values of the
discrete shifts are close to those presented here. Moreover, their interpretation
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of the phenomenon involves charges trapped around the QD with a distance
of ∼100 nm [34] or ∼30 nm [85], which is close to the result of our calculation
shown in the next section.

3.4 Possible Trap Locations

A change in the local electric field such as that produced by a nearby charge
trap will shift the resonance frequency of the neutral exciton via the quantum
confined Stark effect. Knowing the Stark shifts experienced by the QD allows us
to calculate the possible positions of the charge traps. The shift as a function of
the change in local electric field, ∆F, is:

∆ν = (−p · ∆F − (β∆F) · ∆F)/h (3.1)

where p is the permanent static dipole moment of the exciton in the QD, and β

is its polarizability tensor [86]. Here we use typical values for the dipole mo-
ment [85] and polarizability [37] of self-assembled InAs QDs: p = e × (0.2nm)ẑ,
and βxx = βyy = β = 4 µeV/(kV/cm)2. The polarizability is not isotropic be-
cause the QD is not spherically symmetric. Given the QD’s pancake-like shape
it has negligible polarizability in the z-direction, βzz = 0. From these symmetry
considerations, Eqn. 3.1 reduces to

∆ν = (−p∆Fz − β(∆F2
x + ∆F2

y ))/h (3.2)

The change in electric field produced at the QD location by a single charge at
relative position ri is:

∆Fi =
1

4πϵ0ϵr

−qi

r2
i

r̂i (3.3)

where qi is the charge, and ϵr = 13.1 is the dielectric constant of GaAs.
By fitting the data in Fig. 3.3(a) we obtain 4 different values of the Stark shift,

which we attribute to the 4 possible charge configurations of 2 nearby charge
traps. We assume the charge configuration that is most likely with zero above-
band laser power corresponds to the equilibrium configuration, (00), where both
charge traps are neutral. We define the corresponding Stark shift to be zero:
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∆ν0 = 0 GHz. The other three Stark shifts are:

∆ν1 = −3.3607 GHz (+0.0201/ − 0.0064 GHz)
∆ν2 = +1.1189 GHz (+0.1064/ − 0.0028 GHz)
∆ν3 = −2.2145 GHz (+0.1054/ − 0.0053 GHz)

(3.4)

where ∆ν1 corresponds to configuration (10), ∆ν2 corresponds to configura-
tion (01), and ∆ν3 corresponds to configuration (11). We make the assignment
of ∆ν3 to the doubly charged configuration because it corresponds to the pre-
dominant fluorescence peak at high above-band laser power. Both traps being
charged is the most likely configuration when the above-band laser is producing
many free charges that may be captured by the traps.

We can combine Eqns. 3.2 and 3.3 to determine the possible positions ri that
are consistent with the known values ∆νi of the resonance shift. For a single
charge trap this results in an equation that relates the distance ri between the
QD and the trap to the polar angle θi between the ẑ-axis and the vector ri:

∆νi =
pkqi

hr2
i

cos θi −
βk2e2

hr4
i

sin2 θi (3.5)

where k ≡ 1/(4πϵ0ϵr) and qi is the charge of the trap when ionized. Since the
RPLE data cannot distinguish the polarity of the traps when they are charged,
we do not know the sign of qi. Thus, we consider both the case where the
charged trap is positive (qi > 0) and the case where it is negative (qi < 0).
Using the values and confidence intervals of ∆ν1 and ∆ν2 and Eqn. 3.5 we can
determine the sets of possible values (r1, θ1) and (r2, θ2). Each set of possible po-
sitions defines an azimuthally symmetric volume in the space around the QD.
Figure 3.6 shows colored areas which are cross-sections through these volumes
for both possible polarities (red = positive; blue = negative) of trap α (solid lines)
and trap β (dashed lines); a schematic of a typical 20 nm diameter QD is shown
at the origin.

From Fig. 3.6 we can see that to cause the measured Stark shifts, a charge
trap must be less than 70 nm away from the QD, which is relatively close: less
than four QD diameters. Thus, any charge trap located at the DBR interfaces or
surface is too far away to cause these discrete spectral shifts. Two charge traps
within a spherical volume of radius 70 nm is consistent with the typical unin-
tentional doping concentration of 1015 cm−3 for GaAs grown by molecular beam
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FIGURE 3.6: (Color online) Possible charge trap locations consis-
tent with the measured Stark shifts. Red and blue correspond to
positive and negative trap polarity, respectively; the QD is repre-
sented schematically at the origin. The solid lines are for trap α; the
dashed lines are for trap β. The shaded regions denote locations
consistent with the confidence range of ∆ν2; the confidence range
of ∆ν1 is small enough that the corresponding region is hidden by

the solid lines.
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epitaxy. Notice that trap β must be either above or below the plane of the QD,
depending on its polarity, while trap α could be above or below the QD plane
regardless of its polarity. The separation between the resonantly excited QD and
trap α is 30.6 nm if the trap is in the wetting layer (see Fig. 3.6). For comparison,
in a sample with a high-density of self-assembled QDs [87] (∼9.5×109 cm−2),
the average dot-to-dot distance is about 103 nm, which is not much larger than
the separation between the QD and trap α if it is in the wetting layer plane. Thus
it is possible that trap α is another QD; however, this neighboring QD would be
constrained to have only two charge states to be consistent with the RPLE data.
Regardless of the identity of trap α, trap β cannot be another QD.

3.5 Conclusion

Resonant excitation spectroscopy successfully characterizes the local electric en-
vironment of the QD by providing detailed information about the number of
nearby charge traps, their distances from the QD and their time-averaged occu-
pation probability. Combined with weak above band-gap excitation below the
level required to produce photoluminescence, the evolution of the local envi-
ronment with respect to different densities of free charge carriers was studied,
and we found that to achieve the maximum of total PL from the QD, a small
amount of above-band excitation is required (Fig. 3.4(b)). This is similar to pre-
vious work on resonantly excited QDs [39–41, 88, 89], but here the behavior is
more complicated. For the QD used in this study, the data indicate that there
are two nearby charge traps within 70 nm. Their exact locations depend on the
polarity of the trap when ionized, which the current measurement techniques
are unable to determine.

Correlation measurements give information about the time-scale of switch-
ing from neutral to charged for both the traps and the QD. As the above-band
excitation laser increases the density of free charge carriers, the time-scale of
the charge trap dynamics speeds up, decreasing the switching time, which is
reflected in the decay time-scale of the correlation bunching amplitude of res-
onantly excited fluorescence. This time-scale spans five orders of magnitude
from 10−2 s to 10−8 s. Given the very long time-scales of bunching with zero or
low above-band laser power, it is possible that many previous experiments did
not recognize that the resonance fluorescence was bunched. We also note that
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the fastest bunching decay time of 10−8 s is only one order of magnitude longer
than the anti-bunching time of about 10−9 s. In that case, the equivalent photon
stream would be bunches of fewer than 10 photons, and long stretches of time
with no emission between the bunches.

The combined techniques of resonant excitation spectroscopy and resonant
fluorescence correlation can determine many details of the local charge environ-
ment of a single QD. The QD chosen for this work exhibits multiple spectral
behaviors: discrete spectral jumps, continuous spectral shift, and spectral diffu-
sion. These behaviors have been observed before by others, but the techniques
demonstrated here allow quantitative investigation of the details. A QD that
may be a suitable source of indistinguishable photons can be investigated using
the same techniques to determine its potential.
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Chapter 4

Charge Dynamics of Single InAs
Quantum Dots Under Resonant and
Above-Band Excitation

4.1 Introduction

In this chapter we investigate the charging dynamics in epitaxially grown InAs
quantum dots under resonant excitation with and without additional low-
power above-band excitation. Time-resolved resonance fluorescence from a
charged exciton (trion) transition is recorded as the above-band excitation is
modulated on and off. The fluorescence intensity varies as the QD changes from
charged to neutral and back due to the influence of the above-band excitation.
We fit the transients of the time-resolved resonance fluorescence with models
that represent the charging and neutralization processes. The time dependence
of the transients indicate that Auger recombination of resonantly excited trions
is largely responsible for neutralization of the charged state when the above-
band excitation is off. The addition of above-band excitation revives the reso-
nance fluorescence signal from the trion transition.

We conclude that the above-band laser excites charges that relax into the
bound state of the quantum dot via two different charge transport processes.
The captured charges return the QD to its initial charge state and allow resonant
excitation of the trion transition. The time dependence of one charge transport
process is consistent with ballistic transport of charge carriers excited non-local
to the QD via above-band excitation. We attribute the second charge transport
process to carrier migration through a stochastic collection of weakly-binding
sites, resulting in sub-diffusion-like dynamics.



90
Chapter 4. Charge Dynamics of Single InAs Quantum Dots Under Resonant

and Above-Band Excitation

Sources of single, indistinguishable photons are a promising candidate for
implementation of quantum information protocols [63, 65–67, 90]. Semiconduc-
tor quantum dots (QDs) can act as sources of single photons to be utilized in
these protocols, but certain experimental factors can complicate their single pho-
ton emission. Spectral diffusion broadens the emission line shape [33], and in
samples without independent electrical control of the QD charge, blinking oc-
curs when the QD changes charge state [40, 91–93]. Even with electrical control
of the QD charge, Auger recombination from the trion state may neutralize the
dot [94]. Resonant excitation of either a neutral or charged QD can cause a tran-
sition to the opposite charge state, which greatly diminishes the time-averaged
fluorescence and reduces a dot’s suitability to act as an efficient photon source
[40, 95, 96]. A counter to this effect is the application of a low-power above-
band-gap laser that supplies the local charge environment with extra charge
carriers [40, 97]. These charge carriers can be captured by either a charged QD,
resulting in neutralization and allowing resonant excitation of the exciton state,
or by a neutral QD, allowing resonant excitation of the trion state. The exact
processes by which the above-band excited carriers arrive in the QD is so far
uncertain. Understanding those processes will inform the design of future QD-
based sources of single photons.

Here we investigate the charge dynamics of a QD under both resonant and
above-band excitation. We measure the rise and fall of the fluorescence of a
resonantly excited trion transition as the above-band laser is turned on and off.
We characterize the time-dependent dynamics as a function of the two excitation
powers using two models that describe the time evolution of the fluorescence
after the above-band laser either turns on or turns off. We conclude that Auger
recombination is the primary mechanism by which the QD becomes neutralized,
by which we mean it changes from a charged state (e.g. the trion or a single
bound charge) to a neutral state (e.g. the exciton, biexciton, or the empty QD).
After such a neutralization event, the resonance fluorescence is absent and the
QD remains neutral until it captures another charge. The time dependence of
the fluorescence rise and decay indicate that there are at least two processes that
provide charge carriers to be captured by the QD. One is ballistic super-diffusion
of hot carriers generated near the surface of the sample by the above-band laser.
The other is sub-diffusion of carriers through a stochastic collection of weakly-
binding transport sites which are likely an ensemble of shallow states in the
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semiconductor.

4.2 Experimental Configuration

Our sample consists of epitaxially grown self-assembled InAs QDs embedded
in the GaAs spacer of a planar microcavity defined by two distributed Bragg
reflectors (DBRs). The resonant excitation laser is focused into the waveguide
mode of the microcavity from the side and the fluorescence is collected normal
to the sample surface, perpendicular to the resonant excitation direction, which
minimizes collection of laser scattering [38, 98, 99]. The above-band excitation
is provided by a helium-neon laser with a wavelength of 632 nm that is focused
onto the QD normal to the sample surface and confocal with the resonance flu-
orescence collection path. The above-band excitation power used throughout is
too low to cause any detectable fluorescence on its own. Only when the resonant
and above-band lasers are both on does the QD emit fluorescence. The above-
band excitation is modulated with an acousto-optic modulator (AOM) while the
resonant laser intensity remains constant. The above-band light is filtered from
the fluorescence via a dichroic mirror, long-pass filters, and a spectrometer. Ulti-
mately, the fluorescence is incident on a silicon-based avalanche photodiode ca-
pable of detecting single photons with a time resolution of approximately 500 ps.
The photon arrival times are then recorded via a time-correlated single-photon
counting module (TCSPC). The voltage signal used to modulate the AOM is also
used to create a trigger sent to the TCSPC. The time-resolved fluorescence can
then be constructed as a histogram of the photon arrival times relative to the
preceding modulation trigger. A diagram of the experimental setup is shown in
Fig. 4.1.

4.3 Data Acquisition

We demonstrate that the QD transition probed is that of a trion (a charged ex-
citon) by measuring the resonant excitation spectrum. The resonant laser is
scanned over the transition wavelength and the intensity is recorded. The spec-
trum is shown in the inset of Fig. 4.2(a). The single peak indicates that the state is
a trion; a neutral exciton would have a double peak. The QD was chosen because
it did not show discrete shifts of its transition energy as the above-band laser



92
Chapter 4. Charge Dynamics of Single InAs Quantum Dots Under Resonant

and Above-Band Excitation

Spectro
-meter

Computer

Resonant 
Excitation

Above-band 
Excitation

Polarizer

Polarizer

AOM

M

M

M

M

L

L L L

L

L

L

L

Sample Housed in Cryostat (4.2 K)

Time-Correlated 
Single-Photon 
Counting Module

Quarter 
Wave Plate

Resonance 
Fluorescence

APD

Filter Wheel

Dichroic 
Mirror

L

InAs QDs
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power was varied [34, 91]. This criteria is necessary so that the time-resolved
resonance fluorescence intensity measurements are not confounded by spectral
shifts, and only probe the charge state of the QD.

Without the above-band excitation, the fluorescence signal is negligibly small
despite constant resonant excitation. When the above-band laser is turned on,
the fluorescence signal increases asymptotically to a steady state value. When
the above-band laser is turned off, the fluorescence signal decreases asymptot-
ically to zero. Figure 4.2(a) shows typical time-resolved resonance fluorescence
data for a given power of both above-band and resonant excitation. The time
scale for the system to reach steady state is on the order of hundreds of microsec-
onds for the rise transient after the above-band excitation is turned on, and tens
to hundreds of microseconds for the fall transient after the above-band excita-
tion is turned off. Time-resolved fluorescence was recorded for multiple differ-
ent powers of both the resonant and above-band lasers. In all cases the above-
band power was too weak to cause fluorescence on its own. The laser powers
spanned approximately two orders of magnitude, defining a two-dimensional
acquisition space. The rise and fall sections of the example data in Fig. 4.2(a) are
shown separately in Figs. 4.2(b-c), respectively, using a log-log scale to illustrate
the short-time dynamics. The models discussed below fit the data well at all
time scales and particular model curves are shown on top of the data in Figs. 4.2
(a-c).

4.4 Analysis

The models we use involve the shaped exponential function, e−(αt)β
, which fits

well a large variety of relaxation phenomena in complex condensed-matter sys-
tems [100–105]. When 0 < β < 1, the above mathematical form is referred to as a
stretched exponential, whereas when 1 < β < 2 it’s referred to as a compressed
exponential. The time-resolved fluorescence intensity is fit with either the sum
of a normal and a stretched exponential (for the fall), or the numerical solution
of a differential equation containing capture rates that saturate with stretched
and compressed exponential time dependencies (for the rise). The details of the
models are discussed below. We extract the model parameters and discuss their
dependencies on laser power. Throughout this letter we will refer to α as a scale
parameter and β as a shape parameter.
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FIGURE 4.2: (a) Typical time-resolved resonance fluorescence. For
the displayed data the resonant excitation power is 2.5 µW, while
the above-band power is 0.27 µW. The orange line is the fit to the
data. Below, the green line indicates when the above-band excita-
tion power is on and off. The red line indicates the resonant exci-
tation power, which is always on. The inset shows the excitation
spectrum of the trion transition of the QD. (b) A fit to the rise sec-
tion on a log-log scale. (c) A fit to the fall section on a log-log scale.

The stretched exponential (0 < β < 1) has been sporadically used for over
160 years to explain relaxation phenomenon in condensed matter systems. The
first known instance was carried out by the physicist Rudolf Kohlrausch to ex-
plain relaxation of residual charge from a glass Leiden jar [106]. The shaped
exponential has mostly been used as a phenomenological fit and there has been
much difficulty in applying direct physical connections to the scale and shape
parameters α and β. Despite the difficulty in making clear physical correla-
tions to the parameters, there has been some headway for the development
of a physical model that explains the shaped exponential behavior in the solid
state. Klafter et al. illustrated three different physical approaches that result
in stretched exponential charge transfer in the solid state [103]. The similar-
ity between the models presented by Klafter et al. shows that either multiple
different pathways into a trap or multiple different pathways out of a trap are
required. Random numbers and physical shapes of the pathways for charges to
migrate through, due to being part of a stochastic environment, seem paramount
for the emergence of stretched exponential relaxation. Migration through such
a stochastic environment results in slower than exponential relaxation via this
channel.
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In 2003, Sturman et al. described how stretched exponential relaxation in the
solid state can result from charge carriers migrating through an environment of
stochastically distributed transport sites before ultimately relaxing into a trap
[107]. For clarity we briefly summarize their results here. Consider an envi-
ronment containing a stochastic distribution of many weakly-binding potential
wells called transport sites plus a few strongly-binding potential wells called
traps. From an initial transport site, a charge carrier will naturally have a higher
probability to hop to closer transport sites as opposed to farther ones, defining
random pathways through which charge carriers will likely migrate. Some of
these pathways lead to transport sites in the close vicinity of traps, resulting in a
significant probability of the charge being captured by the trap. Simulations of
such a system show that the process of slow migration through a stochastic envi-
ronment results in stretched exponential relaxation into the traps; see Ref. [107]
for more details. A stretched exponential can be mathematically represented as a
linear sum of normal exponentials with a certain weighting function [108]. Due
to different relaxation rates associated with different paths through the trans-
port sites, the relaxation is described by a sum of many exponential decays, and
more compactly a single stretched exponential term to describe the net process.

