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Abstract

Post Processing Precise Point Positioning Solutions Using Parameter
Optimization

Maria Gonzalez

Precise Point Positioning (PPP) technique can offer position solutionswith centimeter-level accu-
racy by fusingprecise satellite orbits and clockswith un-differenced, dual-frequency, pseudo-range,
and carrier-phase observables. PPP presents a compelling alternative to Differential Global Posi-
tioning Systems, with the benefit that it only requires a single receiver and does not require simulta-
neous observations frommany stations,making it appealing for ongoing research onhydro-graphic
survey applications. The National Oceanic and Atmospheric Administration has been working on
a buoy system tracked with a Global Positioning Systems receiver and Inertial Measurement Unit
sensor using the PPP technique. In the interest of obtaining accurate measurements, this data is
post-processed using a software package for position navigation with tight Inertial Navigation Sys-
tem capabilities developed by the Jet Propulsion Laboratory, this is GNSS Inferred Positioning
Systems (GIPSYx).
GIPSYx Software allows finely controllable user inputs for selectable models and configurations.
This flexibility allows fitting the right models for different data sources but requires a tuning pro-
cess to find suitable configurations. A processing strategy for buoy data withGIPSYx positioning
software is described and a method to assess solutions to automatically optimize the process of
finding these manually tuned model parameters is provided. Other data sources are considered to
generalize this method and prove the concept of optimizing positioning software configurations
from output solution evaluation using black-box optimization.
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1.1. MOTIVATION AND PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

1.1 Motivation and Problem Statement

For many applications, Global Navigation Satellite Systems (GNSS) data are the main source of

positioning, navigation, and timing information [1]. Precise Point Positioning (PPP) is a localiza-

tion technique that takes advantage of correction services to remove GNSS system errors. Using

one GPS receiver removes the need of having a base station in range like in relative and differen-

tial positioning techniques, making it attractive for ongoing research on sea tide analysis, seafloor

and surface mapping, or other applications like construction, land surveying, autonomous or as-

sisted driving [1, 2, 3, 4, 5]. For hydro-graphic survey applications, the National Oceanic Atmo-

spheric Administration (NOAA) has been working on a GPS-tracked buoy system[6]. A receiver

is mounted on the buoy and deployed in the ocean in multiple locations close to stations that pro-

vide ground-truth water level data. These buoys take water level measurements that are used for

many marine research applications. Since PPP requires no local reference station network to be

maintained during buoy operations, this positioning technique is considered. PPP comes with its

limitation as it not only requires access to GNSS precise corrections that are not always available

in real-time, it takes time for solution convergence to decimeter-level [7]. This problem can be

mitigated by including multiple GNSS constellations [8, 9] and or integrating Inertial Navigation

Systems (INS) [10, 11]. For this reason, an Inertial Measurement Unit (IMU) is mounted to the

buoy to complete this system. In the interest of obtaining accurate measurements, these data are

post-processed using a software package for position navigation developed by the Jet Propulsion

Laboratory (JPL).

TheGNSS processing software, GNSS Inferred Positioning Systems for Real-Time or Post-Process

(GIPSYx), newly developed by JPL, is a redesign of GIPSY-OASIS. It is capable of real-time and
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1.2. LITERATURE REVIEW CHAPTER 1. INTRODUCTION

post-processed GNSS orbit and clock determination, precise orbit determination for Low-Earth

Orbiter (LEO), and kinematic or static PPP as well as a tight INS capability [12].

In order to post-process buoydatawithGIPSYx, the user configures themain executableRealTime

GIPSYx (RTGx) using the input tree. The processing strategy is defined by the settings specified in

the file. In the input tree, the user can specify filter parameters, which define the parameters to be

estimated, the models to be applied, and other global configurations. Some default configurations

are unsuitable for buoy data processing, so a tuning process involves defining the filter parameters

for the states to be estimated. The tuning process is derived from assessing the output solution

that contains position and residual data to verify that the correct models and parameters are being

applied. While defining a processing strategy for buoy data with GIPSYx, it was found that the

buoy data solution was sensitive to stochastic model parameters for each estimated state. These

are process and measurement noises, a priori values, and modeling as white noise or random walk

processes, evenwhen suggested values from the literaturewere used [13]. Then, amethod to assess

solutions automatically by optimizing the process of finding thesemanually tuned filter parameters

is explored. Other data sources are considered to generalize this method and prove the concept

of optimizing positioning software configurations from output solution evaluation. This works is

motivated with the intention to develop a tool for PPP/INS processing with the GIPSYx software

so that it can be used for buoy data By NOAA or anyone with access to the positioning software.

1.2 Literature Review

Formany applications, GNSS data are the primary source of information. For instance, Global Po-

sitioning System (GPS)-tracked buoys deployed in the ocean have been commonly used to collect

environmental data for many applications like sea level monitoring, tide correction, flood control,

3



1.2. LITERATURE REVIEW CHAPTER 1. INTRODUCTION

and pollution monitoring, among others [14, 15, 2]. For this and many other applications, rely-

ing on a single receiver to obtain cm-to-dm accuracy level [16] has increased the interest in the

PPP technique such that improving accuracy and convergence time reduction remains an active

research area [17, 18, 19]. Since its first introduction [20], the Kalman Filter approach has been

widely used for kinematic PPP processing [21]. In PPP processing, estimated parameters can be

constant or change over time, depending on the data or the processing strategy. For the parameter

changes that occur over time to be correctly reflected in the data, selecting and tuning the filter pa-

rameters are crucial in the data processing stage. There is a close connection between the quality

of the estimation filter and the a priori information to set appropriate prediction andmeasurement

models’ noise covariance matrices. To get around this issue, an adaptive robust Kalman filter was

proposed in [22], where a balance between the contributions of seen information and information

projected by the dynamic systemmodel is achieved. In [23], a recursive Least-Squares (LSQ)with

additive parameters was proposed to not need to define the noise structure of the related param-

eters. The GIPSYx positioning software allows the user to define filter configuration parameters

that define the noise covariance matrices of the prediction and measurement models. A process-

ing strategy considers the noise structure initialization and the correction models available. For

instance, in [24] the processing strategy for estimating troposphere gradients using PPP with the

GNSS Inferred Positioning Systems (GIPSY) software consisted in reducing the sigma values for

the stochastic adjustment of the wet zenith delay and considering a different mapping function

compared to default strategy within the positioning software. In [25], and earlier version GIPSYx

software, namedGIPSY, is used in an iterative approach to varying filter parameters. A priori sigma

and process andmeasurement noise values for the stochasticmodel parameters of the troposphere

time delay were manually adjusted until the solution reached to an optimal solution convergence.

4



1.3. THESIS ORGANIZATION CHAPTER 1. INTRODUCTION

In this thesis, filter parameters for the GIPSYx software are varied with an optimization algorithm

to find adequate parameters for the processed data.

