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Abstract 

Study of Resonantly Stabilized Radicals in Combustion Environments 

James Lee 

Resonantly stabilized radicals (RSRs) play an important role in combustion environments due to 
their high stability resulting from resonance. Many RSRs such as the propargyl, allyl, or benzyl 
radicals are precursors to the formation of polycyclic aromatic hydrocarbons (PAHs), which can 
aggregate to form soot. Due to their stability, these RSRs can accumulate in combustion 
environments in significant quantities. The primary way these radical species are consumed in 
flames or by reactions with other abundant radicals, by self-recombination of propargyl to form 
benzene, or in the form of other abundant radicals such as the hydroxyl radical. Experimentally 
determining the pathways for consumption of these radicals is necessary to better understand 
soot formation pathways. Product analysis is obtained for the C3H3 + OH reaction using a 
multiplexed photoionization time-of-flight mass spectrometry coupled to synchrotron radiation 
at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratories in Berkeley, 
California. Product analysis supports the production of m/z 56, with the predominant isotope 
formed being acrolein. Notably absent is the presence of propargyl alcohol, which indicates that 
the allylic form is the most favorable structure. Among the smaller radical exit pathways, the 
vinyl radical is produced in appreciable quantities, indicating that its coproduct, CO, is a major 
product of the reaction at higher temperatures.  

The study of kinetics for these reactions in-house requires proper experimental setup 
that can provide the necessary conditions such as pressure and temperature. For combustion 
reactions, higher experimental temperatures are necessary to emulate the conditions in a 
flame. To this end, a high-temperature fast flow reactor is constructed to provide the necessary 
conditions for the reaction. Pressure measurements were conducted to obtain the flow 
velocity, pressure, and temperature of the gas in the high-temperature flow past a standing 
normal shockwave. The standing normal shockwave is formed by increasing pressure 
downstream from the supersonic gas expansion to form a differential of pressure between the 
nozzle and flow cell. To verify the temperature extracted from the pressure measurements, the 
CN radical was used to determine the temperature of a gas through rotational spectroscopy. CN 
radicals were produced by pulsed laser photolysis (PLP) at 266 nm from ICN precursor and its 
concentration is monitored using laser-induced fluorescence (LIF) at an excitation wavelength 
range of 378 - 382 nm. The rotational spectrum is obtained and analyzed with the PGOPHER 
software to determine the gas temperature. 
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Chapter 1: Introduction 

1.1  Carbon growth environments 

 Carbon growth is not well understood but is present in many environments. The process is 

involved in the formation of aerosol particles in the atmosphere,1, 10, 11 the growth of carbon 

species in cold dark clouds in the interstellar medium,3, 4, 12 and the combustion and formation 

of polycyclic aromatic hydrocarbons from carbon-based fuels. These growth processes are 

difficult to study, leading to many of these pathways being unknown or ill-defined.  

 The most well-known process involving carbon growth is combustion, specifically the 

burning of fossil fuels. Burning of fossil fuels still comprises the vast majority of society’s energy 

production.3 While they may take different forms such as gasoline or natural gas, ultimately are 

all burned to produce energy. Despite the prevalence of combustion as a means of producing 

energy, it is a very inefficient process when considering the total energy inside of the fuel. 

When considering car engines, for example, only 12% - 30% of the energy from the fuel is used 

to move the vehicle13. While some of the losses come from unavoidable conditions such as 

braking or wind resistance, combustion inefficiencies represent a significant and solvable 

portion of the inefficiency present. Much of these inefficiencies are locked behind the carbon 

growth that occurs during the combustion of hydrocarbon fuels. 

 New technologies are constantly being developed for the purpose of studying these 

carbon growth processes. Improved spectroscopic techniques have allowed for the discovery of 

many more organic species in the interstellar medium,11 giving greater insights into the 

formation and growth of prebiotic chemical species that may have given way to the formation 
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of life. Recent studies have even shown the presence of the propargyl radical, a radical of vital 

importance in combustion research14-16 in TMC-1, an interstellar cold, dark cloud.17 This 

discovery highlights some of the commonality between different fields of research, the broad 

reaching applications of the experimental techniques used to study them, and the importance 

of understanding the exact mechanisms of carbon growth. Many of these studies then pave the 

way for innovation built on the knowledge obtained from the studies such as a study done on 

the supercritical processing/combustion of biodiesel fuels leading to reduced particle emission, 

leading to cleaner combustion.16  

1.2  Combustion 

The process of combustion involves the oxidative chain reaction of a fuel. This chain reaction 

results in a release of energy accompanied by high-temperatures and increases in pressure. The 

heat and pressures produced by these reactions power the industries and engines that power 

society. The complete combustion of fuels has few products, only producing H2O + CO2. Unideal 

conditions during combustion, such as a lack of oxygen or lower temperatures, lead to 

incomplete combustion, and ultimately lead to the formation of unwanted byproducts such as 

carbon particles in the form of soot and other volatile organic compounds (VOCs), many of 

which are eventually released into the environment. Not only are these harmful byproducts 

produced in these cases, but the energy which should be powering engines and factories 

become locked inside of the bonds of these byproducts and are ultimately never burned.  

1.3  Polycyclic Aromatic Hydrocarbons 

Polycyclic aromatic hydrocarbons (PAHs) are formed due to successive reactions that occur in 

unideal combustion environments. These PAHs are known to be the precursors to formation of 
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larger carbon nanoparticles in carbon-rich environments such as flames18, 19-21 and the 

interstellar medium.4, 21 Resonantly stabilized are of particular note in the formation of PAHs as 

they are more stable due to their resonance structures, and therefore are more likely to 

accumulate in combustion systems. These radicals can self-react or react with other RSRs to 

form ring structures with very few steps. During combustion process, many intermediate 

species are formed as part of the chain reaction. These intermediate species can include free 

atoms such as H, hydrocarbons, free radicals such as OH, and resonantly stabilized radicals 

(RSRs). After formation, these PAHs can aggregate to form larger systems of PAHs, which can 

nucleate on dust or other fine particles to form carbon nanoparticles such as soot. These PAHs 

have been classified as a pollutant,10 are known to be harmful to humans,22 and are well known 

to be present in combustion.10  

1.4  Carbon Growth Scheme 

The formation of PAHs begins when the pyrolysis and oxidation of fuel proceeds through the 

chain reaction to form small radicals. Small radicals such as H, O, OH, and CH propagate the 

chain reaction and lead to the combustion of the fuel, shown in figure 1.1. Many of these 

radicals, due to lack of ideal combustion conditions, can react, leading to molecular growth. The 

formation of the first aromatic ring or rings (benzene, naphthalene, anthracene) is thought to 

be a rate limiting step in the overall combustion scheme, as these are thought to then further 

aggregate to form soot.3, 12, 23, 24 
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 There are a few pathways that can lead to the formation of PAHs. Besides the direct 

reaction of resonantly stabilized radical species with itself and other RSRs, the most commonly 

accepted of growth are the HACA (Hydrogen-Abstraction-C2H2-Addition) and HAMA (Hydrogen-

Abstraction-Methyl-Addition), HAVA (Hydrogen-Abstraction-Vinyl-Addition), among many 

others.25, 26, 27 As their name suggests, these processes involve the removal of a hydrogen atom 

from a molecule, likely a resonantly stabilized radical, and the subsequent addition of a C2H2 (in 

the case with HACA), a methyl group (in the case with HAMA), or a vinyl group (in the case with 

HAVA). These processes most often begin with single aromatic rings such as benzene and 

Figure 1.1 Schematic of the growth and formation of carbon particles in 
premixed flames. Image taken from Richter and Howard, Prog. Energy Combust. 
Sci., 2003.1 
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repeat until the addition site closes in to form another ring. Scheme 1.1 depicts a schematic of 

the HACA mechanism starting from a benzene with an abstracted hydrogen.  

 

Scheme 1.1 Formation of naphthalene from benzene via the HACA mechanism. One H atom is abstracted from the 
benzene, allowing addition of the C2H2 addition to the radical site. Subsequent additions allow for ring closure.  

After the initial abstraction of a hydrogen from the aromatic ring by another radical, acetylene 

(C2H2) adds to the radical site until a hydrogen atom is ejected and the ring closes. The exact 

mechanism by which subsequent rings are formed can depend on the species that is being 

added to. For example, the HACA mechanism is resistant to the formation of cyclopentaring-

fused species such as acenaphthylene (C12H8), whereas the HAVA mechanism may be more 

favorable to such products due to the nature of their respective structures.28  

1.5  Resonantly Stabilized Radicals  

Resonantly stabilized radicals have long since been theorized to be an important part in the 

formation of PAHs. These species must be stable enough to accumulate in combustion zones, 

yet reactive enough to quickly form ring species. Resonantly stabilized radicals are more stable 

than their alkyl radical counterparts due to resonance-stabilization. The resonance forms of 

select radicals are shown in scheme 1.2. This stability increases the likelihood that they will 

accumulate in reaction zones and play important roles in the initial formation of PAHs. Many of 

these resonantly stabilized radicals, such as propargyl (C3H3),29, 30, 31, 32 allyl (C3H5),33 
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fulvenallenyl (C7H5),34 and benzyl (C7H7),35 are well known to exist in combustion environments 

and have been studied extensively. Their unsaturated structure makes them key species for 

study when trying to find which species are responsible for the formation and propagation of 

PAHs. Many of the resonantly stabilized radicals are known to react with itself, other radicals, 

or other molecules to form PAHs, shown in scheme 1.3. Resonantly stabilized radicals must be 

unreactive enough to accumulate in solution, yet reactive enough to quickly proceed down 

these molecular growth pathways. Because of their importance in the formation of PAHs, it is 

important to understand their role in combustion schemes. Determining their role in the 

formation of these PAHs, as well as how all the relevant reactions that consume them will add 

to existing models of these systems.  
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Scheme 1.2. Resonance structures for propargyl (a), allyl (b), fulvenallenyl (c), and benzyl (d) radicals. 

 

A common pattern among these small resonantly stabilized radicals is their weak 

association with molecular oxygen.36, 37 The weaker interaction between this common oxidant 

and resonantly stabilized radicals often lead to dissociation back into RSR and O2. Studies done 

by Zador et al.38 shows a smaller potential energy well for the R-O2 bond, causing a reduced 

amount of isomerization to peroxy radicals when compared to its alkyl counterparts. The 

reduced reactivity stems from the loss of resonance stabilization due to the initial bond 

formation with the RSR and O2, increasing the barrier to reaction. Instead of reaction with O2, it 
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is believed that the primary method by which these RSRs are consumed in reactions are 

through reactions with other radicals, such as the case of self-reaction, or with other small 

radicals such as OH, and OH2.  