The compressed exponential (1 < β < 2) has been less widely used to de-
scribe charge relaxation in the solid state. However, Ref. [105] gives examples
of instances where compressed exponential relaxation in the sold state is ob-
served. The common theme is the presence of an external driving force resulting
in faster than exponential relaxation. Morishita describes compressed exponen-
tial relaxation dynamics in liquid silicon above 1200 K [109]. He attributes the
compressed exponential relaxation to ballistic-like motion of high-energy car-
riers, similar to the material described by Bouchaud. This type of motion can
be described as super-diffusion, due to the associated faster-than-diffusion-like
behavior.

In the analysis below we will describe how the shaped exponential growth
and decay behavior of the time-resolved fluorescence is consistent with either
ballistic transport of carriers or migration through a stochastic distribution of
transport sites. We start by discussing the fall section of the fluorescence, de-
picted in Fig. 2(c), because without the above-band laser the behavior is less
complicated.
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4.4.1 Fluorescence Fall

At the beginning of the fall section depicted in Fig. 4.2(c) the above-band excita-
tion is turned off and the fluorescence signal decreases asymptotically to zero as
the QD becomes neutralized. There is an initial fast decay in the resonance flu-
orescence followed by a slower decay at long times. The fluorescence intensity
data were fit with the sum of a normal exponential and a stretched exponential.
The functional form is:

I = A1e−α1t + A2e−(α2t)β2 . (4.1)

A1 and A2 are amplitudes where A1 + A2 is the steady-state value of the inten-
sity when the above-band excitation is on, α1 is a neutralization rate while α2 is
a scale parameter, and the exponent β2 is a shape parameter.

Figure 4.2(c) shows an example of this model fitting the fall data for a cer-
tain pair of laser powers. The fast decay corresponds to the normal exponential
term in the fit, while the slower decay corresponds to the stretched exponential
term. As described below, the power dependence of the fast decay indicates
that it results from Auger recombination of the excited trion state. We attribute
the slower decay to recharging of the dot by capture of charge carriers from a
reservoir whose own population is decaying with a stretched exponential de-
pendence.

Figure 4.3(a) plots the neutralization rate α1 versus resonant laser power, and
it increases sub-linearly with increasing resonant power. Its power dependence
is similar to that of the excited state population of a resonantly excited two-level
system, which saturates as the laser power increases. The two-level system in
this case is the single-charge/trion system of the charged QD. Since α1 has a
similar saturation behavior, it implies that the rate of the neutralization process
represented by the normal exponential is proportional to the trion population in
the QD. Such a dependence is consistent with Auger recombination of the trion,
which ejects the extra charge carrier and neutralizes the QD. Thus, Auger recom-
bination is responsible for the fast, normal exponential decay. This conclusion is
consistent with other experiments that have measured time-dependent charge
state dynamics [94, 97]. The values of α1 in Fig. 4.3(a) are fit with a saturation
curve, α1 = (ΓAP)/2(P + Psat), where ΓA is the Auger recombination rate for
the trion, P is the resonant laser power, and Psat is the saturation power. We
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FIGURE 4.3: Fast neutralization rate plotted vs. (a) resonant laser
power and (b) above-band laser power. The legends and color
specify the power of the excitation laser not represented by the hor-
izontal axis. The saturation curve shown in (a) is the best fit to the
entire data set shown. A saturation power of 7.9 ± 1.4 µW and an
Auger recombination rate of 2.3 ± 0.2 µs−1 was extracted from the

fit.
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obtained a saturation power of 7.9 ± 1.4 µW and an Auger recombination rate
of 2.3 ± 0.2 µs−1, which is in very close agreement to the value of 2.3 µs−1 found
by Kurzmann et al. [94] in InAs QDs. We observe little dependence of the Auger
recombination rate as a function of above-band power as seen in Fig. 4.3(b).

If Auger recombination was the only process involved in the fluorescence
decay, then only one term would be needed in the model. The presence of
the additional slow decay implies an additional recharging process that weakly
counteracts the Auger neutralization of the QD. The recharging process itself
must decay with time or the fluorescence would reach a non-zero steady-state
value. The stretched exponential time dependence of the slow decay is con-
sistent with the expected decay of charges migrating through a stochastic dis-
tribution of transport sites into the dot [107], as discussed above. In this case,
the transport sites are likely shallow impurities, iso-electronic dopants, or other
defects in the GaAs host, which can weakly bind charge carriers at the low tem-
perature of the cryostat. The transport sites close to the QD comprise a reservoir
that can recharge the QD under investigation as long as they contain charges.
While the above-band excitation is on, the reservoir is continually repopulated.
When the above-band excitation turns off, the charge population of the reservoir
begins to decay. As the population decays, so too will the average value of the
QD charge state. Thus the reservoir decay is reflected in the long-time decrease
of the measured fluorescence.

The scale parameter α2 increases with resonant laser power regardless of the
above-band laser power, as seen in Fig. 4.4(a). The resonant laser can excite
carriers weakly bound to transport sites to higher energy continuum states in
the semiconductor host, which increases the rate of reservoir depletion after the
above-band excitation is turned off, and hence the value of α2 increases with
resonant laser power. Figure 4.4(b) shows that α2 decreases as a function of
above-band power. Each transport site that is a component of the sub-diffusion-
like reservoir can only hold (on average) one charge. When many transport sites
are filled with higher above-band power, charges move to adjacent transport
sites with an average slower rate due to the system being ’clogged’ with charges
occupying transports sites on the way to the QD. Thus, when the above-band
power is high before it is shut off, we see a slower depletion of the reservoir via
the time-resolved resonance fluorescence measured from the QD.
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4.4.2 Fluorescence Rise

At the beginning of the rise section depicted in Fig. 4.2(b), the QD starts out
neutral and resonant excitation of the trion transition does not cause any fluo-
rescence. When the above-band laser is turned on, charges are excited and begin
to relax into the bound state of the QD. The time-averaged charge state of the
QD changes from neutral to charged. Towards the end of the rise section, the
time-averaged charge occupation in the QD has reached a steady state value
and the fluorescence intensity remains at maximum brightness as long as the
above-band laser is on. However, the full transient of the rise spans tens to hun-
dreds of microseconds, which implies a situation where the charges excited by
the above-band laser do not immediately become bound to the QD. Since exci-
tation of charges occurs within a few ps of the above-band laser turning on, it
follows that it is the capture process that is delayed rather than excitation. The
reason charge capture is delayed is that the charge carriers are excited non-local
to the QD layer.

The above-band laser (632 nm) is focused normal to the sample surface with
a beam waist of approximately 4.5 µm. The top DBR is comprised of alternat-
ing layers of AlAs and GaAs. The penetration depth, the depth at which the
laser intensity decays to 1/e of its surface value, is approximately 340 nm for
the above-band photons entering the heterostructure [110]. However, the QD
layer exists slightly less than 2300 nm below the sample surface. A detailed to-
scale schematic illustrating the penetration depth of the above-band laser in the
sample can be found in the Supplemental Material. The generated charges can
reach the monitored QD via several different transport mechanisms. Depend-
ing on the nature of the mechanisms involved, the charges may migrate with
sub-diffusion, super-diffusion, or regular diffusion-like dynamics.

As discussed in the previous section, we suggest there exists a stochastic dis-
tribution of transport sites through which charge carriers can migrate to relax
into the QD . The effective reservoir supplying the QD with charge is the collec-
tion of transport sites adjacent to, or in the near vicinity of the QD such that there
is a substantial probability for charges occupying those transport sites to become
bound to the QD within the time span of the observed transients. These trans-
port sites are part of a larger network of transport sites through which charges
migrate with a sub-diffusion-like behavior. Thus, we anticipate the existence of
a charging process that has stretched exponential time dependence.
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As shown in Refs. [105, 109], the ballistic transport of hot carriers results in
super-diffusion which in turn is mathematically represented by compressed ex-
ponential time dependence. Almost 90 percent of the above-band induced hot
charge carriers are created within 700 nm of the sample surface. The photon
energy of the above-band laser translates to an initial excited carrier velocity of
800 nm/ps. The QD layer lies approximately 2300 nm below the sample surface.
Hot carriers in bulk GaAs have an average lifetime of approximately 4 or 5 ps
[111]. In that time a hot carrier can travel a few thousand nanometers. Thus, it
is feasible that hot carriers excited in the first 700 nm from the sample surface
can reach the QD layer before relaxing to the gamma point, and ultimately be-
coming bound to the QD. We hypothesize the existence of a super-diffusion-like
pathway into the dot that is supplied by hot carriers created non-local to the QD
layer by the focused above-band laser and its associated shallow penetration
depth. Some carriers have ballistic trajectories that set them near the QD layer
as they cool to the gamma point. This local volume of the bulk semiconductor
host thus acts as an additional effective reservoir to supply the dot with charge,
and its population saturates with compressed exponential time dependence due
to the super-diffusion-like nature by which it is supplied with charge carriers.
Thus, we anticipate a charging process that has compressed exponential time
dependence.

We numerically model the charging dynamics of the rise section of the
data using the solution to a differential equation for the time derivative of the
ensemble-averaged QD charge population, p. We include the two charging pro-
cesses discussed above as terms with stretched and compressed exponential
time dependence that are proportional to the unoccupied charge state in the
QD, (1 − p). Finally, we also include a neutralization term that is proportional
to p. The resulting differential equation is:

dp
dt

= −ΓN p

+ [C3(1 − e−(α3t)β3 ) + C4(1 − e−(α4t)β4 )](1 − p). (4.2)

The ensemble-averaged charge population in the dot, p, can take on a value
between 0 (neutral) and 1 (charged). ΓN is the neutralization rate per unit charge
in the dot, C3 and C4 are long time, or steady state, capture rates per unoccupied
charge population (1 − p) in the dot for two separate charging pathways, α3
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FIGURE 4.5: Model parameters associated with the super-
diffusion-like process as a function of (a-c) above-band laser power
and (d-f) resonant laser power. The legends and color specify the
power of the excitation laser not represented by the horizontal axis.

and α4 are scale parameters associated with the two separate pathways, and β3

and β4 are shape parameters. During development of the model, we assumed
a neutralization rate proportional to the ensemble-averaged charge population
in the dot and one or two capture rates that were either constant in time or had
saturating time dependencies. We ultimately obtained the best fits using two
charging terms: one that fills with stretched exponential time dependence and
one with compressed exponential time dependence. The rate at which charges
enter the dot should be proportional to not only the unoccupied charge in the
dot, but also the population of the effective reservoir supplying the associated
charging pathway with charges. α3 and α4 represent the effective rates of change
of charge population in the two reservoirs after the above-band excitation turns
on. During the fitting process, β3 and β4 always obtained values between 0
and 2. The term with index 3 is associated with the super-diffusion-like process,
while the term with the index 4 is associated with the sub-diffusion-like process.

We should expect that as the above-band laser power increases, the model
parameters will change to hasten the rise of the fluorescence. The resonant
laser causes both fluorescence and Auger recombination. It also suffuses the
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FIGURE 4.6: Model parameters associated with the sub-diffusion-
like process as a function of (a-c) above-band laser power and (d-f)
resonant laser power. The legends and color specify the power of

the excitation laser not represented by the horizontal axis.

entire waveguide region of the sample, not just the QD layer, so it can affect the
charge carriers as they migrate to the QD being probed. Intra-band excitation
of low-energy charge carriers by the resonant laser would reduce the transport
of charge to the QD region. That would affect both normal diffusion of carriers
and migration via hopping between transport sites. There will be consequences
for the shape parameters of the two transport processes.

Super-Diffusion-Like Process

For the super-diffusion-like process, with increasing above-band power the
growth of the capture rate is faster (α3 increases), the time dependence can be-
come less compressed for lower resonant powers (β3 decreases), and the steady-
state capture rate generally increases (C3 increases). Figure 4.5(a-c) illustrates
how the parameters of the super-diffusion-like process depend on the above-
band laser. These dependencies are consistent with the expected behavior of a
charge reservoir near the QD that is supplied by a combination of normal dif-
fusion and ballistic transport of charges excited far away. A higher above-band
power means more charges are excited per unit time, which will increase the rate
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the above-band laser is on as a function of (a) resonant laser power
and (b) above-band laser power. The legends and color specify the
power of the excitation laser not represented by the horizontal axis.
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at which the reservoir near the QD is filled, thus increasing α3. More charges cre-
ated means that more charges will travel to the QD layer via normal diffusion
as well, which will make the time dependence less compressed, thus decreasing
β3. This only occurs for lower resonant powers because higher resonant powers
re-excite the normally diffusing charges, leaving ballistic transport as the dom-
inant process and keeping the time dependence a compressed exponential. A
higher excitation rate of charges will generally result in a higher steady-state
population of the charge reservoir near the QD, leading to a higher steady-state
capture rate, thus increasing C3.

With increasing resonant power, the super-diffusion-like capture rate in-
creases slower (α3 decreases), the time dependence becomes more compressed
(β3 increases), and the steady-state capture rate either stays about the same or
increases (C3 increases for high above-band powers). Figure 4.5(d-f) illustrates
how the parameters of the super-diffusion-like process depend on the resonant
laser. The resonant laser will re-excite charges that are either in the charge reser-
voir near the QD or traveling there relatively slowly via normal diffusion. That
will slow down the rate at which the reservoir is filled, decreasing the value
of α3. Re-excitation will affect normally diffusing charges more strongly than
ballistically moving charges because of the difference in transit time to the QD
region. This will enhance the dominance of ballistic transport, making the super-
diffusion-like nature of the process stronger, and increasing β3. The steady-state
capture rate has an unexpected dependence on the resonant laser power. For
low to medium above-band power, the value of C3 is not strongly affected by
the resonant laser power. But for high above-band power, C3 increases with
resonant power. Perhaps for high above-band power, increasing the resonant
laser power changes the ratio of electrons and holes that reach the QD region,
resulting in a balance that increases the charge capture rate.

Sub-Diffusion-Like Process

For the sub-diffusion-like process, as for the super-diffusion-like process, in-
creasing the above-band laser power will enhance the charge capture effective-
ness. With increasing above-band power the capture rate increases faster (α4

increases), the time dependence converges on a certain stretched character (β4

converges to ≈ 0.75), and the steady-state capture rate increases (C4 increases).
Figure 4.6(a-c) illustrates how the parameters of the sub-diffusion-like process
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depend on the above-band power. Similar to the super-diffusion-like process, a
higher above-band power excites more charges and increases the rate at which
the reservoir near the QD is filled, thus α4 increases. A higher rate of charge
excitation also means a higher steady-state population of the reservoir, leading
to a higher capture rate, C4. The dependence of the shape parameter β4 is more
complicated because it depends on the resonant laser power. For low resonant
power and low above-band power, β4 is actually greater than 1. As the above-
band power increases, β4 decreases to about 0.75. In contrast, for high resonant
power and low above-band power, β4 is significantly less than 1. As the above-
band power increases, β4 increases to about 0.75. At high above-band power, the
shape parameter is approximately 0.75 regardless of the resonant laser power.

With increasing resonant power, the growth of the sub-diffusion capture rate
is slower (α4 decreases), the time dependence becomes more stretched (β4 de-
creases), and the steady-state capture rate decreases (C4 decreases). Figure 4.6(d-
f) illustrates how the parameters of the sub-diffusion-like process depend on the
resonant power. The resonant laser has a similar effect on the sub-diffusion-like
process as it does on the super-diffusion-like process. Re-excitation of charges
slowly migrating through transport sites to the QD region will decrease the rate
at which the reservoir of nearby transport sites are filled, thus reducing α4. The
re-excitation will also effectively slow the hopping transport process, enhancing
the stretched exponential character of the time dependence, which translates to
decreasing β4. Finally, higher resonant power means that fewer charges make it
to the QD region, which will reduce the equilibrium charge population in that
region and thus reduce the steady-state capture rate, C4.

Neutralization Process

When the above-band laser is off, Auger recombination of the resonantly excited
trion is the dominant process by which the QD becomes neutralized. In contrast,
when the above-band laser is on—as during the fluorescence rise—Auger re-
combination is not the dominant neutralization process. The neutralization rate
ΓN does not exhibit the dependence on resonant power that one would expect
if it were solely dominated by Auger recombination processes. The dependence
of ΓN on resonant excitation power is depicted in Fig. 4.7. Recall, α2 in the fall
model saturates with resonant power as would the time-averaged trion popu-
lation. That is evidence that α2 is associated with neutralization of the QD via
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Auger recombination. However, ΓN decreases with resonant excitation power
for powers below 2.5 µW. Additionally, ΓN increases slightly at higher resonant
powers for the lowest above-band powers. Thus, when the above-band laser is
on, neutralization is not caused solely by Auger recombination. Neutralization
may be caused by capture of an oppositely charged carrier. Additionally, carriers
populating the transport sites discussed above may be excited to higher-energy
continuum states via the resonant laser. The above-band excitation acts against
the resonant laser by tending to charge the dot. This may explain why we see an
increase in ΓN at high resonant powers for the lowest above-band powers.