1.3 Thesis Organization

This thesis is organized in the followingmanner. Chapter 2 reviews the fundamentals of GPS posi-

tioning by defining the generic observation models and describes a simple derivation of the linear

observation and correction models considered and used. It defines a classic Kalman Filter (KF)

to illustrate the KF approach integrated into the positioning software used in this work. Then, it

explains how the explained concepts play a role within the positioning software to describe a pro-

cessing strategy and its considerations. Chapter 3 describes the processing strategy for PPP with

the positioning software. Then it defines how to optimize the parameter selection from the pro-

cessing strategy with a Genetic Algorithm by describing the implementation. Chapter 4 describes

the data used and their collectionmethod. Chapter 5 then shows the results and performs a quali-

tative and quantitative comparison of solutions. Finally, Chapter 6 concludes the thesis work with

an overview of the topics covered and provides suggestions on other uses of the findings for this

work.

5
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2.1. INTRODUCTION CHAPTER 2. BACKGROUND

2.1 Introduction

In this chapter, an overview of GPS fundamentals is provided and extended to form a linear ob-

servation model for PPP and described the error correction models used. The main executable in

GIPSYx is RTGx, and it follows a KF approach that carries the estimation process using a forward

filter and smoother filter over all time for post-processing, so these concepts are reviewed to un-

derstand how the modifications to the input tree define how RTGx processes data.

2.2 Fundamentals onGPS Positioning

In themost straightforward idea, GNSS can be thought of as a timing systemwhere satellites trans-

mit coded signals at exact times [26]. The user receives these signals at a different time. The time it

takes for each signal to travel from a satellite to a user’s antenna is estimated, and distance is calcu-

lated. The coded message also contains ephemeris data, which is satellite position information at

the time of transmission. In this system, to solve for the three position components and time delay

at least four satellites are needed to compute a position solution [27]. This conceptual description

considers code measurements, but in practice, code and carrier phase measurements are used to

enable high-precision GNSS positioning. Positioning can be either code or carrier base. Standard

positioning is usually code based and precise positioning is carrier based. Figure 2.2.1 presents the

pseudo range observation model and lists the main source of errors present in this signal.

These error sources group into three categories: due to propagation medium model uncertainty

(e.g, Troposphere and Ionosphere delay), control segment errors, which are errors in the broadcast

orbits and clocks contained in the navigation message and measurement noise and RF interfaces,

7



2.2. FUNDAMENTALS ONGPS POSITIONING CHAPTER 2. BACKGROUND

Figure 2.2.1: Pseudorange Measurement content.

that are noises specific to receivers and signal reflections (multi-path). Now, the generic model for

pseudorange measurements that include these errors is described as:

ρku = rku + c[δtu − δtk] + Ikρ + T k
ρ + ϵkρ (2.1)

In 2.1 Superscriptkdenotes to satellite index, and subscriptudenotes the user. Then rku represents

the geometric range to each satellite in view, c is the speed of light in units ofmeters per second and

δtu − δtk are the satellite and receiver clock bias in units of seconds. The satellite or transmitter

clock bias is usually supplied by the navigation message so we can rewrite as:

ρku = rku + cδtu + Ikρ + T k
ρ + ϵkρ (2.2)

ThenTk
ρ is the signal delay due to the troposphere and Ikρ is the ionosphere delay in units ofmeters,

which refers to the delay introduced by atmospheric effects during electromagnetic wave propaga-

8



2.2. FUNDAMENTALS ONGPS POSITIONING CHAPTER 2. BACKGROUND

tion. Then ϵ are other un-modeled effects in units of meters. The geometric range rku is the Eu-

clidean distance between the satellite and the receiver coordinates at transmission and reception

time and it is defined as:

rku =
∥∥rk − ru

∥∥ =
√
(xk − xu)2 + (yk − yu)2 + (zk − zu)2 (2.3)

Compared to the code counterpart, carrier phase observations are found to have a two-order of

magnitude reduction in the noise level[16]. There is, however, an ambiguity with regard to obser-

vations of the carrier phase since only a fractional part of a carrier phase signal is measured by the

receiver [28].

Figure 2.2.2: Phase observation in time.

Figure 2.2.2 shows the phase observation over time,ϕ represents the total phase,α is the fractional

initial cycle and β is the cycle count for the observation andN is the phase ambiguity. The phase

ambiguity is constant if the connection between receiver and satellite is not broken, then the cycle

9



2.2. FUNDAMENTALS ONGPS POSITIONING CHAPTER 2. BACKGROUND

count will increase over time. The loss of signal lock between satellite and receiver is referred as

“cycle slip” and every time this lock is established again there exist a new ambiguity that must be

solved for. These terms are also referred as carrier-phase bias as:

Bk
ϕ = α +Nk

ϕ = ϕu,0 −ϕk
0 +Nk (2.4)

Equation 2.4B is the phase bias. When these terms are arranged, and other corrections terms are

included, we have the following observation model for carrier-phase observations:

Φk
u = λLf

ϕk
u = rk − Ikϕ + T k

ϕ + cδtu + λLf
Bk + dkϕ + ϵkϕ (2.5)

where λLf
is the wavelength of the carrier phase to convert units of the carrier-phase cycle to units

of meters. Here, f=1,2 and for GPS,L1= 19.0 cm andL2= 24.4 cm. Thendk
ϕ are other considered

correction terms that include antenna phase center offset and variation, site displacement, phase

wind-up effect, and relativistic effects. Lastly, ϵ are other un-modeled effects. Note that the iono-

spheric effect in 2.5 causes a signal advancement compared to the pseudorange observationmodel;

therefore, the sign difference in both equations.

The observationmodels in equations 2.2 and 2.5 are then a sum of the true geometric range rku and

all modelled and estimated disturbances. If error models are applied to account for some of the

error sources display in Figure 2.2.1 then observation model equations consist of the observation,

the geometric range and a number of unknown parameters. Then the goal is to solve for user co-

ordinates (x,y, z) and clock offset δt frommeasured ranges to satellites with known coordinates.

Filter andLSQapproaches arewell establishedmethods for resolving overdeterminedGNSSprob-

lems [27]. Thesemethods solve a linearizedmodel derived from the observationmodels described

10



2.2. FUNDAMENTALS ONGPS POSITIONING CHAPTER 2. BACKGROUND

above and different approaches are taken depending on the positioning technique implemented.

