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Abstract 

 

 

Human mobility is an important theme while planning public health measures. In the case 

of infectious disease control, the scale of the outbreak can be mitigated by appropriately 

reducing the movement of people, while in chronic disease prevention, increased active 

mobilities of daily life such as walking and cycling can be effective in preventing obesity 

and non-communicable diseases. Therefore, suitable human mobility to prevent diseases, 

and promote people’s health and well-being, should be considered an important area of 

public health. 

 

Studies regarding the geographies of health, which analyze the causality between disease 

and geographical factors, have provided a wealth of research on the relationship among 

health, human mobility, and environmental factors. It has been pointed out by deductive 

mathematical modeling studies that local travel in daily life plays an important role in the 

spread of infectious diseases leading to epidemics. In addition, audit survey studies have 

found that perceptual environmental factors of pedestrians are related to the amount of 

walking. However, there have been spatial and temporal limitations, due to the 

maintenance area and update frequency of data used in previous studies, such as static 

GIS data, statistical survey-based data, and questionnaire survey-based data. Therefore, 

it has been difficult to observe local human mobility and micro-scale environmental 

elements that impact health based on actual data. In addition, most quantitative studies in 

this field have been limited to macro and static perspectives. The development of “urban 

informatics,” which is a novel interdisciplinary field that attempts to undertake a 
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quantitative analysis of complex urban phenomena by using scientific tools such as big 

data, machine learning, and statistical methods, can be expected to promote the accurate 

observation of such local mobility and micro-environmental factors. However, technical 

challenges have prevented the widespread use of big data in geographies of health. The 

present thesis aimed to contribute to the development of geographies of health by 

providing the methods that enable the dynamic micro-observation of human mobility and 

its related contexts using urban informatics approaches. 

 

First, to implement the quantitative observation of micro-scale environment factors 

related to human mobility, this thesis took a novel approach toward automatic 

neighborhood assessment by using the streetscape imagery platform. Although the 

pedestrian-friendly qualities of streetscapes promote walking, it is difficult to 

quantitatively evaluate them in a wide area, owing to the limitations of conventional field 

investigation and questionnaire surveys. This study attempted to build a statistical model 

for streetscape walkability (SW) evaluation based on quantified streetscape elements, by 

using Google Street View imagery with a semantic segmentation method. It was found 

that the predicted SW was related to active leisure walking by older females. This 

approach will contribute toward implementing a unified evaluation of the leisure-

walking-friendly streetscape in a wide area. 

 

Second, as a practice of a dynamic mobility observation, this thesis analyzed the changes 

in mobility during the COVID-19 pandemic in Japan. The effect of human mobility on 

the mitigation of the infection has been well documented; however, few studies have 

investigated the “place” where the relationship can be remarkably confirmed. By using 
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mobile phone network data, this study examined the relationship between the changes in 

mobility in working, nightlife, and residential places and the number of infected people 

in the metropolitan areas of Japan (Tokyo, Osaka, and Nagoya). The results indicated that 

the mobility in nightlife places was especially related to the COVID-19 outbreak. The 

present approach will help observe the mobility associated with a high risk of infection 

and implement infection control at appropriate places in the future. 

 

Third, this thesis attempted to examine the geographic and social contexts of the changes 

in mobility by combining mobile device-based data with social surveys. It has been 

pointed out in several studies that the amount of physical activity has declined throughout 

the world owing to the COVID-19 pandemic; however, the individual background of 

decreased physical inactivity during the pandemic in Japan has not been clearly 

understood. Based on online surveys and healthcare app data installed on smartphones, 

this study explored the relationships among physical inactivity—specifically decreased 

walking and increased sedentary behaviors—during the pandemic, individual geographic 

and socioeconomic background, changes in work situation, and the perception of anxiety 

related to infection. The results indicated decreased walking behavior in younger 

individuals and those living in high-density neighborhoods. In addition, increased 

sedentary behavior was recorded in the female population. Furthermore, while individuals 

with higher socioeconomic status (SES) were more likely to become inactive owing to 

work-from-home/standby-at-home protocols, individuals with lower SES tended to 

become inactive owing to the decreased amount of work. Decreased walking behavior 

and increased sedentary behavior were associated with a perception of high levels of 

anxiety related to the pandemic. The present approach can support the understanding of 
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individual and geographical contexts behind changes in human mobility during 

emergencies and the implementation of optimal public health measures. 

 

Although further research is needed to achieve more detailed mobility and environmental 

observations, the approaches proposed by the present thesis by applying urban 

informatics can enable the dynamical analysis of the relationship among health, human 

mobility, and environment and social contexts with multiple spatio-temporal scales. 

Furthermore, the approaches have the potential to contribute to the development of smart 

public health systems in the future by incorporated into a systematic health impact 

assessment. However, there are technical, data-related, and ethical challenges that need 

further discussion. To develop urban informatics approaches in the area of geographies 

of health, it would be necessary to establish an interdisciplinary research system and to 

validate big data using existing public statistical data or survey data. In addition, it is 

pertinent to further explore the social and geographical contexts behind the phenomenon 

for avoiding overgeneralization or over-abstraction of space. Lastly, an appropriate 

balance needs to be achieved between privacy protection versus the wider availability of 

data. 
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要旨 

 

人々の移動は、感染症流行の要因となる一方で、歩行やサイクリングといった日常生活

でのアクティブな移動が慢性疾患の予防に寄与するなど、公衆衛生対策にとって重要な要

素である。そのため健康地理学の分野では、健康とモビリティおよびモビリティに関連す

る環境について継続的な研究がなされており、演繹的なモデル研究によって日常生活の中

でのローカルな移動が感染症流行に重要な役割を果たしていることや、現地調査やアンケ

ート調査に基づく研究によって歩行者の知覚に関連する要素が歩行量に影響を及ぼすこと

が指摘されてきた。しかし、静的な GIS データや統計調査、アンケート調査に基づくデー

タなど、先行研究で用いられてきたデータには、集計単位や集計頻度による制約があり、

健康への関与が指摘されてきたローカルな流動や微細な環境要素を実際のデータから広範

囲で観察することが困難であった。そのため、この分野における定量的な研究の多くはマ

クロで静的な視点に限られた。近年、情報技術の進展を受け、ビッグデータや機械学習に

よって都市の諸現象の定量的理解を試みる都市情報学（Urban informatics）と呼ばれる分野

が発達し、分析可能な時空間スケールが拡大しつつある。これにより、ミクロスケールな

環境や動的なモビリティ変化など、従来の健康地理学研究では広域での観察が困難であっ

た要素の定量的な理解の促進が期待されるが、現時点では、技術的な課題からビッグデー

タの広範囲での活用には至っていない。本博士論文は、都市情報学的アプローチを健康地

理学的テーマに応用し、ミクロかつ動的な分析手法を提供することで、健康地理学研究の

発展に貢献することを目的とした。 

本論文では、まず、人々のモビリティに関連するミクロな環境要素の定量的な観察を実

現するために、街路景観画像プラットフォームを用いた新しい近隣環境評価手法を提案し

た。街路景観は、人々の歩行に関連する要素であり、適度な身体活動を日常生活の中で実

施するために重要である。しかし従来、街路景観を評価するためには現地調査やアンケー

ト調査が必要であり、広い範囲での評価が困難であった。本研究は、Google Street View と

セマンティックセグメンテーション手法によって街路景観を定量化し、街路景観ウォーカ

ビリティ（Streetscape Walkability: SW）を評価する統計モデルを構築した。構築したモデル

によって評価された SW は、高齢女性の余暇歩行と有意に関連し、本研究のアプローチが、

余暇歩行に適した街路景観を統一的な基準に基づいて広範囲にわたり評価する上で有用で

あることが示された。 

次に、動的なモビリティ観察の実践として、新型コロナウイルス感染症（COVID-19）

流行下のモビリティ変化と感染者数推移の関係を分析した。COVID-19 流行対策として、

モビリティ削減の効果が多くの先行研究によって示されてきたが、どの場所でのモビリテ

ィが特に流行推移と関連するのかについては検証が不十分であった。本研究では、携帯電

話の基地局ネットワークに基づく流動人口データを活用し、日本の三都市圏（東京、大阪、

名古屋）における職場、夜の街、居住地でのモビリティ変化と感染者数推移の関係を分析



viii 

 

した。その結果、夜の街のモビリティは他の場所と比べて感染者数推移との関連が強いこ

とが明らかになった。本研究のアプローチは、感染リスクが高い場所でのモビリティをモ

ニタリングし、効率的な感染対策を実施する上で有用である。 

さらに本論文では、人々のモビリティ変化の背後にあるミクロな地理的・社会的要素の

観察も試みた。COVID-19 流行対策としてのモビリティ削減は、人々の身体活動の低下を

引き起こしていることが指摘されている。しかし、日本における身体活動低下の地理的・

社会的コンテキストの検証は乏しい。そこで本論文では、スマートフォンによって取得さ

れたデータと社会調査の結果に基づき、COVID-19 流行下での歩行や座位行動の変化と、

地理的・社会的属性、仕事の変化、流行に関連する不安の関係を検討した。その結果、若

年層および高密度な地域に居住する人の歩数の減少および女性の座位行動の増加が明確に

見て取れた。さらに、社会経済的に恵まれた人は、在宅ワークや自宅待機によって非アク

ティブになる一方で、社会経済的に貧しい人は仕事の減少によって非アクティブになる傾

向が確認された。さらに歩数の減少や座位行動の増加と COVID-19 流行に関する強い不安

感との間には有意な関係が存在した。本研究のアプローチは、緊急時におけるモビリティ

変化の背後にある社会的・地理的要素を理解し、的確な公衆衛生対策を実施する上で有用

である。 

本論文が提示した都市情報学的アプローチの健康地理学研究への応用によって、健康と

モビリティの関係や、その背後にある環境要素や社会的要素を様々な時空間スケールかつ

動的に検証することが可能となることが示された。さらに、本論文のアプローチを体系的

な健康影響評価手法へと発展させることで、スマートな公衆衛生対策への活用が期待でき

る。ただし、本研究をさらに発展させていくためには、学際的な研究体制の構築や、既存

の統計調査データを用いたビッグデータの質の検証、現象や空間の過剰な一般化や抽象化

を避けるための地理的背景のさらなる探索、データの利用可能性とプライバシー保護の適

度なバランスの議論など、検討すべき課題が多く存在することを指摘した。 
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1. Introduction 

 

 

 Health is not geographically equal. The spread of emerging infectious diseases 

is heterogeneous and erratic in space owing to transportation networks (Colizza et al., 

2006), and the high mortality of residents is related to the increased poverty level of areas 

(Haan et al., 1987). Therefore, to protect and promote the health of the population, 

geographic approaches based on the theorization of the relationship among places, people, 

and health are important (Curtis et al., 2009). The history of the geographic approach to 

health dates back to the time of Hippocrates in 400 B.C. (Meade and Earickson, 2000), 

and its analytical approaches have continued to develop to the present day. In the 19th 

century, the disease mapping technique was developed to explore the cause of diseases 

(Barrett, 1998), and in the 20th century, the development of computer technology led to 

the formulation of geographic theories and methods related to health (Krieger, 2003; 

Mayer, 2009). The recent development of big data technology has provided new 

opportunities in many fields (Benjelloun et al., 2015). For a deeper understanding of the 

relationship among health, spatial location, and people, this study attempts to apply a 

novel information technology-backed approach to the study of geographies of health (also 

called “health geography”). 

 

1.1 Rise of spatial big data era 

 The rapid growth of information technology in recent years has made it possible 

for researchers to access large data sets and observe phenomena with superior algorithms 

(Agarwal and Dhar, 2014). It has been pointed out that the current progress of science 
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based on abundant digital data is the fourth paradigm, following empirical science, based 

on the description of natural phenomena, which has evolved for thousands of years; 

theoretical science, represented by Newtonian mechanics and Maxwell's equations, which 

has prevailed for hundreds of years; and computational science, based on the simulation 

of complex phenomena, which has been developed for decades (Hey et al., 2009; Miller 

and Goodchild, 2015). 

 Geographic information is also experiencing an exponential growth phase fueled 

by an increase in location data owing to location-aware and geosensing technologies, 

open geospatial data, development of smart cities, and the internet of things (IoT) 

technology (Miller, 2017a). In studies pertaining to social sciences and humanities where 

qualitative survey-based data or statistical survey-based data are usually employed 

(Kitchin, 2013), there are spatial and temporal limitations due to the location, time, and 

frequency of surveys. However, in the ongoing spatial big data era, it is expected that new 

geographic information obtained by ubiquitous and continuous mechanisms enables 

capturing spatial phenomena and conditions dynamically at an unprecedentedly detailed 

spatio-temporal scale (Kitchin, 2013; Miller and Goodchild, 2015). 

 

1.2 Progress of quantitative analysis of urban systems 

 Amid the abundance of massive geographic information, there has been a 

growing movement called “urban informatics” or “urban science” to unravel and quantify 

the complex urban systems formed by the interaction between human activities and the 

urban environment using spatial big data during the last decade. Although the 

interpretation of the relationship between urban informatics and urban science varies 

(Kitchin, 2020), according to a description from Shi et al. (2021), urban informatics is an 
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interdisciplinary approach to understanding, managing, and designing cities through 

systematic theories and methods based on new information technologies, and urban 

science is a component of urban informatics for understanding the relationships among 

human activities, places, and flows within cities. Namely, urban informatics aims for the 

application of computer technology to urban functions based on the quantitative analyses 

of urban science using big data, machine learning, and statistical analysis methods (Batty, 

2021, 2013; Kitchin, 2020). 

 The attempt to quantitatively measure the relationships between human activities 

and space or place began with the “quantitative revolution,” a movement toward 

positivistic geography in the 1950s and 1960s (Burton, 1963; Kitchin, 2006). The 

background of the movement was a backlash against traditional human geography studies 

based on the descriptive, regional, and environmentally deterministic approach, which 

ignored causality (Hubbard et al., 2002). The shift to positivism in human geography was 

supported by the development of computing technology, evolving into “spatial science,” 

which built theories on spatial phenomena based on statistical approaches (Hubbard et al., 

2002). Spatial science has contributed to the progress of spatial theories supporting 

present spatial and urban analyses, such as: mathematical modeling of classical location 

theories (Garner, 1967; Hamilton, 1967); development of the spatial interaction model, 

which generalized population movement, based on population size and distance 

(Fotheringham and O’Kelly, 1989); and development of the spatial autoregressive model, 

which integrates spatial dependency into a statistical model (Anselin, 1988). Furthermore, 

based on the criticism that spatial phenomena are not uniformly experienced and 

understood by all individuals, behavioral geography, which attempted to quantitatively 

understand the relationship between human perception and space by using the 
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psychological approach and mental mapping technique, has been developed (Hubbard et 

al., 2002). In addition, the growth of geographic information system (GIS) technology in 

the 1980s with the so-called “GIS revolution” (Yano, 2000), enables geographers to 

visualize and analyze spatial data easily. With the development of the GIS, the disciplines 

associated with the urban space have expanded to include not only geography, but also 

public health (Cromley et al., 2011), sociology (Ballas et al., 2017), and computer science 

(Tao, 2013). Even now, geographic information science and urban informatics/science 

continue to develop in an interdisciplinary manner. 

 Despite the continued development of positivistic and quantitative geography, 

there are still many issues in the field. In particular, the spatial scientific approaches to 

modeling urban or regional systems have been criticized for lack of consideration for 

humanity (Miller, 2017b). Although behavioral geographers have attempted to ascertain 

the relationship between people’s perception of space and behavior based on 

psychological concepts, they were criticized by humanistic geographers regarding their 

oversimplification of phenomena through scientific explanation, and by structuralists 

regarding their lack of consideration of the material context in which human action takes 

place owing to their over-consciousness of the minutiae of individuals’ lives (Hubbard et 

al., 2002). In addition, there were limitations of data and technology in quantitative 

research at the time (Miller, 2017b). In other words, limited data made it difficult to 

quantitatively examine the interaction between people and the material context based on 

observations of individual-level behavior and the urban environment at high spatio-

temporal resolution. 

 However, in the current situation, sensing the urban environment and human 

behavior with the help of big data will supplement the quantitative analysis of human 
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perception or experience in minute physical and social contexts, enabling more realistic 

modeling of the interactions in an urban space. For instance, it is possible to analyze the 

kind of emotions people had in a specific place from geotagged social networking service 

(SNS) posts (Nguyen et al., 2016), to observe the streetscape elements, that pedestrians 

see, from images captured by vehicles (Zünd and Bettencourt, 2021), or to determine the 

detailed lifestyle and socioeconomic background of residents or visitors in the 

neighborhood from the massive credit card information or GPS data (di Clemente et al., 

2018). As the above examples, progress of urban science can facilitate the observation of 

the micro-scale human behaviors and urban environments, which were excluded in the 

usual spatial scientific approach, and has the potential to address some of the criticisms 

of quantitative spatial analysis. 

 

1.3 Application of spatial big data for understanding human mobility 

 Human mobility is one of the topics gathering attention in the urban informatics 

studies (Shi et al., 2021). Numerous issues such as greenhouse gas emissions, air pollution, 

and traffic congestion are caused by increased human mobility owing to growing 

urbanization throughout the world (Raubal et al., 2021). This has resulted in an increased 

need for the construction of an appropriate mobility system based on big data analysis. 

This section will provide an overview of the urban informatics approach to understanding 

human mobility. 
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Fig. 1.1. Mobility analysis with big data 
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Fig. 1.1 shows a brief overview of mobility analysis by using spatial big data. 

Two types of data can be used to understand human mobility: tracking data representing 

human movement, and context data representing the environment related to human 

mobility (Raubal et al., 2021). Although traditionally, the collection of tracking data has 

required questionnaires or telephone surveys, recently, various data sources such as GPS 

(Zheng et al., 2008), Wi-Fi access points (Sapiezynski et al., 2015), smart cards for public 

transportation (Zhong et al., 2016), mobile phone networks (Deville et al., 2014), and 

credit card information (di Clemente et al., 2018) have been employed to observe human 

movement dynamically.  

The context data was available from sources with coarse spatio-temporal 

resolution before the digitization of cities (Raubal et al., 2021), and the range of the 

coverage was also limited. However, it is now possible to quantitively and longitudinally 

observe the condition of urban infrastructures pedestrians see or the degree of air pollution 

people are exposed to while walking using high-resolution satellite imagery (e.g. USGS 

EarthExplorer published by the United States Geological Survey), 3D models of cities 

(e.g. PLATEAU published by Ministry of Land, Infrastructure, Transport and Tourism in 

Japan), Google Street View (GSV) images (Alipour and Harris, 2020), and sensors 

mounted on vehicles (Apte et al., 2017). In addition, expanding volunteered geographic 

information (VGI) communities has enabled access to basic context data related to human 

mobility such as road networks or points-of-interest (POI) throughout the world (Kloog 

et al., 2018; Smirnov and Kudinov, 2021). With the ongoing development of sensing 

technologies such as drones and IoT, tracking and context data will continue to expand. 

 Although spatial big data are essential for sensing human mobility, in general, 

most of the raw data are unstructured (Batty, 2021). Therefore, machine learning or 
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statistical analysis techniques are an essential part of urban informatics along with big 

data. For example, a streetscape image by itself is just an array of pixel values; however, 

semantic segmentation, a deep learning technique, can identify the streetscape elements 

corresponding to each pixel (Zünd and Bettencourt, 2021). The GPS tracking data is also 

not significant if it only shows an individual’s travel route on a given day; however, it is 

possible to capture the mobility pattern within cities by incorporating the tracking data 

with statistical methods such as cluster analysis (di Clemente et al., 2018). Therefore, 

tracking data, context data, and machine learning or statistical analysis techniques that 

extract “meaning” from these data are necessary to understand human mobility in cities 

via high spatial resolution. 

 Based on the spatial features extracted by the techniques described above, 

previous studies have observed people’s movements at an unprecedentedly detailed 

spatio-temporal scale and provided meaningful insights into efficient public transport 

services and decarbonization efforts. For instance, the discovery of spatio-temporal 

regularity of urban mobility (Zhong et al., 2016), observation of purchasing pattern, 

mobility diversity, and social network diversity within cities by lifestyle (di Clemente et 

al., 2018), and the assessment of changes in CO2 emissions due to the introduction of 

public transportation, car-sharing, and bike-sharing (Raubal et al., 2021) have been 

conducted. 

 

1.4 Human mobility and health 

 The study of human mobility in urban informatics is to support the construction 

of efficient and sustainable mobility systems in cities (Raubal et al., 2021). In addition to 

reducing energy consumption, air pollution emissions, and social inequities, a sustainable 
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mobility design requires improving people’s health (Banister, 2008; Zheng et al., 2011). 

However, research on mobility in urban informatics has usually focused on the 

examination of decarbonization (Nikitas et al., 2017; Raubal et al., 2021) and accessibility 

change (Papa and Ferreira, 2018) through the mobility shift. Although these studies are 

indirectly related to health, there is still a lack of research investigating the relationship 

between health and the complexity of urban structures and dynamics (Krefis et al., 2018). 

 Human mobility and health are closely related both positively and negatively. 

For example, expanding international mobility caused the outbreak of smallpox in the 

“New World” after 1492, the global spread of SARS in 2003, and the pandemic of 

A(H1N1)pdm09 in 2009 (Gatrell, 2016). Furthermore, as a measure against the ongoing 

novel coronavirus disease (COVID-19) pandemic, massive lockdowns were implemented 

in many countries to reduce the contact that causes the infection (Flaxman et al., 2020; 

Yang et al., 2021). Contrastingly, human mobility also has a beneficial effect on health. 

For example, increased physical activity related to active mobilities such as walking and 

cycling contributes to risk reduction of non-communicable diseases (NCDs) (Hu et al., 

1999; Riiser et al., 2018; Usui et al., 1998; Williams and Thompson, 2013). Therefore, it 

is necessary to discuss the sustainable mobility and regions taking into account both the 

positive and negative impacts on health. 

 Studies in geographies of health and spatial epidemiology, which analyze the 

causality between disease and geographical factors, have continuously examined the 

relationship between human mobility and infectious diseases or physical activity. Prior to 

the early 1960s, the studies in geographies of health were dominated by disease mapping 

and disease ecology, both of which explained the background of disease occurrence at 

specific places and times (Mayer, 2009). However, beginning in the 1960s, quantitative 
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methods and research on disease diffusion/spread have developed (Mayer, 2009). For 

instance, the Monte Carlo approach–based spatial diffusion model proposed by 

Hägerstrand has accelerated the analysis of the spatial spread of disease (Hägerstrand, 

1965; Mayer, 2009), which was applied to a simulation study on the spread of influenza 

based on commuting flows (Sugiura, 1975). Furthermore, based on spatial interactions, 

the spatial extension of mathematical models for disease epidemics has made it possible 

to predict not only the diffusion process of infectious diseases, but also epidemic waves 

in multiple regions (Cliff and Haggett, 1993, 1986; Cliff et al., 1981). Nakaya (1994) 

explained the influenza epidemic in Japan by incorporating spatial interactions based on 

passenger flows between prefectures into the mathematical model. In recent years, the 

increased availability of data related to diseases has helped understand the link between 

the spread of infectious diseases and local movements of people, such as daily commuting 

flows and travel of children (Gog et al., 2014; Viboud et al., 2006). 

 In the 1990s, with the mainstream of geographical thought having shifted to 

issues of social theory, a shift from a biomedical model to a socio-ecological model that 

emphasizes understanding the social structure of health was demanded in this field 

(Kearns, 1993; Mayer, 2009; Nakaya, 2011). Since the shift, many studies in the field of 

geographies of health have focused on the constructed and experiential aspects of “place” 

rather than the geometric structure of space, and their interest has expanded beyond 

specific diseases to include aspects of social, physical, and mental well-being (Kearns 

and Collins, 2009). Regarding the human mobility study in this context, since active 

mobilities such as walking and cycling can contribute to the prevention of NCDs (Pucher 

et al., 2010; Shephard, 2008), many studies have evaluated neighborhood environments 

that promote them (Saelens and Handy, 2008; Winters et al., 2013), including 
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demographic and socioeconomic aspects (Adkins et al., 2017; Jun and Hur, 2015). Both 

biomedical and socio-ecological studies in the geographies of health have contributed to 

public health measures by predicting the spatial spread of infectious disease epidemics 

and providing evaluation criteria of the environment for healthy neighborhood planning. 

 However, since previous studies have usually employed static data, such as air 

and rail line passenger counts, existing GIS data (land use, road networks, etc.), and 

demographic data to quantitatively observe mobilities and environmental contexts, there 

were spatio-temporal limitations due to data specification (Poorthuis, 2018), as seen in 

traditional positivistic geography. Therefore, although daily work commute and local 

travel play an important role in the spread of infectious disease epidemics, according to 

deductive mathematical modeling studies (Gog et al., 2014; Viboud et al., 2006) and that 

perceptual environmental factors of pedestrians are related to the amount of walking as 

found by audit survey studies (Cain et al., 2014), a robust quantitative analysis of such 

micro-scale mobility and environment  based on actual data has been difficult to conduct. 

Incorporating spatial big data into geographies of health research will enable gaining new 

insights on the relationship between mobility and health. 

 

1.5 Geographies of health and spatial big data: Application and challenges 

 Several types of spatial big data are recently being used in the field of 

geographies of health. One such type of data comes from streetscape imagery platforms 

such as GSV and Mapillary for micro-scale neighborhood environment evaluation 

(Rzotkiewicz et al., 2018). Many studies employ virtual assessment that auditors 

manipulate manually (Rzotkiewicz et al., 2018). By developing systematic observation 

tools, the efficient assessment of street environments has been enabled, thereby 
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facilitating a comparison of the micro-scale environment in different locations (Bader et 

al., 2015; Mertens et al., 2017). Only a few studies have attempted an automatic 

assessment of the environment by using machine learning techniques (Lu, 2018; 

Villeneuve et al., 2018; Yin and Wang, 2016). 

 The use of dynamic geographic information has also increased in the observation 

of active mobility (Katapally et al., 2020). