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Abstract 

 

Using drones to evaluate revegetation success on natural gas pipelines 

 

Anthony N. Mesa 

 

The Appalachian region of the United States has significant growth in the production of 

natural gas. Developing the infrastructure required for this resource creates significant 

disturbances across the landscape, as both well pads and transportation pipelines must be created 

in this mountainous terrain.  Midstream infrastructure, which includes pipeline rights-of-way and 

associated infrastructure, can cause significant environmental degradation, especially in the form 

of sedimentation. The introduction of this non-point source pollutant can be detrimental to 

freshwater ecosystems found throughout this region. This ecological risk has necessitated the 

enactment of regulations related to midstream infrastructure development. Weekly, inspectors 

travel afoot along pipeline rights-of-way, monitoring the reestablishment of surface vegetation 

and identifying failing areas for future management. The topographically challenging terrain of 

West Virginia makes these inspections difficult and dangerous to the hiking inspectors. We 

evaluated the accuracy at which unmanned aerial vehicles replicated inspector classifications to 

evaluate their use as a complementary tool in the pipeline inspection process. Both RGB and 

multispectral sensor collections were performed, and a support vector machine classification 

model predicting vegetation cover were made for each dataset.  Using inspector defined 

validation plots, our research found comparable high accuracy between the two collection 

sensors. This technique appears to be capable of augmenting the current inspection process, 

though it is likely that the model can be improved to help lower overall costs. The high accuracy 

thus obtained suggests valuable implementation of this widely available technology in aiding 

these challenging inspections.   

 

 

 



iii 
 

Acknowledgements 

 

Special acknowledgement to Sam Bearinger and Lucas Kinder of the WVU Natural 

Resource Analysis Center who helped to fly and process the UAV imagery. This project was 

supported by funding from the United States Department of Transportation Pipeline and 

Hazardous Materials Safety Administration. And lastly, this work was also supported by the 

USDA National Institute of Food and Agriculture, Hatch project accession number 1015648, and 

the West Virginia Agricultural and Forestry Experiment Station. 

  



iv 
 

 

Table of Contents 

 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

Table of Contents ........................................................................................................................... iv 

List of Tables .................................................................................................................................. v 

List of Figures ................................................................................................................................ vi 

Introduction ..................................................................................................................................... 1 

Methods........................................................................................................................................... 5 

Study Area ................................................................................................................................... 5 

Test Plots and Classification ....................................................................................................... 5 

Multispectral Collection .............................................................................................................. 7 

Plot Classification ....................................................................................................................... 8 

Reflectance Map Creation ........................................................................................................... 8 

GIS Analysis ............................................................................................................................... 9 

Replication Accuracy ................................................................................................................ 11 

Financial Analysis ..................................................................................................................... 12 

Results ........................................................................................................................................... 15 

Validation Plot Statistics ........................................................................................................... 15 

Model Classification Accuracy ................................................................................................. 15 

Financial Analysis ..................................................................................................................... 16 

Discussion ..................................................................................................................................... 18 

Inspection Comparison .............................................................................................................. 18 

Financial Analysis ..................................................................................................................... 21 

Conclusions ................................................................................................................................... 25 

Literature Cited ............................................................................................................................. 27 

Appendix A. .................................................................................................................................. 51 

 

  



v 
 

List of Tables 

Table 1. A confusion matrix between the True classification of the plots, as determined by the 

SME classification process, and the Predicted classification derived from the SVM model 

created from the multispectral dataset. ......................................................................................... 42 

Table 2. A confusion matrix between the True classification of the plots, as determined by the 

SME classification process, and the Predicted classification derived from the SVM model 

created from the RGB dataset. ...................................................................................................... 43 

Table 3. A complete listing of projected costs to conduct a drone inspection in the study’s 

scenario ......................................................................................................................................... 44 

Table 4. A complete listing of projected costs to conduct a traditional inspection in the study’s 

scenario ......................................................................................................................................... 45 

Table 5. Times of different collection and processing steps needed for drone collection ............ 46 

Table 6. Proportionate comparison of the cost per kilometer, calculated as traditional / drone cost 

for the original flight times and inspector overhead costs ............................................................ 47 

Table 7. Time budget for drone collection using more optimized flight settings and better data 

transfer technology........................................................................................................................ 48 

Table 8. Proportionate comparison of the cost per kilometer, calculated as traditional / drone cost 

for the optimized drone flight times and original traditional inspection overhead ....................... 49 

Table 9. Proportionate comparison of the cost per kilometer, calculated as traditional / drone cost 

for the optimized drone flight times and the increased traditional inspection overhead .............. 50 

 

 

 

 

 

 

 
 

 

 

 

 

 



vi 
 

 

List of Figures 

Figure 1. Approximately 2.3 km of natural gas pipeline used as study area for the UAV based 

evaluation of vegetation success in Northern West Virginia, USA. ............................................. 31 

Figure 2. Location of the ground validation plots established in the study area. Inserts show each 

of the allowed access areas of the pipeline. .................................................................................. 32 

Figure 3. Example of training plot established to denote areas on pipeline that failed vegetative 

cover threshold. ............................................................................................................................. 33 

Figure 4. Workflow used to capture remote sensor data and ground sample points. ................... 34 

Figure 5. Manually digitized training data samples for SVM classification. ............................... 35 

Figure 6. SVM classification model of the multispectral dataset using blue, green, red, and NIR 

bands with NDVI included. .......................................................................................................... 36 

Figure 7. SVM classification model of the RGB dataset. Green and red pixel color indicate 

passing or failing respectively as determined by the model. ........................................................ 37 

Figure 8. Charts depicting the proportion of each inspection method’s cost categories. ............. 38 

Figure 9. A detailed image taken immediately after ground plot establishment of validation plot 

24................................................................................................................................................... 39 

Figure 10. A detailed image taken immediately after ground plot establishment of validation plot 

26................................................................................................................................................... 40 

Figure 11. Cost trends per kilometer are shown including the variables of inspector speed and 

processing time reduction. ............................................................................................................ 41 

 

 

 

 

 

 



1 
 

Introduction 

When considering the application of modern techniques into traditional practices, 

modernity must undergo an evaluation of its capabilities at replicating the task at hand. Gains in 

efficiency and safety must have their accuracy and precision costs weighed. Unmanned aerial 

vehicles (UAVs or drones), remotely piloted aircraft capable of varied data collection and often 

equipped with visual sensors (Alley-Young, 2020), have found such measures to be in their favor 

internationally. Many industries have witnessed their inclusion to effect new functionality or 

augment and enhance existing techniques. Industrial facilities with dangerous or inaccessible 

structures in need of safety inspections have been able to include UAVs in their operations to 

minimize risk without sacrificing evaluation coverage (Nikolic et al., 2013). Civil engineers 

needing to inspect large structures for minor faults have found the value in UAV inclusion 

(Hallermann and Morgenthal, 2014). Agricultural operations utilize UAVs equipped with 

multispectral sensors to optimize fertilizer application and harvest (Kim et al., 2019). With the 

realized value found in so many diverse sectors of industry, the performance potential in novel 

utilization is worthy of calculating.    

Natural gas (NG) production in the United States (US) has surpassed that of all other 

countries (Doman and Kahan, 2018). Of the natural gas development regions in the US, the 

Appalachian basin has been developed into the largest NG producer, producing 33% of the total 

national output (U.S. Department of Energy, 2020; U.S. Energy Information Administration, 

2021). NG is rich in this region due to two shale plays extending beneath it. They are known as 

the Marcellus and Utica shales, which extend across 298,000 km2 and 240,000 km2 respectively 

(Kargbo et al., 2010; Popova, 2017a; Popova, 2017b). Modern unconventional drilling and 
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hydraulic fracturing (fracking) techniques have led to the large growth seen in this region, which 

is projected to double its NG productivity by 2050 (U.S. Department of Energy, 2020).  