4.5 Conclusion

We studied time-resolved resonance fluorescence from a resonantly excited
charged transition in an InAs QD while modulating an additional low-power
above-band excitation laser. From the power dependence of the fall transients,
we conclude Auger processes dominate the neutralization after the above-band
excitation is turned off. After the QD is neutralized by Auger recombination, it
gets recharged from a reservoir of carriers in the local environment whose popu-
lation is itself slowly decaying after the above-band excitation is turned off. Due
to the stretched exponential behavior of the associated term, we conclude this
reservoir is composed of a stochastic environment of weakly attractive shallow
defects acting as transport sites that charges can migrate through to ultimately
be captured by the QD.

The time and power dependence of the rise model indicates the presence
of two reservoirs that supply the QD with charge: one that fills with super-
diffusion-like charge dynamics, and one that fills with sub-diffusion-like charge
dynamics. The reservoir that fills with sub-diffusion-like charge dynamics is
the same ensemble of shallow defects described in the fall section of the data.
The reservoir that fills with super-diffusion-like charge dynamics is supplied by
hot carriers created near the sample surface that ballistically travel to the neigh-
borhood of the QD. Both reservoirs are supplied with charge via the above-band
laser. The resonant laser populates the trion, causing fluorescence, but also ejects
charge from the dot via Auger recombination and retards the establishment of
charge in both reservoirs.
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It is expected that the two reservoirs posited here would also affect the charg-
ing dynamics of the QD when the neutral exciton transition is resonantly ex-
cited. The resonance fluorescence signal of a neutral exciton is known to be
similarly dependent on low-power above-band excitation [40, 88]. In that case,
Auger recombination within the QD would not occur, so other effects will dom-
inate the charging process.

The charging and neutralization processes revealed by our analysis have im-
plications for the design of future single photon sources. If independent electri-
cal control of the QD charge state is impossible (as with certain optical cavities),
then an above-band laser can help maintain the charge state. To have a fast time
response, the QD should be relatively close to the surface where the above-band
excitation is incident. A possible alternative might be to excite in the wetting
layer absorption band, which would place the excited charges in the immedi-
ate locale of the QD. Though generally thought to introduce complications like
spectral diffusion, the presence of defects and impurities is important to the
transport of charges over long distances within the GaAs sample. Increasing the
defect density by light doping or multiple layers of delta-doping might enhance
the transport capability of the semiconductor host.
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Shifting of Resonance Energies in
InAs QDs due to Above-Band
Excitation Modulation and the
Resulting Charge Dynamics

5.1 Introduction

This chapter regards an experiment in which the analysis is currently on-going.
The reasons for conducting the experiment, the experimental methods used, and
the mathematical approaches to the analysis will be discussed. Some analysis for
this chapter has been done, which I will describe. Additional analysis leading
to an ultimate publication will be done in the following months.

The experiment described in this chapter involves analysis of time-resolved
resonance fluorescence (TRRF) as a low-power above-band laser is turned on
and off, as in Chapter 4, however TRRF was recorded for different near-
resonance frequencies of the resonant laser. When the low-power above-band
laser is turned on, it introduces charge carriers to the local environment. The
carriers are mostly created in the top DBR layer due to the shallow penetration
depth depicted in Fig. A.2. The charge carriers are initially very hot1 since the
excitation photon energy is significantly greater than the band-gap of the semi-
conductors making up the heterostructure. This combined with being excited in
a small volume due to the above-band laser being focused with a high numerical

1The energy of the HeNe above-band laser at 633 nm is approximately 1.96 eV per photon.
The band-gap energy of GaAs is approximately 1.42 eV. Thus, the carriers excited initially have
a high kinetic energy.



110
Chapter 5. Shifting of Resonance Energies in InAs QDs due to Above-Band

Excitation Modulation and the Resulting Charge Dynamics

aperture lens and its shallow penetration depth into the sample results in initial
ballistic-like dynamics of the carriers for the first several ps as they cool. The en-
suing super-diffusion-like dynamics results in a compressed-exponential time
dependence of the filling of the effective charge reservoir described in Chapter 4
after the above-band laser is turned on. Some of the charge carriers make their
way to the GaAs spacer as they cool via emission of phonons.

When their energy becomes close to that at the bottom of the CB of the GaAs
matrix, they are able to weakly bind to transport sites that are shallow poten-
tials created by defects and impurities in the GaAs matrix. The transport sites
create pathways for the charge carriers to transport through, hence the name. In
a sense, the dynamics can be compared to one trying to cross a ford in a creek
without wetting their feet via hopping over stepping stones in the ford. If one
desires to keep dry, they very likely cannot simply walk in a straight line. The
ford will likely have some stochastic distribution of stepping stones and the eas-
iest path(s) to take will likely be the path(s) in which each subsequent stone
is closest to the previous. This will result in one or a couple of random, zig-
zagging, paths to cross the ford. If multiple people are trying to cross, people
who stop or hesitate at certain stones will stop those behind them from progress-
ing until they do. Analogously, the charge carriers that weakly bind to shallow
potentials will be able to ’skip’ to other nearby shallow potentials with a prob-
ability that decreases exponentially with distance. Due to the stochastic distri-
bution of shallow potentials acting as transport sites, there will exist random
highest-probability pathways through which the carriers migrate. Some path-
ways will have transport sites that are in close proximity to the QD, allowing
migrating charges to be captured by the QD’s potential, and ultimately return-
ing the QD to its initial charge state. Similar to multiple people crossing the ford,
if a transport site is occupied by a carrier, it will be effectively blocking carriers
of the same charge type from traversing through that transport site until it itself
’skips’ to another site. The nature of this effective charge reservoir, and sub-
sequent sub-diffusion-like dynamics, was reflected in the stretched-exponential
time dependence seen in both the filling and depletion of the effective reservoir
discussed in Chapter 4.

In hindsight, it was realized that one potentially significant effect was not
considered in the experiment described in Chapter 4. When the above-band
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laser is turned on, it introduces charge carriers to the local environment as de-
scribed in the previous paragraph. However, as the effective charge reservoir
in the surrounding GaAs matrix fills, charges bound to defects close to the QD
under investigation influence the precise electric potential felt by the bound exci-
tons or trions, potentially shifting the resonant energies of the optical transitions.
This was not considered in the experiment described in Chapter 4. Thus, we de-
cided to conduct an additional experiment that involved analysis of TRRF while
modulating the above-band laser, but not only for different values of the above-
band power, but also for different near-resonant values of the resonant laser’s
frequency. Ultimately, for a given above-band power, the TRRF for different
near-resonance values of the resonant laser were stacked side-by-side, resulting
in the creation of effective time-dependent excitation spectra.

Since the experiment in Chapter 4 had been conducted, a new sample had
been mounted in the cryostat. Thus, the first step was to find a bright QD that
exhibited minimal long-time blinking as was observed in Chapter 3. The exact
reasons are still unclear, but we were unable to find a bright trion transition in
the newly mounted sample. Thus, we decided to perform the experiment on
a very bright neutral QD. A simple detection-polarization-dependent measure-
ment can be conducted to determine whether the observed fluorescence is from
a typical neutral QD. Very few QDs have perfect circular symmetry in the plane
perpendicular to the growth direction. As discussed in Chapter 1, a neutral QD
with spatial asymmetry emits light that is linearly polarized. However, fluores-
cence emitted from a charged QD is circularly polarized. A simple polarization
state test is implemented: The fluorescence is sent through first a HWP, then
a linear polarizer oriented to a given polarization, say horizontal. The fluores-
cence intensity is then measured via a detector, say a CCD camera. If the flu-
orescence is linearly polarized, then as one rotates the HWP through at least a
45 degree rotation, one would observe the fluorescence intensity fluctuate from
a maximum value to a value close to zero (nominally zero). While for perfectly
circularly polarized light, one would observe no change in the fluorescence in-
tensity. Linearly polarized light is rotated through 90 degrees as the HWP is
rotated through 45 degrees. For a given orientation of the HWP, the light be-
fore the polarizer will be horizontally polarized, and if the HWP is oriented 45
degrees with respect to that, the light will be vertically polarized. Thus, the in-
tensity after the polarizer will shift between a minimum (nominally zero) and
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maximum value as the HWP is rotated. Meanwhile, the HWP only changes the
handedness of circularly polarized light, that is it will change left circularly po-
larized to right circularly polarized and vice versa. Since for any orientation of
the HWP the light before the polarizer will be circular for a trion transition, no
change in the ultimate output intensity will be induced as one rotates the HWP.
Using this method we were able to confirm the observed fluorescence was from
a neutral transition.

5.2 Experimental Technique

The motivation for the experiment was to not only further investigate the charge
dynamics of InAs QDs under both resonant and low-power above-band excita-
tion, but to also investigate the above-band excitation light’s effect on the res-
onant energy of the QD. The excitation optics had been changed such that the
resonant laser entered the cryostat from the top, as opposed to the side. This al-
lowed for anticipated incorporation of two magnets on the sides of the cryostat
to induce an approximately constant magnetic field at the center of the sample
in the Voigt configuration B⃗ ⊥ ẑ mentioned in Chapter 1. The position of the
above-band laser was also changed. However, fundamentally the experimental
setup is unchanged from that described in Chapter 4, which was depicted in
Fig. 4.1.

The resonant laser is focused into the GaAs planar microcavity, perpendic-
ular to the growth direction. The above-band laser is focused onto the sample
surface, parallel to the growth direction. The resonant fluorescence is collected
confocal with the above-band excitation laser. The fluorescence is sent through
a beam expander, which in conjunction with the collection lens inside the cryo-
stat and the focusing lens before the spectrometer, creates a magnification of 60.
The fluorescence is additionally sent through a 900 nm long-pass filter before
the spectrometer for further filtering of the resonance fluorescence. After the
spectrometer, the fluorescence is coupled into a fiber. The output of the fiber
is ultimately focused onto an APD that can detect single photons. A TCSPCM
builds a histogram of photon arrival times with respect to a trigger signal that
is synced with the turning on of the above-band laser. The above-band laser is
modulation with an AOM and the modulation voltage sent to the AOM is split
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(a) (b)

FIGURE 5.1: Example TRRF for two different above-band excita-
tion powers: (a) 17 nW, and (b) 60.5 nW.

and sent through a passive electrical element that creates a trigger signal for the
TCSPCM from the edge of the square AOM modulation wave.

The time-dependent fluorescence measured from when the trigger signal
starts the clock is the TRRF. Time t = 0 corresponds to when the above-band
laser is turned on, and at t = δ the above-band laser is turned off. An example
of the TRRF is shown in Fig. 5.1. As in Chapter 4, when the above-band laser
is turned on, the fluorescence intensity quickly rises and eventually reaches a
steady-state value (rise section). When the above-band laser is turned off, the
fluorescence intensity decreases back to zero2 (fall section). Notice the pecu-
liar bump (bunching) at the beginning of the rise for the higher above-band
powers that wasn’t present in any of the TRRF in Chapter 4. In this experi-
ment, we introduce a more sophisticated mathematical analysis than was used
in Chapter 4. The analysis involves fitting time-dependent areas under effective
excitation spectra that are created from the TRRFs with a numerical solution
of a model described by a set of differential equations that represent the time-
dependence of the neutral and charged populations of the QD. The model fits
all of the extracted areas under the effective excitation spectra very well, despite
the different shapes of the transients for different above-band powers.

The experiment was conducted using five different above-band powers rang-
ing from approximately 17 to 95 nW. For each above band power, TRRF

2There is a non-zero background signal detected by the APD that is not subtracted in Fig. 5.1.
However, the background signal is a parameter in the fits discussed below.
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FIGURE 5.2: Example time-dependent excitation spectrum for an
above-band power of 60.5 nW. The horizontal axis is resonant laser
frequency in units of GHz detuned from the on-resonance fre-
quency. The vertical axis is time in microseconds. Red color sig-
nifies a higher fluorescence intensity, while blue signifies a lower

intensity.

was recorded for eleven different resonant laser wavelengths, ranging between
±0.9GHz from resonance during the steady state. For a given above-band
power, each TTRF was stacked side-by-side such that the horizontal axis of the
resulting plot is resonant laser frequency (detuning) and the vertical axis is time.
The intensity is represented by the color, where red is high intensity and blue is
low intensity. A given horizontal slice of the data at time t, is thus an effec-
tive excitation spectrum at the time t. Consequently, the full 2-D plot depicts a
time dependent excitation spectrum for a given above-band power. An example
effective excitation spectrum is presented in Fig. 5.2.
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5.3 Analysis

5.3.1 Resonance Shift and Excitation Linewidth

For each effective excitation spectrum (one for each above-band power) horizon-
tal slices were taken at each temporal data point (roughly 1,100 for each plot).
As previously mentioned, a given horizontal slice of Fig. 5.2 depicts the excita-
tion spectrum at the corresponding time. Each excitation spectrum for all times
was fit with a Lorentzian lineshape of the form given in Eqn. 2.1. The key pa-
rameters to extract as a function of time were the area under the Lorentzian A,
the center frequency shift of ω0, and the FWHM Γ. The area A is proportional
to the average population of the neutral state3 as a function of time, the center
frequency shift of ω0 gives us information regarding the shift in resonance fre-
quency as a function of time, and the FWHM Γ is the excitation linewidth and
is related to the degree of spectra diffusion, as well as inversely related to the
lifetime associated with spontaneous emission in the QD.

Figure 5.3 displays the time-dependent center frequency shift of ω0 for each
above-band power. The value of the center frequency shift is displayed relative
to the on-resonance frequency under the excitation conditions that resulted in
the brightest fluorescence in the steady state4. During the rise, after the above-
band laser is turned on, we observe a blue shift in the resonant frequency for all
above-band powers. While during the fall, after the above-band laser is turned
off, we observe a red shift back. As expected, the shift is more drastic for the
higher above-band powers. As the above-band laser is turned on and off, we
observe a shift of approximately 125 MHz for the lowest above-band power and
approximately 340 MHz for the highest above-band power. This shift is certainly
not insignificant, especially for the higher above-band powers, and likely would
affect fine details in the TRRF transients examined in Chapter 4. However, we
do not expect this effect to be drastic enough to greatly affect our general conclu-
sions from Chapter 4, since the magnitude of the shift is approximately several
times smaller than the absorption linewidth. That is, we expect the observations
of the super-diffusion-like and sub-diffusion-like dynamics to still be present, as

3The neutral state is the state that is being resonantly driven that produces the examined
fluorescence.

4By steady state, I mean when the above-band laser is not modulated, but kept on at a given
power.
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(a) (b)

FIGURE 5.3: Semi-log plot of the center frequency shift for each
above-band power relative to the resonant frequency under the ex-
citation conditions that resulted in the brightest fluorescence for (a)
the rise when the above-band laser is turned on and for (b) the fall
when it is turned off. The time on the fall plot has been shifted so
that t = 0 is aligned with when the above-band laser is turned off.

well as the neutralization of the charged state to be dominated by Auger recom-
bination. However, the exact values of extracted parameters from the fits of the
transients would likely change if we had accounted for this effect.

Figure 5.4 shows the FWHM of the effective excitation spectra as a function
of time. It is apparent during the fall in Fig. 5.4 that the excitation linewidth
(FWHM) increases after the above-band excitation is turned off. Also, the
FWHM increases with decreasing above-band power. As the effect of spectral
diffusion becomes more prominent, the jittering of the QD’s resonance becomes
more pronounced, resulting in a widening of the emission spectrum. However,
the shifting of this resonance will also affect the width of the excitation spec-
trum. Thus, a larger FWHM here implies a higher degree of spectral diffusion.
The FWHM increasing during the fall (after the AB excitation is turned off), as
well as increasing with decreasing AB power, implies that at higher above-band
powers the population of carriers occupying the local stochastic distribution of
transport sites saturates, resulting in less spectral diffusion. If all, or most, of
the transport sites of the effective charge reservoir are occupied, the pathways
through which carriers can migrate become ’clogged’, and the average rate at
which carriers hop to adjacent transport sites decreases. This partial ’freezing’
of the local charge reservoir around the QD results in smaller average fluctu-
ations in the local net electric field that the QD feels (less spectral diffusion),
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(a) (b)

FIGURE 5.4: The excitation linewidth (FWHM) as a function of
time for different above-band powers for (a) the rise and (b) the

fall.

hence the observed decrease in the excitation spectra’s FWHM with increasing
above-band power. When the above-band laser is turned off, the charge reser-
voir begins to deplete. As the depletion ensues, pathways become ’unclogged’
and as charges begin to migrate through the pathways at higher rates, the time-
dependent local electric field that the QD feels changes at a faster rate, inducing
a higher degree of spectral diffusion. Finally, for the lower above-band powers,
the pathways only become ’semi-clogged’ and the degree of spectral diffusion
and corresponding FWHM is larger when compared to the higher above-band
powers.