 

Scheme 1.3. Resonantly stabilized radical self-reaction to form polycyclic aromatic hydrocarbons (PAHs).39 

1.6  The OH Radical 

Small radicals are essential in the propagation of chain reactions in systems like those in 

combustion or the atmosphere.19, 25, 27, 29, 40-42 Radicals such as OH, CH, and CN are important 

species in the propagation of reactions and the formation of important species in these 

environments. Such radicals can be detected spectroscopically, and their rates of reaction with 
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organic species of interest have long been studied.33, 37, 43 The OH radical in particular has long 

been studied as one of the most powerful oxidizing agents in many different systems and has 

been studied extensively.35, 36, 44, 45 The OH radical is known to participate in a multitude of 

chemical systems such as the oxidation of many different pollutants,31 oxidation of fuel 

hydrocarbon species in flames,37 and oxidation of atmospheric organic species.16  

The OH radical reacts through three main processes, those being the processes of 

abstraction, association, and addition, depicted in Scheme 1.4. Abstraction10, 15 is the most 

common mechanism of reaction, as it is the only possible mechanism when OH reacts with a 

saturated hydrocarbon. In this process, the OH radical abstracts a hydrogen atom from an 

organic species to form water and a new organic radical. The new organic radical species can 

then go on to propagate other reaction mechanisms. The second method by which the OH 

radical reacts is by addition onto an unsaturated carbon, creating an oxygenated radical. The 

third pathway of reaction for the OH radical is the formation of an association adduct, which 

can be stabilized given enough pressure. The adduct can then react and isomerize or undergo 

elimination reactions to form new oxygenated species. 

 

Scheme 2.4. Hydroxyl radical reaction pathways of abstraction of a hydrogen atom (i), addition (ii) into a double bond, and 
association with the (iii). 
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1.7  The CN Radical 

The CN radical has been detected in nitrogen-containing flames and engines burning 

nitrogenated fuels.46 It has been identified as an important precursor in NOx formation,47 which 

subsequently can form HCN by reaction of NOx with small hydrocarbon radicals in flames.48, 

Rates coefficients for reactions involving the CN radical and unsaturated hydrocarbons have 

been shown to often have a small negative temperature dependence49 due long-range 

interactions or the formation of pre-reaction complexes along the dominant reaction pathways. 

These complexes precede the activation energy barrier of any of the entrance channels on the 

reaction coordinate and influence the most likely reaction pathway.50-52 These types of 

complexes have been found to play a significant role during the reactions of both the OH53 and 

CN51, 54, 55 radicals with hydrocarbons and are shown to dissociate more readily at higher 

temperatures. H atom abstraction pathways of the reaction between CN and unsaturated 

hydrocarbons are most often endothermic with large activation energies and are not believed 

to be major contributors to the combustion models.41, 56 

1.8  The Propargyl Radical  

The propargyl radical is the simplest resonantly stabilized radical and has garnered particular 

attention due to its ability to self-react and form benzene.10, 57, 58 The propargyl radical has been 

seen in many carbon-rich environments such as flames, planetary atmospheres, and interstellar 

media. 10, 58As the formation of the first ring is thought to be a key rate-limiting step in the 

carbon growth scheme, the measurement of its reaction rate with other radicals was of 

particular importance. In addition to self-reaction to form benzene, it has also been shown to 

be capable of forming larger multi-ring PAHs by adding to species such as naphthalene. The 
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propargyl radical also unique among radicals in that its free electron is spread out over two 

sites in the radical, leading to possible reactions with the “head” (the -CH2 site) or “tail” (the -

CH site). This possibility of two reactive sites has great implications for the possible products of 

reactions involving the propargyl radical.  

Because the propargyl radical has been shown to be such an important species in the 

carbon growth scheme, it is important to study the species that react with the propargyl 

radical, as well as the rates of those reactions. Since the propargyl radical does not form strong 

associations with molecular oxygen, it is necessary to look to reactions with other radicals such 

as OH for the pathway by which the propargyl radical is consumed in combustion systems. Such 

reactions involving two radicals are extremely difficult to study due to their reactive nature, 

leading to lack of information regarding their properties. 

1.9  Laval Nozzles 

To understand the experimental apparatus discussed in this work and the attaining of higher 

experimental temperatures, it is necessary to understand principles that allow the CRESU 

technique to create low temperature and pressure experimental conditions58. The CRESU 

technique creates a uniform, supersonic jet of gas generated by isentropic expansion of a gas 

by Laval nozzles. The resulting jet of gas is uniform in its Mach number (M), temperature (T), 

and pressure (P). The uniformity in experimental conditions is due to the specificity of the Laval 

nozzle, the geometry of which is dependent on the buffer gas used, the reservoir temperature, 

the flow pressure, and the Mach number3, 59. Due to this, only one set of conditions is possible 

to be accurately used for any given Laval nozzle. At the low temperatures that the CRESU 

experiment is used for, an extraordinary amount of pumping power in necessary to maintain 
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uniform, isentropic “core” in the middle of the resulting gas flow. This isentropic “core” at the 

center of the gas flow is essential to the use of the CRESU experiment, as its uniformity is what 

allows measurements for values like rate coefficients to be valid.  

An isentropic flow is a flow where the value of entropy remains constant. As a gas of 

predetermined temperature and pressure is forced through a tube, the density of the gas 

remains largely constant, but the flow speed increases. However, when the gas approaches the 

speed of sound, the compressibility effects of the gas must be considered. When the gas is then 

forced through a Laval nozzle with sufficient force, the resulting total entropy of the flow 

remains the same as prior to entering the Laval nozzle due to the gradual compression and 

expansion due to the change in diameter of the flow. When this threshold is reached the flow 

becomes “choked,” meaning the speed of the gas where the converging part of the nozzle 

meets the diverging part, and the speed of the gas after expansion becomes supersonic. Before 

defining the isentropic flow equations, it is necessary to define some elementary terms that are 

integral to understanding isentropic flow. The equations for speed of sound (a) and the Mach 

number (M), as shown in Eq. 1.1 and 1.2 below: 

 a =√𝛾
𝑝

𝜌
=  √𝛾𝑅𝑇 (1.1)

 M = 
𝑣

a
  (1.2) 

For Eq. 1.2, 𝛾 is the specific heat ratio of the gas, 𝑝 is the reservoir static pressure, or 

pressure prior to expansion, and 𝜌 is the density of the gas. The ratio of pressure to density can 

be rewritten in the form of  𝑅𝑇, where R is the gas constant from the equations of state, and T 
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is the temperature. The Mach number equation is shown as a ratio of the velocity (𝑣) and the 

speed of sound (a).  

The total pressure (pt), which is the pressure when the flow is brought isentropically to 

rest, and the dynamic pressure (q), or pressure after the nozzle, is defined as follows: 

 
𝑝

𝑝𝛾
 = 

𝑝𝑡

𝑝𝑡
𝛾  (1.3) 

 

 q = 
𝜌𝑣2

2
 = 

𝛾𝑝𝑀2

2
 (1.4) 

 

It is then possible to define the isentropic flow equations, which are shown in the 

equations below:  

 
𝑝

𝑝𝑡
 = (1 +  

𝛾−1

2
𝑀2)

−𝛾

𝛾−1 (1.5) 

 
𝑇

𝑇𝑡
 = (1 +  

𝛾−1

2
𝑀2)−1 (1.6) 

The final equation is of particular importance for understanding the temperature of the 

flow. The nozzle for a CRESU experiment is constructed using these properties. The flow 

conditions are also validated using these same properties. Measurement of the pressure within 

the flow yields the temperature of the flow. Uniformity of the flow conditions are checked by 

measurement of the pressure in the flow at different distances from the exit of the nozzle.  
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1.10 High Temperature Radical Reaction Studies 

One of the most important, if not the most important, parameter to consider when studying a 

radical reaction is the temperature. This is especially true when discussing reactions related to 

cold temperatures of the interstellar medium or the high temperatures of combustion. The 

rates of reactions, species produced, and reaction mechanisms will differ greatly depending on 

the temperatures of the system. For astrochemical studies, it is important to reach 

temperatures low enough to accurately depict the conditions that the species of interest will 

experience in space. To that end, many experimental devices and techniques have been 

developed to accurately study these species and the reactions that they undergo. One popular 

method to attain the low temperatures of the vacuum of space is the CRESU (Cinétique de 

Réaction en Ecoulement Supersonique Uniforme), shown in Figure 1.2. It involves the 

acceleration of gas through a convergent-divergent nozzle, also known as a Laval nozzle, which 

allows for the creation of a uniform, supersonic, collision free molecular beam that attains 

temperatures as low as 10K.4, 8, 10, 22, 57 The cold temperatures and low pressures attained in this 

experimental flow tube allows for accurate measurements and depiction of species in the 

interstellar medium.  



15 
 

 

Figure 1.2. Schematic of the CRESU apparatus coupled with the PLP-LIF technique. Image taken from Sims and Smith, Annu. Rev. 
Phys. Chem., 1995.60 

On the other end of the temperature spectrum, shock tubes are widely used to study 

high-temperature gas-phase reactions and is often coupled with laser spectroscopy 

techniques.61, 62 A schematic of the basic principle of a shock tube is depicted in figure 1.3. The 

apparatus is essentially a long tube with two sections divided by a diaphragm. One section of 

the tube holds the gas species of interest, while the other section is pressurized to create a 

large pressure differential between the two sections. The diaphragm is then removed or burst, 

causing a shockwave to expand towards the gas of interest, enabling high temperatures and 

pressures representative of combustion environments.63 In addition to shock tubes, flow tubes 

have been used for a comparatively longer time, as the simple design of a flow tube with 

heated walls allow for ease of setup and construction for many groups performing research. As 

new discoveries and insights of molecular growth are made, new and innovative experimental 
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techniques will need to be made as well to accommodate the experimental needs. This method 

of studying high-temperature reactions comes with some disadvantages. While RSRs have been 

detected in shock tubes by precursor pyrolysis,64 their exact properties are difficult to 

disentangle from the complex systems that are formed inside of shock tubes. Their reaction 

rate coefficients are often obtained by fitting the depletion of the precursor molecule signal or 

final product concentrations without direct measurement of the radicals themselves. Many 

shock tubes also have poor repeatability and difficulty in studying species with short lifetime. 

Among reactions that are important to combustion, radical-radical reactions are of 

particular interest in recent years. These reactions are also particularly difficult to study for a 

multitude of reasons. The species themselves are extremely reactive, resulting in many side 

products being formed during experiments. Wall reactions are an especially difficult obstacle, 

as reaction between the walls and radical species will comprise a substantial portion of the 

measured rate coefficients. Achieving pseudo-first order conditions also proves a challenge due 

to difficulties in choosing precursors and radical production methods that provide the exact 

concentrations that are needed. An experimental apparatus will be discussed in this work that 

aims to resolve many of the issues that are present with modern-day shock tubes using 

principles that are used with the CRESU apparatus and modifying them for high-temperature 

use.  
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Figure 1.3. Schematic of the shock tube apparatus. The top tube depicts a shock tube prior to starting the experiment, with the 
reactant gas on the right and the driver gas on the left. The middle tube depicts the initiation of the experiment when the 
diaphragm separating the two sections is removed, creating a shockwave. The final tube depicts the established experimental 
condition for the shock tube. Image taken from Wang, 2016.2 

 

1.11 Purpose of research 

The aim of this work is to study the formation of the products of the OH + propargyl radical and measure 

the rate of reaction of the CN + 2-methylfuran reaction, as well as develop techniques to be able to 

study them in-house. The OH radical holds significance in combustion as the most abundant radical, as 

well as one of the most reactive. Because the propargyl radical plays a pivotal role in the formation of 

PAHs in combustion, it is necessary to determine its reaction with common radical species such as the 

OH radical. Other small radicals such as the CN radical hold significance in engines that use air as 

combustion. 2-methylfuran is a biofuel that has potential to be used as a gasoline replacement in 

autoignition65 and direct injection spark engines24, and therefore likely to come into contact with the CN 
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radical. Both of these reactions hold great importance in combustion, and their study serves to improve 

existing combustion models. In addition to the direct study of reactions, the development of a more 

robust experimental apparatus will allow a wider range of flexibility in the study of both reaction rates 

and the products for reactions of interest. 

1.12  Significance of Research 

Investigations into the product analysis of the C3H3 + OH reaction revealed that the two radicals 

readily react to form products consistent with existing computational work for the reaction. 

There is no discernable presence of the product propargyl alcohol that would result from the 

OH addition to the “head” end of the propargyl radical based on photoionization spectra 

analysis. The smaller radical products that are formed are in good agreement with Pham and 

Trang,10 though additional insights are presented here as they did not consider the addition 

product of m/z 56 in their analysis of exit channels. Acrolein (C3H4O) dominates as a product in 

both the low and high-temperature regions studied, with the ratio of acrolein increasing with 

temperature.  

In order to study the entirety of the C3H3 + OH and similar reactions, a novel fast-flow 

apparatus is constructed to study the kinetic rate of the reaction in addition to the product 

analysis performed from experiments at the Advanced Light Source (ALS) at the Lawrence 

Berkeley National Laboratory (LBNL). This fast-flow apparatus uses similar principles of the 

CRESU technique but targeted for high temperatures. Obtaining kinetic data will allow more full 

characterizations of reactions of interest when combined with the product analysis.  
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Chapter 2: Experimental and Methods 

When studying species involved in molecular growth, the low temperature to room 

temperature regime is well studied by CRESU experiments and standard flow experiments. The 

CRESU technique can achieve temperatures as low as 10K to mimic temperatures that you 

would find in the interstellar medium and gaseous clouds51. On the other end of the 

temperature spectrum, shock tubes can cover the extreme elevated temperatures and 

pressures. In shock tube experiments, the initial conditions for the shock can be set such that 

any range of high pressure and temperature conditions can be produced. While both 

techniques have been used in experiments for the high and low extremes of temperature and 

pressure, there is a noticeable lack of information for many species of interest in the 

temperature range between 300 K – 1000 K. To fill this void of information, this chapter covers 

the development of a novel experimental apparatus designed by Bertrand Rowe using many of 

the same principles as the CRESU technique, addressing many of the shortcomings of other 

experimental techniques. The purpose of the new experimental apparatus is to perform kinetic 

and product detection studies in-house.  

2.1 High-Temperature Fast-Flow  

To try and compensate for these shortcomings, a high-temperature fast-flow flow tube is 

designed for the purpose of studying RSRs and their involvement in radical-radical reactions 

between the extreme ends of the temperature regimes that are more commonly studied. This 

novel reactor allows for generation of radicals at the center of the gas flow, much like the 

CRESU technique, removing the possibility with reaction of the walls and radical species. 

Heating of the gas is done far from the optical equipment that is used to measure radical 
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concentrations, and the pulsed flow tube nature of the apparatus allows for repeatability while 

reducing the overall volume flow rate and pumping power required. 

A schematic of the fast flow is shown in Figure 2.1. The target temperature range for the 

flow reactor is 300 K to 750 K with a flow velocity of 100 m s-1, corresponding to a reaction time 

of up to 10 ms for kinetic studies. The main buffer gas of argon is used with a constant mass 

flow rate of 5 standard liters per minute (SLM) enters a small double walled reservoir with a 

volume of 50 cm3. The gas is heated by conduction with the walls, which are heated by thermal 

tape and regulated externally. The total power required to heat 5 SLM of argon to 750 K is on 

the order of 34 W (including gas and heat loss). The reservoir is connected to a larger buffer 

reservoir of 3.7 L in volume to maintain constant pressure. This reservoir maintains contact 

with the ambient conditions of the room and remains at room temperature. A rotating disk 

called the “chopper” allows gas from the reservoir to enter the custom designed Laval nozzle 

and then flow down the tube. The purpose of the chopper is to limit the gas flow to maintain 

the instantaneous conditions matching that of a continuous flow. The Mach 5 Laval nozzle is 

designed with a short convergent and elongated divergent section. The sole purpose of the 

nozzle is to restrict the instantaneous mass flow rate during the opening of the chopper while 

increasing flow diameter to match that of the flow tube of 8cm in diameter. The Laval nozzle in 

conjunction with the chopper allow for the same flow conditions that would be present in a 

continuous flow of gas, but with a greatly decreased gas flow and pumping requirement. The 

flow tube is connected to a 200L reservoir that serves a similar purpose of making sure the 

pressure of the flow is not perturbed by the opening of the chopper. A roots pump evacuates 

the flow tube far downstream of the nozzle.  
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In order to have a proper supersonic expansion through the Laval nozzle, the driving 

force for the gas must be sufficient between the reservoir and the flow tube, which is specific to 

the temperature and identity of the gas. The driving force is obtained through a differential of 

pressure between the reservoir and the flow tube, separated by the Laval nozzle. When 

supersonic expansion conditions are met, the flow of gas through the nozzle becomes choked, 

and supersonic expansion occurs after the throat of the nozzle. According to the isentropic 

expansion equations mentioned above, the supersonic expansion of the gas leads to both a 

cooling and a decrease in pressure along the length of the nozzle. Up to this point, the 

technique is similar to what has been done with the CRESU technique in low temperature 

experiments.  

 

Figure 2.1. Schematic of the high-temperature pulsed flow reactor. Temperatures of up to 750 K are attainable for 
the purpose of kinetic and product detection studies.  

Simulations performed by El Ghazaly Moulay Ismail in a master’s thesis of the 

temperature and Mach number along the length of the nozzle are depicted in figure 2.2. During 

the expansion of the gas through the Laval nozzle, the heat that the gas obtained from the 

reservoir is converted to translational energy, resulting in a cold and supersonic gas at the exit 

of the nozzle. In order to reobtain the temperatures of the reservoir gas to achieve the 
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temperatures necessary to perform chemical studies, the pressure of the flow tube is adjusted 

to well above the pressure of the expanding gas in the nozzle. This generates a stationary 

normal shock wave at the boundary between the nozzle and the flow tube, converting most of 

the translational energy gained during the expansion back into thermal energy. The energy that 

is not converted into heat for the gas is in the translational motion of the gas down the flow 

tube. This process, unlike the expansion through the Laval nozzle, is adiabatic instead of 

isentropic. After the expansion has passed through the shockwave, nearly all of the 

temperature prior to expansion is recovered, where the difference in temperature is attributed 

to the energy needed for the movement of the flow of gas itself.  
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Figure 2.2. Mach and temperature profiles along the length of the Laval nozzle depicting the vertical shockwave.  

 

The resulting gas flow after the shock wave is a subsonic (M ≈ 0.3) gas with 

temperatures nearly equal to that of the reservoir, with some energy loss due to the conversion 

through the shockwave. The length of the resulting uniform, hot, subsonic flow is defined by 

equation 2.1:  

 𝐿 =
0.6𝑄𝑚

𝜂
 (2.1) 
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where 𝐿 is the hydrodynamic length of the high-temperature flow, 𝜂 is the gas viscosity, and 

𝑄𝑚 is the mass flow rate. The hydrodynamic length of the high-temperature flow must be 

sufficiently long for the detection of the species in the kinetic and product detection studies. As 

the gas travels down the flow tube, a boundary layer forms as the hot gas makes contact with 

the room temperature walls of the flow tube, shown in figure 2.3. The hydrodynamic length 

represents the distance at which the boundary layer fully collapses in on the high-temperature 

flow created by the shockwave. This flow will be referred to as the high-temperature flow for 

clarity. The loss of experienced through the shockwave is defined as follows in equation 2.2: 

 ∆𝑆 =  
𝛿𝑄

𝑇
+ 𝑑𝑆𝑖𝑟𝑟𝑒𝑣 (2.2) 

where S is entropy, T is temperature, and Sirrev is the entropy lost through the irreversible 

process of passing through the shockwave. The changes across a normal shock wave is depicted 

in equation 2.3 below: 

𝑇1

𝑇0
=  

[2𝛾𝑀2−(𝛾−1)][(𝛾−1)𝑀2+2]

(𝛾+1)2𝑀2   (2.3) 

Where T1 is the temperature after the shockwave and T0 is the temperature of the 

supersonic flow. The pressure change across the shockwave is depicted in equation 2.4: 

𝜌1

𝑝0
=

(𝛾+1)𝑀2

(𝛾−1)𝑀2+2
 (2.4) 

Where ρ1 is the pressure after the shockwave and ρ0 is the pressure before the shockwave. 

The speed of the gas is depicted in equation 2.5 below:  
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(𝑀1)2 =
(𝛾−1)𝑀2+2

2𝛾𝑀2−(𝛾−1)
 (2.5) 

Where M1 is the speed after the shockwave.  

 

 

Figure 2.3: Boundary layer formation after supersonic expansion through a standing normal shockwave, resulting in a subsonic, 
high-temperature flow 

The exact timing of all the moving parts of the fast flow is necessary to perform kinetic 

studies inside of the apparatus. Toluene was flowed through the cell at low flow rates to 

prevent supersonic expansion of the nozzle from occurring. A 266 nm Nd:YAG laser was used to 

excite the toluene along the length of the flow. The toluene signal increases as the chopper is 

open and more toluene is let into the cell. A depiction of the theoretical timing of the 

experiment as it relates to kinetic studies and the PLP-LIF technique is shown in figure 2.4.  
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The chopper rotates to open at t = 0. When the flow is uniform and established, which 

occurs shortly after 5 ms has passed, the photolysis laser is fired along the flow and creates the 

radical species of interest. At the same time, excitation laser the is fired perpendicular to the 

flow to excite the reactant radicals. The radical fluorescence signal observed is proportional to 

the unreacted radicals in the flow. The timing between the excitation and photolysis laser is 

increased, allowing the plotting of k2nd rate coefficient curves for the reaction. 
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Figure 2.4. Kinetic experimental timing for the high-temperature fast-flow cell.  

2.2  Validation of Flow Conditions  

2.2.1 Pitot Tube Measurements 

In order to make sure that the conditions in the high-temperature flow are as they were 

designed to be, it is necessary to validate the operating pressure and temperature conditions 

within the gas flow inside of the flow tube. Confirming the proper expansion of gas through the 

nozzle, the temperature of the resulting gas after the shockwave, and the uniformity of the 

high-temperature flow are required to be able to obtain reliable experimental data. To make 

proper pressure measurements inside of the flow cell, a custom set of two pitot tubes were 

constructed to measure the impact pressure of the high-temperature flow along the length of 
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the tube. Figure 2.5 depicts a diagram of the pitot tube. Pitot tubes have been verified to be 

accurate tools in characterizing the properties of a gas flow.66 The pitot tubes itself is comprised 

of stainless steel, with a 2 mm opening. The inner diameter of the pitot tube increases to 4 mm 

to increase volume, allowing for more accurate measurements of the impact pressure. Tube is 

fitted to an Ultra-Torr stainless steel Swagelok that holds vacuum while allowing the pitot tube 

to be adjusted into or out of the path of gas. The other end of the pitot tube is attached to a 

pressure gauge. The Ultra-Torr fitting is attached to a Teflon insert with an inner diameter of 

8cm and a length of 4.5cm, matching the diameter of the fast flow cell itself. The pitot tube 

opening extends 1 cm past the plane of the Teflon insert, enabling probing of the supersonic 

expansion inside of the Laval nozzle.  

   

  8 cm 

4.5 cm 

Ultra‐Torr  

Vacuum Fitting 

Figure 2.5. Pitot tube insert used to measure the impact pressure of the flow at subsonic and 
supersonic conditions. 
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The Laval nozzle is designed to have a maximum expansion at Mach 5, assuming free 

expansion out of the Laval nozzle (no standing normal shock wave). Given proper expansion, 

the minimum Mach number that can be obtained is the value of M = 0.414. This is the value 

that is calculated for the uniform, high-temperature flow given the speed of the nozzle and the 

preset flow condition pressures. The speed of the gas after the nozzle should be subsonic to 

confirm that the kinetic energy of the expansion was transformed back into thermal energy by 

the standing shock wave. Verifying the proper expansion of the gas through the Laval nozzle 

comes with additional challenges due to a bow shock being created at the opening of the pitot 

tube. This complicates the measurement of the flow inside of the Laval nozzle as the shock will 

decrease the apparent pressure measurement. A depiction of this phenomenon is shown in 

figure 2.6.  

 

A new formula is needed to determine the Mach number by using a pitot tube in a 

supersonic flow, shown in equation 2.6:  

Figure 2.6. Bow shock formation at the entrance of a pitot tube due to supersonic gas flow 
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   (2.6) 

 

This equation is called the Rayleigh-Pitot tube formula. Using this equation, it is possible to 

verify the proper expansion of the gas in the Laval nozzle using pitot tube measurements. The 

isentropic flow equation for pressure can be used for measurements after the exit of the 

nozzle, as the flow has changed from supersonic to the high-temperature flow.  

The Mach number measurements obtained for a set length of the flow tube is shown in 

figure 2.7. The conditions of the flow reactor were set at 60 Torr in the reservoir, with a mass 

Figure 2.7. Mach number profile as a function of distance from the exit of the nozzle at 450 K reservoir temperature, 4 SLM flow 
rate, and 60 Torr reservoir pressure. The horizontal blue line is the minimum expected Mach number after the gas has 
undergone supersonic expansion and passed through the shockwave. 
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flow rate of 4 SLM, and a reservoir temperature of 450K. The pitot tube was set at various 

distances relative to the Laval nozzle exit at increments of 4.5 cm corresponding to the length 

of the pitot tube Teflon housing. At the exit of the nozzle, the pitot tube recorded Mach 

number of the expansion is approximately 4.5, which is very close to the designed expansion 

speed of the nozzle at M = 5. After the nozzle, the gas will interact with the standing shockwave 

and become a subsonic and uniform flow of gas until the boundary layers close in on the high-

temperature flow.  

Pressure profiles of the pulsed fast-flow reactor are show in figure 2.8. The figure 

depicts 2 cycles of the 10 Hz pulsed flow. As the pressure inside of the flow tube is set to lower 

than is required for the establishment of the shock wave shown by the black lines, the 

experienced impact pressure by the pitot tube is extremely high, as is expected by a supersonic 

expansion. At pressures near 2 – 3 Torr, the supersonic flow is disturbed, and no discernable 

pressure pattern can be seen. As the pressure is set experimentally closer to the necessary 

pressure for the establishment of the standing shockwave at approximately 4 Torr post-nozzle 

pressure, the flow becomes uniform and stable.  
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Figure 2.8. Time-resolved pressure measurements of the pitot tube at 750 K and 4 SLM total flow as a function of the throttled 
back pressure of the cell. Establishment of flow conditions can be seen at approximately 3.5 – 4 Torr back pressure. 

2.3 Temperature Determination of the High-temperature Flow  

It is possible using the isentropic expansion equation 1.4 and the pitot tube measurements to 

determine the temperature of the flow, as the pressure measurements give us the Mach 

number which allows solving for the temperature. Doing so from the pressure measurements 

shown in figure 2.7 for 450 K reservoir temperature yields a temperature of ≈ 415 K. While this 

method of temperature determination does provide a satisfactory temperature result, a more 

direct measurement of the temperature itself would provide more certainty that the flow 

conditions are correct. Due to the pulsed nature of the flow, no physical temperature prob 

exists that has a time resolution precise enough to accurately determine the temperature. To 

this end, the rotational temperature of a radical species will be used to validate the exact 

temperature of the flow.  
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2.4 Kinetic and Product Detection Studies 

Figure 2.9 shows the detection zone for the measurement of rate coefficients in the flow 

reactor. 

 

 

The flow tube is connected to a 6-way optical cell similar to what is described in Kailasanathan 

et al.67 As both products and rate kinetics need to be studied and understood to have a 

complete understanding of a reaction, the flow reactor was designed to include both a laser-

induced fluorescence (LIF) system and a mass spectrometer probing the flow. This two-pronged 

approach of the study of the products and kinetics of a given reaction, in conjunction with 

computational work, will allow for the complete understanding of a reaction. The mass 

Figure 2.9 Schematic of the detection cell coupled to the pulsed flow. The detection zone for the laser-
induced fluorescence occurs downstream of the nozzle while the time-of-flight mass spectrometer samples 
the flow downstream after the reaction has occurred.  
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spectrometer attachment is planned for the near future to set up. The laser-induced 

fluorescence system and the specifics of kinetic studies will be discussed in the next chapter.  

2.5 Quasi-Static Reaction Cell 

 

Figure 2.10. Schematic of the quasi-static reaction cell used in the CN determination of temperature by CN rovibrational 
excitation as well as the kinetic study of CN + 2-methylfuran 

The study described here provides a method for determining the temperature within a 

quasi-static reaction cell, shown in figure 2.10. The cell was chosen to test the temperature 

probing method that will be used in the fast flow because the cell has been validated in other 

kinetic studies.67 The reactions are conducted in a pressure-adjustable, heatable, six-way cross 

stainless-steel reaction cell. The pressure is adjusted from approximately 2−10 Torr using a 

butterfly valve, while the temperature is varied from 304−440 K using heating tape. Laser 

windows placed at Brewster-angle are positioned at the four horizontal ports while a 
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photomultiplier tube (PMT) is placed above a fused-silicate window located at the top of the 

reaction cell. Calibrated mass flow controllers regulate all gases into a 50 cm3 mixing volume 

prior to flowing into the reaction cell. The gaseous ICN precursor is introduced into the system 

by passing argon through a sample of solid ICN (Acros Organics, 98%), which is nested in porous 

glass wool and placed in a stainless-steel cylinder. The 2-MF/Ar (approx. 6% 2-MF) gas mixtures 

are prepared and stored in a custom-made (5.39 L) gas collection cylinder. Liquid 2-MF (Acro 

Organics, 99%) is vacuum transferred into the empty cylinder until the pressures reaches 

approximately 60 Torr. The tank is then filled with argon to a total pressure of approximately 

1000 Torr. The mixture is tested for purity using a 25 cm3 double-pass gas cell (Mettler Toledo) 

with an FTIR spectrometer attachment (Mettler Toledo, ReactIR ic 15), specifically for the 

presence of CO2 (from ambient air). The ICN and 2-MF flows are mixed prior to entering the 

experimental gas cell to ensure uniformity. The total mass flow rate of 1.529 slm is set to assure 

that the detection zone is replenished with new gas between each photolysis laser pulse.   

This cell will be used to confirm the accuracy of the temperature obtained from the 

rotational temperature of the CN radical, and further validated using a pulsed laser 

photolysis/laser-induced fluorescence (PLP/LIF) technique to study a radical reaction involving 

the CN radical  

2.6 Pulsed Laser Photolysis/Laser-Induced Fluorescence 

The spectroscopic technique of Pulsed Laser Photolysis/Laser-Induced Fluorescence (PLP/LIF) is 

a widely used technique spanning many different fields.1, 11, 20, 25, 40, 50, 54, 67, 68 Figure 2.11 depicts 

an energy diagram of a rovibrational transition that can be measured via PMT. Pulsed laser 
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photolysis occurs with the firing of a high-powered laser pulse in the UV region to break the 

bond of the precursor, creating the radical. The second laser is then tuned to the excitation 

wavelength specific to the radical, causing excitation to a higher rovibronic state through 

photon absorption. After excitation, the radical will relax spontaneously back to a lower 

rovibronic state to emit a photon of lower energy than it was excited with. This photon can be 

collected and viewed using a photosensitive device such as a photomultiplier tube (PMT) or a 

photodiode, which translates the captured photon into an electrical signal.  

 

Figure 2.11. Rovibrational transition from the v=0 state to v = 1  
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2.7 Pseudo-First Order Kinetics 

Kinetic studies on the CN (B2Σ+) + 2-methylfuran reaction were performed in a quasi-static 

reaction cell over the pressure ranges of 2.7 – 7.6 Torr and temperature range of 304 – 440 K. 