2.2.1 Precise Point Positioning

PPP combines precise orbit and clock products with un-differenced, dual-frequency, code, and

carrier-phase measurements in its technique [20]. Precise orbit and clock products are obtained

from a global network of GNSS reference stations. A meter-level positioning application does not

generally require very accurate error models when processing pseudorange observables [27]. For

PPP, accurate error models must be considered to achieve centimeter-level accuracy. PPP formu-

lates the functional models ( observation model in equation 2.2 and 2.5) relating the GPS mea-

surements to parameters to be estimated. In general, PPP relies on parameter adjustment with the

use of the correction models. PPP begins by estimating position with meter-precision based on

a pseudorange estimation. After the high-precision carrier-phase measurements have been pro-

cessed, the position estimates are refined over time while the estimation of user positions, clocks,

tropospheric delays, and initial phase ambiguities becomes more precise.

2.2.2 Error CorrectionModels andMitigation Approaches

Correction models that heavily impact the solution and are of interest in this work are described

below. Other correction models that include satellite and site displacement effects are mentioned

but not described as they are either negligible or taken care of by the positioning software used.

The site displacement effects aremodeled according to International EarthRotation andReference

Systems Service conventions [29] and satellite effects using precise orbit and clock products. Site

displacement effects include Solid Earth tides, rotational deformation due to polar motion, ocean

loading, and earth rotation parameters. Receiver noise andmulti-path effects are absorbed in ϵ and
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resolved in the estimation process.

2.2.2.1 Atmospheric Effects: Ionospheric Delay

It is known that the first-order ionospheric effects are significantly mitigated by linearly combining

dual-frequency GNSS measurements. This is because there is a proportionality between the first-

order ionospheric delay and the carrier wave frequency, so carrier-phase and code measurements

depend on the inverse of squared signal frequency:

ρIF =
f 2
L1

f 2
L1 − f 2

L2

ρL1 −
f 2
L2

f 2
L1 − f 2

L2

ρL2 (2.6)

ΦIF =
f 2
L1

f 2
L1 − f 2

L2

ΦL1 −
f 2
L2

f 2
L1 − f 2

L2

ΦL2 (2.7)

Since we know fL1 and fL2, for GPS then it becomes:

ρIF = 2.546ρL1 − 1.546ρL2 (2.8)

There is however, a downside for using these data combination[27]. Themeasurement noise inρIF

gets amplified by the coefficients in ρL1 and ρL2, such that it is
√
2.5462 + 1.5462 ≈ 3meters

greater for pseudorange. Then un-modelled errors in the observation equation denoted by ϵ that

are usually in the order of 1meter for pseudorange and 1millimeter for carrier-phase, get amplified

by the magnitude of the measurement noise introduced by the Ionopheric-free (IF) combination.
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2.2.2.2 Atmospheric Effects: Tropospheric Delay

The delay in the zenith direction can be modeled using a specific mapping factor as a function of

elevation angle to satelliteM(elk) orM for simplicity. For PPP, mapping functions that account

for the dry and wet components of the zenith time delay separately are necessary for increased

accuracy. Depending on the strategy used some common mapping function are Vienna Mapping

Function 1 and Niell mapping function among others [30]. Then the tropospheric refraction can

be modeled as:

T = Tdry.Mdry + Twet.Mwet (2.9)

This equation can be rewritten to include a nominal term and a deviation from it’s nominal:

T = T0 +Mwet∆Twet (2.10)

Where:

T0 = T0,dry .Mdry + T0,wet .Mwet (2.11)

The wet and dry component are included, the dry component accounts for∼ 90% of the to total

delay[31], so the dry component is well approximate with a model. However, the dry component

is estimated as unknown parameter along with the receiver position and clock offsets: A deviation

Mwet∆Twet of the nominalT0,wet.

2.2.2.3 Carrier-Phase Ambiguities

For double-difference data using two receivers phase biases are eliminated. For PPP, phase bias

can be absorbed in the un-differenced ambiguities and resolved as real numbers in the estimation
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process[32]. Carrie-phase biases can be taken as constants as long as there is no loss of lock of the

signal (continuous phase arcs), andmodeled as white noise processes when a cycle-slip is encoun-

tered. Nonetheless, several studies are still being conducted in integer ambiguity resolution with

un-differenced measurements [33, 32].

2.2.3 Linear ObservationModel

From observation equations in 2.2 and 2.5 we form a simple linear observationmodel considering

a IF linear combination:

Y = HX (2.12)

Where the vector parameters to estimate in this case are:

X = [dx, dy, dz, cδt,∆Twet, B
1, · · · , Bk, · · · , Bn]T (2.13)
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ThenH is the Design Matrix that include the mapping factorMwet as described in 2.10. Here, n

denotes the number of satellites:

H =



x0−x1

ρ10

y0−y1

ρ10

z0−z1

ρ10
1 M1

wet 0 · · · 0 · · · 0

x0−x1

ρ10

y0−y1

ρ10

z0−z1

ρ10
1 M1

wet 1 · · · 0 · · · 0

...
...

...
...

...
...

...
...

x0−xk

ρk0

y0−yk

ρk0

z0−zk

ρk0
1 Mk

wet 0 · · · 0 · · · 0

x0−xk

ρk0

y0−yk

ρk0

z0−zk

ρk0
1 Mk

wet 0 · · · 1︸︷︷︸
k

· · · 0

...
...

...
...

...
...

...
...

x0−xn

ρn0

y0−yn

ρn0

z0−zn

ρn0
1 Mn

wet 0 · · · 0 · · · 0

x0−xn

ρn0

y0−yn

ρn0

z0−zn

ρn0
1 Mn

wet 0 · · · 0 · · · 1



(2.14)

And Y corresponds to the pre-fit residuals:

Y =



ρ1 − r10 + cδt1 − T 1
0

Φ1 − r10 + cδtk − T 1
0 − λw1

...

ρn − rn0 + cδtn − T n
0

Φn − rn0 + cδtn − T n
0 − λwn


(2.15)

Note that in this case, λw is included, for a case where the phase wind-up is accounted for. These

equations may include other terms depending on the error model corrections used. Then solving
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2.12 with a simple LSQ adjustment, user position can be estimated using the pre-fit residual as:


x

y

z

 =


x0

y0

z0

+


dx

dy

dz

 (2.16)

This derivation shows a simplified estimation process. However, in order to described a filter im-

plementation that carries the estimation process necessary to solve for all unknown parameters,

the KF approach found in textbooks is described[13], augmenting the linear observation model

equation above. For this, a measurement model for Z derived from 2.12 and a state space model

forX is defined as :

zt = Htxt + vt (2.17)

xt = Φt−1xt−1 + wt−1 (2.18)

With t denoting the epoch, and H and Φ being the design matrix and state transition matrix re-

spectively. Then v and w are introduced as the measurement and process noises. Here, the state

vector takes the form:

X = [x, y, z, cδt, Tz, B
1, · · · , Bk, · · · , Bn]T (2.19)

An update step and a prediction step are performed at each epoch by the KF. Measurement residu-

als are scaled by the KalmanGain (K) to update the state estimates. Then, a state vector’s expected

squared error norm is used to calculate the Kalman gain, and a covariancematrixP drives the pre-
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cision of the estimates. The prediction step becomes:

x̂− = Φt−1x̂
+
n−1

P−
t = Φt−1P

+
t−1Φ

T
t−1 +

∑
Q,t−1

(2.20)

Then the update step is as follows:

Kt = P−
t HT

t (HtP
−
t HT

t +
∑

R,t)
−1

x̂+
t = x̂−

t +Kt(zt −Htx̂
−
t )

P+
t = (I −KtHt)P

−
t

(2.21)

The upper indices ‘ - ’ and ‘ + ’ refer to a priori and a posteriori estimation and the terms
∑

Q,t
and∑

R,t
represent the process andmeasurement noise covariancematrices respectively. Here, Q and

R are provided by the user, and the performance of the filter is affected by the selection of Q and

R for different applications. The trial and error approach for selecting Q relies on user experience

and background.