5.3.2 Direct Probe of the Neutral State Population

The most in-depth and interesting analysis is conducted on the extracted areas
under the Lorentzian fits of the effective excitation spectra at different times.
The extracted areas as a function of time for each above-band power is depicted
in Fig. 5.5. Recall from Chapter 1 that generally a Lorentzian is normalized such
that the integral from −∞ to +∞ is unity. This makes sense in terms of an excita-
tion spectrum because the integral equalling unity corresponds to adding up all
possible excitation frequencies that can excite the transition. Whereas the value
of the amplitude of the excitation spectra at any given frequency is correlated to
the probability that a delta function at that frequency (such as a cw laser) would
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(a) (b)

FIGURE 5.5: The time-dependent areas under the Lorentzian fits
of the effective excitation spectra as a function of time for (a) the

rise and (b) the fall.

excite the QD. We multiply the Lorentzian by the area A so that we can fit it to
any general excitation spectrum without normalization5.

Spectral diffusion will cause random jittering of the resonance frequency
about the ’natural’ (resonance frequency without spectral diffusion) resonance
frequency due to fluctuations in the local charge environment. Spectral diffu-
sion effectively broadens the excitation spectrum, but it does not change the
area under the excitation spectrum, because the curve still describes all possi-
ble excitation frequencies that will excite the QD. Thus, the integral from −∞
to +∞ remains unity for the normalized Lorentzian, or equal to A for a general,
unnormalized Lorentzian. This means that the value of the FWHM of the excita-
tion spectrum is effected by spectral diffusion, but the area under the Lorentzian
lineshape is independent of spectral diffusion. On the contrary, the area A is pro-
portional to the time-averaged population of the neutral state. If the charge state
of the QD never changed from neutral to charged, then scanning the excitation
laser over the neutral transition energy range would result in the largest value
of A. However, if the QD was in the charged state, the scanned excitation fre-
quencies over the neutral state would never populate the excited neutral state,
and no fluorescence would be observed (A = 0). If the QD is switching back
and forth between the neutral state and the charged state, then the area under

5Thus, when the system is in the steady-state, the probability that a given frequency would
excite the electronic transition is equal to the amplitude of the Lorentzian at that frequency di-
vided by the integrated area A.
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FIGURE 5.6: A two-population charge state model displaying
pathways charge carriers can take into and out of the neutral state
and a charged state, here arbitrarily chosen is the negative trion.
Single blue arrows represent electrons, while double red arrows
represent holes. Arrows filled with green depict processes that re-
sult in charge ejection from the system, while arrows filled with
yellow-orange depict charge capture from the local charge reser-
voir. Arrows lined in blue represent electron transfer, while arrows

lined in red represent hole transfer.

the Lorentzian will be equal to some value between zero and the maximum pos-
sible value that corresponds to the QD never leaving the neutral state. Thus, the
area under the curve is directly proportional to the time-averaged population of
the neutral state.

A schematic depicting the neutral and charged states and possible charge
pathways between them is depicted in Fig. 5.6. The model considers two pop-
ulations, the neutral state nn and a charged state nc, where (0 < nc, nn < 1).
The two populations are allowed to go between each other by exchange of holes
and electrons via ejection from the system and collection from a local charge
reservoir. This reservoir is likely mostly composed of a stochastic distribution of
carrier transport sites that are populated with initially ballistic-like carriers cre-
ated by the above-band laser as they cool, as described in Chapter 4. Each pop-
ulation (nn and nc) encompasses both the ground state and excited state of the
photo-induced electronic transition. Figure 5.6 depicts the four possible charge
pathways that result in a change of the charge state. Due to the symmetry be-
tween the system going between the neutral state to the positive trion or the
neutral state to the negative trion, just one charged state is considered in order
to simplify the model. The model, shown in Eqn. 5.1, considers possible charge
transfer rates between the neutral state and the arbitrarily chose negative trion.
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Included are rates associated with different pathways for both the electrons and
holes. However, since the charge state chosen in the model is arbitrary, and
the effective masses, and hence mobilities, of the two carrier types are not in-
corporated in the model, the rates associated with electrons are realistically only
associated with the charge carrier type with the same charge as the charged state
of the system, while rates associated with holes are realistically only associated
with the other carrier type6. Γe and Γh represent electron and hole ejection rates
from the system, respectively. These charges are allowed to leave the system
entirely7 Ce and Ch represent electron and hole capture rates from the reservoir
per unit population of the reservoir. The ultimate rates through these capture
pathways also depend on the populations of carrier types in the local reservoir,
represented by Pe for electrons and Ph for holes. The system can be modelled by
the following set of differential equations describing the time-dependence of the
two charge states:

dnn

dt
= −

(
Γh + CePe(t)

)
nn +

(
Γe + ChPh(t)

)
nc,

dnc

dt
= −dnn

dt
,

(5.1)

where the time-dependent reservoir populations Pe(t) and Ph(t) can take on val-
ues between 0 and 1.

At the very beginning of the rise section (t = 0), the reservoir is defined to
be deplete of charge carriers. The filling of the reservoir for both electrons and
holes were allowed to take on asymptotic shaped exponential time dependence:

Pe(t) = 1 − e−(αret)βr ,

Ph(t) = 1 − e−(αrht)βr ,
(5.2)

where the subscript r stands for the rise section and the subscripts e and h stand
for electrons and holes, respectively. The α′s are capture rates into the reservoir
for the two carrier types, while βr is the shape parameter for the rise section,
which allows for a regular exponential’s shape to be modified, hence the name.

6The reader must keep this is mind for the rest of the analysis.
7If the charge carriers were only able to enter back into the local reservoir upon ejection, a(

1 − Pe(t)
)

and
(
1 − Ph(t)

)
term would need to be present with the Γs, since there would need

to exist empty states in the reservoir for charges to enter. This more simple model allows for
complete ejection of carriers from the system.



5.3. Analysis 121

Recall from Chapter 4 and Appendix A, a regular exponential (β = 1) signifies
diffusion-like filling of the charge reservoir, a stretched exponential (0 < β < 1)
signifies sub-diffusion-like filling, and a compressed exponential (β > 1) sig-
nifies super-diffusion-like filling. Due to their difference in effective mass, and
consequently in their mobility, the electron and hole filling rates (the α′s) were
allowed to take on different values. The shape parameter βr is forced to be the
same for either charge carrier, because we expect the shape parameter to de-
fine the net ’type’ of environment through which charge carriers migrate. For
example, a reservoir that fills with stretched exponential time dependence is in-
dicative of a reservoir that is composed of (mostly) a stochastic distribution of
transport sites that each can occupy one (or very few) charges at a time. As β ap-
proaches one, the environment becomes a volume that allows regular-diffusion-
like dynamics, that is, the ’stepping-stone-like’ dynamics described in Chapter 4
approach a more ’open room’ like environment for charges to diffuse.

The populations of the charge reservoirs during the fall section were allowed
to take on the following time dependence:

Pe(t) = e−(α f e(t−δ))
β f

,

Ph(t) = e−(α f h(t−δ))
β f

,
(5.3)

where the subscript f stands for the fall section and as in the rise section, e
and h stand for electrons and holes, respectively. δ is the time corresponding
to the beginning of the fall section, defined with respect to the beginning of
the rise section (which starts at t = 0). In the previous figures depicting the
fit parameters of the Lorentzian fits to the time-dependent excitation spectra, I
redefined the temporal axis so that the plots of the fit parameters for the fall
section would start at t = 0. However, in the following analysis, I let the time
t range from the beginning of the rise (t = 0) to the end of the fall, thus the
necessity of the temporal argument (t − δ) in Eqn. 5.38. β f is again a shape
parameter that allows the regular exponential’s shape to deviate.

The above set of differential equations cannot be solved analytically. Thus,
we utilize numerical methods to solve for the neutral state nn(t) to fit the areas

8This is because the model used was devised for all times. Note, some of the parameters are
shared between the rise and fall.
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under the Lorentzian fits of the time-dependent excitation spectra9. The initial
population of the neutral state at t = 0 is set to be zero and that of the charged
state to be unity10, and the effective reservoir populations are initially empty. At
the beginning of the fall section, the carrier populations of the effective reser-
voir start with the calculated values at the end of the rise section, and take on
the time-dependence described in Eqn. 5.3. The initial charge state populations
at t = δ (beginning of the fall section) are defined to be the calculated values
of the numerical solutions of the charge state populations at the end of the rise
section. The fit parameters Γh, Γe, Ch, Ce, αre, αrh, βr, α f e, α f h, and β f are ex-
tracted for each above-band power. The constants Γh, Γe, Ch, Ce are considered
to be independent of the system being in the rise section or the fall section due
to being related to pathway probabilities per population, and are thus common
factors between the rise and fall sections. The constants directly associated with
the reservoir charge carrier populations Pe(t) and Ph(t) are allowed to differ for
the rise and fall sections. During the rise, the reservoirs are filled via creation
of mobile carriers induced by the above-band excitation laser. During the fall,
the reservoirs deplete and the carriers do not necessarily deplete via the exact
mechanisms by which they were filled. Thus, the rates (αs) and the shape pa-
rameters (βs) are allowed to vary between the rise and fall sections to account for
the different mechanics. Recall, as previously stated, in order to keep the model
as simple as possible, we did not allow the shape parameters to vary for elec-
trons and holes, although they were allowed to vary between the rise and fall
sections. The justification behind this is that the shape parameters describe the
net ’type’ of environment through which charges migrate, i.e. whether the envi-
ronment induces sub-diffusion-like, regular-diffusion-like, or super-diffusion-
like dynamics. Of course, the mobility different between electrons and holes
will cause the different carriers to migrate through said environment at differ-
ent rates, which is incorporated in the differing αs. The fits were started on one
side of above-band power space and the extracted fit parameters were used as
the initial guesses for the fit of the next data set in above-band power space, and
so on. Ultimately, the extracted parameters were plotted vs above-band power
such that their dependencies on above-band power could be investigated.

9If the reader is interested in the details of the Matlab code I wrote, they are encouraged to
inquire with my advisor or me.

10The intensity of the fluorescence when then above-band laser is off is effectively zero, hence
the assumption the system is mostly in the charged state at t = 0.
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(a) (b) (c)

(d) (e)

FIGURE 5.7: Example plots of the numerical solution of the model
fit to the area under the Lorentzian fit of the time-dependent excita-
tion spectrum for a given above-band power. (a)-(c) shows the fit.
The fitting function requires guess values for the numerical model.
The real data is depicted by blue dots, the numerical solution using
the guess values for the fit parameters is shown in green, and the
actual fit is show in in red. (a) shows the entire fit of the rise and
fall sections on a linear scale, (b) shows the fit of the rise section
on log-log plot, and (c) shows the fit of the fall section on a log-log
scale. The residuals of the rise and fall fits are shown in (d) and (e),

respectively, which are much smaller than the data values.

The numerical solutions of the areas under the Lorentzian fits of the time-
dependent excitation spectra described above are quite good and were able to
fit the different shapes of the transients for different above-band powers. An
example fit is shown in Fig. 5.7. The analysis of the extracted fit parameters is
still in the early stages, and thus cannot yet be discussed in much detail. How-
ever, some preliminary analysis can still be addressed here. It needs to be noted
that the values of the extracted parameters for the lowest above-band power has
very large uncertainties, and thus should be taken with a grain of salt11. Because
of this, in the following figures, the uncertainties are omitted for a better display
of the extracted values, since they are so large for the extracted parameters asso-
ciated with the lowest above-band power.

11The following analysis thus partially ignores the values for the lowest above-band power.
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(a) (b)

FIGURE 5.8: Extracted carrier ejection rates from the system as a
function of above-band power for (a) electrons and (b) holes. The

carriers were allowed to leave the system entirely.

Figure5.8 depicts the ejection rates from the system (Γs) as a function of
above-band power. There is little dependence of the ejection rates as a function
of above-band power for both carrier types. This is consistent with the notion
that the ejection rates from the system are likely due to events that are induced
by means other than the above-band laser. In regards to relative magnitudes,
Γe ≫ Γh. That is, the ejection rate that tends to charge the QD is negligibly small
compared to the ejection rate that tends to neutralize the QD.

The capture rates into the QD from the reservoir (Cs) are depicted in Fig. 5.9.
The electron capture rate decreases as a function of above-band power, while the
hole capture rate has little dependence on above-band power. Recall, the reso-
nantly driven state is the neutral state and the system shifting into the charged
state reduces the fluorescence intensity. Capture of an electron from the reser-
voir when initially in the neutral states causes the system to become charged,
while capture of a hole when in the charged state causes the system to become
neutral. Carrier capture that induces the system to transfer to the charged state
decreases with above-band power, which is consistent with the fluorescence in-
tensity increasing with above-band power. However, the hole capture rate be-
ing independent of above-band power is a bit puzzling, because I would expect
there to exist an inverse relation to the electron capture rate. Regarding the mag-
nitudes of the capture rates, Ch ≫ ce, which means the capture rate of the carrier
type that tends to put the system in the neutral state is much greater than that
that tends to put the system in the charge state. This imbalance between the
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(a) (b)

FIGURE 5.9: Extracted carrier capture rates from the reservoir as a
function of above-band power for (a) electrons and (b) holes. The
capture rates are proportional to the populations of carriers in the

reservoir.

capture rates for the two carrier types mimics the imbalance observed between
the two ejection rates described above.

We now will discuss the extracted parameters that are directly associated
with the reservoir populations Pe(t) and Ph(t). Figure 5.10 depicts the reservoir
filling rates during the rise section as a function of above-band power. As a func-
tion of above-band power, the electron capture rate into the reservoir increases,
while the capture rate for the hole decreases. This is a bit puzzling, because I
would expect both rates to increase with above-band power, since the above-
band excitation should create both electrons and holes in the surrounding GaAs
matrix. The magnitude of the reservoir capture rates are of the same degree, but
that for the electron is roughly twice as large.

The reservoir depletion rates vs above-band power during the fall section
are depicted in Fig. 5.11 for both carrier types. Both reservoir depletion rates
decrease as a function of above-band power. This is consistent with the deple-
tion of the reservoir happening mostly via migration of charge carriers through
the stochastic distribution of transport sites described previously in this chap-
ter and Chapter 4. Recall, such an environment results in the sub-diffusion-like
charge dynamics analogous to a group of people crossing a ford in a creek via
randomly distributed stepping stones. If someone is in front of you, you must
wait for them to proceed to the next stone before you can proceed. When the
above-band excitation power is higher, more transport sites are occupied dur-
ing the rise section. Thus, when the above-band laser is turned off in the fall
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(a) (b)

FIGURE 5.10: Reservoir filling rates during the rise section as a
function of above-band power for (a) electrons and (b) holes.

(a) (b)

FIGURE 5.11: Reservoir depletion rates during the fall section as a
function of above-band power for (a) electrons and (b) holes.
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(a) (b)

FIGURE 5.12: Exponential shape parameters for the (a) rise and (b)
fall.

section for the higher powers, the depletion rates are smaller than compared to
lower above-band powers, where a significant population of unoccupied trans-
port sites allows for a higher average rate of carrier migration through the path-
ways through which the reservoir depletes. Similar to the reservoir filling rates,
the magnitudes between the two carrier types are of the same order, but that for
the electron is again approximately twice as large.

The unit-less exponential shape parameters are depicted in Fig 5.12. Both
shape parameters increase with above-band power, but less so for the rise sec-
tion as opposed to the fall section. For the rise section, β > 1, which implies
super-diffusion-like charge dynamics into the effective reservoir. Recall, the
above-band laser creates hot carriers due to its high photon energy with respect
to the band-gap energy of the semiconductors of the heterostructure. Due to
their high kinetic energy and being created within a small volume, the carriers
initially move ballistically until they cool via phonon emission. As they cool,
some of them make their way into the effective charge reservoir in the vicinity
of the QD. Thus, it makes sense for the charge reservoir to fill with mostly com-
pressed exponential time dependence after the above-band laser is turned on.
It also makes sense that the degree to which the exponential is compressed in-
creases with above-band power, because the higher the above-band power the
more hot carriers will be created in a small volume, and the more ballistic-like
they will migrate as they cool. For the fall, β f < 1, which is consistent with the
effective reservoir mostly depleting through the stochastic distribution of trans-
port site of which it is likely composed of. However, I would expect the value
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of β f to decrease with above-band power, because as the above-band power
is increased, more of the transport sites are occupied with carriers during the
rise section. Thus, for higher above-band powers, after the above-band laser is
turned off, I would expect the reservoir to deplete with more sub-diffusion-like
dynamics, hence be described by an exponential that is more stretched (decreas-
ing β).

5.4 Conclusion

In Chapter 4, the charge dynamics of InAs QDs under both resonant and above-
band excitation were investigated via analysis of transients in the TRRF as the
above-band laser was turned on and off. However, we neglected to consider that
when the above-band laser is turned on and off, the local charge environment
in the vicinity of the QD changes, which likely induces shifts of the QD’s reso-
nance. In this chapter we similarly measured TRRF relative to the above-band
laser turning on and off while exciting a neutral electronic transition12, but for
multiple different near-resonant values of the resonant laser’s frequency13. For a
given above-band power, the TRRF were stacked side-by-side creating effective
time-dependent excitation spectra. Temporal slices of the effective excitation
spectra were fit with Lorentzian profiles, of which time-dependent center fre-
quencies, FWHMs, and areas under the Lorentzian lineshapes were extracted
and analyzed.

