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Abstract: In finite-dimensional Euclidean space, we analyze the problem of pursuit of a single evader by a
group of pursuers, which is described by a system of differential equations with Caputo fractional derivatives
of order α. The goal of the group of pursuers is the capture of the evader by at least m different pursuers (the
instants of capture may or may not coincide). As a mathematical basis, we use matrix resolving functions that
are generalizations of scalar resolving functions. We obtain sufficient conditions for multiple capture of a single
evader in the class of quasi-strategies. We give examples illustrating the results obtained.
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1. Introduction

The theory of two-player differential games, originally considered by Isaacs [20], has grown to
be a profound and substantial theory that develops various approaches to the analysis of conflict
situations [3, 14, 15, 19, 21, 22, 24, 36, 40]. The following methods for solving game problems were
developed: the Isaacs method based on the analysis of some partial differential equation and its
characteristics, the method of stable bridges, Krasovskii’s rule of extremal aiming, Pontryagin’s
method based on alternating integration of convex sets, etc.

In [6, 7], Chikrii proposed a method of scalar resolving functions using Pontryagin’s condition
and, based on it, measurable choice theorems.

The method of scalar resolving functions was developed further to investigate linear and quasi-
linear group pursuit problems [2, 10, 18, 28–30, 38, 39]. In [8], Chikrii noted that scalar resolving
functions attract the terminal set to the images of some multivalued maps. This attraction occurs
in the conical hull of this set, which restricts the maneuverability of pursuers.

In [8, 11], for the analysis of two-player pursuit games, matrix resolving functions were proposed.
In [26], matrix resolving functions were applied to studying the group pursuit problem described
by a linear autonomous system of differential equations.

In the present paper, we consider matrix resolving functions in a linear group pursuit problem
described by a system of differential equations with Caputo fractional derivatives. It should be noted
that matrix resolving functions for solving group pursuit problems with fractional derivatives are
used for the first time. Previously, scalar resolving functions were used in [23, 25, 27] devoted to
this class of problems. We obtain sufficient conditions for multiple capture of a single evader.
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The multiple capture of a single evader in the simple pursuit problem was considered in [4, 17];
[4] investigated it in a discrete setting. In [31, 32], the problem of multiple capture of a single
evader was presented in the example of L.S. Pontryagin, and in [1, 33] it was considered in linear
differential games.

2. Statement of the problem

Definition 1 [5]. Let f : [0,∞) → R
k be an absolutely continuous function and α ∈ (0, 1). The

Caputo derivative of order α of the function f is defined to be a function D(α)f of the form

(

D(α)f
)

(t) =
1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds, where Γ(β) =

∫ ∞

0
e−ssβ−1 ds.

In the space R
k (k ≥ 2), we consider a differential game G(n + 1) involving n + 1 players: n

pursuers P1, . . . , Pn and an evader E, which is described by a system of the form

D(α)zi = Aizi + ui − v, zi(0) = z0i , ui ∈ Ui, v ∈ V. (2.1)

Here i ∈ I = {1, . . . , n}, zi, ui, v ∈ R
k, Ui and V are compact sets from R

k, α ∈ (0, 1), D(α)f is the
Caputo derivative of order α of the function f , and Ai are constant square matrices of order k× k.
Assume that z0i 6= 0 for all i ∈ I. Define z0 = {z0i , i ∈ I} to be the vector of initial positions.

Let v : [0,∞) → V be a measurable function. Let us call the restriction of the function v to
[0, t] the prehistory vt(·) of the function v at time t.

Definition 2. We will say that a quasi-strategy Ui of a pursuer Pi is given if a map U0
i is

defined that associates a measurable function ui(t) with values in Ui to the initial positions z0,
time t, and arbitrary prehistory of control vt(·) of the evader E.

Definition 3. An m-fold capture (a capture for m = 1) occurs in the game G(n + 1) if there
exist a time T > 0 and quasi-strategies U1, . . . ,Un of pursuers P1, . . . , Pn such that, for any mea-
surable function v(·), v(t) ∈ V, t ∈ [0, T ], there exist times τ1, . . . , τm ∈ [0, T ] and pairwise different
indices i1, . . . , im ∈ I such that zil(τl) = 0 for all l = 1, . . . ,m.

The aim of this paper is to obtain conditions for the solvability of the pursuit problem.

Assumption 1. For all i ∈ I, it is true that 0 ∈
⋂

v∈V

(

Ui − v
)

.

In what follows, we assume that Assumption 1 holds. We introduce the following notation:

Eρ(B,µ) =

∞
∑

l=0

Bl

Γ(lρ−1 + µ)
,

which is a generalized Mittag-Leffler function [16], where B is a square matrix of order k×k, ρ > 0,
and µ ∈ R

1; ∆ =
{

(t, τ) : t ≥ 0, 0 ≤ τ ≤ t
}

, J = {1, . . . , k},

gi(t, τ) = (t− τ)α−1E 1

α
(Ai(t− τ)α, α), τ 6= t, g(t, t) = 0,

fi(t) = E 1

α
(Ait

α, 1)z0i , Wi(t, τ, v) = gi(t, τ)
(

Ui − v
)

,

Wi(t, τ) =
⋂

v∈V

Wi(t, τ, v), i ∈ I, 0 ≤ τ ≤ t,
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where (t, τ) ∈ ∆ and v ∈ V .

Consider an arbitrary diagonal square matrix Li of order k × k of the form

Li =









λi1 0 . . . 0
0 λi2 . . . 0
. . . . . . . . . . . .
0 0 . . . λik









= diag (λi1, λi2, . . . , λik).

We identify the matrix Li with the vector (λi1, . . . , λik), understand the inequality Li ≥ 0 coordi-
natewise, and introduce the multivalued maps

Mi(t, τ, v) =
{

Li : Li ≥ 0,−Lifi(t) ∈ Wi(t, τ, v)
}

, (t, τ) ∈ ∆, v ∈ V.

By Assumption 1, for all i ∈ I, v ∈ V, and t, τ such that 0 ≤ τ ≤ t, the sets Wi(t, τ, v)
are not empty and 0 ∈ Mi(t, τ, v). By the properties of the parameters of the conflict-controlled
process (2.1), the maps Mi(t, τ, v) are measurable in τ [12]. Then the maps Wi(t, τ) are measurable
in τ [12].

Define the scalar functions

λ0
i (t, τ, v) = sup

Li∈Mi(t,τ,v)
min
j∈J

λij(t, τ, v), (t, τ) ∈ ∆, v ∈ V. (2.2)

Assumption 2. For all (t, τ) ∈ ∆ and v ∈ V, the supremum in (2.2) is attained.

Assuming that the supremum in (2.2) is attained, we define the sets

M∗
i (t, τ, v) =

{

Li(t, τ, v) ∈ Mi(t, τ, v) : λ0
i (t, τ, v) = min

j
λij(t, τ, v)

}

.

It follows from [12] that, under the above assumptions, Mi(t, τ, v) and M∗
i (t, τ, v) are measurable

in (τ, v) and closed-valued for any t ≥ 0. By the measurable choice theorem [35, Theorem 20.6], for
each i ∈ I in M∗

i (t, τ, v), there exists at least one selector measurable in (τ, v) for any t ≥ 0. We
fix these selectors L∗

i (t, τ, v) and define λ∗
i (t, τ, v) = min

j
λ∗
ij(t, τ, v). Next, define

Ω(m) = {(i1, . . . , im) : i1, . . . , im ∈ I and are pairwise different},

δ(t, τ) = inf
v∈V

max
Λ∈Ω(m)

min
l∈Λ

λ∗
l (t, τ, v).

3. Sufficient conditions for capture

Lemma 1. Suppose that Assumptions 1 and 2 hold and

lim
t→+∞

∫ t

0
δ(t, s)ds = +∞.

Then there exists a time T > 0 such that, for every measurable function v(·), v(t) ∈ V, t ∈ [0, T ],
there is a set Λ ∈ Ω(m) such that the following inequalities hold for all l ∈ Λ, j ∈ J :

∫ T

0
λ∗
lj(T, s, v(s))ds ≥ 1.
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P r o o f. Let v(·) be an arbitrary measurable function, v : [0,∞) → V . Then the inequalities

λ∗
lj(t, s, v(s)) ≥ λ∗

l (t, s, v(s))

hold for all t > 0, s ∈ [0, t], l ∈ I, and j ∈ J . Therefore, the inequalities

t
∫

0

λ∗
lj(t, s, v(s))ds ≥

t
∫

0

λ∗
l (t, s, v(s))ds (3.1)

hold for all t ≥ 0, l ∈ I, and j ∈ J . In addition,

max
Λ∈Ω(m)

min
l∈Λ

∫ t

0
λ∗
l (t, s, v(s))ds ≥ max

Λ∈Ω(m)

∫ t

0
min
l∈Λ

λ∗
l (t, s, v(s))ds. (3.2)

Since, for any nonnegative numbers aΛ(Λ ∈ Ω(m)), one has

max
Λ∈Ω(m)

aΛ ≥
1

Cm
n

∑

Λ∈Ω(m)

aΛ, where Cm
n =

n!

(n−m)!m!
,

it follows from (3.2) that

max
Λ∈Ω(m)

min
l∈Λ

t
∫

0

λ∗
l (t, s, v(s))ds ≥

1

Cm
n

t
∫

0

∑

Λ∈Ω(m)

min
l∈Λ

λ∗
l (t, s, v(s))ds ≥

≥
1

Cm
n

t
∫

0

max
Λ∈Ω(m)

min
l∈Λ

λ∗
l (t, s, v(s))ds ≥

1

Cm
n

t
∫

0

δ(t, s)ds.

Since
t

∫

0

δ(t, s)ds = +∞,

there exists T > 0 such that

1

Cm
n

T
∫

0

δ(T, s)ds ≥ 1.

Hence,

max
Λ∈Ω(m)

min
l∈Λ

T
∫

0

λ∗
l (T, s, v(s))ds ≥ 1.

Therefore, there exists Λ ∈ Ω(m) such that the following inequalities hold for all l ∈ Λ:

T
∫

0

λ∗
l (T, s, v(s))ds ≥ 1.

This inequality and inequality (3.1) imply the validity of the lemma. �
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Let V be the set of all measurable functions v : [0,∞) → V . Let us define the number

T̂ = inf{t ≥ 0 : inf
v(·)∈V

max
Λ∈Ω(m)

min
l∈Λ

min
j∈J

t
∫

0

λ∗
lj(t, s, v(s))ds ≥ 1}.

Consider the sets (i ∈ I, j ∈ J, v(·) ∈ V)

Tij(v(·)) =
{

t ≥ 0 :

t
∫

0

λ∗
ij(T̂ , s, v(s))ds ≥ 1

}

.

Define the quantities (i ∈ I, j ∈ J, v(·) ∈ V)

t∗ij(v(·)) =

{

inf{t : t ∈ Tij(v(·))} if Tij(v(·)) 6= ∅,

+∞ if Tij(v(·)) = ∅.
(3.3)

Assumption 3. For any τ ∈ [0, T̂ ], v ∈ V, l ∈ I, and J0 ⊂ J, the selector

Bl(T̂ , τ, v) = diag
(

βl1(T̂ , τ, v), . . . , βlk(T̂ , τ, v)
)

,

where

βlj(T̂ , τ, v) =

{

λ∗
lj(T̂ , τ, v), j ∈ J0,

0, j /∈ J0,

satisfies the condition Bl(T̂ , τ, v) ∈ Ml(T̂ , τ, v).

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold and

lim
t→+∞

t
∫

0

δ(t, s)ds = +∞.

Then an m-fold capture occurs in the game G(n + 1).

P r o o f. By Lemma 1, T̂ < +∞. Let v : [0, T̂ ] → V be an arbitrary measurable function and
τ ∈ [0, T̂ ]. Let us introduce functions

(

βi1(T̂ , τ, v), . . . , βik(T̂ , τ, v)
)

of the form

βij(T̂ , τ, v) =

{

λ∗
ij(T̂ , τ, v), τ ∈ [0, t∗ij(v(·))],

0, τ ∈ (t∗ij(v(·)), T̂ ],

where t∗ij(v(·)) are defined by formula (3.3). Let B∗
i (T̂ , s, v) be a matrix of the form

B∗
i (T̂ , s, v) =









β∗
i1(T̂ , s, v) 0 . . . 0

0 β∗
i2(T̂ , s, v) . . . 0

. . . . . . . . . . . .

0 0 . . . β∗
ik(T̂ , s, v)









.

Consider the multivalued maps (s ∈ [0, T̂ ], v ∈ V )

Ũi(T̂ , s, v) =
{

ui ∈ Ui : gi(T̂ , s)(ui − v) = −B∗
i (T̂ , s, v)fi(T̂ )

}

.
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By Assumption 3, B∗
i (T̂ , s, v) is a measurable selector of Mi(T̂ , s, v). Therefore, the sets Ũi(T̂ , s, v)

are nonempty for all i ∈ I, s ∈ [0, T̂ ], and v ∈ V. Hence, by the measurable choice theorem [35,
Theorem 20.6], there exists at least one measurable selector u∗i (T̂ , s, v). We define the controls of
pursuers Pi, i ∈ I, assuming

ui(τ) = u∗i (T̂ , τ, v(τ)).

By [12], the functions ui(·) are measurable. We show that these controls of the pursuers guarantee
the m-fold capture of the evader. The solution of the Cauchy problem for system (2.1) has the
form [9]:

zi(t) = fi(t) +

t
∫

0

gi(t, s)(ui(s)− v(s))ds.

By the choice of controls of the pursuers, we obtain

zi(T̂ ) = fi(T̂ )−

T̂
∫

0

Bi(T̂ , s, v(s))fi(T̂ )ds =
(

E −

T̂
∫

0

Bi(T̂ , s, v(s))ds
)

fi(T̂ ),

where E is an identity matrix. It follows from the definition of Bi(T̂ , s, v(s)) that there exists
Λ ∈ Ω(m) such that zl(T̂ ) = 0 for all l ∈ Λ. This proves the theorem. �

Assumption 4. The matrices Ai are diagonal matrices of the form

Ai =









ai1 0 . . . 0
0 ai2 . . . 0
. . . . . . . . . . . .
0 0 . . . aik









with aij ≤ 0 for all i ∈ I, j ∈ J.

Let us introduce multivalued maps (v ∈ V )

M0
i (v) =

{

Li : Li ≥ 0,−Liz
0
i ∈

(

Ui − v
)}

.

By Assumption 1, the sets M0
i (v) for all i ∈ I and v ∈ V are nonempty and 0 ∈ M0

i (v). Next,
we define functions λi(v) of the form

λi(v) = sup
Li∈M

0

i (v)

min
j

λij(v). (3.4)

Assumption 5. For all v ∈ V , the supremum in (3.4) is attained.

Assuming that the supremum in (3.4) is attained, we define the sets (v ∈ V )

Mi(v) =
{

Li(v) ∈ M0
i (v) : λi(v) = min

j
λij(v)

}

.

Next, suppose that λ
∗

i (v) is a measurable selector of Mi(v) and

δ = inf
v∈V

max
Λ∈Ω(m)

min
l∈Λ

λ
∗

l (v).
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Define ((t, τ) ∈ ∆)

a = max
i,j

(−aij),

gij(t, s) = (t− s)α−1E 1

α

(

aij(t− s)α, α
)

, t 6= s,

g(t, s) = (t− s)α−1E 1

α

(

−a(t− s)α, α
)

, t 6= s,

gij(t, t) = g(t, t) = 0.

Lemma 2. Suppose that Assumptions 1, 4, and 5 hold, and δ > 0 and aij < 0 for all i ∈ I
and j ∈ J. Then there exists T > 0 such that, for every admissible function v(·), there is a set
Λ ∈ Ω(m) such that the following inequalities hold for all l ∈ Λ and j ∈ J :

E 1

α
(aljT

α, 1)−

T
∫

0

glj(T, s)λ
∗

lj(v(s)) ds ≤ 0.

P r o o f. Let v(·) be an admissible function. Then 0 < −aij ≤ a for all i and j. Therefore, the
following inequalities hold [34] for all t ≥ 0, s ∈ [0, t], i ∈ I, and i ∈ J :

E 1

α
(aij(t− s)α, α) ≥ E 1

α
(−a(t− s)α, α).

It follows from [37, Theorem 4.1.1] that E 1

α
(z, µ) ≥ 0 for all z ∈ R

1 and µ ∈ [α,+∞). Hence, the

inequalities

t
∫

0

gij(t, s)λ
∗

ij(v(s))ds ≥

t
∫

0

g(t, s)λ
∗

i (v(s))ds

hold for all t ≥ 0, i ∈ I, and j ∈ J . Next, we have

max
Λ∈Ω(m)

min
l∈Λ

t
∫

0

g(t, s)λ
∗

l (v(s))ds ≥ max
Λ∈Ω(m)

t
∫

0

g(t, s)min
l∈Λ

λ
∗

l (v(s))ds. (3.5)

Using inequality (3.5), we obtain

max
Λ∈Ω(m)

t
∫

0

g(t, s)min
l∈Λ

λ
∗

l (v(s))ds ≥
1

Cm
n

t
∫

0

g(t, s)
∑

Λ∈Ω(m)

min
l∈Λ

λ
∗

l (v(s))ds ≥

≥
1

Cm
n

t
∫

0

g(t, s) max
Λ∈Ω(m)

min
l∈Λ

λ
∗

l (v(s))ds ≥
δ

Cm
n

t
∫

0

g(t, s)ds.

By [13, Ch. 3, formula (1.15)],

t
∫

0

g(t, s)ds = tαE 1

α
(−atα, α+ 1).
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Consider the functions (t ∈ [0,∞))

hij(t) = E 1

α
(aijt

α, 1) −
δ

Cm
n

tαE 1

α
(−atα, α+ 1).

Since aij < 0,−a < 0, it follows from [37, Theorem 1.2.1] that the following asymptotic repre-
sentation holds as t → +∞:

E1/α(aijt
α, 1) = −

1

aijtαΓ(1− α)
+O

(

1

t2α

)

, E1/α(−atα, α+ 1) =
1

atα
+O

(

1

t2α

)

.

Therefore,

hij(t) =
cij
tα

−
δ

aCm
n

+O

(

1

t2α

)

.

Consequently, lim
t→+∞

hij(t) < 0 for all i ∈ I and j ∈ J . Hence, there exists T > 0 such that

hij(T ) ≤ 0 for all i ∈ I and j ∈ J. Next, let Λ ∈ Ω(m) be such that

max
Λ∈Ω(m)

min
l∈Λ

T
∫

0

g(T, s)λ
∗

l (v(s))ds = min
l∈Λ

T
∫

0

g(T, s)λ
∗

l (v(s))ds.

Then, for all l ∈ Λ, one has

T
∫

0

g(T, s)λ
∗

l (v(s))ds ≥
δ

Cm
n

TαE 1

α
(−aTα, α+ 1).

Therefore,

−

T
∫

0

glj(T, s)λ
∗

lj(v(s))ds ≤ −

T
∫

0

g(T, s)λ
∗

l (v(s))ds ≤ −
δ

Cm
n

TαE 1

α
(−aTα, α+ 1).

Hence, the inequalities

E 1

α
(aljT

α, 1) −

T
∫

0

glj(T, s)λ
∗

lj(v(s)) ds ≤ E 1

α
(aljT

α, 1)−
δ

Cm
n

TαE 1

α
(−aTα, α+ 1) ≤ 0

hold for all l ∈ Λ and j ∈ J . This proves the lemma. �

Lemma 3. Suppose that Assumptions 1, 4, and 5 hold, aij ≤ 0, and δ > 0. Then there exists
T > 0 such that, for every admissible function v(·), there is a set Λ ∈ Ω(m) such that the following
inequalities hold for all l ∈ Λ and j ∈ J :

E 1

α
(aljT

α, 1)−

T
∫

0

glj(T, s)λ
∗

lj(v(s)) ds ≤ 0.

P r o o f. The proof is similar to the proof of Lemma 2.
�
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Assumption 6. For all v ∈ V, l ∈ I, and J0 ⊂ J , the selector

Bl(v) = diag (βl1(v), . . . , βlk(v)),

where

βlj(v) =

{

λ∗
lj(v), j ∈ J0,

0, j /∈ J0,

satisfies the condition Bl(v) ∈ M0
l (v).

Remark 1. Note that Assumption 6 does not always hold. Suppose that, in system (2.1), k = 2,
n = 1, m = 1, z01 = (1, 2), A1 is a zero matrix, and

U1 = V = {(u1, u2) : u1 = u2, u2 ∈ [−1, 1]}.

Let v = 0. Then

M0
1(0) =

{(

λ 0
0 λ/2

)

, λ ∈ [0, 1]

}

.

Therefore,

sup
L∈M0

1
(0)

min
j

λ1j =
1

2
.

Hence,

M1(0) =

{(

1 0
0 1/2

)}

and the extremal selector is λ∗
1(0) = diag (1, 1/2). However, the selector B1(0) = diag (1, 0) /∈

M0
1(0). Similarly, the selector B2(0) = diag (0, 1/2) /∈ M0

1(0).

Remark 2. If Assumption 1 holds, in particular, if the sets Ui have the form Ui = [ai1, bi1] ×
[ai2, bi2]× . . .× [aik, bik] for all i, then Assumption 6 also holds.

Theorem 2. Suppose that Assumptions 1, 4, 5, and 6 hold and δ > 0. Then an m-fold capture
occurs in the game G(n + 1).

P r o o f. Define the number

T̂ = inf
{

t ≥ 0 : sup
v(·)∈V

min
Λ∈Ω(m)

max
l∈Λ

max
j∈J

(

E 1

α
(aljt

α, 1)−

t
∫

0

glj(t, s)λ
∗

lj(v(s))ds
)

≤ 0
}

.

Then, by Lemma 3, T̂ < +∞. Let v(·) be the admissible control of the evader. Consider the sets
(i ∈ I, j ∈ J, v(·) ∈ V)

Tij(v(·)) = {t : E 1

α
(alj T̂

α, 1)−

t
∫

0

glj(T̂ , s)λ
∗

lj(v(s))ds ≤ 0}.
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Next, let

t∗ij(v(·)) =

{

inf{t : t ∈ Tij(v(·))} if Tij(v(·)) 6= ∅,

+∞ if Tij(v(·)) = ∅,
βlj(t) =

{

λ∗
lj(v(t)), t ∈ [0, t∗ij(v(·))],

0, t ∈ (t∗ij(v(·)), T̂ ],

Bi(t) = diag (βi1(t), . . . , βik(t)).

Define the controls of pursuers Pi, i ∈ I, assuming

ui(t) = v(t) −Bi(t)z
0
i .

The solution of the Cauchy problem for system (2.1) has the form [9]

zi(t) = E 1

α
(Ait

α, 1)z0i +

t
∫

0

(t− s)α−1E 1

α
(Ai(t− s)α−1, α)(ui(s)− v(s))ds.

Therefore,

zlj(T̂ ) =
(

E 1

α
(aij T̂

α, 1)−

T̂
∫

0

gij(T̂ , s)Bij(s)ds
)

z0ij =

=
(

E 1

α
(aij T̂

α, 1)−

t∗ij (v(·))
∫

0

gij(T̂ , s)λ
∗

ij(v(s))ds
)

z0ij .

It follows from the assumptions of the theorem and the definition of Bi(t) (i ∈ I, t ∈ [0,∞))
that there exists Λ ∈ Ω(m) such that zlj(T̂ ) = 0 for all l ∈ Λ and j ∈ J , which implies that an
m-fold capture occurs in the game G(n + 1). This proves the theorem. �

Example 1. Suppose that, in system (2.1), k = 2, n = 1, m = 1, z01 = (1, 2), A1 is a zero matrix,
V = {0}, and

U1 = {(u1, u2) : u1=0, u2∈[−1, 1]} ∪ {(u1, u2) : u2=0, u1∈[−1, 1]} ∪ {(u1, u2) : u1=u2∈[−1, 1]}.

Then

M0
1(0) =

{(

0 0
0 λ

)

, λ ∈
[

0, 1/2
]

}

⋃

{(

λ 0
0 0

)

, λ ∈ [0, 1]

}

⋃

{(

λ 0
0 λ/2

)

, λ ∈ [0, 1]

}

.

Hence,

sup
L∈M0

1
(0)

min
j

λ1j = 1/2.

Consequently,

M1(0) =
{

(

1 0
0 1/2

)

}

and the extremal selector is λ
∗

1(0) = diag (1, 1/2). Therefore, T̂ =
(

2αΓ(α)
)1/α

, and the control of
the pursuer P1 has the form

u1(t) =

{

(−1,−1), t ∈ [0, T1],

(0,−1), t ∈ (T1, T̂ ],
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where T1 = T̂ −
(

αΓ(α)
)1/α

. Then [9]

z1(T̂ ) = z01 +
1

Γ(α)

T̂
∫

0

(T̂ − s)α−1u1(s)ds.

Therefore,

z11(T̂ ) = z011 −
1

Γ(α)

T1
∫

0

(T̂ − s)α−1ds = 0, z12(T̂ ) = z012 −
1

Γ(α)

T̂
∫

0

(T̂ − s)α−1ds = 0.

Note that the use of scalar resolving functions, i.e., functions of the form

L =

(

λ 0
0 λ

)

,

does not allow one to get the capture since, in this case, the condition −Lz0 ∈ U1 − v is satisfied
only for the zero matrix L.

We now present conditions on the game parameters under which the capture is guaranteed
when scalar resolving functions are used.

Assumption 7. In system (2.1), the matrices Ai have the form Ai = aiE, ai ≤ 0, i ∈ I, E is
an identity matrix, and

δ0 = inf
v∈V

max
Λ∈Ω(m)

min
l∈Λ

µl(v) > 0,

where µl(v) = sup{µ ≥ 0 : −µz0l ∈ Ul − v}.

Theorem 3. Suppose that Assumptions 1 and 7 hold. Then an m-fold capture occurs in the
game G(n + 1).

P r o o f. It follows from the conditions of the theorem that the following equations hold for
all i ∈ I, j ∈ J :

gij(t, s) = (t− s)α−1E 1

α

(

ai(t− s)α, α
)

= gi(t, s), t 6= s, gij(t, t) = 0,

E 1

α
(aijt

α, 1) = E 1

α
(ait

α, 1).

Therefore, it follows from Lemma 3 that there exists a time T > 0 such that, for every admissible
function v(·) ∈ V, there is a set Λ ∈ Ω(m) such that the inequalities

E 1

α
(alT

α, 1) −

T
∫

0

gl(T, s)µl(v(s))ds ≤ 0

hold for all l ∈ Λ. Define the number

T0 = inf
{

t > 0 : sup
v(·)

min
Λ∈Ω(m)

max
l∈Λ

(

E 1

α
(alt

α, 1) −

t
∫

0

gl(t, s)µl(v(s))ds
)

≤ 0
}

.
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Next, let v(·) be the admissible control of the evader:

τl = inf
{

t > 0 : E 1

α
(aiT

α
0 , 1)−

t
∫

0

gl(T0, s)µl(v(s))ds ≤ 0
}

.

It follows from the above proof that there exists a set Λ0 ∈ Ω(m) such that the inequalities
τl ≤ T0 hold for all l ∈ Λ0. Define the controls of pursuers Pi, i ∈ I, assuming

ui(t) =

{

v(t) − µi(v(t))z
0
i , t ∈ [0, τi],

v(t), t ∈ [τi, T0].

The solution of the Cauchy problem for system (2.1) has the form [9]

zl(T0) =
(

E 1

α
(alT

α
0 , 1)−

T0
∫

0

gl(T0, s)µl(v(s))ds
)

z0l .

This equation and the definition of Λ0 imply that zl(T0) = 0 for all l ∈ Λ0. This proves the
theorem. �

Corollary 1. Suppose that, in system (2.1), the matrices Ai have the form Ai = aiE, ai ≤ 0,
i ∈ I, E is an identity matrix, Ui = V for all i ∈ I, V is a strictly convex compact set with a
smooth boundary, and

0 ∈
⋂

Λ∈Ω(n−m+1)

Intco {z0l , l ∈ Λ}, (3.6)

where IntA and coA denote the interior and the convex hull of the set A, respectively. Then an
m-fold capture occurs in the game G(n + 1).

Indeed, in this case, condition (3.6) implies that δ0 > 0 [30].

4. Conclusion

We obtained new sufficient conditions for multiple capture of the evader in the group pursuit
problem with fractional derivatives. To solve the problem, we introduced matrix resolving functions.
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