2.3 GIPSYx Software

The filter and smoother algorithms in the RTGx software apply a Square Root Information Filter

(SRIF) based on the formulation described by Bierman in [34] and the GNSS/INS integration in

RTGx uses precise ephemeris information and raw inertial data to estimate the GNSS observables

within the SRIF [35]. The general process flow forGIPSYx is shown in Figure 2.3.1. GIPSYx refers

to the software’s collection of tools and executable modules. The forward and smoother filters are

carried out by RTGx, which is the main executable. It takes as input a tree file that defines most
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configurations for a RTGx execution. Before running the main executable RTGx, there is an initial

data editing step, carried out by the GNSS Data Editing (GDE) module, that cleans the data for

phase breaks and gross outliers so that RTGx processes it to fit model parameters.

Figure 2.3.1: GIPSYx Process Flow.

2.3.1 GIPSYx for Precise Point Positioning

The SRIF formulation in RTGx follows a KF approach like the one described in 2.20 and 2.21 but

deterministic and stochastic time updates require an SRI-factorized covariance matrix:

P = (RTR)−1 (2.22)

Where

z = Rx+ v (2.23)
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solving for the n-element state:

x = (x1, . . . , xn) (2.24)

The full derivation of these equations are detailed in [34]. Instead, focus on 2.23where the set of si-

multaneous equation is denotedby the square-rootmatrixR for a SRI-factorized covariancematrix

P. For PPP, in addition to estimating position solutions and clock offset, other parametersmust be

estimated as well as. These are Troposphere ZenithWet delay and receiver clock bias. Filtering and

smoothing parts of the algorithm in RTGx can be simplified to a standard least-squares algorithm

if we assume parameters are constant in time [36]. However, tropospheric zenith delay, as well

as receiver and transmitter clock errors, vary over time. These parameter errors periodically have

process noise injected into the filter. In the case of stochastic time updates for parameters treated

as first order Gauss-Markov processes, a single-variable time update function takes the form:

Q(xj(t+ 1)−Mxj(t)) + v̄ = 0 (2.25)

Here,M andQ are determine by correlation time τ , update interval∆t, and steady state process

noise σp. when τ > 0:

M = e
−∆t
τ , Q = σp ∗

√
1−M2 (2.26)

for τ = 0, meaning a white-noise parameter:

M = 0, Q = σp (2.27)
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Then for infinite time correlation, or random walk process, it becomes:

M = 1, Q = σp ∗
√
∆t (2.28)

These values define how the filter performs the estimation for the stochastic model parameters.

Theyaremanually set in the input tree and it becomesuser decision tomodel parameter adjustment

as random walk or white noise processes.

2.3.1.1 DataWeights

This is the relative weight of phase to range Observation. For static conditions carrier-phase mea-

surements are expected to be more precise than pseudorange measurements. For example, a one-

hundred-to-one ratio[27]. In the case of a moving platform with phase arch interruptions, there

are extra parameters to solve (i.e., additional carrier-phase biases) so the relative weighting is de-

creased to improve estimation.

The data sigmas are the formal error or measurement noise to be applied, then the data weight is

defined as:

DataWeight =
1

σρ,ϕ

(2.29)

we hold σρ (range) constant equal to 1 so that the relative weighting is achieved by only changing

σϕ (phase).

2.3.1.2 Postfit ResidualWindow

With RTGx , outliers can be removed by evaluating data based on defined window thresholds (de-

fined in decreasing order) for every filter and smoother pass. Data can be flagged as outliers and
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excluded or reevaluated and added back depending on threshold values after each iteration. These

windowed thresholds are set to express empirically expected values for phase and range measure-

ment data. We consider smoothed residual base editing (Post Smooth) and focus on varying the

last three values of the six defined window thresholds.

2.3.2 GIPSYx for Inertial Navigation

The INS capability implemented for RTGx is fully described in [35]. In general, error states are

estimated by comparing GNSS observables predicted by INS and measured ones. The estimated

state vector is:

X =

[
δΨ δv δr baccel bgyro δt Tw B1 · · · Bj

]T
(2.30)

Where δΨ are the three INS attitude errors defined as the difference between a Earth-centered

inertial (ECI) and body-axis frame. δr and δv are the three INS position and velocity errors in

ECI frame. baccel andbgyro are the three IMU accelerometer and gyroscope sensor biases for the

three sensor axes defined in the body axis. Then δt is the receiver clock bias and Tw is the wet

zenith tropospheric delay. Finally,B1...j are the GNSS carrier-phase bias estimates. In this system,

raw IMU measurements are corrected by feeding back sensor biases in a closed loop to reduce the

errors in the INS prediction. It should be noted that only a portion of the estimated state vector

in 2.30 are INS error states, position and velocity estimations are corrected with estimated error

states by subtraction and attitude estimation uses small-angle approximations. Full derivation of

the error-statemodel aswell as other practical implementationsneededandconsidered aredetailed

in [35].
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3.1 Introduction

In this chapter, the processing strategy considering the filter parameters is defined. Then, the op-

timization parameters are derived from the processing strategy and the optimization process is

described.

3.2 Processing Strategy

Table 3.2.1 lists themodel parameters considered and the values to bemodifiedwith a checkmark

in order to find the optimal solution.

Stochastic Model Parameter for PPP and PPP/INS
Model/Parameter INS On a priori σ Process Noise ∆ t τ
Position No ✓ ✓ x ∞
Trop wet zenith delay No ✓ ✓ ✓ ∞
Receiver Clock No ✓ ✓ x ✓
Velocity Yes ✓ ✓ x ∞
Attitude Yes ✓ ✓ x ∞
Accelerometer Bias Yes ✓ ✓ x ∞
Gyroscope Bias Yes ✓ ✓ x ∞

Table 3.2.1: Considered Stochastic Model Parameters.

Note that the system process noise update ∆t is only considered for Troposphere Zenith delay.

For the other considered parameters, this update is performed at 1 Hz. For INS integration, it is

common practice to consider a much higher raw IMU data rate [37, 38]. As a result of the shorter

integration intervals, there is a correlation between INS process noise and navigation states[13].

For 1 Hz update intervals, we set uncorrelated process noise updates (1 Hz) and vary stochastic

model parameters to propagate correlation methodically.

23



3.3. OPTIMIZATION CHAPTER 3. METHODOLOGY

• Stochastic models: Position, troposphere delay, velocity, attitude, accelerometer and gy-

roscopes biases are modeled as random walk process with constrained process noises. Re-

ceiver clock bias is modeled as a white noise process with unconstrained process noise. The

mapping function used for the troposphere delay is the Global Mapping Function (GMF).

• Data weights: The relative weight is set to 1 to 10. In this case, carrier-phase observations

are assumed to be ten times better than pseudorange observations.

• Window thresholds: The windowed thresholds for outlier deletion are 2e5, 2e3, 2.5, 1.25,

.05 and .025 for phase data and 2e5, 2e3, 12.5, 10, 5 and 2 for pseudorange data.

3.3 Optimization

Manually tuning configurable filter parameters represents a challenge. The flexibility of the posi-

tioning software allows testing multiple values for considered parameters within the configuration

file. For clarity, the values for each filter parameter that define the estimation process are referred

to as optimization parameters in this section. An optimization algorithm is used to replace user

input and evaluation and automatically perform this process to find suitable optimization param-

eters to process the data. The Genetic Algorithm (GA) is a search algorithm that belongs to the

evolutionary algorithms family and is often used for parameter selection aswell as performance op-

timization [39]. Based on Darwin’s theory of evolution, GAs are inspired by the biological world

[40]. The advantage of GAs over algorithms such as gradient-based, or brute-force methods is the

balance between exploitation and exploration that can be achieved. Brute-force methods evaluate

all the possible solutions to a problem, and information that could be derived from these possible

solutions is lost, resulting in a high computational burden. For this reason, a GA is selected as it
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can explore the benefit of balancing exploration and exploitation. From the processing strategy,

the parameters selected to be optimized are shown in Table 3.4.3. The check mark indicates that

the optimization parameter considered corresponds to a filter parameter. Note that we holdσrange

constant equal to 1 so that the relative weighting is achieved by only changing σphase.

Filter Parameter/Optimization Parameter Nominal A priori σ Process Noise σphase

Position x ✓ ✓ x
Trop wet zenith delay ✓ ✓ ✓ x
Velocity x ✓ ✓ x
Attitude x ✓ ✓ x
Accelerometer Bias x ✓ ✓ x
Gyroscope Bias x ✓ ✓ x
Data Weight x x x ✓

Table 3.3.1: Considered Parameters for Optimization.

3.4 Genetic Algorithm Implementation

Theoptimization process on selected parameters is donewith aGA. TheGA is implemented using

the open-source python library PyGAD. PyGAD provides the user with control over all aspects

of the development process by supporting a wide range of parameters [41]. Then user can define

how and what genetic operators are used and set other initialization criteria such as number of

generation or convergence criteria.

Figure 3.4.1 shows a general description of theGA. It startswith an initial set of potential solutions;

each solution is an individual, and the set of potential solutions is called a population. Each indi-

vidual has a genetic representation or chromosome. In each iteration, a measurement of fitness is

given to each solution. The fittest individuals are more likely to be selected to reproduce and form
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Figure 3.4.1: GA Flow Chart.

the new generation. By using genetic operators, selected individuals are altered to introduce new

solutions into the search plan, then this process is repeated several times until some convergence

criterion is met or the desired number of generations is reached [42].

For simplicity, the optimization on listed parameters in Table 3.4.3 is performed for two scenar-

ios. When post-processing GNSS data only, the forward and smoother filter are used with INS

off. Then, the optimization parameters for estimated states are listed in Table 3.4.1. For the case

of GNSS and IMU data, INS is turned on and so more states can be estimated. However, only the

forward filter is applied. These estimated states are listed inTable 3.4.2 alongwith the optimization

parameters for their stochastic models. In this case, the GA runs first onGNSS data only, perform-
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Filter Parameter/Optimization Parameter Nominal A priori σ Process Noise σphase

Position x ✓ ✓ x
Trop wet zenith delay ✓ ✓ ✓ x
Data Weight x x x ✓

Table 3.4.1: Considered Parameters for Optimization Step 1.

ing step one. When suitable optimization parameters for troposphere delay and data weights are

found, these are kept constant and the GA runs again with the optimization parameters listed in

Table 3.4.2, performing step two.

Filter Parameter/Optimization Parameter Nominal A priori σ Process Noise σphase

Position x ✓ ✓ x
Velocity x ✓ ✓ x
Attitude x ✓ ✓ x
Accelerometer Bias x ✓ ✓ x
Gyroscope Bias x ✓ ✓ x

Table 3.4.2: Considered Parameters for Optimization Step 2.

The population size is set to 15 individuals and the number of generation is selected after running

theGAmultiple timeswith 70-100 number of generations and observingwhen the fitness function

did not seem to increase, assuming that the GA converged.

3.4.1 Genetic Representation

A floating point representation is used. The search space is defined with ranges of values with steps

to avoid having some parents with specific optimized parameters too similar to each other. For

some of them, slight changes sometimes do not significantly affect the solution.
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Optimization Parameter Range
Position a priori σ [100,1500,100]
Position Process Noise [1,100,5]
Trop nominal [0.1,0.25]
Trop a priori σ [0.1,1]
Trop Process Noise [0.00001,0.1]
Velocity a priori σ [0.1,20]
Velocity Process Noise [0.00001,1]
Attitude a priori σ [0.1,20]
Attitude Process Noise [1e-5,1e-1]
Accelerometer Bias a priori σ [1e-8,1e-4]
Accelerometer Bias Process Noise [1e-13,1e-6]
Gyroscope Bias a priori σ [1e-2,5]
Gyroscope Bias Process Noise [1e-11,1e-4]
Data Weight [0.02,0.3]

Table 3.4.3: Search Space.

3.4.2 Fitness Function

The fitness function evaluates each individual in the population for each generation. The output

solution of RTGx can assess an individual’s fitness. The RTGx output solution contains position

and residual data, so the evaluation is performed for these two output data types.

Figure 3.4.2 shows the structure of the fitness function. This function can be thought as the black

box functionwhere it receives the parameters to be optimized and outputs a score for that solution.

Inside the fitness function box in Figure 3.4.2, the necessary calls and procedures to work around

RTGx process are defined.
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Figure 3.4.2: Fitness Function Flow Chart.

3.4.2.1 Position Evaluation

Theoutput position solution is in the form of a TimeDependent Parameter (TDP) file which con-

tains the X,Y and Z components in Earth-centered, Earth-fixed (ECEF) frame. From a graphical

stand, the user can visually asses a solution by identifying jumps, spikes or discontinuities in the

solution. Three different unwanted behaviors present in a output solution are then identified:

• Incremental Changes over time: these are given due the compounding of systemic errors

accumulated in time due to mis-modeling of parameters.

• Sudden Jumps: For a moving platform with phase arch interruptions, there are extra pa-
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rameters to solve (i.e., additional carrier-phase biases) so a unbalanced relative weighting

for phase and ranges measurements will overestimate phase biases leading to poor estima-

tion resulting in large jumps.

• Discontinuities: This is the extremecase for the situationabovewherenotonlydataweights,

other model parameters take unreasonable values and the shape of the solution is lost.

However, in order to score a solution and penalize the presence of these anomalies, the following

approach is followed: First, a smoothing filter is applied to each position vector. A small defined

data window is regressed onto a polynomial using least squares to estimate the point in the center.

Then, the window is moved forward by one data point. This process is repeated until every point

is adjusted relative to its neighbors [43]. The filter takes the data array, uses a defined window size

and a low order polynomial to fit the data. A window size that is 3% of the length of the data was

used so it adapts to different data sources and a polynomial of the 3rd order was used. The output

is a new vector with the smoothed data. The differences between the actual data and the smoothed

data are the computed errors. These errors show where anomalies happen at their peak points as

shown in Figures 3.4.3 and 3.4.4 and the maximum values of these errors or “peak points” define

the penalty for the three anomaly cases.

Anexampleof evaluating theYcomponentof anoutputposition solution for a set of sub-optimal

parameters is shown in Figures 3.4.3 and 3.4.4. Figure 3.4.3 shows the extreme case of disconti-

nuities. The highest penalty is assigned to this scenario. The errors scale up with the badness of

the solution since they contain maximum values where these anomalies occur. Note the values

for the maximum errors for both Figures 3.4.3 and 3.4.4. This method detects sudden jumps and

incremental changes, and discontinuities. The latter shows the biggest peak errors, so a penalty
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Figure 3.4.3: Fitting a Curve: Discontinuities.

Figure 3.4.4: Fitting a Curve: Sudden Jumps.
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proportional to this magnitude is assigned.

Secondly, for the case when there are no longer discontinuities and sudden jumps, incremental

changes may be overlooked. For this, a second method to detect all three anomalies but also con-

sistently detect these incremental changes is included by computing the n-th discrete difference

along the position vector so that:

xout = x(i+ n)− x(i) (3.1)

Then n is set equal to 3 to detect abrupt changes between three consecutive points. After that, a

moving average or rolling mean of the xout vector is performed by taking the average of the ini-

tial window size (fixed value) of xout and calculating the first element of the moving average. By

”shifting forward,” the subset is modified by excluding the first value of xout and including the next

value. Then the absolute values of the moving averages are considered and plotted in Figures 3.4.5

and 3.4.6 to illustrate.

Then the penalty is also the maximum value in the moving averages array. These two methods

work together to scale up or down the fitness value of a position solution and penalize undesired

behaviorswhen theother tend tooverlookoneof thedefined anomalies. Note that thesemaximum

values of the errors for both methods increase as worse solutions are evaluated so the resulting

values are assigned a negative value. Because different motions in kinematic data result in different

fitness values, the actual value of the fitness depends on the data source. Then, the position fitness

of a solution is:

PositionF itness = method1 +method2 (3.2)
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Figure 3.4.5: Moving Average: Discontinuities.

Figure 3.4.6: Moving Average: Incremental Change.
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3.4.2.2 Residuals Evaluation

It is typical for physical quantities expected to be the sum of many independent processes, such

as measurement errors, to exhibit fairly normal distributions [44]. Residuals are tested for nor-

mal/gaussian distributions to ensure that they do not reflect systemic errors in the solution. For

this, a probability plot is computedwhere the sampledata are plottedagainst thequantiles of a spec-

ified theoretical distribution. Then, a least squares is applied and the square root of the goodness

of fit coefficient, the R-value is used to penalize a carrier-phase and pseudorange residual solution:

• R > 0.98 then Residual fitness = 100

• R ≤ 0.98 then Residual fitness = -200

• R ≤ 0.6 then Residual fitness = -300

These values are arbitrary and help scale up and down the residual fitness for residual solutions

in different cases. Another way to test for whiteness is to use a more formal normality test. The

Kurtosis method is selected as it performs well with large samples [45]. Kurtosis can be calculated

by dividing the fourth central moment by the square of the variance. When a normal distribution

is considered, Fisher’s definition subtracts 3.0 from the result to yield 0. Figure 3.4.7 shows typical

values for Kurtosis tests on sample data. Fisher’s definition for a normal distribution is used to

compute the fitness of the carrier-phase and pseudorange residuals:

• kurtosis < 0 then Residual fitness = -100

• kurtosis ≥ 0 then Residual fitness = 100

• kurtosis ≥ 3 then Residual fitness = -100

34



3.4. GENETIC ALGORITHM IMPLEMENTATION CHAPTER 3. METHODOLOGY

Figure 3.4.7: Kurtosis on Different Distributions

The fitness of a solution based on residual evaluation with the two methods is:

ResidualF itness = w1ProbP lotMethod + w2KurtosisMethod (3.3)

Here w1 and w2 are assigned so that the total fitness value in Equation 3.4 scales up or down

depending on the “goodness” of the solution having in mind the negative values from position

fitness evaluation.

Fitness = PositionFitness +ResidualF itness (3.4)

The following examples will show some residuals that do not meet these criteria to show the resid-

uals evaluation method: Figure 3.4.9 shows the statistical plots for residuals in Figure 3.4.8. These

residuals correspond to a position solution with discontinuities. It is observed in Figure 3.4.9 from

theprobability plot that residual distribution is not normal distribution as empirical and theoretical

lines do not match. The probability plot for this distribution would have an R-value representing
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this mismatch, and the positive kurtosis will assign a negative fitness value for this solution.

Figure 3.4.8: Phase Residuals.

Figure 3.4.9: Residual Statistical Plots.
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3.4.3 Parent Selection andGenetic Operators.

RouletteWheel and Elitist selection are considered. With an elitist selection strategy, the best indi-

vidual will be preserved for the next generation without being altered. Then, variability is reduced,

and genetic information acquired can be exploited more effectively. The remaining individuals are

subject to roulette-wheel selection. For this, a cumulative probability of selection is computed for

each individual based on their fitness, so fitter individuals have a higher chance of being selected.

Adaptive mutation and single-point crossover are used. For adaptive mutation, the average fitness

value of the population is calculated and set as a threshold. Then, for each solution with its fitness

value, if its fitness is above the average, the solution has a mutation rate of 0.1. if its fitness value

is below average, the mutation rate is set to 0.4. For single-point crossover, two chromosomes are

split at a random crossover point. Then the offspring is a combination of the first and second parts

of the split chromosomes.
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4.1 Data Collection

Thiswork uses kinematic data to be post-processedwith RTGx considering the processing strategy

in section 3. Buoy data is provided by NOAA, and other data were collected at West Virginia

University.

4.1.1 BuoyData

This work uses data provided by NOAA in the form of Receiver Independent Exchange Format

(RINEX) files. Data is processed from a buoy deployed near the Solomons Island, MD. RINEX

file contains 1 Hz dual frequency GPS data by Trimble BD/BX940 GPS and raw IMU data logged

at roughly 2 Hz (with periodic missing samples) by Honeywell HG1120CA50 IMU. Other Buoy

data for different locations is also used to build an initial buoy model in GIPSYx. The data are 12-

24 hours long and post-processed with RTGx. Figures 4.1.2 and 4.1.1 show Solomon’s buoy at the

moment of data collection by NOAA.

Figure 4.1.1: Solomon’s Island Buoy System Set-up (Image provided by NOAA).
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Figure 4.1.2: Solomon’s Island Buoy data collection (Image provided by NOAA).

4.1.2 PIKSI Data

A set of data was obtained using the low-cost PIKSI receiver from Swift Navigation. Using the

PIKSI receiver, dual frequencymulti-constellationGNSS data and raw IMUdata logged at 100Hz

were collected bymounting the device on top of a car and driving around the Evansdale campus at

West Virginia University in Morgantown, WV. The data set is 40 min long and was processed with

GIPSYx with Smoother on and INS off and Smoother Off and INS on to also shows the benefit of
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Figure 4.1.3: PIKSI Data Collection Set-up.

tightly coupling high rate raw IMU raw data.

Figure 4.1.3 shows the data collection setup, and Figure 4.1.4 shows the ground track of the car

driven around campus using the PIKSI solution.

4.2 Reference Solution

The open-source software library, RTKLIB 2.4.2 [46], is used to post-process the PIKSI data and

determine a truth reference solution with a cm-to-dm expected level accuracy [16].

The settings used in RTKLIB are:

• PositioningMode: PPP Kinematic

• Ionosphere correction: Iono-Free

• Troposphere correction: Saastamoinen
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Figure 4.1.4: Driving Data Collection on Campus.

• Satellite ephemeris and clock: Precise

• GNSS: Yes

• Filter type: Combined: Forward and backward pass.

• ElevationMask: 5 deg

OtherRTKLIB settingwere held as default option. For buoydata, RTKLIB required further tuning

for typical default values which was out of the scope of this work. Instead, the solutions obtained

from manually tuning and optimization are used as a nominal input at each epoch in the form of a

TDP file to reduce uncertainty and observe convergence.
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5.1 BuoyData

For buoy data, only GPS data were processed in RTGx with the forward and smoother filter. Note

that, although raw IMUdatawas provided logged at 2Hz, RTGxhad difficulty processing raw IMU

data at such low rate, as the solution consistently diverged up after 30% of the data was processed.

As a result of such long-time steps, it is argued that the linearized error-statemodel used to integrate

INS accumulated toomuch integration error between integration time steps. Table 5.1.1 show the

parameters obtained frommanually tuning only GPS data where the data weight in this solution is

a one-to-five ratio, Table 5.1.2 show the resulting parameters from the optimization process.

Stochastic Model Parameter for PPP for Buoy Data
Parameter INS On a priori σ Process Noise ∆ t τ
Position No 800m 10 m√

s
1 s ∞

Trop wet zenith delay No 0.3m 0.005 m√
s

300 s ∞
Receiver Clock No 3e6 m 1e5 m√

s
1 s ∞

Table 5.1.1: Manually Tuned Buoy Data Parameters

Figure 5.1.2 shows the fitness of the best solutions in the optimization process plotted against gen-

eration number. The units of the fitness values are arbitrary as the residual fitness component is

Optimized Parameters for Buoy Data
Parameter Nominal a priori σ Process Noise
Position x 1400 m 1 m√

s

Trop 0.125 m 0.6 m 0.07 m√
s

σphase 0.09

Table 5.1.2: Optimized Buoy Data Parameters
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unit-less and scales up or down the total fitness so it remains positive. Figure 5.1.1 show the (X,Y,Z)

components in ECEF frame relative to the first coordinate in the output solution, so that initial

point is at (0,0,0). For manually tuned parameters and optimization results as well as the corre-

sponding solutions from using manually tuned parameters and optimization results as TDP input

to RTGx. In Figure 5.1.1 both TDP solutions seem to agree, then the GATDP solution is taken as

reference as explained inChapter 4 andTable 5.1.3 show the 3DResidual Sumof Squares (RSOS)

metrics that show the error analysis comparison with respect to reference solution.

Figure 5.1.1: XYZ Plot For Buoy Data

Notice that the GA solution achieves a reduction of at approximately 2 meters with respect to po-
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Figure 5.1.2: Fitness Values of Buoy Solution Over Number of Generation

Method/3D RSOS RMS (m) std (m) mean (m) variance (m)
Manual Tuning 4.81 2.43 4.15 5.91
Manual Tuning TDP 2.13 1.39 1.62 1.94
GA 1.42 0.90 1.10 0.81

Table 5.1.3: Performance Metrics for Buoy Data Solution

sition Root Mean Square (RMS) and standard deviation errors, and 3 and 5 meters with respect

to position mean and variance errors.

5.2 PIKSI Data

For this dataset, the optimization process was done in two steps as described in 3. Orbits and

clock products to be used for different constellations were downloaded from International GNSS

Service (IGS) and converted toGIPSYx orbit/clock format. Table 5.2.1 shows the resulting values
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from manually tuning filter parameters:

Stochastic Model Parameters for PPP and PPP/INS for PIKSI Data
Parameter INS On a priori σ Process Noise ∆ t τ
Position No 500m 10 m√

s
1 s ∞

Trop wet zenith delay No 0.19m 0.005 m√
s

1 s ∞
Receiver Clock No 3e8 m 1e4 m√

s
1 s 0

Velocity Yes 10m/s 5 m√
s

1 s ∞
Attitude Yes 0.2 deg 0.1 deg√

s
1 s ∞

Accelerometer Bias Yes 5e−5 m/s2 0.0001
m
s2√
s

1 s ∞
Gyroscope Bias Yes 0.2 deg/s 5e−5 deg/s2√

s
1 s ∞

Table 5.2.1: Manually Tuned PIKSI Data parameters

The resulting parameters from the first step of the optimization process are listed in Table 5.2.4.

The results of the optimization using the GA in terms of fitness value is shown in Figure 5.2.1 and

shows the progressive improvement of the solution with each generation. Note that the actual

fitness values depend on the data source because of how the position fitness is computed. Because

an elitist selection strategy is used, the fitness values remain unchanged during some generations as

no better solutionwas achieved between the last andnext generations. Figures 5.2.2 and 5.2.3 show

Optimized PIKSI GNSS Data Parameters
Parameter Nominal a priori σ Process Noise
Position x 400 m 1 m√

s

Trop 0.155 m 0.3 m 0.05 m√
s

σphase 0.1

Table 5.2.2: Optimized Parameters for PIKSI GNSS Data parameters
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Figure 5.2.1: Fitness values of GNSS PIKSI solution over number of generation

the ground track and (X,Y,Z) components for the reference solution, manually tuned parameters

and optimization results and Table 5.2.3 show the 3D RSOS metrics that show the assessment of

the solution with respect to reference solution. A lower value for each metric for the GA solution

in Table 5.2.3 shows an overall error reduction. Although the reduction of position error is below

themeter level with respect to themetrics listed in Table 5.2.3, it was still able to refine and smooth

the data further compared to the manually tuned process.

Method/3D RSOS RMS (m) std (m) mean (m) variance (m)
Smooth 12.43 2.13 12.24 4.57
GA smooth 11.69 1.99 11.52 3.98

Table 5.2.3: Performance Metrics for PIKSI GNSS Only Solution

Second, the values for the tropospheremodel and dataweights were held constant using the results
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Figure 5.2.2: PIKSI XYZ plot for GNSS only

above and trusting the performancemetrics to have a better solution after the optimizationprocess.

This follows step 2 of the optimization for the case when there is INS processing as described in

Chapter 3. Figure 5.2.4 shows the fitness of the best solutions in the optimization process plot-

ted against generation number. Figures 5.2.5 and 5.2.6 show the ground track and relative (X,Y,Z)

components in ECEF frame for the reference solution, manually tuned parameters and optimiza-

tion results.

Note that, in order to show the advantages of having an integrated GNSS/INS solution, an RTGx

runwith initially tunnedparameters using only the forward filter is shown along the other solutions
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Figure 5.2.3: PIKSI Ground Track plot for GNSS only

Figure 5.2.4: Fitness values of GNSS/INS PIKSI solution over number of generation
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Optimized PIKSI GNSS/INS Data Parameters
Parameter a priori σ Process Noise
Position 110 m 35 m√

s

Velocity 19 m/s 1e-3 m√
s

Attitude bias 19 deg 1e-3 deg√
s

Accelerometer bias 1e-06m/s2 7e-12
m
s2√
s

Gyroscope 1.219 deg/s 1e-10
deg
s√
s

Table 5.2.4: Optimized Parameters for PIKSI GNSS/INS data parameters

Figure 5.2.5: PIKSI XYZ Plot for GNSS/INS

with INS on. The filter-only solution simulates real-time processing accuracy as it does not use the

smoother filter that would not be available in real-time. Turning INS on shows a reduction of error

which is further improved as shown in Table 5.2.5 by optimizing themodel parameters considered
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Figure 5.2.6: PIKSI Ground Track plot for GNSS/INS

Method/3D RSOS RMS (m) std (m) mean (m) variance (m)
Filter 38.77 23.54 30.82 554.18
INS 25.29 11.94 22.29 142.69
GA INS 13.19 6.06 11.72 36.79

Table 5.2.5: Performance Metrics for PIKSI GNSS/INS Solution

with the INS processing strategy. The optimization achieves a reduction of approximately half the

magnitude of the position RMS, standard deviation, and mean error of the INS solution. This

reduction of error is more significant if compared to the filter-only solution. Figure 5.2.7 shows the

Cumulative Distribution Function (CDF) of the RSOS for the INS solutions. It shows the benefit

of tight INS integration with reduced error and solution convergence time. Although this benefit
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Figure 5.2.7: CDF of 3D RSOS for PIKSI INS solution
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is relevant for real-time applications and the optimization process would not be viable in a real-

time situation, it would give insight into what range of initialization filter parameters make sense

for repetitive use of the same hardware for data of similar dynamics.
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6.1. DISCUSSION SUMMARY CHAPTER 6. CONCLUSION

6.1 Discussion Summary

The processing strategy for PPP using the GIPSYx positioning software was described by focusing

in the stochasticmodels for estimated states and their parameter adjustment. Other configurations

that were user defined inputs within the positioning software were also considered so a processing

strategy for buoy and PIKSI data is defined. Process andmeasurement noise that drive the estima-

tion process are usually provided by the user, and the performance of the filter is affected by the

selection of these values for different applications. The trial and error approach for selecting pro-

cess noises relies on user experience and background. There are standards for modeling unknown

parameters for kinematic and static data, but it is user decision to model random walk or white

noise processes as well as selection of error correction models. The processing strategy with a trial

and error approach was described and optimization on stochastic model parameters was perform

to show that this manual process can be replaced by optimizing the considered parameters based

on the output position and residual solution evaluation provided. PIKSI data considered, allowed

to show the benefit of using tightly coupled PPP/INS for applications concerning buoy data like

hydro-graphic survey, where the necessity of ground reference station networks can be dismissed.

6.2 Contributions and FutureWork

The performance metrics showed a significant reduction of error for both post-processed with

GNSS/GPS only and GNSS/INS methods using the parameter optimization with a GA. For this,

an evaluation method was proposed to assess the goodness of a solution from output position and

residual solution. Although PPP can achieve high accuracy solutions, the results showed meter-

level errors with respect to the reference solution. There was some uncertainty about the quality
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of the reference solution used, which would explain these results. However, for the purpose of

comparing the solutions for this work and showing a reduction of error, the reference solutions

used provided valuable insight. Some filter parameters defined by the user were considered in the

processing strategy but not considered in the optimization process for simplicity, so further explor-

ing can be done on such configuration options. For instance, outlier deletion through windowed

thresholds was manually tuned with empirical values that can be explored with the optimization

process. Also, receiver clock bias was considered in the processing strategy but not in the optimiza-

tion process. The stochastic model for the receiver clock bias is to be tuned with some knowledge

and background on the nature of the receiver hardware. So the search space for optimized param-

eters in the model needs to be constrained, having that in mind. They were not included as it was

considered that their variation was too sensitive to output solution and the optimization process is

to be generalized, so search space with clock model included would need to be adjusted for differ-

ent types of data sources. However, this can be looked into further and added to the list of model

parameters to be optimized. Other filter configurations such as the number of iterations and er-

ror correction models (i.e. Troposphere mapping function) can be included as well. This work is

motivated by the intention to develop a tool for PPP/INS processing with the GIPSYx software so

that it can be used for buoy data by NOAA or anyone with access to the positioning software.
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