The time-dependent center frequency was the directly relevant quantity to
our stated concern regarding the analysis in Chapter 4. The above-band laser
turning on and off did indeed induce shifts of the QD’s resonance ranging from
approximately 125 to 340 MHz for the above-band powers investigated. We an-
ticipate this to affect the values of the extracted parameters of the fits of the TRRF
in Chapter 4, but not induce a large enough of an effect to make our general con-
clusions invalid. That is, (1) for a charged QD, the neutralization (change from
a charged to a neutral state) is dominated by Auger recombination. (2) There
appears to exist a network of two effective charge reservoirs. One reservoir that
induces super-diffusion-like dynamics that supplies charges to the second reser-
voir, and another that induces sub-diffusion-like dynamics of charge that can be

12Recall, we were unable to find a charged QD in the second sample
13Recall, the resonant frequency is defined when the above-band laser is left on and not mod-

ulated, i.e, during the steady-state
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captured by the QD. The super-diffusion-like process is associated with ballistic-
like diffusion of initially hot, densely populated charge carriers excited by the
focused above-band laser and its shallow penetration depth into the sample.
Some of these carriers make their way into the local environment of the QD
as they cool to the bottom of the CB of the bulk GaAs. The sub-diffusion-like
dynamics are thought to be induced via migration of charge carriers through
a stochastic distribution of weakly-binding transport sites in the local environ-
ment after the carriers cool. The transport sites are likely impurities and defects
in the GaAs matrix that provide shallow electric potentials for the carriers to
weakly bind to. Lastly, (3) that as the QD in Chapter 4 neutralizes after the AB
excitation is turned off, there exists a slight recharging of the QD via capture of
charges from the local charge reservoir as it depletes.

The FWHM of the Lorentzian fits of the time-dependent excitation spectra
were observed to increase after the above-band laser was turned off, as well as to
increase with decreasing above-band power. This is consistent with the idea that
at the higher above-band powers, the population of charge carriers in the reser-
voir that consists of pathways of weakly-binding transport sites saturates. As
most of the transport sites become occupied by carriers, the pathways through
which they can migrate become ’clogged’. This results in a partial ’freezing’ of
the local charge environment as the average rate of carrier migration to adjacent
transport sites decreases, which consequently results in less spectral diffusion
and a smaller FWHM in the measured excitation spectra. When the above-band
laser is turned off, the local charge reservoir begins to deplete, and as time pro-
gresses, more transport sites become unoccupied. Consequently, the average
rate of migration of carriers to adjacent transport sites increases with time af-
ter the above-band laser is turned off. The resulting increasing in the temporal
derivative of the local net electric field as a function of time induces an increas-
ing degree of spectral diffusion, which is observed in the increasing FWHM.

The integral of the time-dependent excitation spectra (area under the
Lorentzian fits) is directly proportional to the time-averaged population, or
occupation, of the probed state (here the neutral state). We derived a two-
population model of the charge state described by a set of differential equa-
tions that quantify the time dependence of time-averaged populations of both
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the neutral and a charged state. The time-dependent areas of the excitation spec-
tra were fit with a numerical solution of the time-dependant neutral state popu-
lation in the model for each above-band power. The model’s fit parameters were
extracted and analyzed14.

The ejection rates of carriers out of the QD showed little dependence on
above-band power. The capture rate of the charge carrier that would put the
system in the charged state decreased as above-band power increased, which is
consistent with the observed increase in fluorescence intensity from the neutral
state with increasing above-band power. The carrier capture rates into the local
charge reservoirs (during the rise) showed conflicting dependence on above-
band power. The reservoir capture rate of the carrier with the same charge as
was arbitrarily chosen for the charged state in the model increased with above-
band power, while the capture rate of the opposite carrier type decreased. Since
the above-band excitation creates mobile electrons and holes, I would expect
both reservoir capture rates to increase with above-band power.

Both reservoir depletion rates (during the fall) decreased with increasing
above-band power. This is consistent with the presence of more drastic sub-
diffusion-like charge dynamics during depletion of the reservoir when using
higher above-band powers. The higher above-band powers induce occupation
of a larger number of transport sites that make up the pathways through which
the reservoir depletes, resulting in a "clogging" effect of the pathways. Lastly,
the shape parameters associated with the time-dependence of the carrier popu-
lations in the reservoir took on compressed exponential values for the rise sec-
tions, and stretched exponential values for the fall sections. The compressed
exponential time-dependence of the filling of the charge reservoir during the
rise sections implies it fills significantly via super-diffusion-like dynamics. This
is consistent with the reservoir filling with ballistically moving excited carriers.
The initial ballistic nature of the carriers is due to them being hot and densely
populated upon exciton. This is due to the above-band laser’s high photon en-
ergy, and them being created in a small volume due to the tight focus and shal-
low penetration depth of the above-band laser into the sample. The stretched
exponential time-dependence of the depletion of the charge reservoir during the
fall implies that after the above-band laser is turned off, the carrier populations
of the reservoir deplete with sub-diffusion-like dynamics. These dynamics are

14Recall, at the present, only preliminary analysis has been conducted for this section.
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induced by migration of charge through pathways composed of the stochastic
distribution of weakly-binding transport sites via which the reservoir depletes.
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Chapter 6

Utilization of the Photon
Coalescence Time Window to
Quantify Photon
Indistinguishability as a Function of
Above-Band Excitation Power

6.1 Introduction

The analysis for the experiment considered in this chapter has yet to begin, be-
sides a preliminary "first look" analysis; data acquisition has only recently fin-
ished. Thus, mostly the experimental methods will be discussed. This exper-
iment involves quantifying photon indistinguishability of the resonance fluo-
rescence from a neutral QD as a function of above-band power. The indistin-
guishability is quantified by calculation of the coalescence time window (CTW),
which will be described below. The preliminary "first look" at the data will be
addressed. Further detailed analysis and an ultimate publication will ensue in
the following months.

Two major characteristics are required for a photon source to be able to be
utilized in the construction of quantum bits for quantum information protocols:
it’s necessary for the source to produce a stream of single photons, and the pho-
tons need to be indistinguishable from each other. The prior characteristic can be
quantified via a simple Hanbury Brown-Twiss measurement that was described
in Chapter 1. The source is set incident of a 50:50 BS and observation of the
photon count rate for each output is measured with single-photon detectors. A
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detected arrival of a photon at one detector starts a clock, while a detected ar-
rival of a photon at the second detector stops the clock, and the delay time τ

between the start clock and stop clock is recorded by a time-correlated single
photon counting module (TCSPCM). An integrated measurement over a long
time compared to the average time between the clock starting and stopping is
conducted, and the TCSPCM builds a histogram of arrival times τ over the du-
ration of the experiment. The resulting measurement is that of the second-order
correlation function g2(τ). For a single photon source exhibiting sub-Poissonian
statistics, g2(0) = 0. This effect is dubbed antibunching and its presence is in-
dicative of a single photon source.

In 1991 Mandel stated that the degree of coherence equals the degree of in-
distinguishability [112, 113], which heralded the ability to quantify the indistin-
guishability of a single photon source. Photon indistinguishability is quantified
via analysis of correlation measurements on the two outputs of a Mach-Zehnder
interferometer (MZI). Until now, our lab had yet performed any such measure-
ments due to lack of an MZI. Thus, I assembled a fiber-based MZI to be used to
measure photon indistinguishability. In parallel with my previous experiments
in which I investigated the effects of above-band laser power on the charge dy-
namics in our samples, I used used the MZI to measure photon indistinguisha-
bility as a function of above-band power for a neutral electronic transition in an
InAs QD.

In a two-photon interference Hong-Ou-Mandel (HOM) experiment [36], as
described in Chapter 1, indistinguishable photons from two sources, or from
separate arms of an MZI, are combined at the two inputs of a BS (second BS in
an MZI) and the coalescence will be detected through a drop of the coincidence
rate at the outputs (the HOM dip). In our case, this is achieved by sending
quantum dot fluorescence into the fiber based MZI, which is split into two ef-
fective sources at the first beam-splitter (BS) and recombined at the second BS
of the MZI. If the two effective light sources are indistinguishable, two photons
simultaneously arriving at the second BS will be forced to leave the same exit.
Ordinarily in an MZI, one arm contains the ability to change its length, which
induces different delay times between the two paths. In a fiber-based MZI, the
delay time can be changed discretely by insertion of fibers of different lengths
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into one of the arms, which allows for the coalescence to be measured for multi-
ple different delay times. For a two-level system, the coherence time T2 and life-
time T1 are linked to photon indistinguishability. If the radiative limit T2 = 2T1

is reached, perfect coalescence giving rise to a zero value in the HOM dip is
observed. Under continuous wave (cw) excitation, using two ideal ultra-fast de-
tectors, the coincidence rate always vanishes at zero time delay. With real-world
detectors that do not have an infinitely short response time, if the temporal reso-
lution TR (approximately 500 ps for our detectors) is shorter than the coherence
time of the photons, the indistinguishability cannot be properly resolved. With
a cw source, the value of the coincidence rate at a zero delay time is thus very
sensitive to TR (since TR T1, T2) and does not accurately characterize the intrinsic
properties of the source with regard to photon indistinguishability. Thus, a mod-
ified approach is necessary to adequately measure photon indistinguishability
under cw excitation.

Recent experimental studies focused on the regime of resonant Rayleigh scat-
tering (RRS) under low-power cw excitation, where the incoming photons are
elastically scattered. As predicted by theory and shown by homodyne and het-
erodyne detection experiments [88, 114, 115], the scattered photons inherit the
coherence time of the excitation laser TL, which can be much longer than T2

and TR. The resulting QD emission spectrum can be much narrower than the
natural linewidth imposed by the radiative limit. Considering that under such
conditions the inherited coherence time surpasses TR, along with Mandel’s no-
tion that coherence equals indistinguishability, the RRS regime constitutes the
ideal ground for the generation of highly indistinguishable photons.

Proux et al. [116] reported on the coalescence of photons emitted by a single
QD resonantly driven by a cw source within the RRS regime. They introduced
a new figure of merit, the coalescence time window (CTW), to quantify the de-
lay below which photon coalescence occurs, ultimately estimating the indistin-
guishability of their photon source as a function of time between photons. Their
sample is also InAs/GaAs quantum dots in a planar microcavity and excitation
is achieved via a cw tunable external cavity laser diode with variable coherence
time. The quantum dot fluorescence was sent through a MZI. In order to pre-
vent fictitious anticoincidences from one-photon interference when performing
two-photon interference, the path difference must be larger than the photon co-
herence time, and thus larger than TL in the RRS regime. They used optical
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fibers to create an interferometer delay of up to 43.5 ns. They used a HWP in
one of the arms to change the polarization1 to create either parallel or perpen-
dicular polarizations of the two incident beams at the second BS. If one of the
arms is blocked, the setup becomes a Hanbury Brown-Twiss (HBT) setup for
measuring the intensity correlation function g2(τ). As, previously stated, If an
anti-bunching dip is observed at a zero time delay between adjacent photons
(τ = 0), then one knows the photon source is a single photon source in the RRS
regime. T1 and T2 are measured via time-resolved fluorescence using pulsed
excitation as described in the lifetime section in Chapter 2.

Proux et al. measures g2(τ) under resonant excitation for both parallel and
perpendicular polarization setups of the MZI. Theory discussed by Patel et
al. [117] predicts the theoretical intensity correlation functions g(2X)

⊥ and g(2X)
∥ ,

convoluted by the instrument response function (IRF) of the HOM setup using
single photon detectors with TR = 1ns [118]. For the perpendicular polarization
configuration,

g(2)⊥ (τ) =
1
N

{
4(T2

1 + R2
1)R2T2g(2)(τ)

+ 4R1T1

[
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and for the parallel polarization configuration,
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(6.2)

where R1,2 and T1,2 are the reflection and transmission coefficients of the first
and second BS of the MZI, respectively, N = 4R1T1(R2

2 + T2
2 ) + 4R2T2(R2

1 + R2
2),

and ∆τ is the delay time between the two arms of the MZI. In Eqn. 6.2 the pa-
rameter V0 is introduced that accounts for all experimental imperfections that
destroy the spatial/temporal overlap and/or polarizations of the two beams at
the second BS in the MZI. The first-order correlation function g(1)(τ) is related
to the coherence of the two-level system and appears only in the second-order

1We used the custom polarization controller I constructed and described in Chapter 1.
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correlation function for the parallel configuration as part of the two-photon in-
terference term. Note, Proux et al. [116] measured values of the experimental
imperfection parameter V0 of 0.8 for the parallel and 0.15 for perpendicular con-
figurations. If the arms in the MZI created perfect parallel and orthogonal po-
larizations, V0 would be 1 and 0 for parallel and perpendicular configurations,
respectively.

In the perpendicular polarization configuration in which the photons from
each arm of the MZI that are incident on the second BS are nominally completely
distinguishable, no interference is expected at the second BS of the MZI, and
the measured g2(τ) is related to the statistical properties of the single photon
source. Compared to an HBT experiment, additional anti-bunching dips shifted
by the interferometer path length difference are observed. The measured dip
values are resolution limited and determined by the QD intrinsic times T1 and
T2. At high power, the QD undergoes Rabi oscillations, inducing a narrowing
of the antibunching dips [38], and thus a strong reduction of their visibility for
a given TR. Thus, the experiment should be conducted below the saturation
power described in Chapter 2 where Rabi oscillations are not observed.

In the parallel polarization configuration in which the photons from each
arm of the MZI that are incident on the second BS are nominally completely
indistinguishable, in addition to the contribution of the photon statistics, a com-
ponent due to photon coalescence is observed. At low power, two dynamics can
be distinguished: a fast one at τ << τR characterized by the intrinsic QD time
constants T1 and T2, and a much slower one characterized by the excitation laser
coherence time TL. The fast dynamics reflects the photon statistics and the coa-
lescence of the inelastically scattered photons, whereas the slower one is directly
linked to the coalescence of the elastically scattered photons. At high power, the
ratio of the elastically scattered photons drops, inducing the long time compo-
nent to get notably attenuated [116].

Classically, the photon indistinguishability is characterized by the two-
photon inference visibility measured at the outputs of the MZI. The two-photon
interference visibility is defined as:

VHOM(τ) =
g2
⊥(τ)− g2

∥(τ)

g2
⊥(τ)

. (6.3)

The usual way to assess the indistinguishability of the photon source is to use
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the value VHOM(0). However, this value is altered by the time resolution of
the detectors’ TR. In order to take into account the long coherence time of the
elastically scattered photons along with the visibility at τ = 0, one calculates
the time integration of the visibility curve, called the coalescence time window
(CTW) [116]. This parameter is independent of TR. Proux et al. measured the
CTW for multiple different delay times via implementation of different delay
fiber lengths in one arm of the MZI.

6.2 Experimental Methods and Preliminary Analysis

In this report we used the CTW method to characterize the indistinguisha-
bility of the resonance fluorescence from a neutral InAS QD as a function of
above-band power. The QD was excited resonantly with a cw tunable diode-
laser source, and an above-band laser was also focused onto the sample sur-
face to maintain the probed charge state, as in Chapters 4 and 5. In compar-
ison to the experiments discussed in those chapters, the above-band laser was
not modulated, but the above-band power was changed between data sets. As
in Chapters 4 and 5, the fluorescence was filtered via propagation through a
900 nm longpass filter and a spectrometer. The fluorescence was sent to exit
the spectrometer and coupled into a fiber-based MZI composed of polarization-
maintaining optical fibers. The experimental setup is depicted in 1.17. After the
first BS, the fluorescence is split between the MZI’s short and long arms. Two
separate fibers were able to be connected and disconnected in the long arm. One
fiber was a polarization-maintaining fiber depicted as the single blue coil in 1.17.
The other fiber was a single-mode fiber that was not polarization-maintaining
and is depicted as the yellow thrice coiled fiber in 1.17. The three coils repre-
sent the polarization controller I built through which the fiber is sent, which is
depicted in Fig. 1.18.

The polarization controller involves three paddles that are allowed to be
angled about a pivot. The fiber is coiled once through the first paddle, twice
through the second, and three times through the third. These act roughly as a
quarter-wave, half-wave, and three-quarter-wave plate, respectively. Setting a
given angle of each paddle is analogous to setting the angle of a corresponding
wave plate. With careful positioning of the three paddles, any arbitrary input
polarization can be changed to any other polarization at the output. Thus, the
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polarization controller was used to make the polarization in the long arm per-
pendicular to that in the short arm.

When the blue fiber is inserted in the MZI’s long arm, since both the long
and short arms are composed of polarization maintaining fibers, if the fluo-
rescence was made up of indistinguishable photons upon introduction to the
input of the MZI, the interference at the second BS of the MZI will be that of
indistinguishable photons, and the HOM dip will be observed in the correla-
tion measurements at the output of the MZI. When the yellow fiber is used to
make the polarization in the long arm perpendicular to that in the short arm,
the light sources recombining at the second BS of the MZI will be nominally
completely distinguishable. The second order correlation function (g2(τ))2 is
measured at the output of the MZI via two single-photon detectors (labeled as
APDs in Fig. 1.17), one at each output of the MZI, and a TCSPCM which con-
structs a histogram of times between one APD starting the clock and the other
stopping it. After g2(τ) is measured for both the perpendicular and parallel con-
figurations of the MZI, the visibility can be directly calculated via Eqn. 6.3 and
ultimately the CTW, via integration of the visibility.

The spatial/temporal delay between the long and short arms of the MZI were
kept constant. In order to be able to sweep through the full interference at the
output, the optical path length difference between the arms has to be swept a
minimum distance equal to a half wavelength of the propagating light. How-
ever, the magnitude of the random fluctuations of the lab’s temperature are large
enough to induce fluctuations in the index of refraction such that the resulting
fluctuations in the optical path length difference between the two arms is greater
than a half wavelength of the propagating light. The single-mode fibers used
in the experiment consist of an un-doped pure silica core surrounded by a de-
pressed, fluorine-doped cladding. The temperature T dependence of the optical
path length S of a transmissive medium is given by,

dS
dT

=
dn
dT

+ nα, (6.4)

where n is the refractive index of the medium, dn/dT is the temperature coeffi-
cient of the refractive index (which is wavelength dependent), and α is the coef-
ficient of thermal expansion of the medium material. Koike and Sugimoto [119]

2See 1 for details regarding measurement of g2(τ).
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investigated temperature dependencies of optical path length in varies glasses.
Since a wavelength of 1550 nm is the most commonly used in optical commu-
nications systems due to low absorption at that wavelength, Koike and Sugi-
moto’s experiment used refractive index values for 1550 nm light. However, we
still can acquire an idea of the optical path length difference induced in our MZI
for the wavelength of the QD fluorescence 925 nm. They show that for pure
silica and 1550 nm light dS/dT = 9.39ppm/◦C. The long arm in our MZI is 5
m longer than the short arm. For a temperature change of 0.1◦C, dS/dT 1ppm,
which corresponds to changes in the optical path lengths of the two arms that
differ by approximately 5 microns, which is an order of magnitude greater than
a half wavelength of the QD fluorescence propagating through the MZI. Thus,
the fiber-based MZI needs to simply sit on the optical table and small natural
fluctuations in the ambient temperature will induce large enough fluctuations
in the optical path length difference between the two arms to sweep through the
full interference observed at the output.

An example of measured g2(τ) for both the parallel and perpendicular con-
figurations of the MZI, as well as the calculated visibility and CTW is shown in
Fig. 6.1 for a given above-band power. As previously mentioned, the analysis for
this project is at ground zero. The following analysis is simply a quick first look;
for instance the data shown here is actually the g2(τ)s convolved with the IRF
of the measurement system. The IRF was indeed measured, and deconvolution
will be incorporated in the more sophisticated analysis that will follow in the
following months. Note that no fitting is necessary to calculate the CTW, since
we measured g2(τ) for each polarization configuration directly and the CTW is
calculated simply as the integral of the visibility. The reflection and transmission
coefficients, as well as the QD lifetime, were measured and will be used to fit the
measured g2(τ)s with Eqns. 6.1 and 6.2 when the detailed analysis commences.

Consider the possible pathways two adjacent photons can take through the
MZI. Both photons can take either the short or the long path, the first can take
the long and the second the second the short, or the first the short and the sec-
ond the long. Every instance results in a measured dip in g2(τ) due to the single
photon nature of the fluorescence. The dip caused by the first two instances oc-
curs at the same delay time, while the latter two induce dips in g2(τ) at their
respective delay times. Thus, due simply to the single photon nature of the
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(a)

(b)

(c)

FIGURE 6.1: Example measured (a) g(2X)
⊥ (τ) and (b) g(2X)

∥ (τ), as
well as (c) the calculated visibility and CTW for an above-band

power = 13 nW.

light source, for the case in which the interference at the second BS of the MZI
is between nominally completely distinguishable photons (perpendicular polar-
ization configuration), one observes three dips: one center dip associated with
the two photons taking the same path in the MZI, and two side dips for the
other two cases, which can be seen in Fig. 6.1(a). Due to twice as many instances
creating the center dip as opposed to the side dips, the center dip is deeper. The
center dip is set to be at a delay time τ = 0 via an electronic delay set in the
TCSPCM’s software. The distance of the side dips in time are displaced from
the center dip by the time equal to the temporal delay between the two arms
of the MZI. However, for the parallel polarization configuration of the MZI, the
photons are nominally indistinguishable (or at least possess some degree of in-
distinguishability), and HOM interference induces a deeper center dip at τ = 0
while the side dips are still only induced by the single photon nature of the light
source. Thus, one observes flat features in the calculated visibility at the delay
times associated with the side peaks in the g2(τ)s.

A preliminary look at the CTW vs above-band power without performing
deconvolution of the measurement systems IRF with the measured g2(τ)s is
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FIGURE 6.2: CTW vs above-band power for the preliminary anal-
ysis.

shown in Fig. 6.2. For the 19 above-band powers investigated, there is unfortu-
nately no clear dependence in the calculated CTW vs above-band power. How-
ever, the in-depth analysis of the CTW as a function of above-band excitation
power, including deconvolution of the IRF from the measured g2(τ)s, as well
as theoretical fits of the g2(τ)s will be conducted in the following months. In
regards to said future fits, the degree to which the two arms of the MZI contains
perpendicular or parallel polarizations is not perfect. This effect is incorporated
into the factor V0 in Eqn. 6.2, and is quantified via measurement of the fluores-
cence contrast between the two outputs of the MZI. Due to the HOM effect, if
the photons in the two arms are completely indistinguishable, the contrast of the
measured interference at the outputs of the second BS will be maximum (unity),
while if the photons in the two arms are completely distinguishable, a contrast
of zero would be measured after the second BS due to complete lack of HOM
interference. It is our hope that in the more sophisticated analysis to follow,
that we will observe and discuss trends in the CTW as a function of above-band
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power.
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Conclusion and Outlook

7.1 Conclusion

Sources of single, indistinguishable photons have potential to be used in im-
plementation of quantum information protocols. Resonant excitation of self-
assembled, epitaxially-grown InAs QDs is a prime candidate for the produc-
tion of single, indistinguishable photons. However, resonant excitation often
changes the charge state of the QD, resulting in a reduction of the resonance
fluorescence intensity from the resonantly-driven optical transition due to dif-
ferences in excited electronic transition energies for different charge states.

Application of additional low-power above-band excitation can return the
initial charge state, allowing the resonant laser to again couple with the
resonantly-driven excited transition, ultimately returning the resonance fluo-
rescence intensity. Indeed, for many QDs not incorporated into a diode struc-
ture, application of low-power above-band excitation is often necessary to pro-
duce any significant fluorescence intensity from resonant excitation [39–41, 89].
Thus, if using low-power above-band excitation, it is important to understand
the mechanisms by which free carriers induced by the above-band light make
their way into and out of the QDs in the sample, how the above-band excitation
affects the excitation (absorption) and emission spectra of QDs, as well as how
it affects the photon indistinguishability of the resonance fluorescence.

The low-power above-band excitation supplies the local environment
around the QD with free charges that can become bound by the QD’s electric po-
tential, returning the QD to its initial charge state. It appears the charge dynam-
ics are mostly described by carrier migration through two subsequent charge
reservoirs, one that supplies the QD with close-proximity charge carriers to be
captured, and another which supplies that reservoir with free carriers.
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Our sample consists of InAs QDs embedded in a bulk GaAs planar micro-
cavity defined by two DBRs, as shown in in Fig. 1.1. Due to the above-band
laser’s shallow penetration depth into the sample, most of the free carriers ex-
cited by the above-band light are created in the top DBR, far from the QD layer.
These carriers are initially hot due to the high photon energy of the above-band
laser relative to the band-gap energies of the semiconductors of which the het-
erostructure comprises. The above-band excitation also induces an initial high
density of free carriers due to its shallow penetration depth and it being focused
onto the sample via a high numerical aperture lens. The initial high kinetic en-
ergy and population density of free carriers causes them to move ballistically for
the first several ps as they cool. Some of the free carriers make their way into the
vicinity of the QD layer as they cool to the bottom of the CB of the surrounding
GaAs matrix. After the above-band laser is turned on in Chapters 4 and 5, we
observed compressed exponential time dependence of the filling of the charge
reservoir in the local vicinity of the QD. This compressed exponential time de-
pendence is indicative of super-diffusion-like charge dynamics that is affiliated
with the ballistic-like nature of the initially hot free carriers.

The charge reservoir in the local vicinity of the QD layer that ultimately sup-
plies the QDs with charge is likely mostly composed of a stochastic distribution
of transport sites through which carriers migrate. The transport sites are likely
weakly-binding shallow potentials created by defects and impurities in the bulk
GaAs matrix. Charge carriers weakly bound to transport sites can "hop" to adja-
cent transport sites with a probability that drops off exponentially with distance
to nearby transport sites. Analogous to a group of people trying to traverse
a ford in a creek by jumping through a network of randomly positioned step-
ping stones, the likely pathways through which carriers migrate is a random
network, where "high traffic" pathways are defined by pathways consisting of
adjacent transport sites that are within close proximity of each other, as depicted
if Fig. A.1. Similar to the group of people crossing the ford in a creek, when a
transport site is occupied by a bound charge carrier, it must migrate to a close-by
adjacent transport site before another carrier of the same type can migrate into
that transport site from the previous one in the effective path. Thus, carriers
move through the effective reservoir with sub-diffusion-like dynamics that is
described mathematically by stretched exponential time dependence of carrier
migration [107].
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Recall, spectral diffusion, which is observed as an inhomogeneous broad-
ening of the excitation (absorption) and emission spectra, is attributed to the
QD’s resonance jittering about a center value as the local electric environment
changes. As carriers migrate through the local environment, they modify the net
electric field that the QD feels, which shifts the QD resonance via the quantum-
confined Stark effect. A time-integrated measurement of the excitation or emis-
sion spectrum is thus broadened by this effect. Above-band power dependent
RPLE data was used in Chapter 3 to study the quantity of charge traps in the
local vicinity of the QD, and their effect on the QDs resonance frequency. We
observed four discrete Stark shifts in the RPLE for different above-band powers
that were attributed to four combinations of charge occupation of two nearby
traps. That is, whether no traps, one trap or the other, or both traps were oc-
cupied affected the magnitude and direction of the spectral shift. We calculated
that the trap locations must have been within 70 nm of the QD and little to no in-
fluence from farther occupied traps was observed. In conjunction with the idea
that the charge reservoir is composed of a stochastic distribution of transport
sites, likely only a couple of transport sites along specific pathways act as the
ultimate "doorways" through which carriers can pass into the QD.

In Chapter 4 we studied TRRF from a charged QD as the above-band exci-
tation laser was turned on and off. The TRRF was recorded with a TCSPCM,
which constructed a histogram of photon arrival times incident on an APD rela-
tive to a trigger signal (start clock) that is synced to the turning on of the above-
band laser. The transients in the intensity of the TRRF were fit with analytical
solutions involving terms with regular and shaped exponential time dependen-
cies. We observed evidence of the existence of two separate mechanisms which
supply the QD with charge. One mechanism involved super-diffusion-like dy-
namics of charge carrier migration that is associated with the ballistic-like na-
ture of the initially hot free carriers created by the above-band laser. The other
mechanism involved sub-diffusion-like dynamics of carrier migration through
a stochastic distribution of transport sites in the GaAs matrix surrounding the
QD. These two mechanisms were manifested in a compressed exponential time-
dependent term and a stretched exponential time-dependent term observed in
the rise transients, respectively. We concluded that the decay of the charged
state population after the above-band excitation was turned off was dominated
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by Auger recombination induced by the resonant laser. Additionally, a ’recharg-
ing’ effect was observed as the local stochastic distribution of transport sites
depleted of charge. These effects were manifested in a regular exponential time-
dependence on short timescales, and a stretched exponential time-dependence
on long timescales in the transients of the fall section, respectively.

In Chapter 5 we expanded on the experiment addressed in Chapter 4 by
studying TRRF as the above-band excitation laser was turned on and off for not
only different above-band powers, but also for different near-resonance frequen-
cies of the resonant excitation laser. The TRRF for each frequency detuning of the
resonant laser were stacked side-by-side, constructing time-dependent effective
excitation spectra for each above-band power. Temporal slices of the resulting
time-dependent excitation spectra were fit with Lorentzian profiles from which
time-dependent center frequency shifts, FWHMs, and areas under the curves
were extracted and analyzed.

We did indeed observe a spectral shift of the resonance towards the blue
when the above-band laser was turned on, and back towards the red when it
was turned off. The observed spectral shifts were not insignificant, but were
still several times smaller than the absorption linewidth. Thus, we expect the
general observations in Chapter 4 to still hold: That is, (1) the initially hot free
carriers created by the above-band excitation migrate with super-diffusion-like
dynamics as they cool, (2) the effective reservoir around the QD likely mostly
consists of a stochastic distribution of weakly-binding impurities/defects acting
as transport sites, and (3) the neutralization of the charged state is dominated by
Auger recombination. However, the exact values of the extracted parameters in
the fits of the transients in Chapter 4 would likely change if we had accounted
for this effect.

The time-dependent FWHM of the Lorentzian fits in Chapter 5 decreased
with above-band power and increased after the above-band laser was turned
off. The width of the FWHM is related to the degree of spectral diffusion ex-
perienced by the QD. At higher above-band powers, a larger number of trans-
port sites of the surrounding reservoir become occupied during the rise section.
When the above-band power is high enough to fill all of the transport sites, mi-
gration of charges through the effective reservoir is minimized. This effective
"clogging" of the local charge environment results is smaller fluctuations of the
local net electric field felt by the QD, hence inducing a smaller degree of spectral
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diffusion, which is manifested in the smaller FWHM of the absorption spec-
trum. After the above-band laser is turned off, the reservoir starts to deplete.
As it does, a larger number of transport sites become unoccupied, allowing for
a larger net charge migration speed. This induces a situation in which the lo-
cal electric field is changing more drastically with time, which induces a higher
degree of spectral diffusion, which is manifested in the increase of the FWHM
after the above-band laser is turned off.

In Chapter 5, the time-dependent areas under the Lorentzian fits of the exci-
tation spectra are a direct probe of the time-averaged charge state of the QD. The
value of the areas are directly proportional to time-averaged occupation of the
QD charge state associated with the resonantly driven transition (in this case the
neutral state), and are independent of spectral diffusion. The time-dependent
areas were fit with a numerical solution describing the time-evolution of the
charge state populations of the system. Two charge state populations were con-
sidered in the model, a charged state and a neutral state. A set of coupled dif-
ferential equations describing the time evolution of the two charge state popu-
lations, which involve the possible mechanisms by which carriers can be ejected
from the system or captured from the local reservoir, was devised. The time-
dependent areas under the Lorentzian lineshapes were fit very well with the
calculated time-dependent neutral state populations for all above-band powers
used. The parameters of the model were then extracted and analyzed as a func-
tion of above-band power.

The coefficients associated with carrier ejection showed little dependence on
above-band power, which eludes to ejection processes being dominated by phe-
nomena not associated with the above-band excitation. The ejection rate that
would neutralize the dot was greater, which makes sense since we were using
the above-band laser to establish population of the neutral state. The capture
rate that would charge the dot decreased with above band power, and the cap-
ture rate that would neutralize the dot was larger for all values of above-band
power. This is consistent with an observed increase in resonance fluorescence
intensity with increasing above-band power.

Both rates associated with the depletion of the reservoir after the above-band
laser was turned off decreased with increasing above-band power. This is con-
sistent with the average occupation of transport sites increasing with above-
band power during the rise section, which results in a "clogging" effect of the
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pathways through which carriers migrate. As the above-band power is in-
creased and the transport sites are more efficiently occupied during the rise
section, it takes longer for the reservoir to deplete through the pathways due
to the necessity of empty adjacent transport sites for a given jump from one
transport site to the next to be possible. During the rise section, the reservoir
filled with compressed exponential time dependence. This implies that super-
diffusion-like dynamics dominate the filling of the reservoir, which is consistent
with the notion that the reservoir fills via migration of hot free carriers that ini-
tially move ballistically due to their high kinetic energy and high population
density upon creation. Finally, during the fall section, the reservoir depleted
with stretched exponential time-dependence, which inferred sub-diffusion-like
dynamics. This implies that the depletion of the local reservoir occurs via migra-
tion of carriers through the stochastic distribution of transport sites composed
of weakly-binding defects and impurities.

Recall, that one of the most important features a photon source must posses
to be utilized in quantum information protocols is photon indistinguishability.
Until now, our lab had not conducted any experiments quantifying the indis-
tinguishability for any QD transitions. We thus conducted an experiment to
measure photon indistinguishability of a resonantly excited QD as a function of
above-band excitation power. In order to measure photon indistinguishability,
we utilized calculation of the coalescence time window (CTW). This involved
coupling resonance fluorescence from a neutral QD into a fiber-based MZI and
measuring the visibility of the second-order correlation functions at the outputs
of the MZI for two different polarization configurations.

Two measurements are necessary to compare: one in which the two arms of
the MZI before the second BS in which interference occurs have relative parallel
polarizations, and one in which they have relative perpendicular polarizations.
For each case, three antibunching dips are observed due to the single-photon
nature of the fluorescence and the possible paths that adjacent photons can take
while traversing the MZI. However, for the parallel configuration only, HOM
interference due to photon indistinguishability (observed via coalescence at the
outputs) is manifested in a deeper HOM dip at a delay time of τ = 0. The vis-
ibility, which is proportional to the difference in the correlation functions of the
two cases, is then calculated. Classically, the indistinguishability is calculated



7.2. Outlook 151

from the amplitude of the visibility at a zero delay time (i.e, where the HOM in-
terference occurs). However, this value is modified by the response time of the
detectors used to measure the second-order correlation functions. However, the
coalescence time window (CTW), which is the integral of the visibility, is inde-
pendent of the detectors’ response times, and thus makes for a better parameter
to quantify photon indistinguishability [116].

We measured the coalescence time window for 19 different values of the
above-band excitation power. Data acquisition was only recently finished and
detailed analysis has yet to commence. Without deconvolution of the data with
the measurement system’s IRF, we calculated the CTW vs above-band power
as a "first look" analysis, and unfortunately found little dependence on indis-
tinguishability as a function of above-band power. However, in the following
months, detailed analysis will ensue and hopefully interesting relations will be
observed.

7.2 Outlook

7.2.1 Additional Investigations Involving the Charge Dynam-

ics of InAs QDs

The model describing the time evolution of the time-averaged charge state of
the QD in Chapter 5 takes into account two different carrier types. However, the
difference in carrier mobility is not addressed anywhere in the model. This is
likely reflected in the values of the fit parameters associated with ejection from
the system, capture from the reservoir, and the filling and depletion rates of the
reservoir. However, perhaps a more sophisticated model that incorporates the
mobilities of the carriers could be incorporated. We initially devised a three
population model that allowed the system to go between the neutral state and
either the positive or negative charge states. However, due to the symmetry of
that system, we decided to simplify the model by considering only one charged
state and a neutral state. We may want to reconsider looking back at the analy-
sis using the three population model to confirm this simplification was indeed
justified.

Additionally, only five different above-band powers were used in the exper-
iment described in Chapter 5. From personal experience, I know there is an



152 Chapter 7. Conclusion and Outlook

optimal above-band power that results in a maximum fluorescence intensity for
a given optical transition. When the above-band power is increased beyond
that, the fluorescence intensity starts to decrease. My hunch is that the maxi-
mum fluorescence intensity corresponds to the above-band power that just fills
the local transport sites, and reoccupies them immediately after transport sites
become unoccupied. This will allow for the QD to capture carriers with a high
efficiency in order to maintain the largest time-averaged charge state population
of which the resonant laser is exciting, and also induce the "clogging" effect de-
scribed previously. I imagine as the above-band power is increased beyond this
point, more free carriers are moving around in the local environment, unable
to bind to already occupied transport sites. This would result in an increase in
the degree of spectral diffusion and would be manifested in the time-dependent
excitation spectrum’s FWHM. The power needed to enter this regime may be
fairly high, and it would be good to repeat the experiment using many different
above-band powers that range from when the fluorescence is barely visible to
orders of magnitude greater than the power that results in the maximum fluo-
rescence.

The experiment can also be conducted on a charged QD to see if a similar
model can be applied. As opposed to the neutral QD, the model describing the
time-averaged charge state for a trion would have to incorporate an additional
ejection term associated with Auger recombination. The extracted parameters’
values as a function of above-band power could then be compared to the results
in Chapter 5.

The entire experiment in Chapter 5 could also be conducted using differ-
ent resonant powers, so that the rates associated with different types of carrier
migration could be studied vs resonant laser power in addition to above-band
power. For instance, with a charged QD, I would expect the coefficient associ-
ated with Auger recombination to saturate with resonant power, as observed in
Chapter 4.

Lastly, these InAs QD samples are often incorporated into a diode structure.
In this type of structure, a tunable voltage can be applied across the sample,
which bends the entire band structure. Depending on the degree of bending
of the band structure and the polarity of the applied electric field, the QDs in
the sample can be forced into any charge state (negatively charged, neutral, or
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positively charged). Of course, there exist intermediate voltages in which oc-
cupation of more than one charge state is possible. It would be interesting to
conduct an experiment similar to that described in Chapter 5. TRRF could be
measured as a function of applied voltage as the electric field is turned on and
off in a diode structure. I expect there to still exist sub-diffusion-like dynamics
of carrier migration, because the same types of defects and impurities exist in
this sample as do in the samples used in my investigations. When the voltage
is turned on, I also expect to see super-diffusion-like dynamics of carrier migra-
tion, since the electric field will apply a net force, and hence an acceleration, on
the carriers, causing them to move ballistically.

7.2.2 Additional CTW Measurements

In addition to studying the indistinguishability of photons emitted from a two-
level transition in our sample, we can also use the CTW method to study the
indistinguishability of a 3-level system as studied in Ref. [120]. In that work the
steady-state coherence between the two neutral exciton states of a given QD was
studied via resonant excitation using a cw laser sent through a linear polarizer.
The excitation polarization was set to roughly 45 degrees with respect to both
dipole moments of the two possible neutral optical transitions (also linearly po-
larized). Many resonant excitation experiments use crossed polarizers to attenu-
ate the laser scattering and allow detection of the resonance fluorescence [46, 72,
79, 121–123]. The fluorescence detection is necessarily polarization-selective in
this experimental setup. In [99], it was shown that when polarization-selective
detection is used, orthogonal dipole moments cause an interference effect that
results in an unconventionally shaped excitation spectrum. The QD-field inter-
action will cause both coherent scattering at the laser frequency [88, 124, 125]
and incoherent spontaneous emission at the transition dipole frequencies. Inter-
ference between the fields coherently scattered from the two orthogonal dipoles
results in a noticeable difference between the shapes of the excitation spectra for
detection polarizations parallel and orthogonal to the excitation. By measuring
polarization-dependent excitation spectra for polarizations aligned to the tran-
sition dipole moments and also for polarizations rotated 45-degrees with respect
to them, extraction of the real part of the coherence between the two fine struc-
ture states was achieved [99].
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Multiple resonant photoluminescence excitation (RPLE) spectra were
recorded using multiple different detection polarizations and a single excita-
tion polarization. Two liquid crystal variable retarders (LCVRs) in conjunction
with a linear polarizer were used in the collection path to be able to rotate any
polarization of light onto the measurement axis of a monochromator on which a
CCD camera is attached to record the photoluminescence intensity. In this way
the detection polarization could be varied and light from other nearby quantum
dots could be filtered via the monochromator (our spectrometer).

When the excitation laser couples with both dipole moments associated
with a neutral electronic transition, the fields coherently scattered from the two
dipoles have a relative phase shift even though the field polarizations are still
aligned to each dipole. The detection polarization determines whether these
phase-shifted fields combine constructively or destructively [99]. Thus, by mea-
suring with a detection polarization that corresponds to the constructive inter-
ference between the fields, one can obtain an enhanced signal.

Ultimately, we can use the CTW method to test the indistinguishability of
photons corresponding to the enhanced signal created by the constructive inter-
ference of the fields associated with each dipole moment of the V-system that
describes neutral transitions in InAs QDs. In order to this, we will have to per-
form RPLE’s with different detection polarizations to find a neutral dot with
dipole moments close to 45 degrees with respect to the excitation polarization.
The detection polarization will be set by the LCVRs to send the enhanced pho-
toluminescence signal into the MZI, so the CTW method can be implemented to
quantify its indistinguishability.

Along with the proposed measurements described above, there are some en-
vironmental parameters we can vary to further investigate how the local envi-
ronment affects the indistinguishability of the resonance fluorescence, and how
we may maximize indistinguishability of the photon source. One problem with
the ultimate use of photons from an InAs QD source in practical quantum in-
formation applications is the need for extremely cold temperatures to produce
indistinguishable photons. Our sample is housed in a cryostat and cooled to
approximately 4.2 K to minimize any thermal effects. The indistinguishability
will worsen as the temperature increases. We can investigate the temperature
dependence on photon indistinguishability in our sample and better pinpoint
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what maximum temperatures can be used to adequately produce a usable pho-
ton source.

We can also perform the above-described experiments for multiple neutral
quantum dots oriented at different angles with respect to the electric field of
the excitation laser. In other words, we can investigate how close to 45 degrees
does the excitation polarization have to be to the dipole moments of the neutral
electronic transitions to obtain the desired enhanced effect described above.

Lastly, Chen et al. [99] mentions that similar effects to the dipole interference
enhancement described above should be present in the “dark-field” resonant ex-
citation of a charged QD in an in-plane magnetic field [46]. We can set the volt-
age in a diode sample to excite charged transitions while applying an in-plane
magnetic field to investigate the optical properties, such as indistinguishability,
in such a regime.



156



157

Chapter 8

Additional Publications

8.1 Introduction

In this chapter I list additional publications that I was substantially involved
with, but the investigated topics do not fall under the subject matter of this dis-
sertation. I will include the publications’ abstracts and conclusions, as well as
brief descriptions of my contributions to each project.

8.2 Polarization-Dependent Interference of Coher-

ent Scattering from Orthogonal Dipole Moments

of a Resonantly Excited Quantum Dot

Abstract
Resonant photoluminescence excitation (RPLE) spectra of a neutral InAs

quantum dot show unconventional line-shapes that depend on the detection
polarization. We characterize this phenomenon by performing polarization-
dependent RPLE measurements and simulating the measured spectra with a 3-
level quantum model. The spectra are explained by interference between fields
coherently scattered from the two fine structure split exciton states, and the mea-
surements enable extraction of the steady-state coherence between the two exci-
ton states [126].
Conclusion

We demonstrated and modeled an interference effect that occurs during CW
resonant excitation of a multi-level quantum system. Including coherent scatter-
ing is necessary to explain the strong polarization difference between the excita-
tion and the emission. Such a phenomenon does not occur under incoherent or
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pulsed excitation. Comparison of spectra with different detection polarizations
allows extraction of the steady-state coherence generated between the two ex-
cited states. All the spectra and coherences are correctly reproduced by a density
matrix model of the QD. Similar effects must be accounted for in any situation
where there are two non-degenerate orthogonal transition dipole moments and
only a certain polarization is detected. One example is the “dark-field” resonant
excitation and detection technique [46] in combination with a charged QD in an
in-plane magnetic field.
Contributions

This project was lead by my fellow graduate student, Disheng Chen. I helped
him substantially with the experimental setup, data acquisition, and editing
during the writing process. I also contributed to regular discussions regarding
data analysis and application of appropriate theory with Disheng and Professor
Flagg.

8.3 Resonance Fluorescence of an InAs Quantum

Dot in a Planar Cavity using Orthogonal Excita-

tion and Detection

Abstract
The ability to perform simultaneous resonant excitation and fluorescence de-

tection is important for quantum optical measurements of quantum dots (QDs).
Resonant excitation without fluorescence detection – for example, a differen-
tial transmission measurement – can determine some properties of the emitting
system, but does not allow applications or measurements based on the emitted
photons. For example, the measurement of photon correlations, observation of
the Mollow triplet, and realization of single photon sources all require collection
of the fluorescence. Incoherent excitation with fluorescence detection – for ex-
ample, above band-gap excitation – can be used to create single photon sources,
but the disturbance of the environment due to the excitation reduces the indis-
tinguishability of the photons. Single photon sources based on QDs will have
to be resonantly excited to have high photon indistinguishability, and simul-
taneous collection of the photons will be necessary to make use of them. We
demonstrate a method to resonantly excite a single QD embedded in a planar
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cavity by coupling the excitation beam into this cavity from the cleaved face of
the sample while collecting the fluorescence along the sample’s surface normal
direction. By carefully matching the excitation beam to the waveguide mode of
the cavity, the excitation light can couple into the cavity and interact with the
QD. The scattered photons can couple to the Fabry-Perot mode of the cavity and
escape in the surface normal direction. This method allows complete freedom
in the detection polarization, but the excitation polarization is restricted by the
propagation direction of the excitation beam. The fluorescence from the wetting
layer provides a guide to align the collection path with respect to the excitation
beam. The orthogonality of the excitation and detection modes enables resonant
excitation of a single QD with negligible laser scattering background [99].
Conclusion

Single quantum dots under resonant excitation have been demonstrated to
be excellent single photon sources with high brightness, narrow linewidth, and
high indistinguishability[74]. This protocol provides a feasible approach to har-
ness these exceptional properties of the self-assembled QD system for various
applications, such as quantum information and linear optical quantum comput-
ing. Furthermore, photons entangled with either another photon or an electron
spin will require collection without regard to polarization, which is a feature of
this method.
Contributions

Disheng and I helped build Professor Flagg’s lab from the ground up, and
thus were both heavily involved with the construction of the optical excitation
paths and collection path, as well as most of the optical paths on our opti-
cal table. Thus, we were the most qualified to describe and demonstrate the
side resonant excitation scheme. I aided Disheng with writing and editing the
manuscript, and appeared in the published instructional video.

8.4 Complete Stokes Vector Analysis with a Com-

pact, Portable Rotating Waveplate Polarimeter

Abstract
Accurate calibration of polarization-dependent optical elements is often nec-

essary in optics experiments. A versatile polarimeter device to measure the po-
larization state of light is a valuable tool in these experiments. Here, we report



160 Chapter 8. Additional Publications

a rotating waveplate-based polarimeter capable of complete Stokes vector anal-
ysis of collimated light. Calibration of the device allows accurate measurements
over a range of wavelengths, with a bandwidth of > 30nm in this implementa-
tion. A photo-interrupter trigger system supplies the phase information neces-
sary for full determination of the Stokes vector. An Arduino microcontroller per-
forms rapid analysis and displays the results on a liquid crystal display (LCD).
The Arduino can also be interfaced with a computer to store time series of Stokes
vectors. The optical measurement apparatus of the polarimeter is compact and
can be placed anywhere on an optical table on a single standard post. The com-
ponents to construct the device are only a fraction of the cost of commercially
available devices, while the accuracy and precision of the measurements are of
the same order of magnitude [127].
Conclusion

We report a self-contained polarimeter capable of fully characterizing the
Stokes vector to within one degree on the Poincaré sphere. Our device provides
accuracy comparable to the leading commercial devices for a fraction of the cost
with smaller size and greater ease of use compared to previous non-commercial
realizations [128–132]. By using a photo-interrupter as a trigger and an Arduino
microcontroller to perform the analysis, we provide a compact, user-friendly,
and cost effective way to quickly and accurately measure and record the polar-
ization of collimated light.
Contributions

I helped write the sections of the Arduino code regarding timing of the pho-
todiode measurement with rotation of the motor that turns the QWP, as well
as averaging of the subsequent calculated Stokes vectors to minimize the error
in the displayed values. I designed the device’s custom double-sided printed
circuit board (PCB), which included all of the internal electrical connections, in-
cluding power connections, connections to the Arduino chip, and connections
to all of the involved mechanisms1. The PCB incorporated the use of jumper
cables that could be easily plugged in and out of mounted pins. I also drilled
the holes for and assembled most of the device’s external electrical connections,
including placement of the LCD, as well as created custom cables to interface

1These involved measured photodiode and photo-interrupter voltages, control voltages sent
to the motor, LCD connections, a switch to change the display between showing calculated
Stokes vectors or angles on the Poincaré sphere, etc.
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the box that housed the PCB, LCD, and switch with the measurement instru-
ment. During implementation of the above-mentioned tasks, the ultimate de-
vice was engineered to optimize user-friendliness, as well as made to be easily
disassembled/assembled to help ease any future modifications and diagnosis of
problems.

8.5 A Tunable Fabry-Perot Cavity Stabilized via a

Mechanically Connected Shearing Interferome-

ter

Abstract
A tunable Fabry-Perot interferometer (FPI) can be used for high-resolution

spectral measurements with precise control of the distance between the two FPI
mirrors, which can be accomplished via feedback. We mechanically connect the
FPI cavity mirrors to those of a shearing interferometer (SI) that is actively stabi-
lized by a simple and inexpensive optical feedback method comprising a single
HeNe laser, photodiode array, and Arduino microprocessor. The FPI transmis-
sion frequency can be held constant to within a standard deviation of 0.35 GHz
for wavelengths in the near infrared range. Scans of the transmission frequency
are repeatable with a standard deviation of 0.11 GHz [133].
Conclusion

The actively stabilized shearing interferometer can stabilize the physically
connected Fabry-Perot interferometer. We can control the length of the FPI cav-
ity by choosing the set-point of the SI feedback loop. With a fixed set-point, the
transmission frequency of the FPI had a standard deviation of 0.35 GHz. With a
scanning set-point, the transmission frequency of corresponding steps in differ-
ent scans had a standard deviation of 0.11 GHz. These correspond to standard
deviations of the FPI cavity length of 8.6 nm and 2.7 nm, respectively. Since the
cavity is stable as well as tunable, we can use it as a tunable optical filter for
high-resolution spectral measurements.
Contributions

Before Raju KC began work on the above-described FPI, I laid the theoreti-
cal and practical groundwork for the necessary external input and output op-
tics during construction of two preceding custom FPIs. The two FPIs that I
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constructed, as well as the one that Raju constructed, involve an optical cav-
ity defined by two spherical mirrors. This geometry results in a large gain of the
TEM00 (Gaussian) mode focused at the center of the two mirrors, and minimal
loss in the directions perpendicular to the optical axis of the cavity. Investigated
light is focused into the cavity through the back of one of the mirrors, and the
resonant Fabry-Perot mode that is transmitted out of the other side of the cav-
ity is collected. Each FPI that has been constructed involved measurement of
the transmitted intensity while the optical path length of the cavity was finely
incremented. The spectral resolution of the ultimately measured transmission
spectrum is determined by the precision in the optical path-length increment.

In order to maximize the gain of the TEM00 mode and eliminate higher-order
resonant modes, one needs to use external launch optics to mode-match the in-
coming light with that of the TEM00 mode focused at the center of the cavity.
Recall, the geometry of our sample induces the resonance fluorescence to exit
from the sample surface in a conical shape, which after being collimated by the
collection objective, results in a ring-shaped propagating mode. The collected
fluorescence is sent through two lenses that are used to optimize the coupling
efficiency into a single-mode (SM) fiber, which induces a diverging Gaussian
mode (TEM00) at its output. The light emitted from the SM fiber is collimated
and sent trough two additional mode-matching lenses that are used to create the
correct beam waist at the very center of the FPI cavity associated with the reso-
nant TEM00 mode. The light transmitted through the FPI is then collimated and
its intensity is measured via a CCD camera attached to our spectrometer as the
optical path length of the Fabry-Perot cavity is scanned. I referred to Kogelnik
and Li [134] to design the above-described optics, which have been used with
every version of the FPI.

Although the previous versions of the FPI that I constructed did not lead to
a publication, they laid the groundwork to ultimate operation of the third ver-
sion, and thus I will describe them briefly. The first FPI I constructed involved
taking over a project started by another student. The cavity’s mirrors were at-
tached to either side of a hollow, cylindrical PZT. One mirror was held fixed
while the other could move. The resonant TEM00 mode propagated through
the hollow axis of the PZT. The distance between the mirrors was changed via
voltage-controlled length of the PZT. The longitudinal strain in the PZT changed
as the length was changed. If the strain in the PZT could be precisely enough
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measured, it could be used as active feedback to stabilize the cavity’s length via
the voltage applied to the PZT. We attempted to measure the changes in strain
via changes in impedance of a Wheatstone bridge attached to the PZT. After
I constructed and optimized the necessary optics, we were unable to measure
changes in the impedance of the Wheatstone bridge as we changed the optical
path length precisely enough to adequately measure anticipated emission spec-
tra2. I then calculated that the necessary precision in the measured strain was
on the order of µϵ, which could not be measured via changes in the impedance
of the Wheatstone bridge used. Thus, I proceeded to construction of another
prototype.

The second FPI I constructed involved the cavity’s mirrors being mounted
with a fixed separation and housed in a sealed chamber with windows on op-
posite sides to allow for optical transmission. The mirrors were attached with a
small thermal expansion coefficient adhesive to either side of a hollow, cylindri-
cal Zerodur spacer, which has a near-zero thermal expansion coefficient at room
temperature. This method allowed us to minimize changes in the physical dis-
tance between the mirrors induced by fluctuations in the ambient temperature.
Swagelok connections were established on opposite sides of the chamber, per-
pendicular to the optical axis, such that nitrogen could flow through the sealed
chamber. A throughput hole was drilled into the Zerodur spacer to ease flow
of gas through the optical cavity. A pressure regulator was connected at the in-
put, which controlled the flow rate to maintain a set chamber internal pressure
controlled by an input voltage. The nitrogen pressure of the chamber was in-
cremented, which incremented the index of refraction inside the chamber, and
consequently the optical path length. We had calculated that we would need to
increment the nitrogen pressure by amounts close to the pressure regulator’s ca-
pabilities, but the pressure regulator was inexpensive, so we gave it a try. After
fine optimization of the optics and the PID parameters of the pressure regu-
lator, I was indeed able to measure the emission spectrum of a QD, but only
about 6-8 data points spanned the full spectrum. The pressure regulator we uti-
lized was used, which may have played a role in its resolution being slightly
less than anticipated. However, since we had obtained a spectral resolution that

2A typical emission spectrum of resonance fluorescence emitted by the InAs QDs studied is
on the order of 1 or 2 GHz. We thus need to be able to increment and stabilize the optical path
length of the cavity on the order of 100 MHz or less to be able to sufficiently fit typical measured
emission spectra.
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was roughly half as good as what we desired, we decided this prototype would
likely not suffice whether we tried a new pressure regulator or not.

The current FPI utilizes measured changes in the fringe spacing of a diffrac-
tion pattern induced by reflection of a cw laser from a shearing interferome-
ter. The intensity of the diffracted light is measured as a function of space with
a photo-diode array. The FPI cavity length is changed via the mirrors being
mounted to a PZT, as with the first FPI. The optical path length is changed via
an applied voltage to the PZT. The Fabry-Perot cavity is made to be rigid with
the shearing interferometer, such that the diffraction spacing can be used as ac-
tive feedback of the measured spacing in the shearing interferometer, and hence
the optical path length of the FPI. This active feedback is used to set the real-
time voltage applied to the PZT and stabilize the optical path length. Raju led
this endeavor, but I helped him immensely to be able to optimize the external
mode-matching optics and taught him how to use all of the necessary equip-
ment, such as the oscilloscope, spectrometer, LabVIEW controlled DAQ board,
etc.

8.6 High-Throughput Evaluation in Nitrogen Dop-

ing of Amorphous Titanium Dioxide

Abstract
We present an ab-initio investigation of the structural, electronic, and optical

properties of substitutional nitrogen doping of a-TiO2. Through observation of
multiple N-doped amorphous structures, we find additional localized tail states
within the band gap. Some structures show these states nearly 1 eV above the
valence band, while most structures show these states very close to the valence
band edge. We also observe a general trend of increasing cohesive energy with
increasing distance between nitrogen impurities, suggesting the tendency for
nitrogen to form localized clusters within the material [135].
Conclusion

We expect that the photoactivity of a-TiO2 is enhanced by substitutional ni-
trogen doping, which introduces tail states near the valence band edge. How-
ever, in the couple cases when N2 is formed within the structure, we see the
introduction of localized, isolated states near the middle of the band gap that
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we believe will most likely serve as recombination centers for the charge carri-
ers. We observe a general trend of increasing cohesive energy with increasing
N–N separation distance, although the very lowest energy structures had N–N
separation distances around 4.5 angstroms, in contrast to the smallest seen N–N
separation distances of around 1.5 angstroms. Urbach tails on the valence band
and a very highly de-localized state on the conduction band edge were seen
and are believed to be a property of amorphous binary materials. We see an
increase in the likelihood of N2 bond formation as the level of N impurities in-
creases. When N2 bonds are not formed, the introduced tail states will narrow
the band gap while not acting as recombination centers for the charge carriers,
thus promoting absorption in the visible spectrum and increasing the photocat-
alytic activity of amorphous TiO2.
Contributions

I worked extensively on data acquisition and analysis for this project. The
code implementing tight-binding molecular dynamics to simulate substitutional
nitrogen doping of a-TiO2 was written mostly by the then postdoc, Barry Hay-
cock, before I joined the group. I used the code to generate large data sets of
calculated electronic and optical properties of a-TiO2 configurations with differ-
ent locations of the substitutional N impurities. I led the resulting analysis with
the guidance of Dr. James Lewis the summer that I worked for him, and wrote
most of the ultimately published manuscript.
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Appendix A

Chapter 4 Supplemental Material

A.1 Anomalous Diffusion

Throughout our analysis we utilize the shaped exponential function, e−(αt)β
,

which fits well a large variety of relaxation phenomena in complex condensed-
matter systems [100–105]. When β = 1, the shaped exponential reduces to the
regular exponential. When 0 < β < 1 the shaped exponential is referred to as
a stretched exponential, and when 1 < β < 2 it is referred to as a compressed
exponential. Charge relaxation described with regular exponential time depen-
dence is attributed to a regular-diffusion-like process. In 2003, Sturman et al.
described how stretched exponential relaxation in the solid state can result from
charge carriers migrating through an environment of stochastically distributed
transport sites, resulting in sub-diffusion-like, or slower than regular diffusion,
charge relaxation [107]. The compressed exponential has been less widely used
to describe charge relaxation in the solid state. Charge relaxation described with
compressed exponential time dependence is attributed to a super-diffusion-like,
or faster than regular diffusion process. Bouchaud [136] gives examples of in-
stances where compressed exponential relaxation in the sold state is observed.
The common theme is the presence of an external driving force resulting in faster
than exponential charge dynamics. In the following paragraphs we will discuss
why we suggest both stretched and compressed exponential relaxation exists in
our sample.

Consider an environment of randomly located deep potential wells in which
charges can become electrically bound (traps) as well as a larger number of ran-
domly located shallow wells that weakly bind charge carriers (transport sites).
Charges are then introduced to the environment via some external excitation
source. Carriers that weakly bind to transport sites have a probability to ‘hop’



168 Appendix A. Chapter 4 Supplemental Material

to nearby transport sites that is proportional to the overlap of the wavefunctions
corresponding to a bound charge in either trap. Ultimately, a charge may hop to
a transport site adjacent to a trap then become strongly bound to the trap. The
probability to make a single hop to an adjacent transport site has exponential
time dependence. A stretched exponential can mathematically be represented
as a sum of normal exponentials with a given weighting function [108]. The
time-dependence for a charge to make multiple jumps to adjacent transport sites
is a linear sum of the time-dependencies to take individual jumps, and thus the
net process for charges to migrate through multiple transport sites to ultimately
relax into the dot takes on stretched exponential time dependence. In our sam-
ple, migration of charge through a stochastic environment of weakly binding
transport sites results in sub-diffusion-like relaxation into the QD [107]. The
stochastic environment of our sample is depicted in Fig. A.1.

The timescale for the rise transient of the time-resolved resonance fluores-
cence indicates the charges excited by the above-band laser are created nonlocal
to the QD layer. At the sample surface sits a distributed Bragg reflector con-
sisting of alternating layers of AlAs and GaAs. Propagating through this het-
erostructure, above-band photons (632 nm) have a penetration depth (depth at
which the intensity of the laser drops to 1/e of its surface value) of approxi-
mately 340 nm [110]. However, the QD layer sits approximately 2300 nm below
the sample surface. The carriers created via absorption of above-band photons
move with ballistic-like motion due to their high kinetic energies. This results
in the carriers spreading throughout the sample with super-diffusion-like char-
acteristics while they are hot and regular-diffusion-like characteristics once they
cool [109]. Some carriers have trajectories that set them near the QD layer when
they cool to the gamma point of the GaAs host. Afterwards, the carriers can
become bound to QDs or the weakly-binding transport sites described above. A
to-scale schematic of the sample is shown in Fig. A.2.

A.2 Additional Parameter Dependencies

During the fall section of the data, the above-band excitation is turned off and
the fluorescence drops to zero as the dot neutralizes. Note in the following fig-
ures the above-band powers specified are those before the above-band excitation
is turned off. The time-resolved resonance fluorescence of the fall section was fit
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FIGURE A.1: Schematic representation of the stochastic envi-
ronment of charge transport sites and traps. The white back-
ground represents the bulk GaAs host semiconductor surround-
ing the QDs. Green ovals represent traps, which in our sample
are InAs QDs. Blue squares represent transport sites, which are
likely impurities and other shallow defects in the bulk GaAs that
can weakly bind charge carriers. Dark blue squares indicate the
occupation of arbitrary transport sites and the black arrows rep-
resent the charges’ migration through multiple transport sites to

ultimately relax into the QD being studied.
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InAs QDs and 
wetting layer

Sample 
Surface

Top DBR:
14 periods, 

1792 nm

Bottom DBR:
20.5 periods,

2627 nm

GaAs substrate 

GaAs spacer
4𝜆

𝑛𝐺𝑎𝐴𝑠
, 982 nm

Above-band 
excitation

Beam diameter at focus 
(9.1 𝜇𝑚)

Penetration 
depth, 
~340 nm

FIGURE A.2: Schematic illustrating the skin depth of above-band
photons into the sample. Red signifies the above-band laser, green
AlAs, blue GaAs, and white InAs. The penetration depth (depth
at which the intensity of the laser drops to 1/e its surface value) is
depicted by the black line within the focused laser spot. The laser
illustration is extended to the skin depth (depth at which the laser
intensity drops to 1/e2 of it’s surface value. All components are to

scale except the InAs QDs and wetting layer.
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with the following phenomenological function:

I = A1e−α1t + A2e−(α2t)β2 , (A.1)

where A1 and A2 are amplitudes with A1 + A2 equal to the steady-state flu-
orescence intensity before the above-band excitation is turned off, α1 is a neu-
tralization rate while α2 is a scale parameter, and β2 a shape parameter. The
first term in the above equation is attributed to ejection of charge from the QD
via Auger recombination. β2 always obtained a value between 0 and 1 dur-
ing the fitting, indicating sub-diffusion-like depletion of the associated charge
reservoir. After the above-band excitation is turned off, the reservoir consisting
of the stochastic distribution of transport sites does not deplete instantly and
charges from the reservoir can still be captured by the QD while a charge popu-
lation in the reservoir exists. The second term fits the long-time, slowly-sloping
tail in the resonance fluorescence intensity. We attribute the second term in the
above equation to recharging of the QD from the reservoir before it is depleted
of charge. Thus, the second term in the above equation represents the charge
population of the reservoir that is comprised of the stochastic distribution of
transport sites after the above-band excitation is turned off.

The shape parameter, β2, is depicted in Fig. A.3. Although 0 < β2 < 1, two
behavioral regimes exist for β2 as a function of above-band laser power. For
powers below 0.07 µW, the shape parameter is about 0.5. As the above-band
power increases past that threshold, β2 rapidly switches to values around 0.3.

Finally, the amplitudes A1 and A2 are depicted in Fig. A.4. A1 ≈ 4A2

throughout most of acquisition space, except for the lowest above-band pow-
ers. This indicates neutralization of the QD via Auger recombination happens at
roughly four times the rate at which charges deplete from the reservoir through
the QD after the above-band excitation is turned off.
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FIGURE A.3: The shape parameter β2 as a function of (a) reso-
nant and (b) above-band laser power. Note β2 always relaxed to a
value between 0 and 1 indicating association with a sub-diffusion-
like process. The legends and color specify the laser power not

depicted by the horizontal axis.
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recombination, A1, is depicted as a function of (a) above-band and
(b) resonant excitation power. The normalized amplitude associ-
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Appendix B

The Poincaré Sphere

The Poincaré sphere, depicted in Fig. B.1, is a convenient geometric represen-
tation of a light source’s polarization state. A light source’s polarization state
is represented by the the Stokes vector, which has components S1, S2, and S3.
S1 quantifies the horizontal (H) and vertical (V) components of the polariza-
tion1, S2 the diagonal (D) and anti-diagonal (A) components, which are rotated
45 degrees with respect to H and V in real space, and S3 the left-circular (L) and
right-circular (R) polarized components. The length of the Stokes vector takes
on a value between zero and unity, where a length of unity corresponds to com-
pletely polarized light, a length of zero corresponds to completely unpolarized
light, and a length between zero and unity corresponds to partially polarized
light. A Stokes vector on the equator of the Poincaré sphere corresponds to lin-
early polarized light, while a Stokes vector lying on the vertical axis corresponds
to circularly polarized light. Stokes vectors with polar angles in between are el-
liptically polarized. The two LCVRs mentioned in Chapter 2 each rotate a given
polarization through different angles on the Poincaré sphere, allowing for any
input polarization to be changed into any output polarization via the applied
voltages to the LCVRs.

1The horizontal and vertical directions in real space are arbitrarily chosen.
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FIGURE B.1: The Poincaré sphere. The red arrows and symbols
represent the components of the Stokes vector used to represent
a given polarization state. The dark purple circles and symbols
represent locations on the Poincaré sphere that correspond to com-
pletely horizontal (H), vertical (V), diagonal (D), anti-diagonal (A),

left circular (L), and right circular (R) polarized light.
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Appendix C

Example Quantum Dot Fluorescence
Spatial Images

Figure. C.1 depicts sample spatial images of collected fluorescence from two
different QDs. In Chapter 1 it was discussed that the Fabry-Perot cavity in
which the QDs are embedded induces the QD fluorescence to exit from the sam-
ple surface in a conical shape. The angle of the cone is larger for wavelengths
with larger differences from the perpendicular Fabry-Perot mode’s wavelength.
Light of larger cones will be collimated to a larger diameter by the collection ob-
jective, and thus will have a larger numerical aperture when ultimately focused
onto the image plane of the CCD camera. This effect is manifested in a tighter
Airy disk in the spatial image.
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FIGURE C.1: Example spatial images of collected fluorescence
from two different QDs taken with a CCD camera. The magnifi-
cation for either image is 60. Dark blue color signifies lower rela-
tive intensity, while dark red signifies higher relative intensity. The
image size is dictated by the numerical aperture of the fluorescence
when focused onto the image plane of the CCD. A tighter Airy disk
surrounded by more observable Airy rings results from a higher
numerical aperture. The image on the left is of fluorescence from
the QD investigated in Chapter 5, while that on the right is of fluo-
rescence from a QD that I found during my preliminary QD search

for the experiment described in Chapter 5.
.
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