Typical NG production in the Appalachian basin begins with the establishment of a well 

pad, whereupon unconventional wells are established. These wells draw from a large area of the 

NG bearing shale with vertical well bore descending up to 2.4 km in depth with a lateral leg that 

can extend over 6 km (Marcellus Drilling News, 2021). NG flowing to the surface from this 

process is directed into a near surface gathering pipeline (midstream), through which it travels to 

the fuel’s final users. The midstream is lined with compressor stations to maintain the pipeline’s 

pressure (Messersmith et al., 2015). Each midstream compressor station is situated upon its own 

pad structure. In all, the installation of the pad and midstream infrastructure require large 

quantities of land alterations, potentially causing large ecological disturbance events across the 

landscape, with midstream segments creating the greatest footprint of landscape impact 

(Langlois et al., 2017). 

In the early stages of development, standing timber and surface vegetation are removed, 

and the land surface is graded across the extent of the NG infrastructure. Development of NG 

resources has been found to significantly impact surface water flow (Warner et al., 2013) and 

total suspended solids (TSS) quantities in associated watersheds (Olmstead et al., 2013). Further, 

increased sediment in freshwater ecosystems has caused significant ecologic impacts. Sediment 

introduction has been found to decrease the populations of lower trophic level aquatic species 

(Richards and Bacon, 1994), and lead to severe reduction in primary producers’ photosynthetic 

activity and overall health (Cederholm and Lestelle, 1974). At higher trophic levels, larger 

vertebrates show organ damage and recruitment loss in sediment rich waterways (Kemp et al., 

2011).  
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The potential for such drastic ecological impacts has prompted the regulation of NG from 

both state and federal agencies across the US. Federally, the US Environmental Protection 

Agency, Clean Water Act (CWA) Section 404, prohibits companies from discharging sediments 

and establishes a specific permitting process for NG development. In the Appalachian basin state 

of West Virginia (WV), the Department of Environmental Protection (DEP) provides 

development advice as well as regulates NG development within their borders. Advice comes in 

the form of a best management practice manual (West Virginia Department of Environmental 

Protection, 2016), which notes the establishment of surface vegetation as the most important act 

in sediment and erosion control on NG sites. This importance is codified in the General Water 

Pollution Control Permit (GWPCP) agreed to by NG development companies (West Virginia 

Department of Environmental Protection, 2013). This permit directs the inspection and 

vegetation standards necessary for a company’s bond to be released.  

Frequent site inspections are to be conducted by a permitee, both weekly and after a 

significant rain event of over 0.25 in (0.635 cm). Inspections are conducted by certified site 

inspectors, who travel the whole pipeline length on-foot. Typically, permitees divide the pipeline 

into inspection sections. Under the GWPCP sediment reduction adherence, hiking inspectors 

look for vegetation failures, surface soil movement, or failure of erosion control structures of a 

site. Finding any failure requires immediate reporting, and the issue to be addressed promptly. 

When a permitee believes a site to be stable, the WV DEP provides their own afoot inspectors to 

evaluate the site. State inspectors evaluate the permanence of erosion control measures, as well 

as the health and quantity of surface vegetation on all permeable surfaces. When a site passes 

this inspection, it is declared to have reached final stabilization, and the bond is returned to the 

permitee.  
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As outlined in the GWPCP, passing vegetation coverage is defined as a minimum of 70% 

surface vegetation across the site. Current afoot inspections determine this coverage with a 

surface sampling ring, approximately 0.75 m2 to 1 m2 in area. During the state’s inspection, this 

hoop is randomly cast many times throughout the permit area. Wherever the ring lands, the 

inspector provides an ocular estimation of the vegetation coverage within. The sampling ring is 

not mentioned in the GWPCP, and there is no further guidance on evaluating this 70% standard. 

Frequently, a single random sample from within the site judged to be below 70% will generate a 

failing report from the state inspector, keeping the permit open, and the weekly inspections 

ongoing.  

UAVs could be used as a supplementary tool in this inspection process. The mountainous 

terrain of the Appalachian region makes frequent afoot inspections both difficult and an ongoing 

safety concern for the inspectors. Moreover, remote sensing may provide a more objective 

approach to vegetation evaluations. Though UAVs have addressed the needs and safety concerns 

of many industries, to the best of our knowledge, the use of UAVs in inspecting NG pipeline 

vegetation coverage has not yet been evaluated for either accuracy or financial viability. Our 

research sought to provide insight into both of these aspects. The initial assessment of the 

accuracy provided by drones in NG inspections was completed using machine learning classifier 

models created from two widely available UAV sensor technologies, simple RGB and 

agriculturally designed multispectral capture. The evaluation of these technologies will provide 

an introductory evaluation of the accuracy gap between current standards and novel techniques. 

Financial evaluations were derived from the recorded research efforts and compared to self-

reported performance standards provided by individuals active in this industry. As the 

agricultural industry has had notable success in evaluating vegetation with multispectral 
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collection and analysis, we expect that the multispectral data will accurately identify inspector 

assessments. Similarly, the technology’s financial benefit to the agricultural industry raises the 

expectation that similar financial benefits will be seen when drones are used in NG pipeline 

inspections.  

 

Methods 

Study Area 

An industry partner provided access to a recently completed pipeline in northern West 

Virginia for the execution of this project. This area was comprised of two branches of a 

continuous pipeline separated by a natural gas well pad (Figure 1). The combined length of the 

two branches was approximately 2.3 km, and when impervious surfaces were excluded, 

approximately 6.2 ha of managed and monitored pipeline was available for analysis. The 

southern branch was approved for release several years ago and is bordered by forested lands. 

The northern branch completed construction and installation in early 2021 and runs through 

lands used for livestock grazing. There is no physical barrier barring animals from grazing upon 

the pipeline area. The elevation in the study area ranges from about 326 m – 414 m MSL, with 

greatest slopes being around 57%. Flow interruption angled water bars are created along all 

pipeline areas with significant length and slope. Additional erosion control features on the test 

site include the surface application of hay, coir mats, hydro-seed, silt socks, and silt fences.  

 

Test Plots and Classification 

The study area’s permit holder allowed the establishment of 30 small unobtrusive testing 

plots for the purpose of conducting a vegetation analysis. A field technician from the West 
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Virginia University (WVU) Natural Resources Analysis Center (NRAC) was equipped with a 

Garmin Dakota 10 and tasked with creating these plots. Across the study area, 30 randomly 

placed plots were established (Figure 2). Each plot was created using high-visibility survey 

marking spray to create the 4 corners surrounding an area of approximately 1.44 m2 (1.2 m × 1.2 

m) (Figure 3). This size was selected to allow the internal area of each plot to provide an area of 

approximately 1 m2 of pixels unaltered by the survey marking spray. This area was selected after 

interviewing several pipeline inspectors, as a sample size of 1 m2 was stated as the size used for 

current evaluations as captured from a randomly cast surface sampling hoop. To create 

continuity between foot and drone imagery, the top of each test plot was indicated by a solid line 

connecting the two respective corners, and a two-digit number was created just outside and 

beneath the bottom right corner. Numbers ranged from 00 – 29. Upon completion of marking the 

plot, an image was captured using a hand-held 12-megapixel camera from a height of 

approximately 1.8 m. These ground perspective high-resolution images were collected for the 

future integration of subject matter expert (SME) classification into this study.   

After establishing a sample plot, the field technician recorded the approximate center in 

the handheld GPS unit and indicated whether they assessed the plot to be passing or failing. 

These categories were defined from current inspection practices, as laid out by the WVDEP 

(West Virginia Department of Environmental Protection, 2013), passing sites were those where 

greater than 70% of the internal plot area was vegetated, while failing sites contained less than 

70% vegetation. To avoid over-selection from a single area, the field technician was tasked with 

creating no more than two test plots of the same category within 25 m of each other. This 

distance was calculated in the field from measurements provided by the handheld GPS unit. Plots 
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were established in this way across the study area, with 17 plots established in the new branch, 

and 13 plots in the old branch.  

 

Multispectral Collection 

Once sample plots were established, a DJI Matrice 200v2 quad-propeller drone with a 

direct interfacing Sentera 6x Multispectral sensor conjoined with an apex oriented solar sensor 

was used for remote data collection. The 6x Multispectral sensor simultaneously collects from 5 

individual wavelengths: blue (475 nm), green (550 nm), red (670 nm), red edge (715 nm), and 

near infrared (NIR, 840 nm). Additionally, the 6x sensor is equipped with a 20MP RGB camera, 

which provides comparable data capture to the imagery collected by standard drone-based color-

image sensors. The Sentera 6x sensor performs a simultaneous capture from all 6 sensors on a 

preset trigger period. For our collection, we set the trigger to occur every 2 seconds. Flight 

planning and execution was achieved with the UgCS Client. Through this software we could 

load in elevation maps, break each branch into transects, and generate a total flight path at a 

fixed distance above the terrain. The height above terrain used was 91.44 m (300 ft), and the 

sensor was oriented at nadir throughout the flight. Both flights occurred on the same day between 

1130 and 1330 EST to minimize light variance and shadows. Immediately prior to collection, the 

multispectral sensor captured a series of calibration images of a Sentera Reflectance Panel for 

future radiometric correction. When the flights were completed, research moved into the analysis 

portion of the plan of study (Figure 4).  
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Plot Classification 

Desiring the integration of current inspection quality standards into our study, the 

research team coordinated with SMEs to collect a classification judgement from each plot. For 

this area of study, an SME was defined as an individual who had received training and 

certification in the pipeline inspection process and conducted such inspections in the 

Appalachian region for a period of at least 5 years. As most approached SMEs were still 

associated with this industry, anonymity was promised for their assistance.  

The previously collected pictures of each plot were shared, and judgments were made as 

to the official classification of either passing or failing for the plot. Many plots had images taken 

at different angles with all pictures capturing the same plot being grouped by file. These groups 

of images were shared on a 17.3 inch 1920 x 1080 monitor in a random order for the 

classification step. At the request of the inspector, images of any single plot could be switched 

between, enlarged, and scrolled over to assist in this assessment step. Final classification was 

determined from the grouped judgment of each plot individually. If the classification was 

uniform, the plot was classified as either passing or failing as appropriate. If there was a 

discrepancy in SME classification, we marked the plot as being of an indeterminate class.  

 

Reflectance Map Creation 

The Sentera 6x Multispectral sensor does perform limited on-the-fly sensor adjustments 

based on changes in detected solar intensity; however, radiometric calibration is only achieved 

through a post-processing technique provided to the end user by Sentera. This software reviews 

all collected single band images and detects the calibration images captured pre-flight to 

determine reflection adjustments to be made. Additionally, the software identifies the sensor 



9 
 

settings and solar readings recorded in the metadata of each image. From these pieces of 

information, the radiometric correction software adjusts the values of every pixel in the dataset to 

the reflectance values correct to the atmospheric conditions at collection. The corrected single 

band images were then loaded into Pix4Dmapper Version 4.6.4 to create total reflectance maps 

for the site.  

Pix4Dmapper aligns the images according to the GPS data recorded in the EXIF portion 

of each image and begins to identify tie-points between neighboring images. These tie-points 

guide the final orientation and transformation of each image. The data from the separate bands is 

also aligned, creating a near absolute georeferencing between the separate simultaneously 

captured data. The output of this process is a separate single band rasters in the form of an 

orthomosaic map of the reflectance values, as calculated across the site. This process was 

repeated with the RGB dataset collected by the 20 MP sensor. 115 ground control points were 

identified in a composite display of the red, green, and blue reflectance bands, and these points 

were used to tie the RGB dataset to the reflectance maps. A natural color orthomosaic was then 

produced and exported for the study area. The spatial resolution of the multispectral raster and 

the RGB raster were 0.042 m and 0.063 m respectively. 

 

GIS Analysis 

The red, green, blue, and NIR reflectance maps, and the RGB orthomosaic for the study 

area were then loaded into Esri’s ArcGIS Pro (Esri, 2021) for preparation, extraction, 

classification, and analysis. A new set of ground control points, hereafter called the alignment 

assessment point set (AAPS), were established between the two datasets to quantify any 

distortion, ensuring the data were reasonably aligned for analysis. Using the RGB orthomosaic of 



10 
 

the site, polygon features were created to approximately digitize the permit areas. All pixels from 

every dataset within this polygon boundary were extracted for analysis. The single band layers 

were composited using the Composite Bands tool, and the Band Indices tool was used to 

calculate a normalized difference vegetation index (NDVI) layer. NDVI acts as a simplified 

indication of vegetation health by detecting photosynthetic activity (Tucker, 1979). NDVI is 

calculated for each pixel from collected reflection values of the red and near-infrared (NIR) 

bands of light as: 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

 

As solar light reaches a plant, red light is absorbed by the chlorophyll, while the unusable NIR 

light is reflected or scattered by the mesophyll layer (Campbell and Wynne, 2011). NDVI values 

range from -1 to 1, with higher scores associated with healthier vegetation and lower scores 

being associated with artificial objects. Agriculturally minded multispectral sensors, like the 

Sentera 6x, are often designed for derivative NDVI calculation, and as such, this technique was 

included. The produced NDVI layer was composited with the clipped single band rasters for 

simplified inclusion in classification.  

Ground sample plots were then digitized using the RGB raster. All 30 plots previously 

established were successfully identified. The associated plot numbers and determined SME 

classification were entered for each plot. 1 and 0 was used to indicate passing and failing 

classification respectively. Plots with an indeterminate classification were left with a null value.  

The Training Samples Manager was opened on the multispectral raster. The band 

combination display of the raster was adjusted to a true color RGB presentation. Using this and 
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setting the display scale to a fixed 1:100, a GIS technician manually digitized classification 

training data across the study site. Classes for this training data set were either pass or fail, with 

the associated values of 1 and 0 respectively. Training samples were to not include any of the 

digitized ground sample plots and were to be established across various areas of each branch. 

There were 30 features established each for passing and failing classes in each branch, totaling 

120 training features for the study area (Figure 5).  

Support Vector Machines (SVM) was the chosen classification algorithm, due to its noted 

accuracy at smaller spatial resolutions compared to other common algorithms (Sheykhmousa et 

al., 2020). In ArcGIS Pro, the Train Support Vector Machine Classifier tool was used with both 

datasets, producing a definition file for each. The maximum number of samples per class was left 

at the default value of 500 to avoid the over-fit nature of kernel-based classifications (Liu et al., 

2017) while avoiding a loss of accuracy from under sampling (Sabat-Tomala et al., 2020). The 

Classify Raster tool then processed the datasets with their respective SVM definition files, 

creating sitewide supervised classification of either passing or failing vegetation assessed at the 

pixel level (Figures 6 and 7).  

 

Replication Accuracy 

From the SVM models, the interior of all validation plots were extracted. As passing and 

failing cells were valued at 1 and 0 respectively, a mean value calculated with the Zonal 

Statistics as Table tool directly presented a proportion of passing vegetation within each plot. 

Following the WVDEP definition of passing vegetation (West Virginia Department of 

Environmental Protection, 2013), mean values above 0.70 were determined to have been 

modeled as passing, with values below this number indicating a failing plot. A confusion matrix 
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was then structured for each model, comparing the modeled and SME judgments for these plots, 

and providing a validation assessment for each model’s performance. For each model the user’s 

accuracy, producer’s accuracy, overall accuracy, and kappa were calculated.  

 

Financial Analysis 

The largest portions of inspection expenditures can be categorized under two groups, 

equipment costs and labor costs. Equipment costs cover both physical the pieces of equipment 

and the software necessary to collect, process, and analyze the data. Entries in this category can 

either be one-time costs, such as drone and sensor, or may have annual costs, like software 

licenses and equipment insurance. Manpower costs vary by tasking as they are typically 

calculated hourly, and commonly include an adjustment for overhead to cover the additional 

costs of having an employee (Weltman, 2019).  As inspection costs are realized across variable 

periods, from hourly to product lifespan, a realized cost standardization was selected of U.S. 

dollars to kilometer inspected ($/km). This standardization of costs allowed the full realization of 

all costs associated to an inspection process given a set tasking, as calculated by distance.  

UAV financial assessment began during the accuracy assessment portion of this study. 

As the drone inspection conducted collection and analysis, equipment and software necessary for 

each step were noted. Additionally, time records were maintained for each step to address the 

manpower cost portion of analysis. From the larger equipment and software list, entries unique 

and critical to the UAV method, such as multispectral sensors and GIS analysis software, were 

selected and used for a final financial analysis. Similarly, the complete time records were 

reduced to include only those steps which directly contributed to final GIS product used in the 

accuracy assessment. Current price estimates for equipment, licenses, and services were then 
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gathered from manufacturers or retailers, as appropriate. Manpower pay rates for GIS collection 

and processing were determined from expert input and set at $20/hr and $40/hr respectively.  

 Costs for traditional inspections were collected from SME input via phone survey. As 

with the classification step above, any SME who participated was promised anonymity in the 

recording of their input. The phone interview used for collection focused on gathering estimates 

of current tasking as experienced in the Appalachian region. Figures sought were per tasking lists 

of current necessary equipment, average time to conduct an inspection, approximate time needed 

to create a report, and expected site length. From these reported figures, an average inspection 

speed of 1.61 kilometers per hour (1 mph) was established, which is reasonable when 

considering the impact of terrain on known average walking speeds (Murtagh et al., 2021). 

Additionally, inquiries into the approximate pay rate for a pipeline inspector on a per hour basis 

set an expectation of $20/hr for this financial analysis.   

Creating the realized cost standardization of $/km required the defining of a collection 

scenario to which the factors of both methods could be applied. The accuracy assessment study 

area was selected, as its usage would allow the direct application of the UAV inspection recorded 

time data. Annual cost amortization to total kilometers inspected at this site required the scenario 

to include total inspections conducted at this site. For the scenario to be as accurate as possible, 

the inspection schedule of the GWPCP was applied (West Virginia Department of 

Environmental Protection, 2013), which outlines weekly and weather inspections, which occur 

after 0.25 inches of precipitation. For the immediate region of the study site, the average number 

of precipitation events meeting this criterion annually was determined from the last 3 years 

climate data, as recorded in the Global Surface Summary of the Day (GSOD) dataset (User 

Engagement and Services Branch, 2022). Combining the weekly and average weather 
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determined inspections for a year, and multiplying by the study area length, gave the total space 

to be inspected. Finally, expected lifespan of single expenditure items were determined from the 

following equation: 

𝑌 = (
𝐻

𝐹
) 𝐴⁄  

Where Y is the number of years to be expected from an item, H is the expected life of an item in 

flight hours, F is the flight time per kilometer as recorded during collection, and A is the number 

of inspections per year. As the multispectral sensor is designed for integration into the UAV’s 

mount, the determined lifespan (Y) was applied to this item as well in cost calculations. With all 

of these portions calculated, $/km estimates were produced for each method. 

 An element of flexibility was then entered into the cost calculations each of the 

inspection methods to broaden the perspective of the impact of changing the input factors on the 

resultant costs. Terrain of varying difficulty is likely to be encountered by an inspector in 

Appalachia performing traditional pipeline inspections. As such, cost analyses were conducted 

for variable inspector speeds, ranging from 0.25 mph to 2 mph in 0.25 mph steps. Similarly, 

flexibility analysis assumed that improvements are likely to be seen with several portions of the 

drone inspection process. The first aspect adjusted for was an optimized collection. In this 

flexibility scenario, the frequent inspections of the site would reasonably lead to a more 

streamlined set up and flight of the UAV at the study site, shortening total time per inspection. 

Moreover, the usage of optimized data transfer and storage technologies can reduce the transfer 

time necessary, leading to a reduced time necessary of the UAV pilot. Further, a general 

processing optimization was included, to offer a flexible view of the impact which might be seen 

with improved GIS hardware and software. As there are many difficult to quantify computational 
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variables which can result in improved processing, the analysis as conducted was used as a 

baseline, and processing times were reduced up to 70% in 10% increments.    

 

Results 

Validation Plot Statistics 

Across the 30 AAPS, there was a mean residual distance of 0.075 m (SE = 0.009 m) 

between the two datasets, suggesting a relatively high alignment between the two products. 

Digitization of the painted ground plots created a sample set with a mean area of 0.90 m2 (n=30, 

SE = 0.02 m2). SME classification of these plots resulted in passing and failing plots numbering 

12 and 13, respectively. Passing plots had a mean extracted area of 0.85 m2 (SE = 0.04 m2) and 

the failing class had a mean of 0.96 m2 (SE = 0.03 m2). SME review found 5 sample plots to be 

indeterminate, and they were excluded from the validation accuracy assessment. Digitized 

training data for SVM creation had a mean area of 3.66 m2 (n = 120, SE = 0.33 m2). Passing and 

failing training plots had an average area of 4.09 m2 (n = 60, SE = 0.53 m2) and 2.41 m2 (n = 60, 

SE = 0.31 m2) respectively.  

 

Model Classification Accuracy 

The validation plots for the multispectral SVM model had an overall accuracy of 92.00% 

(Table 1). Accurately classified passing validation plots had an average modeled vegetation 

coverage of 91.87% (n = 12, SE = 3.05%). Accurate failing plots had an average modeled 

vegetation coverage of 14.45% (n = 11, SE = 4.60%). The two incorrectly classified plots were 

both identified as failing by the SME. The vegetation coverage for these two misclassified plots 

was consistently high, with a mean of 97.77% coverage (SE = 0.73%). For the whole model, the 
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user accuracies were 85.71% and 100% for passing and failing respectively. Conversely, the 

producer’s accuracies were 100% and 84.62% for passing and failing. Overall, the model 

produced a kappa of 0.8408.  

All accuracy values of the RGB model exactly matched the validation values of the 

multispectral model, such as an overall accuracy of 92.00% was achieved by the RGB model 

(Table 2). Differences were seen in specific coverage in each model. Validation plots accurately 

classified as passing had an average modeled vegetation coverage of 95.40% (n = 12, SE = 

2.60%), and accurately classified failing plots had an average modeled vegetation coverage of 

16.73% (n = 11, SE = 5.76%). This model misclassified the same two validation plots as the 

multispectral model, which were both identified as failing by the SME. In the RGB SVM model, 

the vegetation coverage for these two misclassified plots was once again high, with a mean of 

99.60% coverage (SE = 0.42%). The user accuracies were the same at 85.71% and 100% for 

passing and failing respectively. Similarly, the producer’s accuracies were the same at 100% and 

84.62% for passing and failing. Overall, the model produced the same kappa of 0.8408.  

 

Financial Analysis 

 In the region containing the study area, there were 182 total rain events greater than 0.25 

inches for 2019, 2020, and 2021, setting the number of average weather inspections to 61. From 

this a total of 113 total inspections were projected for this study area. Each inspection was flown 

in two branches, meaning the total number of inspection flights at this site would be 226 

annually. Expert input placed UAV lifespan to be 1,000 flight hours before costly maintenance 

leads to a likely replacement of the drone system. With each flight in the study area covering 
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approximately 1 km in a period of 20 minutes of flight, the drone would be expected to last 13.25 

years until replacement was required.  

Using the original flight data and processing times from this analysis, drone inspections 

had a cost of $194.34/km (Table 3), which was significantly larger than the $46.12/km calculated 

for the traditional inspections (Table 4). The minimal equipment of the traditional inspections 

resulted in a small proportion of the final expense at 6% (Figure 8) while the manpower 

requirements accounted for the majority of the expenses. Despite the increased cost and number 

of pieces of equipment required for the UAV inspections, equipment only accounted for 7% of 

the total per kilometer cost. The licenses required for the GIS analysis accounted for 14% of the 

total at $27.99/km. The remainder of the UAV inspection cost, and the largest portion of the 

total, was the manpower costs at $153.33/km (Figure 8). 

UAV manpower costs were over 3.5 times greater than the traditional inspection 

manpower cost of $43.57/km. The largest portion of overall drone inspections cost was the GIS 

analyst, which accounts for $121.25/km, or 62% of the total. In creating the dataset, the surface 

model, analysis of the model and report generation, the GIS analysis must spend a total of 2.43 

hrs/km (Table 5). Projected reductions in processing times from a hypothetical increase in 

processing efficiency were generally unable to produce comparable costs to traditional methods, 

with exceptions being noted at and above 50% time reductions when compared to the slowest 

hypothesized traditional inspection speed of 0.25 mph (Table 6). At 50% reduction and 0.25 

mph, costs were within 5% of each other, favoring the traditional method. The assessment of 

additional hypothesized drone inspection price reduction through flight optimization found a 

pilot time reduction of 51.6%, from 1.28 hrs/km to 0.62 hrs/km (Table 7). This reduction 

lowered the UAV inspection manpower costs 10.9%, to $136.67/km (Figure 8). Including this 
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optimized flight, comparable costs were again only seen at the lowest traditional inspection 

speed of 0.25 mph, though now only 30% processing optimization was required (Table 8). 

Further, a greater overhead cost for pipeline inspectors of 40%, in line with some higher 

estimates from the US SBA, reduced the cost difference seen between the two methods, where 

costs became comparable at a 0.25 mph traditional inspection speed against a 5% GIS processing 

increase (Table 9). 

 

Discussion 

Inspection Comparison 

The accuracy assessments of both models suggest the ability of either multispectral or 

RGB equipped UAVs to provide pipeline vegetation inspections at reasonably high accuracy 

compared to current standards. Both datasets sharing the same accuracy is surprising, as previous 

studies typically find one sensor to outperform the other (Carabassa et al., 2020; Grybas and 

Congalton, 2021; Zheng et al., 2020). From the results, it appears that the technique is promising, 

and SVM does appear to be an appropriate classification approach at this small spatial resolution. 

Several points of concern do remain, which likely warrants further evaluation of this technique.   

Of central concern is the fact that both dataset models misclassified the same two plots, 

ground samples 24 and 26. These two plots had different vegetation patterns from each other and 

were each unique in their own way from the rest of the validation plots. Plot 24 was noted to be 

marginal but failing during SME classification (Figure 9). Vegetation across this plot was rather 

evenly distributed, and no soil was visible inside the plot. The reason noted for this plot to be 

labeled failing in SME classification was the broad presence of erosion control netting in the 

areas between visible vegetation. Construction efforts often use this type of material to cover 
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bare earth it protects the surface layer of the soil from direct rain exposure, protects the complete 

displacement of applied seeds, offers some stability to the soil beneath, and is typically 

biodegradable, thus requiring minimal future maintenance. As noted by an SME, it is common to 

see this material on pipeline construction operations upon steep and otherwise difficult to 

revegetate surfaces. As this material is a permeable impermanent cover, inspectors treat it as bare 

earth in their assessments, leading this plot to be considered failing.  

The material used at this site was made of a twine type netting interwoven with straw. 

Being vegetation derived materials, they were likely a significant contributor to the failure seen 

in both models. While there are spectral differences between living vegetation and dried 

vegetative material, those nuances were not adequately captured in the SVM’s training dataset. 

Moreover, pipeline inspectors note that the presence of dry vegetation itself is not enough to fail 

a plot, and a more complete view of vegetation health must be taken for a proper assessment. 

Future studies concerned with inaccurately identifying erosion control should consider the 

creation of a third class of ground cover comprised of dry vegetation. While not yet assessed 

from our data, the hope is that areas of dry vegetative material would be flagged for further 

inspection without indicating them as outright failing or passing. Further, SVM may need to be 

evaluated against other machine learning models should a third class be created, as SVM is 

essentially binary in its classification design (Sheykhmousa et al., 2020). 

Unlike plot 24, plot 26 did present bare soil in significant enough quantities as to be 

deemed failing (Figure 10). The form of the vegetation was larger and more clumped than plot 

24, but the likely cause of misclassification is high soil moisture. Plot 26 was located downhill of 

a water seep which forms a marsh-like area on the pipeline. Water is noted for high spectral 

absorbency in the visible and NIR ranges of light, in turn reducing the soil reflections from this 
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plot. Detecting high soil moisture is possible in remote sensing with the collection of thermal 

data and calculation of NDVI from a site (Zeng et al., 2004), and would aid in avoiding this issue 

in the future. Sensors with simultaneous capture of thermal and multispectral data are not 

commonly available, with options like the Sentera 6x Thermal arriving on the market only 

recently. Future studies with access to such sensor technologies should consider conducting a 

soil moisture calculation for inclusion in surface modeling.  

Land access limitations also reduced the assessment strength of this study. With 30 

validation plots established, 25 of which were suitable for analysis, a limited range of site 

conditions was sampled. Further, landscape variability is untested, as only 15% of study area was 

available for validation plots. Varied soils are found in the study area and its immediate 

surroundings, with 21 different soil units being identified by the Natural Resource Conservation 

Service (NRCS) Web Soil Survey (Natural Resource Conservation Service, 2019). As found in 

previous research, varied soils produce unique spectral returns (Meerdink et al., 2019; Baldridge 

et al., 2009). Moreover, soil-type variability could also be impacted on pipelines due to the 

significant disturbance and mixing of soils which occurs during construction. Vegetation species 

variability can also confound spectral returns (Kokaly et al., 2017). Ultimately, additional 

samples would provide a better depiction of the accuracy and limitations of this technique.  

Another significant improvement in analysis of this type could occur with the integration 

of GIS data reflecting permit areas and management actions. All assigned boundaries of areas 

included and excluded for analysis and modeling are based on heads-up digitization. As such, 

there is the possibility that areas not intended to be included in inspections were used for either 

training or validation. Further, areas with their own management actions, like areas with erosion 

matting or wetland presence, can be evaluated separately. Being granted access to this data may 



21 
 

enable the subdivision of models into management units, where more accurate models can be 

created for known surface conditions.  

 

Financial Analysis 

 The financial analysis of our study’s scenario suggests that the tested UAV pipeline 

inspection approach will be fiscally difficult to implement in all but the most complex terrain. 

From the factors included, the analysis suggests that the traditional inspection approach, using a 

simple equipment set and lower inspector pay rate, is likely to produce lower costs than the UAV 

approach per kilometer. The greatest individual cost in the UAV inspection method was the 

projected cost of the GIS analyst. As a manpower factor, this will be difficult to avoid, though it 

is reasonable to expect that future operations may be able to reduce the time spent performing 

GIS analysis per kilometer.  As UAV efficiency increases, inspection costs become more 

comparable to traditional inspections (Figure 11).  

The scenario used for analysis is likely an overly generalized representation of the final 

form a UAV pipeline inspection might take. Future research focused on method optimization 

will likely produce an inspection scheme which better capitalizes heretofore unquantified drone 

benefits. One such unaccounted benefit is the reduction in inspection time per kilometer between 

the drone and traditional inspection approaches. Even the unoptimized flight process reduced per 

kilometer time by 30%. This time reduction per site may enable the inspection of more sites in a 

single day. As the current scenario was formed using the study area and expected annual 

inspections thereupon, overall mission wide multisite productivity increases from a single 

inspector over a single day remain an unrealized element. Exploration of these time reductions 

can be accomplished in future studies with the creation of a larger dataset of traditional and UAV 
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inspections across multiple sites. Reasonable expectations would suggest that should UAV 

inspections consistently produce a reduced on-site time compared to traditional inspections, 

implementation of the technology would enable the same number of employees to inspect a 

larger quantity of sites for the same amount of work hours.  

 UAV inspections in this study did not undergo a time reduction optimization for 

collection and data transmission. The drone used, a DJI M-200 v2 quadcopter, is a general use 

drone capable of accepting a wide range of sensors, making it an optimal choice for research and 

evaluation of various technologies. Quadcopter drones, however, can be outperformed by 

purpose-built drones with higher speed fixed wing flight, integrated multispectral collection, or 

longer flight times. As the flight optimization used in this analysis is based off of the published 

capabilities of the DJI M-200 v2, it is reasonable to suspect that another currently available drone 

may outperform these figures. Of the same thread, the GIS processing used in this study was 

following common research practices on general purpose computing machines. The hypothetical 

optimization figure used in this study generally reduces processing times to address gross 

potential improvements from the technological optimization of hardware and software used. Due 

to the nature of specialized computing suites, it would be unsurprising to find a purpose-built 

suite capable of further reducing the time needed of a GIS analyst in the UAV inspection 

process. Optimization may also find some steps used in our analysis, like the manual assigning 

of ground control points during dataset construction, may not be needed to produce pipeline 

inspection reports of the desired quality and format.  

The tested financial analysis scenario may also contain unaccounted factors creating cost 

errors in favor of UAV inspections. The use of civilian and commercial drones in the US are 

governed under a regulation set known as the Part 107 – Small Unmanned Aircraft Systems 
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regulations (Federal Aviation Administration, 2016). In these rules, §107.31 mandates that 

UAVs remain within the line of site of the flight team throughout any operations. Should a 

drone’s flight path be visually obstructed, flight crews can deploy a drone observer afield with a 

reliable means of communicating with the flight team. It is possible to seek a waiver from the 

Federal Aviation Administration to excuse this requirement, but lacking a waiver, UAV 

inspections may require increased manpower costs on some sites. Additionally, technology 

limitations may also diminish the total distance covered by a drone. Drone missions loaded 

through a mission planning software, such as the UgCS client used in this study, pre-load a series 

of waypoints which the drone will follow, even if it loses connection with a ground controller 

station. Though the flight is thusly set, many drone operating systems will instruct a midmission 

return to take-off location if they cannot re-establish communication with the controller after a 

hard-set period of time. Different manufacturers use various periods of time, so post-signal lost 

collection will be heavily dependent on the equipment selected for the mission. Signal loss may 

also vary from day to day at the same site, as many as many environmental factors from 

humidity to foliage to sunspot activity will all impact signal attenuation. Finally, unlike 

traditional inspectors, drones are generally incapable of conducting a pipeline inspection in 

precipitation or extreme cold. The downtime created by a location’s annual climate will hinder 

UAV usage to a currently unquantified degree. These unquantified factors can all lead to 

increased costs not included in this financial analysis. These factors can likely be addressed in 

future studies through a more thorough equipment evaluation, included assessment of the current 

FAA waiver process, and efforts to assess the impacts of annual climate.   

Traditional inspections contain variables and unknowns that will need to be addressed in 

future studies. One of the greatest sources of error is likely found in the self-reporting of 
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traditional inspection efficiency.   An economics performance assessment study found that self-

reporting of performance may not accurately represent objective performance (Pransky et al., 

2006). Moreover, the method with which a self-reporting survey is conducted is of high 

importance to the data’s accuracy (Peters et al., 2000; Stewart et al., 2000). Further, the given 

financial analysis does not include a precise capture of overhead costs for the traditional pipeline 

inspector and may be grossly inaccurate. Though the base rate of overhead noted by the US SBA 

is 25%, with a common maximum of 40% (Weltman, 2019), these datapoints do not specifically 

represent hazardous work, such as that which is conducted on pipelines. On many fully installed 

and operational sites, pipeline inspectors are expected to wear flame resistant gear, high visibility 

markers, hardhats, and steel toed boots. This gear suggests a hazardous exposure to employees, 

which may cause employer costs, such as insurance, to be far more expensive than a standard 

overhead amount would address. Future studies should gather more accurate data of traditional 

performance and overhead cost factors to better represent the true cost of the common inspection 

approach.  

Finally, the data created from each of these inspection processes is very different, thus the 

recording and analysis benefits of the UAV approach is difficult to quantify against a traditional 

approach. Drone collection creates a complete surface model of the site, containing fixed 

coordinates and time metrics. Traditional inspections, while capable of addressing the finer detail 

at some locations, lack a complete capture product, and instead provide limited data which the 

inspector determined to be pressing. While much of these data appear to be extractable from a 

GIS dataset, as shown in the accuracy assessment portion of this study, UAV inspections make 

wide computational assessments of the entire site possible. Potential products include the ability 

to identify and assess whole site issues, such as an underperforming seed mix, and surface 
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change at any location can be evaluated over time, which enables improved assessment of 

management actions. Should the addition of these type of products increase the industry 

valuation of UAV inspections, the increased costs of performing a UAV inspection would be 

offset by the value of the products delivered.       

 

Conclusions 

The Marcellus and Utica shale plays in the Appalachian basin have seen significant 

growth in unconventional NG production. Installation of the required midstream infrastructure 

disturbs long tracts of difficult to traverse land which can cause significant ecological impact if 

not managed. Regulations have been created to guide site inspections, which are heretofore 

completed afoot. Inspectors traversing these stretches hike across difficult terrain, creating both 

health and safety concerns. A key aspect to these inspections is the assessment of vegetation re-

establishment across the permit area. UAVs have been implemented across various industries 

due to their speed, size, and collection capabilities. Our study begins the evaluation process and 

lays foundational expectations of UAV capabilities as compared to traditional approaches in the 

energy industry.  

Both RGB and multispectral sensors, which represent a wide range of available sensors, 

were evaluated for use. The multispectral sensor allowed the inclusion of an NDVI dataset, but 

this did not appear to improve performance when evaluating SME classified plots. SVM models 

derived from each sensor set performed equally high, with both models producing erroneous 

classification on the same 2 plots. These 2 plots contained unique ground conditions not yet 

modeled for, suggesting the need for future inclusion of an additional class, or use of a thermal 
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sensor. Increased land access and accuracy assessment can provide a more robust evaluation of 

this emergent technique.  

While unable to replicate current inspectors at fine ground detail, a likely implementation 

of this technique can occur in ongoing management actions. Though current analysis shows 

UAV based inspections to be more costly than traditional approaches, the evaluation of 

additional identified factors may create a more complete picture of the relationship between 

these two techniques, and aid in reducing this cost differential. After determining effective 

performance and cost optimization, a purpose-built drone could be deployed over a pipeline 

stretch using a previously created flight plan on a regular basis. From this, models of a 

reasonably high accuracy are derived, which could in turn be used to identify larger issues 

requiring immediate responses. This tasking could cover some weekly and post-rain inspections, 

where there is a time sensitive nature to detecting large failures. Trained and certified 

professionals will still be needed in inspections, as they can seek-out conditions which the drone 

may miss; however, their time spent traversing difficult terrain would be reduced. On such 

terrain, both worker safety and cost savings may be realized. Thus, the inclusion of UAVs in 

pipeline inspection procedures appears to be a promising enterprise.    
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Figure 1. Approximately 2.3 km of natural gas pipeline used as study area for the UAV based 

evaluation of vegetation success in Northern West Virginia, USA. a) The full extent collected 

along the pipeline, with the area of vegetation assessment marked with red crosshatch. b) An 

expanded view of area enclosed in a) to enable a detailed view of the surface at the site.  Note the 

surface variance in vegetation and disturbance in the linear pipeline area as compared to the 

surrounding agricultural field.  

 

  

a) b) 



32 
 

Figure 2. Location of the ground validation plots established in the study area. Inserts show each 

of the allowed access areas of the pipeline. Red indicates plots used for validation and yellow 

indicates omitted plots 
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Figure 3. Example of training plot established to denote areas on pipeline that failed vegetative 

cover threshold.  Plot is approximately 1m square and used a 2-digit identifier outside the bottom 

right corner 
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Figure 4. Workflow used to capture remote sensor data and ground sample points. Post-

processing of the UAV data was conducted in two separate programs, with final analysis 

occurring in Esri ArcGIS Pro v2.9.2 
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Figure 5. Manually digitized training data samples for SVM classification. Samples were created 

at a scale of 1:100. There were 120 samples created, 60 for each class, with 30 per class 

established in each branch of the pipeline.  
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Figure 6. SVM classification model of the multispectral dataset using blue, green, red, and NIR 

bands with NDVI included. Green and red pixel color indicate passing or failing respectively as 

determined by the model. Inserts are included for a more detailed look at the extent available for 

validation plots. Spatial resolution of this model is 0.042 m.  
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Figure 7. SVM classification model of the RGB dataset. Green and red pixel color indicate 

passing or failing respectively as determined by the model. Inserts are included for a more 

detailed look at the extent available for validation plots. Spatial resolution of this model is 0.063 

m.  
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Figure 8. Charts depicting the proportion of each inspection method’s cost categories. The three 

categories depicted are equipment, software licenses, and manpower in blue, orange, and green 

respectively. Total per kilometer costs are given below each chart.   
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Figure 9. A detailed image taken immediately after ground plot establishment of validation plot 

24. This was one of two plots misclassified by both models. SME classification determined this 

plot to be failing due to the presence of straw-laden erosion control matting between the present 

vegetation. 
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Figure 10. A detailed image taken immediately after ground plot establishment of validation plot 

26. This was one of two plots misclassified by both models. SME classification determined this 

plot to be failing, as there were large portions of soil present within the plot. Note the darker 

color of the soil, caused by high moisture content. 
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Figure 11. Cost trends per kilometer are shown including the variables of inspector speed and 

processing time reduction. Inspector speed is shown on the lower axis and increases from left to 

right. Data processing time reduction by percentage is shown on the upper axis and increases 

from right to left. Ground inspector plots show both a 25% overhead and 40% overhead in blue 

and yellow respectively. Similarly, drone cost with and without flight optimization are shown in 

grey and orange respectively. Note that the costs cross near 0.25 mph and 70% time reduction. 

This shows the point where cost per kilometer are lower using the drone inspection method.  
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Table 1. A confusion matrix between the True classification of the plots, as determined by the 

SME classification process, and the Predicted classification derived from the SVM model 

created from the multispectral dataset.  

 

    True  
    

   Fail Pass 
 

Totals 
User 
Accuracy 

Predicted 
Fail 11 0  11 1.0000 

Pass 2 12  14 0.8571 

  Totals 13 12     

  
Producer 
Accuracy 0.8462 1.0000 

 Overall Accuracy-
> 0.9200 

         Kappa ->  0.8408 
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Table 2. A confusion matrix between the True classification of the plots, as determined by the 

SME classification process, and the Predicted classification derived from the SVM model 

created from the RGB dataset.  

 

     True     

   
 

Fail Pass Totals User Accuracy 

Predicted 
 Fail 11 0 11 1.0000 

 Pass 2 12 14 0.8571 

   Totals 13 12 
 

  

   Producer Accuracy 0.8462 1.0000 Overall Accuracy-> 0.9200 

         Kappa ->  0.8408 
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Table 3. A complete listing of projected costs to conduct a drone inspection in the study’s scenario. Equipment costs are corrected first 

to annual cost, then cost per kilometer. Manpower costs are shown in hours per kilometer to cost per kilometer. Percent of total cost is 

shown in the right column.  
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drone Inspection 

Equipment Costs         

  Item/License Cost ($) Qty Replacement Period (yrs) $/yr $/Km 
% Of Method 
Total 

  DJI M200 v2  $    6,000.00  1 13.25  $           452.83   $      1.71  1% 

  Drone Insurance  $        728.06  1 1  $           728.06   $      2.75  1% 

  M200 Battery  $        480.00  2 1.7  $           564.71   $      2.14  1% 

  Sentera 6x Multispectral Sensor  $ 13,550.00  1 13.25  $       1,022.64   $      3.87  2% 

  iPad  $        599.00  1 1  $           599.00   $      2.27  1% 

  Apple iCare  $        149.00  1 2  $             74.50   $      0.28  0% 

  Pix4d Mapper  $    3,600.00  1 1  $       3,600.00   $    13.61  7% 

  Esri ArcGIS Pro License  $    3,800.00  1 1  $       3,800.00   $    14.37  7% 

     Equipment Cost Subtotal ($/Km)  $    41.00  21% 

Manpower Costs         

  Position Hourly Rate Hourly Rate + 25%   Hrs/Km $/Km   

  Pilot  $          20.00   $                      25.00    1.28  $    32.08  17% 

  GIS Analyst  $          40.00   $                      50.00    2.43  $ 121.25  62% 

     Manpower Cost Subtotal ($/Km)  $ 153.33  79% 

             

        Drone Inspection Cost Total ($/Km):  $ 194.34    
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Table 4. A complete listing of projected costs to conduct a traditional inspection in the study’s scenario. Equipment costs are corrected 

first to annual cost, then cost per kilometer. Manpower costs are shown in hours per kilometer to cost per kilometer. Percent of total 

cost is shown in the right column.  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Traditional Inspection 

Equipment Costs         

  Item/License Cost ($) Qty Replacement Period (yrs) $/yr $/Km % Of Method Total 

  iPad  $        599.00  1 1  $           599.00   $      2.27  5% 

  Apple iCare  $        149.00  1 2  $             74.50   $      0.28  1% 

     Equipment Cost Subtotal ($/Km)  $      2.55  6% 

Manpower Costs         

  Position Rate ($/hr) Rate + 25% ($/Hr)   Hrs/Km $/Km   

  Pipeline Inspector*  $          20.00   $                      25.00    1.74  $    43.57  94% 

          

        Traditional Inspection Cost Total ($/Km):  $    46.12    
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Table 5. Times of different collection and processing steps needed for drone collection. Times 

were first recorded in minutes and converted to hours. Corrections were then made hours needed 

to produce one kilometer of results. Drone pilot tasks are in the upper section, totaling in blue. 

Orange contains the GIS analyst subtotals, with the GIS analyst total in green.  

 

Collection (Adjusted to min/Km) 

 Time (Min) Time (Hr) 

Set Up 30 0.50 

Calibration 2 0.03 

Flight 20 0.33 

Moving Pics to Computer 25 0.42 

Pilot Total (Hr/Km): 1.28 

   

Processing (Adjusted to min/Km) 

 Time (Min) Time (Hr) 

Align 45 0.75 

Set GCP 30 0.50 

Products 20 0.33 

Processing Subtotal (Hr/Km): 1.58 

Modeling 

 Time (Min) Time (Hr) 

Load 15 0.25 

Mosaic 2 0.03 

Calculate NDVI 1 0.02 

Clip 1 0.02 

Check Training Features 20 0.33 

Train SVM 1 0.02 

Reclassify 1 0.02 

Total 41 0.68 

Modeling Subtotal (Hr/Km): 0.34 

Analysis and Report Creation 

 Time (Min) Time (Hr) 

Analysis (Review) 30 0.50 

Report 30 0.50 

Total 60 1.00 

Analysis and Report Subtotal (Hr/Km): 0.50 

   

GIS Analyst total (Hr/Km): 2.43 

 



47 
 

Table 6. Proportionate comparison of the cost per kilometer, calculated as traditional / drone cost for the original flight times and 

inspector overhead costs. Proportionate comparisons are shown across variances in inspector walking speed and GIS processing time 

reductions achieved through more efficient computing. Traditional inspections are applying a 25% overhead. Results closer to 1 

denote costs closer in similarity. Cells containing values with less than 10% difference, or which favor drone inspections are 

highlighted in green.  

 

$/Km Proportional Cost Comparison 

   Drone Processing Efficiency Increase 

   0% 5% 10% 20% 30% 40% 50% 60% 70% 

Inspector Speed (mph) 
25% Overhead 

0.25 0.72 0.74 0.75 0.80 0.84 0.89 0.95 1.02 1.10 

0.5 0.40 0.41 0.42 0.44 0.47 0.50 0.53 0.57 0.61 

0.75 0.29 0.30 0.31 0.32 0.34 0.36 0.39 0.41 0.44 

1 0.24 0.24 0.25 0.26 0.28 0.30 0.32 0.34 0.36 

1.25 0.21 0.21 0.22 0.23 0.24 0.26 0.27 0.29 0.31 

1.5 0.18 0.19 0.19 0.20 0.22 0.23 0.24 0.26 0.28 

1.75 0.17 0.17 0.18 0.19 0.20 0.21 0.22 0.24 0.26 

2 0.16 0.16 0.17 0.17 0.18 0.20 0.21 0.22 0.24 
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Table 7. Time budget for drone collection using more optimized flight settings and better data 

transfer technology. Figures are calculated from advertised capabilities of the used drone system.  

 

Optimized Collection (Adjusted to min/Km) 

 Time (Min) Time (Hr) 

Set Up 15 0.25 

Calibration 2 0.03 

Flight 10 0.17 

Moving Pics to Computer 10 0.17 

   

Pilot Total (Optimized, Hr/Km): 0.62 
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Table 8. Proportionate comparison of the cost per kilometer, calculated as traditional / drone cost for the optimized drone flight times 

and original traditional inspection overhead. Proportionate comparisons are shown across variances in inspector walking speed and 

GIS processing time reductions achieved through more efficient computing. Traditional inspections are applying a 25% overhead. 

Drone flight times have been optimized in this scenario Results closer to 1 denote costs closer in similarity. Cells containing values 

with less than 10% difference, or which favor drone inspections are highlighted in green.  

 

$/Km Proportional Cost Comparison 

   Drone Processing Efficiency Increase with Flight Optimization 

   0% 5% 10% 20% 30% 40% 50% 60% 70% 

Inspector Speed (mph) 
25% Overhead 

0.25 0.78 0.81 0.83 0.88 0.94 1.00 1.08 1.16 1.26 

0.5 0.43 0.45 0.46 0.49 0.52 0.55 0.60 0.64 0.70 

0.75 0.32 0.33 0.34 0.36 0.38 0.41 0.44 0.47 0.51 

1 0.26 0.27 0.27 0.29 0.31 0.33 0.36 0.38 0.42 

1.25 0.22 0.23 0.24 0.25 0.27 0.29 0.31 0.33 0.36 

1.5 0.20 0.21 0.21 0.23 0.24 0.26 0.28 0.30 0.32 

1.75 0.18 0.19 0.20 0.21 0.22 0.24 0.25 0.27 0.30 

2 0.17 0.18 0.18 0.19 0.21 0.22 0.24 0.26 0.28 
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Table 9. Proportionate comparison of the cost per kilometer, calculated as traditional / drone cost for the optimized drone flight times 

and the increased traditional inspection overhead. Proportionate comparisons are shown across variances in inspector walking speed 

and GIS processing time reductions achieved through more efficient computing. Traditional inspections are applying a 40% overhead. 

Drone flight times have been optimized in this scenario Results closer to 1 denote costs closer in similarity. Cells containing values 

with less than 10% difference, or which favor drone inspections are highlighted in green.  

 

$/Km Proportional Cost Comparison 

   Drone Processing Efficiency Increase with Flight Optimization 

   0% 5% 10% 20% 30% 40% 50% 60% 70% 

Inspector Speed (mph) 
40% Overhead 

0.25 0.88 0.90 0.93 0.98 1.05 1.12 1.20 1.30 1.41 

0.5 0.48 0.50 0.51 0.54 0.58 0.62 0.66 0.72 0.78 

0.75 0.35 0.36 0.37 0.40 0.42 0.45 0.49 0.52 0.57 

1 0.29 0.30 0.31 0.32 0.35 0.37 0.40 0.43 0.47 

1.25 0.25 0.26 0.26 0.28 0.30 0.32 0.34 0.37 0.40 

1.5 0.22 0.23 0.24 0.25 0.27 0.29 0.31 0.33 0.36 

1.75 0.21 0.21 0.22 0.23 0.24 0.26 0.28 0.30 0.33 

2 0.19 0.20 0.20 0.21 0.23 0.24 0.26 0.28 0.31 
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Appendix A.  

Each image captures a different sheet from the Excel model developed to calculate and output cost comparison analysis for the drone 

and traditional inspections.  
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