Experiments are performed under pseudo-first order conditions with the [MF] >> [CN]. The LIF 

signal decay is fit to the following equations:  

 [𝐶𝑁]𝑡 = [𝐶𝑁]0𝑒−𝑘1𝑠𝑡𝛥𝑡 (2.4)  

 𝑘1𝑠𝑡 = 𝑘2𝑛𝑑[𝑀𝐹] + 𝑘1𝑠𝑡
′  (2.5) 

where Δt is the time delay between the excitation and photolysis lasers, k1st is the pseudo-first 

order rate constant for the radical decay of CN, k2nd is the overall second-order reaction rate 

constant of the CN + 2-MF reaction, [CN]0 and [CN]t refer to the CN radical concentrations initially 

and at time Δt, [MF] is the number density of 2-MF, and k’1st is the first-order rate constant for 

loss of the CN radical with side products such as I2, I, or with its precursor ICN. The concentration 

of ICN remains constant during data collection. 
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Figure 2.12. CN LIF-signal temporal trace at different 2-MF number densities as follows:  0.0 molecules cm-3 (light 

green), 2.4  1013 molecules cm-3 (brown), 2.9  1013 molecules cm-3 (purple),   4.3  1013 molecules cm-3 (blue), 5.7  

1013 molecules cm-3 (dark green), 7.1  1013 molecules cm-3 (red), 8.5  1013 molecules cm-3 (black). The lines are 
exponential fit to the experimental data from 30 to 600 μs. 

The CN LIF signal is integrated and plotted against the delay time between the two lasers. 

Figure 2.12 displays the decay of the CN LIF signal at different 2-MF number densities as follows: 

0.0 molecules cm-3, 2.4  1013 molecules cm-3, and 4.3  1013 molecules cm-3, 2.9  1013 molecules 

cm-3, 5.7  1013 molecules cm-3, 7.1  1013 molecules cm-3, 8.5  1013 molecules cm-3. An 

exponential function (thin lines) is used to fit the radical decay and obtain the k1st value using 

Equation 1.  
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2.8  CN Radical as a Temperature Proxy 

The CN radical was chosen for its proven use as a temperature probe69 and its clear rovibronic 

transition spectra. The quasi-static cell was used to confirm the viability of the CN radical as a 

temperature probe for use in the fast-flow cell. The cell temperature is monitored and 

controlled using a type-K thermocouple placed near the laser overlap area. Heating tape is 

wrapped around the reaction cell to resistively heat the reaction zone. Waiting 1 hour between 

the temperature changes is required for the temperature to stabilize. The temperature readout 

from the thermocouple is confirmed by rotational line fitting of the R21 branch of the B2Σ+ (ν’ = 

0) ← Χ2Σ+ (ν” = 0) rovibronic transition of the CN radical with the PGOPHER.70 Rotationally 

resolved vibronic spectra are obtained at 30 μs laser delay time by scanning from 386.0 nm to 

387.8 nm at increments of 0.001 nm. The laser power over the wavelength range varies less  

than 5%, for which the overall signal has been normalized for prior to fitting by PGOPHER. Each 

data point in a spectrum represents the average of 10 laser shots.  

2.8.1 PGOPHER Simulations and Fitting of Experimental Spectra 

 PGOPHER is a rotational spectral simulation and fitting program that has been used 

successfully to fit rotational spectra and determine temperatures from other chemical 

species.62,63 A simulated spectrum is first generated by using the published ground and excited 

state rotational constants of the radical. The rotational constants needed for the PGOPHER 

program is the rotational constant B, the energies of the ground and excited states of the 

radical, and the temperature. The value of the rotational constant B for the ground B2∑+, (ν = 0) 

state71 is 1.8997 cm-1 while B and minimum electronic energy of the excited state is 1.9739 cm-

1, and 25752.0 cm-1,72 respectively.  
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The simulated transitions are then assigned to the experimental spectrum. The 

rotational constant values are then allowed to float in order to obtain the best fit of the 

transition frequencies. The optimum values of both B and the electronic energy are within ~ 1% 

of the initial literature values. Following the transition assignments, the rotational constants are 

held fixed. The experimental transition intensities and widths are then fit by floating the 

temperature and gaussian line widths. Approximately 20 rotational transitions of the R-branch 

are used in order to determine the rotational temperature. Figure 2.13 shows a comparison of 

an experimental spectrum (top) with the PGOPHER fit (bottom) resulting in an experimentally 

determined temperature of 440 ± 5 K. The temperatures reported are the average of the fit 

temperature of at least three separate laser power normalized CN spectra with the error 

reported to 2σ. It is of note that the temperature reading of the thermocouple has a positive 

bias when compared to the CN rotational temperature which increases considerably with 

temperature.  

Figure 2.14 shows the rotationally fit temperature as a function of the temperature read 

from the thermocouple. Room temperature spectra return fit temperature of approximately 

300 K while at higher temperature, the bias between the thermocouple reading and the 

spectral temperature appears to be proportional to the CN rotational temperature. The 

spectroscopically determined temperature of 440 K had a thermocouple reading of 500 K. The 

positive bias is likely to be due to the combination of the position of the thermocouple slightly 

off from the intersection of the lasers and the inability to fully heat the center of the gas flow 

where spectra are taken. Similar heating issues been observed in a high-pressure gas reactor 

with a laminar flow of nitrogen. 
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Figure 2.13. Experimental (top) and simulated (bottom) CN LIF spectrum of the R-branch of the B2∑+, ν = 0X2∑+, ν = 0 
transition. The CN radical is produced from the photolysis of ICN at 266 nm in Ar at 5 Torr and detected at 420 nm. The 
simulation returns a rotational temperature of 440 K.  

Experiment

Fit

Wavelength (nm)
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Figure 2.14. Temperature characterization of the quasi-static small cell using PGOPHER fits of experimental rovibronic spectra of 
the CN radical.  

2.9  Computational Methods  

More and more studies are being performed with the intent of understanding the underlying 

mechanisms and properties of the reactions in addition to the measurement of rate coefficients 

and products. To this end, theoretical calculations are performed for the CN + 2-methylfuran 

radical using the Gaussian 09 suite of programs. The Gaussian 09 suite of programs62 is a 
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computational chemistry software that is used to calculate the energetics of various chemical 

species. In this work, it is used to calculate a part of the CN(X2∑+) + 2-MF potential energy 

surface. Geometry optimizations and frequency calculations of stationary points are performed 

using DFT methods at the B3LYP/CBSB7 level.73 All stationary points are characterized as first-

order saddle points or local minima from the resulting vibrational frequencies. Single-point 

energy calculations are performed using the composite CBS-QB3 method. Transition states are 

confirmed by the presence of an imaginary frequency. Intrinsic Reaction Coordinate (IRC) 

calculations are performed at the B3LYP/6-31G(d) to confirm the validity of the transition state 

after single-point energy calculations. No transition states were located for the entrance 

channels of the reaction. 

2.10  MESMER 

The simple modelling of the energetics of a reaction cannot accurately predict the course that a 

reaction will take. The Master Equation is used to determine probabilistic states for the steps of 

a given reaction using the potential energy surface obtained from gaussian. Mesmer74 is an 

open-source Master Equation solver that provides solutions to the Master Equation and gives 

valuable information about the reaction such as the relative ratios of products. Mesmer 

performs simulations over multi-well molecular energy surfaces that can take into account 

variables such as bath gas effects in conjunction with temperature. Figure 2.15 depicts a 

description of the probabilistic process involved in MESMER calculations. To put it simply, 

MESMER predicts the probability of moving between any energy state well for all energy wells, 

allowing for time-resolved representation of a chemical reaction.  
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Figure 2.15. Schematic of MESMER probability calculations. Variables such as the energy of the species, temperature of the gas, 
and effect of the bath gas are taken into account to determine the probabilities of proceeding down certain reaction pathways. 

 

2.11  Product Detection Experiments  

A complete understanding of a reaction involves knowledge of the products as well as the rates 

of reaction. A powerful technique that is well suited to the study of bimolecular reactions is the 

technique of multiplexed photoionization mass spectrometry (PIMS), performed in the facilities 

of the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratories. While product 

detection is possible by using standard mass spectrometry, it can be difficult or impossible to 

identify multiple species of the same atomic mass, even with very high mass resolution. The 

PIMS technique provides the ability to differentiate isomers for chemical reactions in the gas 

phase by identification of ionization patterns unique to each species. The synchrotron also 

provides a wide spectrum of wavelengths available where in-house labs would need to identify 

specific wavelengths of interest. The PIMS apparatus was developed by Osborn et al.58 and has 
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been used extensively for the study of gas phase reactions involving both neutral and radical 

species. This work involves the use of the PIMS for the purpose of studying radical-radical 

reactions, which are a class of reactions that has rarely been explored due to the difficulty in 

experimental setup.  

2.12  Multiplexed Photoionization Mass Spectrometry (PIMS) 

Figure 2.16 depicts a schematic depiction of the experiment shown in Osborn et al.58 The 

reaction apparatus comprises four main sections: the reactor and vacuum system, the 

photoionization source, the time-of-flight mass spectrometer, and the ion detector and data 

Figure 2.16. Schematic of the multiplexed photoionization mass spectrometer at the Advanced Light 
Source. Image source from Osborn et al.2 
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acquisition system.  The reactor consists of a 62 cm long quartz tube with a 1.05 cm inner 

diameter whose flow is controlled by calibrated mass flow controllers. Pressure in the reactor 

tube measured by a capacitive manometer and controlled with a feedback valve throttling a 

Roots pump. A pinhole in the side of the quartz tube forms an effusive molecular beam that is 

ionized by the VUV quasi-continuous synchrotron radiation. The ions are detected using an 

orthogonal-acceleration time-of-flight mass spectrometer (TOF-MS) when they strike the active 

time- and position-sensitive microchannel plate (MCP) detector.  

 The reactor tube is wrapped in nichrome heating tape and regulated through a 

thermocouple able to reach temperatures between 300 – 1050 K. Experimental conditions in 

the tube were put between 298 K and 500 K with a total flow of 100 sccm and maintain a 

number density of 1 × 1017 cm-3. The experiment is synced to a KrF excimer laser that pulses at 

4 Hz or 10 Hz that fires along the length of the flow tube to generate the reactant radical 

species. The KrF excimer laser can be tuned to 193 nm, 248 nm, and 351 nm with a fluence 

range of 10 – 60 mJ cm-2. The resulting signal is background-subtracted and normalized by the 

photon flux which is monitored by a VUV photodiode.  

2.14  3D Data Collection 

The experimental apparatus at the ALS allows collection of information along three variables: 

Ion intensity vs mass-to-charge ratio (m/z), kinetic time (t), and photon energy (E). Time 

resolved concentration data and photoionization spectra can be obtained at specific masses 

using the 3D data, allowing for isomeric resolution at masses of interest. When photoion data is 

obtained for a specific mass, the signal contains contributions from the weighted 

photoionization spectra of all isomers present. The identities and relative concentrations of the 
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isomers produced by a reaction can be obtained from using their known or calculated 

photoionization spectra by fitting the weighted contributions of each isomer to the 

experimental data at that mass. If the absolute ionization cross sections are known, it is 

possible to obtain branching ratios of the products.  
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Chapter 3: Reaction of the CN X2Σ+ (ν” = 0) Radical with 2-methylfuran 

3.1 Generation of the CN Radical 

The CN radical in its ground electronic state (X2∑+) is generated by photodissociation of ICN at 

266 nm by the fourth harmonic of a Nd:YAG laser. The CN radical is then excited on the B2∑+ (ν’ 

= 0) ← X2∑+ (ν” = 0) vibronic band at 386.3 nm using a frequency doubled and 355-nm pumped 

dye laser with LDS 765 dye (Exciton). The B2∑+ (ν” = 0) →X2∑+ (ν’ = 1) emission from the excited 

state CN radical is collected by the PMT through a 420 ± 2 nm band-pass filter. The time-

resolved fluorescence is collected 500 ns after the pump laser and averaged (SRS 250 Boxcar 

integrator) within a 250 μs gate. Radical concentration temporal profiles are obtained by 

changing the time delay between the pump and probe lasers using a delay generator (SRS 

DG535). Timing for the firing of the two lasers are controlled by a pulse generator (Stanford 

Research DG535). Delay intervals are increased by 5-μs steps with delay times starting at -50 μs 

and ending at 1500 μs with respect to the photolysis laser. The decays are fit to an exponential 

function from 30 μs to 1500 μs. Though the vibrationally excited CN X2∑+ (ν = 1) state is only 

approximately 1.2% of the radicals produced from the laser,53 delay times shorter than 30 μs 

are not included in the exponential fit to avoid any effect from relaxation of the vibrationally 

excited state. The 2-methyl furan concentrations are varied for different trials of the 

experiment to obtain the second-order rate coefficient at fixed temperature and pressure. The 

experimental procedure and setup have been validated by determination of the second-order 

reaction rate coefficient of the CN radical with propene (C3H6). The second order k2nd value for 
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the reaction between the CN radical and propene is measured to be 2.39 (±0.04) × 10-10 cm3 

molecules s-1 and is in good agreement with previous studies.33,35,36,39,47,51 

 

3.1  CN Radical + 2-Methylfuran Kinetic Study 

Figure 3.1 displays measured pseudo-first order rates k1st as a function of the 2-MF number 

density ranging from 0.0 to 7.4 × 1013 molecules cm-3 at room temperature and 5.34 Torr. The 

resulting plot shows a clear linear trend, validating the use of the pseudo-first order 

approximation. Each data point represents the average of at least three independent data set 

k2nd values reported with 2σ error bars. The overall second-order rate constant is obtained by 
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fitting the data to Eq. 2.5. 

 

Figure 3.1. Pseudo-first order rate coefficients of the CN + 2-MF reaction as a function of 2-MF number density at 304 
K and 5.34 Torr. The vertical error bars are reported to 2σ. The black solid line is a linear fit of k1st values resulting in 
a 2nd order rate coefficient 

3.2 Fluence Dependence 

Photodissociation of 2-MF may lead a decrease of the 2-MF concentration and bias the 

measurement of the rate coefficient. In addition, the photolysis decomposition products may 

also react with the CN radical and interfere with the kinetic measurements. The absorption cross 

section of 2-MF has been measured to be 2.82×10-19 cm2 at 266 nm.67 At the highest 266-nm 

fluence (total energy per unit surface area) used in this experiment (62 mJ cm-2), the amount of 

2-MF photodissociation is estimated to be less than 1%.  Nonetheless, in order to confirm the 

lack of 2-MF photodissociation, the k2nd values are measured as a function of laser fluence. Figure 

3.2 displays the measured rate coefficients as a function of laser fluence over the 19−62 mJ cm-2 
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range. Laser fluence was varied by increasing the time delay between the flash lamp and Q-switch 

of the Nd:YAG laser at 266 nm and measuring the power of the resulting beam. The laser fluence 

was measured before the reaction cell and is likely to be lower at the reaction zone.  Within the 

2σ error bars and over the experimental fluence range, the rate coefficient shows no apparent 

laser fluence dependence.  

   

Figure 3.2. Second order rate coefficients of the CN + 2-Methylfuran reaction as a function of laser fluence at 304 K 

and 5.34 Torr. The vertical error bars are reported to 2σ. 
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3.3 Pressure and Temperature Dependence  

Figure 3.3 displays the pressure dependence of the CN + 2-MF rate coefficient over the 

2.7−7.6 Torr range at room temperature. The measurements are in good agreement within 2σ 

error. Figure 3.4 displays the temperature dependence of the CN + 2-MF rate coefficient over the 

304−440 K range, reported to 2σ error. Horizontal error bars represent the rate obtained from 

the average of at least 3 rotational temperatures. Each value represents the average of at least 

three separate data points with error bars of 2σ. There is good agreement of the rate constants 

within the error over the specified temperature range, suggesting no temperature dependence 

within that experimental range.  

Figure 3.3. Second order rate coefficients of the CN + 2-Methylfuran reaction as a function of pressure at 304 K. The vertical 
error bars are reported to 2σ. 
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Figure 3.4. Second order rate coefficients of the CN + 2-methylfuran reaction as a function of temperature at 5.44 
Torr. The vertical and horizontal error bars are reported to 2σ precision. 

3.4 CN (B2∑+) + 2-methylfuran Potential Energy Surface 

A portion of the 2-MF potential energy surface (PES) is calculated for the CN radical addition and 

insertion reaction mechanisms at the CBS-QB3 level of theory. Figure 3.5 displays the PES for the 

addition-elimination pathways of the CN radical into the C1 and C3 double bonds (See SI for 

carbon numbering). The addition mechanism is found to proceed through four barrierless 

entrance channels to form nitrile-substituted intermediates: INT1, INT2, INT3, and INT4. The 

reaction pathways culminate in four exit channels that proceed through either H elimination to 

form 5-methyl-2-furonitrile (P1), 5-methyl-3-furonitrile (P2), and 5-methyl-4-furonitrile (P3), or 
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CH3 elimination to form 2-furonitrile (P4). Formation of INT1 and INT4 are the most exothermic 

due to resonance in the structures. INT1, INT2, and INT3 can proceed through the 

correspondingly numbered transition states to eliminate a hydrogen atom and form the isomeric 

products P1, P2, and P3, respectively. INT4 can form product P4 through methyl elimination with 

a transition state TS4. The formation of 5-methyl-2-furonitrile (P1) is the highest energy product 

of the H-elimination pathways. Formation of 2-furonitrile (P4) is the most thermodynamically 

feasible product with an energy 112.2 kJ mol-1 lower than the reactants. 

 

Figure 3.5. A portion of the CN + 2-MF potential energy surface for addition of the CN radical onto 2-methylfuran 
unsaturation. 

The products and enthalpies of reaction for the CN abstraction pathways are displayed in 

Table 3.1. All four abstraction products are thermodynamically favorable compared to the 

reactants. H-abstraction from C2, C3, and C4 sites result in products of similar enthalpies while 

H-abstraction from the methyl substituent (C1) forms the most enthalpically stable product with 
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a reaction enthalpy of -170.0 kJ mol-1 relative to the reactants. This is due to the delocalization 

of the electron from C2 to the ring and resonance stabilization.  

Table 3.1. Abstraction pathways for the CN + 2-methylfuran reaction with corresponding 
enthalpies 

 

 

3.5 Discussion of Reaction Characteristics 

The CN (X2∑+) + 2-MF reaction is studied over the 2.7−7.6 Torr pressure and 304−440 K 

temperature ranges. There are no apparent pressure and temperature dependencies, with a 

measured average rate coefficient of 2.83 (±0.18) × 10-10 cm3 molecules s-1 over both pressure 

and temperature ranges. The CN radical temporal decays are well fit to exponential functions, 
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demonstrating that there is negligible back dissociation of the adduct, compared to the 

nonexponential decays observed by Trevitt et al.35 in the case of the reactions with toluene. 

Figure 3.6 displays the rate coefficients for reaction of the CN radical with a series of unsaturated 

hydrocarbons from previous studies.32, 37, 75 The CN + 2-MF reaction rate coefficient is found to 

be similar to that of the CN radical reactions with propylene and ethylene but lower than the 

reaction rate coefficient measured for CN with other species with conjugated π-bonds. This 

shows that the additive trend suggested by Yang and Lin45 does not seem to apply to the CN + 2-

MF reaction.  

 

Figure 3.6. Experimental bimolecular rate constants of CN vs. temperature for selected hydrocarbons. 
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The reaction rate coefficient of the CN + 2-MF is also slightly lower than that for reactions with 

benzene at room temperature. In the case of the OH radical, the reaction with 2-MF at room 

temperature76 is found to be faster than the reactions with both benzene77 and toluene.78 This 

may be explained by an increased reactivity of the 2-MF toward OH due to the increased 

stabilization of intermediates from the electron donating effect of the ether group.79 This 

difference in trend between the CN and the OH radicals is likely to be due to the difference in 

initial adduct formation between the two radicals. The OH radical is known to form pre-reactive 

complexes with aromatic rings.67 As observed in the case the CN + benzene reaction,35 the radical 

is more likely to directly add on one of the carbon atoms80 without formation of a pre-reactive 

complex, therefore minimizing the electron donating effect of the ether group observed for OH 

association reactions. 

Kinetic measurements of OH radical reactions with furan, 2-MF, and 2,5-dimethylfuran 

performed by Bierbach et al.76 show an increase in rate coefficients from least to most 

substituted reactant. This is due to the electron donating effect of the alkyl groups on the 

resonance stabilized ring. Although there is no kinetic data available for the CN + furan reaction, 

such a trend is unlikely to be observed because of the difference in reaction mechanism between 

the two radicals. In the case of benzene and toluene, substitution of an H atom for a methyl group 

decreased the reaction rate coefficient by a factor of ~3. One possible explanation is the 

increased attractive dipole-dipole potential between the CN radical and the methyl group 

drawing the CN radical to the methyl group but failing to overcome the barrier involved in 

abstraction. Similar processes may explain why the rate of CN + 2-MF has a lower rate coefficient 

than that of CN + benzene or other conjugated hydrocarbons, as observed in Figure 3.6. Kinetic 
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studies of CN + furan would give greater insight into the dominant reaction mechanism of CN + 

2-MF and similar species.  

The most highly exothermic pathways for the CN + 2-MF reaction are addition-elimination 

pathways (see Table 3.1 and Figure 3.5). Of these exothermic pathways, the most enthalpically 

favorable are the pathways with intermediates that have the nitrile group on the carbons 

adjacent to the oxygen atom (INT1 and INT4). INT 1 and INT4 both have 2 resonance forms that 

allow for increased stabilization while both INT2 and INT3 have no additional forms. One of the 

resonance forms of INT1 has the radical positioned on the methyl-substituted vinyl carbon which 

allows both the oxygen and methyl groups to stabilize the structure through electron donation. 

The radical site in INT4 is stabilized only by the oxygen atom, leading to a slightly decreased 

stabilization relatively to INT1. While the stability of INT1 and INT4 are similar, the methyl 

elimination pathway is lower in energy when compared to H-elimination pathways, leading to 

the formation of 2-furonitrile (P4) as the most thermodynamically favorable pathway. In this 

case, the larger exothermicity of the methyl leaving group can alleviate the steric strain from the 

CN addition.32  

No apparent experimental temperature dependence of the reaction is found over the 

range of 304−440 K, indicating a very small or nonexistent potential energy barrier. The absence 

of a transition state on the computed potential energy surface for the entrance channel is 

consistent with this result, though the level of theory employed is insufficient to definitively 

determine the presence of a small energy barrier. Kinetics studies on the reaction of the CN 

radical with unsaturated hydrocarbons (Figure 3.6) report little to no negative temperature 

dependence32, 37, 45, 75 in agreement with the present measurements.  



74 
 

Abstraction pathways for reactions with the CN radical and unsaturated hydrocarbons are 

typically endothermic with positive activation energies.32, 37, 45, 75 The abstraction of an H-atom 

from 2-MF is found to be less enthalpically favorable compared to CN addition to the π-bonds. 

The exception is H-abstraction from the methyl substituent, shown in Table 3.1, the products of 

which are made more thermodynamically favorable by resonance stabilization. While the 

transition states for these entrance channels are not found with the level of theory used in this 

study, other computational and experimental studies support the presence of a small positive 

activation energy and general unfavourability of the abstraction pathway, even at higher 

temperatures.32, 37, 81 At temperatures above room temperature, most CN reactions with 

unsaturated hydrocarbons continue to exhibit the negative temperature dependence. 32, 37, 81 

Figure 3.6 shows that the rate coefficients of the CN + C2H2 and CN + C2H4 reactions were similar 

and exhibited negative temperature dependencies throughout the temperature ranges studied 

(294−706 K), implying abstraction does not play a major part even at higher temperatures. It is 

then unlikely that the CN + 2-MF reaction will proceed through any of the abstraction pathways, 

and therefore unlikely that the rate coefficient will change with increasing temperature, at least 

up to 800 K. While the lack of temperature dependence found in this study suggests the rate 

coefficient will remain temperature independent at higher temperatures, it is difficult to 

comment with accuracy on the temperature dependency of this reaction outside of the studied 

range without further studies requiring product detection and Master Equation. 

3.6 Conclusion 

Pump–probe LIF studies of the rates coefficients for CN + 2-MF reactions are conducted over the 

temperature range of 304 K to 440 K and the pressure range of 2.2 Torr to 7.6 Torr in a quasi-
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static cell reactor. Rate coefficients are observed to be comparable to that of other reactions of 

the CN radical with unsaturated hydrocarbons and provide valuable insight into the behavior of 

the CN radical during the combustion of new biofuels. The rate coefficient of the CN + 2-MF 

reaction at room temperature is pressure independent, which is characteristic of a reaction that 

occurs at near the collisional limit and lacks a pre-reactive complex. The reaction coefficient is 

predicted to remain fast even at the higher temperatures of combustion environments. 

Computational calculations showed submerged energy barriers for the addition-elimination 

mechanism involving the π-bonds of 2-MF. While there was no temperature dependence found 

for CN + 2-MF, it is difficult to comment outside the range studied here due to the lack of 

information regarding the mechanism of reaction. Because the study of CN + toluene was found 

to be distinctly slower than CN + benzene, there exists an effect of the methyl substituent on the 

ring. It is likely that CN reactions with unsubstituted furan molecules may occur with rate 

coefficient higher than those for methyl substituted furans and of the order of those observed 

for non-cyclic conjugated dienes.   

This study provides the experimental reaction rate for the CN + 2-MF reaction to give 

kinetic insight for a promising fuel alternative. Although further experimental and theoretical 

studies are necessary to fully quantify the reaction products, the cyano-substitution products are 

predicted to be the most likely products.  2-MF provides many advantages over both gasoline 

and ethanol, including high energy density, lack of miscibility in water, and high knock 

suppression in direct injection engines. The generation 2-MF from nonfood biomass as well as 

from the combustion of dimethylfuran82 gives new urgency to understand the implications of its 

use. A more complete characterization of the fate of 2-MF in combustion systems is needed prior 
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to implementation as a replacement fuel. The necessary transition away from fossil fuels to more 

sustainable sources of energy gives particular significance to this study and warrants the study of 

similar species.  
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Chapter 4: OH + Propargyl Radical Reaction 

Product detection of the OH(X2Π) + propargyl radical reaction were performed using the 

multiplexed photoionization mass spectrometry (PIMS) at the Advanced Light Source (ALS) 

located in the Lawrence Berkeley National Laboratories. The experimental apparatus provides 

sufficient sensitivity needed to study the OH + propargyl radical reaction. There have been few 

radical-radical reaction experiments as this type of reaction pose multiple logistical challenges to 

set up. The necessity to create two radicals as reactants creates many more side products than 

most other reactions due to the creation of two extremely reactive species instead of one. The 

increased number of products formed through reactions between radicals and precursors and 

photolysis products makes it difficult to discern which products are formed through the reaction 

of interest or side products. Optimal conditions were chosen involving the high sensitivity of the 

PIMS apparatus coupled with precursors that will produce the fewest number of side products.  

 This study focuses on the product mass of m/z 56 and its isomers at the temperatures of 

298 K and 500 K. Identification of the isomers and relative concentrations at m/z 56 are given. 

The mechanism of reaction is discussed based on the products formed. Branching ratios of the 

products for m/z 56 as well as other smaller radicals are given and discussed. Comparison 

between previous computational studies by Pham et al.57 and the experimental data obtained 

are made and discussed.  

4.1 OH + Propargyl Radical  

Reaction of the OH radical with the propargyl radical were studied under the conditions of 298 

K and 500 K, and pressures of 2, 4, 6, and 8 Torr. There was no discernable difference between 
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pressures on the signal, and as such the information reported in this work were all obtained at 

4 Torr. The precursors were irradiated inside of the flow tube at 193 nm for all experimental 

conditions. The absorption cross section of the propargyl radical is 9 Megabarn or Mb (1 Mb = 

10-28 m2) at 10.6 eV. The products are sampled from the flow reactor and detected using 

tunable vacuum ultraviolet photoionization and time-of-flight mass spectrometry. The product 

mass at m/z 56 of the reaction OH + propargyl is analyzed and the isomers and mechanism 

discussed.  

4.2 Potential Energy Surface of the OH + Propargyl Radical Reaction 

The potential energy surface in figure 4.1 is adapted from the work done by Pham et al.57 on 

their computational work of the OH + propargyl radical reaction. The reaction proceeds down 

an addition pathway and has two barrierless entrance channels available. The OH addition to 

the “head” side results in the formation of propargyl alcohol forms while the “tail” addition 

forms allenol. There exists a trans and cis form of allenol that is separated by a small energy 

barrier of -79.58 kcal/mol. There exists one radical exit channel and two molecular exit channels 

from propargyl alcohol. The radical exit channel is above the energy of the reactants while the 

molecular exit channels have transition states just below the energy of the reactants. Allenol 

can isomerize to form a total of 8 isomers including allenol and not including conformational 

isomers such as trans or cis forms. The most thermodynamically stable isomer at m/z 56 is 

trans-acrolein which isomerizes directly from the cis-form of allenol. The most 

thermodynamically favorable molecular and radical exit channel is C2H4 + CO at -107.88 

kcal/mol while the most thermodynamically favorable radical channel is the CH3CH + CO exit 

channel. The exit channels for the decomposition of these isomers were discussed in detail by 
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Pham et al.57  between the pressures of 100 – 7600 Torr and temperatures between 300 – 2000 

K. The overall most abundant product of this reaction at all temperatures and pressures is CO. 

While Pham et al. discussed the rate coefficients and branching ratios of the potential 

decomposition channels of the OH + propargyl radical channels, they did not address the 

intermediates themselves as exit channels for the reaction. The various exit channels observed 

experimentally during the experiments at the ALS will be discussed the experimental results will 

be compared to the computational work in the literature. 



82 
 

 

Figure 4.1. Potential Energy Surface for the molecular exit channels (top) and radical exit channels (bottom) adapted from Pham 
et al.59 
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4.3 Photodissociation of Propargyl Chloride at 193 nm 

The mass spectrum for propargyl chloride dissociation without and with the OH radical at 298 K 

is shown in figure 4.2. The mass spectrum was integrated over the kinetic time of 0 – 20 ms and 

an energy range of 8.3 – 10.6 eV. Propargyl chloride provides a relatively clean mass spectrum 

with good signal. The signal at m/z 39 is the propargyl radical, identified by the distinct 

autoionization patterns in the photoionization spectrum of m/z 39 after 9.0 eV compared with 

Savee et al.59 The photoionization spectra begin to diverge at higher energies, likely due to 

fluctuations in flow conditions between experiments that were experienced during data 

acquisition for this experiment. No strong signal is present at m/z 56 which is expected to be 

the product mass of the reaction. The signal at m/z 78 is assigned to benzene and is the result 

of the self-recombination reaction with two propargyl radicals, identified by the ionization 

energy at 9.24 eV. 83The addition of the OH produces additional mass peaks at m/z 26, 27, 28, 

29, 30, 54, and 56.  
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Figure 4.2. Mass spectrum of the photodissociation of C3H3Cl with the photoionization spectrum of the propargyl radical. 

Figure 4.3 shows the depletion of the signal m/z 39 and the increase of the product 

mass at m/z 56. M/z 39 shows a clear difference in signal with the addition of the OH radical, 

while there is a clear increase in signal for m/z 56 with the addition of the OH. The confirmation 

of the formation of m/z 56 by the reaction between OH and the propargyl radical instead of a 

reaction with a precursor is confirmed by similar signal formation using other precursors.  
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Figure 4.3. Depletion of m/z 39 with and without the OH radical coincidental with the m/z 56 signal increase 
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4.4 Addition of OH  

4.4.1 M/z 56 Isomers at 298 K 

 

Figure 4.4. Photoionization spectrum (open circles) of m/z 78 ion signal obtained by photolysis of C3H3Cl and urea-peroxide 
complex integrated over 0-80 ms time range. The green line shows the three isomers of acrolein, allenol, and cyclopropanone 
that were fit to the experimental spectrum. Branching fractions are obtained based on the weighted fit of the m/z 56 signal. 

Figure 4.4 shows the photoionization spectrum for the isomers at m/z 56 from the signal. The 

spectrum is interpolated with a least-squares fitting method weighted to the sum of the 

absolute photoionization spectra of several C3H3OH isomers obtained from the potential energy 

surface, given by Vanuzzo et al.84 and Pham et al.57 It was determined that the most abundant 

isomer of m/z 56 is acrolein with allenol and cyclopropanone at lower contributions. The 

isomers that were fit to the experimental spectrum obtained at m/z 56 are allenol, acrolein, 

methyl ketene, cyclopropenone, methyleneoxirane, and propargyl alcohol. The absolute 

photoionization spectra of the fitted isomers of m/z 56 is show in figure 4.5.  
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Figure 4.5. Absolute and calculated photoionization spectra of the potential isomers of m/z 56. Franck-Condon factors are 
calculated using the Gaussian62 suite of programs for cyclopropanone and propargyl alcohol. Allenol, acrolein, and methylketene 
absolute photoionization cross sections are experimentally determined by Savee et al.59 

4.4.2 High Signal Masses  

The significant signals that appear with the addition of OH and their ionization energies are 

displayed in table 4.1. The identities of these species are confirmed by ionization onset. Of the 

masses that appear with the addition of the OH radical, m/z 42 of ethynol and ketene, and m/z 

44 of acetaldehyde do not appear on the potential energy surface84 and are not predicted 

products by computational studies57. The signal at m/z 26 is assigned to acetylene at the higher 

ionization energy of 11.41 eV. m/z 27 is assigned to the viny radical by ionization signal onset. 

The signal at m/z 28 is assigned to ethylene by the photoionization spectrum and ionization 
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energy. The signals and 29 and 30 are assigned to the formyl radical and formaldehyde, 

respectively. Mass 54 is assigned to 2-propynal and propadienal by onset of ionization.  

4.4.3 Determination of Branching Ratios of the Products of the OH + Radical Reaction 

The branching ratios of the products for the OH + Radical reaction and their corresponding 

ionization cross sections are given in table 4.1. The relative concentrations of the molecular 

products are determined by taking the signal after 40 ms of reaction time has passed. All 

product concentrations are stable after the 40 ms of reaction time and can be compared to the 

relative concentration of the other species. Radical signals decay immediately after formation 

and cannot be quantified in the same way that molecular species are quantified due to the 

immediate decay of the radical signal. The time-dependent signal of the radical is fit to a 

function that takes into account the transient nature of the radical signal, shown as follows: 

𝑆𝑖(𝑡) = (
𝑆𝑖

′ ∙ 𝑐1,𝑖

𝑐2,𝑖 − 𝑐1,𝑖
) (𝑒−𝑐1,𝑖∙𝑡 − 𝑒−𝑐2,𝑖∙𝑡) 

Where, 𝑆𝑖
′ is the amount of precursor consumed, 𝑐1,𝑖 is the pseudo first-order rate coefficient 

for the formation of species “I”, 𝑐2,𝑖 is the pseudo first-order rate coefficient for loss of the 

radical signal, and t is the reaction time. An example of a fit is shown in figure Figure 4.6. Some 

species that are expected to be formed are unable to be quantified due to known short 

lifetimes as is the case with CH3CH85, and the lack of ionization cross section information being 

available as is the case with propynal at m/z 54.  
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Table 4.1. Table of experimentally validated species and their relative branching ratios at 298 K and 4 Torr. 

Species cross section (Mb) Branching Ratio (298 K) 

 25 18.32% 

 
11 17.70% 

 14 12.69% 

HCO 13 15.55% 

H2CO 18.5 6.51% 

 

10 

22.35% 

 

4 

6.04% 

 

24.71 

0.84% 

 

 

Figure 4.6. Fit of the radical signal at m/z 29. 𝑆𝑖
′ is the amount of precursor consumed, 𝑐1,𝑖 is the pseudo first-order rate 

coefficient for the formation of species “I”, 𝑐2,𝑖 is the pseudo first-order rate coefficient for loss of the radical signal, and t is the 

reaction time. The fit to function allows determination of the theoretical radical signal without the radical decay.  
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4.4.4 500 K Reaction Conditions  

The temperature was controlled by a Variac variable transformer. Flows were increased 

proportionally to compensate for the change in the number density of the flow due to the 

change in temperature. The branching ratios were unable to be quantified due to an intense 

signal coincidental with the laser pulse that is likely electrical interference from the Variac. The 

branching ratios of the product mass of m/z 56 at 500 K is shown in figure 4.7.  

 

Figure 4.7. Fit of the m/z 56 signal at 500 K with the weighted cross sections of acrolein, allenol, and cyclopropanone.  

 

The relative proportion of acrolein seems to remain approximately the same while the amount 

of allenol decreases and cyclopropanone increases.  
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4.5 Discussion 
The most abundant product in the OH + propargyl alcohol is determined to be acrolein, which 

comprises 22 % of the species that were quantified by the analysis in this work. Acrolein is the 

lowest energy species in the PES and contributes the most to the signal at m/z 56. Allenol is the 

second largest contributor at m/z 56 and the more energetically favorable of the two entrance 

channel intermediates according to Pham et al. Pham et al concluded that the methyl ketene is 

the more favorable intermediate when compared to cyclopropanone in contrast to this work’s 

finding that cyclopropanone is a better fit when the sum of the weighted photoionization 

spectra are compared to the signal at m/z 56. Due to the close ionization energy of 

cyclopropanone and methyl ketene (9.1 and 8.95 eV respectively), as well as the relatively low 

contribution of the third species at m/z 56 when compared to acrolein and allenol, it is difficult 

to determine whether or not this is simply due to experimental error. Pham et al. posits that 

the formation of C2H2, C2H4, C3H3, HCO, and C3H3O are the most crucial paths in the OH + 

propargyl radical reaction. Though there exists a small signal for the m/z 55 that would 

correspond to the C3H3O radical, there does not exist cross section data to be able to fully 

quantify the species in the experiment. The most energetically favorable product of C2H4 + CO is 

seen experimentally and comprises 12.69 % of the species that are quantified in this study. The 

acetylene formation pathway is another energetically favorable pathway on the PES and 

comprises 18.32% of the products quantified experimentally. The discrepancy in the ratio of C2-

H2 and its coproduct H2CO indicates that a large proportion of C2H2 is produced via the C2H2 + 

CO + H2 exit channel. The two isomers of propynal and propadienal are likely large contributors 

to the product, as represented by the large signal at m/z 54. These two products are formed by 

the ejection of H2 with propynal being the more energetically and kinetically favorable 
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conformational isomer when compared to propadienal according to Pham et al.57 Pham et al. 

depicts the four radical product pairs of C2H3 + HCO, CH2CHCO + H, CH2CCHO + H, and 

CHCHCHO + H are all formed barrierlessly from the trans form of acrolein. C2H3 comprises 

17.70% of the products quantified in this study. The radical isomers at m/z 55 have very little 

information regarding their cross sections and therefore are not able to be quantified in this 

study.   

4.6 Conclusion 

The products of the OH(X2Π) radical with the propargyl radical (C3H3) were studied using the 

multi multiplexed photoionization mass spectrometer at the Advanced Light Source of 

Lawrence Berkeley National Labs. Product analysis was performed at the pressures of 2, 4, 6, 

and 8 Torr with little variation due to pressure within the pressure range studied. Temperature 

was varied between 298 K and 500 K to observe the effect on the distribution of products. It 

was determined that acrolein is the most abundant closed-shell product at all temperatures, 

while the vinyl radical is the most abundant radical species that was detectable. The calculation 

from Pham et al. 57 is difficult to verify due to the inability to detect the ethylidene radical (C-

H3CH) due to its extremely short lifespan.85  
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Chapter 5: Concluding Remarks 

Understanding the role of radical chemistry is imperative to improving the models for the 

processes of molecular growth. Processes like those that occur in the interstellar medium and 

in the formation of PAHs. This body of work provides a novel experimental setup and its 

potential use as a means to study high-temperature chemistry as well as the product analysis of 

the OH + propargyl reaction, both of which are especially important molecules in regard to 

combustion chemistry.  

 There is still much work to be done with the finalizing of the conditions for the high-

temperature fast flow reactor, as the temperature within the flow must be validated 

spectroscopically. Analysis of the rovibronic spectrum of CN radical in conjunction with the 

PGOPHER program was proven to be a viable method in determining the temperature of a gas. 

This is the only viable way to determine the temperature of the gas within the fast flow as the 

pulses are faster than any fast response thermocouple can record. The CN or OH radical must 

be used to determine whether or not the temperature is uniform for various lengths away from 

the establishment of the high-temperature flow. After the temperature of the experimental 

setup is validated, kinetic studies regarding a known reaction must be performed using the 

novel flow cell to confirm that the flow cell is operational for kinetic studies. After the 

temperature and flow conditions are fully validated using spectroscopic studies and kinetic 

studies, the final step to completing the experimental setup is to attach a mass spectrometer to 

the end of the flow to allow for product detection experiments to be performed without the 

need for travel to outside facilities.  
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 The OH + propargyl reaction is an extremely important reaction in the study of 

combustion systems and PAH formation due to propargyl’s well established role in the 

formation of the first aromatic ring. It was shown that there is little to no reaction of the OH 

radical to the “head” side of the propargyl radical. This sentiment is echoed in the work by 

Pham et al.57 as the pathway to form allenol and its subsequent exit products is more favorable 

than that of propargyl alcohol. The OH + propargyl reaction is a viable reaction in combustion, 

as the radical is shown in this study to readily react to form primarily acrolein as a product, with 

many decomposition pathways available for the isomer at m/z 56 to proceed through. This 

work establishes that it is possible given the proper conditions to perform radical-radical 

experiments, allowing many previously unexplored reactions to be accessible for study. A more 

comprehensive study of the temperature dependency of the OH + propargyl reaction would do 

much in illuminating the effect of temperature on the relative concentration of the products 

that are formed in the reaction. Additional Master Equation and RRKM calculations performed 

with the m/z 56 isomers included in the potential exit channels would be an excellent addition 

to the computational work that was performed by Pham et al.59 
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Appendix 

 

Figure A1. Mass spectrum of C3H3Cl + HOOH at 500 K 
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Figure A2. Photoionization spectrum of m/z 28 of the C3H3Cl + HOOH reaction superimposed on the photoionization spectrum of 
ethylene 

 

Figure A3. Photoionization spectrum of m/z 29 of the C3H3Cl + HOOH reaction superimposed on the photoionization spectrum of 
the HCO radical 
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Figure A4. Photoionization spectrum of m/z 42 of the C3H3Cl + HOOH reaction superimposed on the experimental spectrum of 
ethenone and ethynol 

 

Figure A5. Photionization spectrum of m/z 52 of the C3H3Cl + HOOH reaction superimposed onto the experimental 
photoionization spectrum of propadienone and the PEPICO spectrum of 2-propynal 
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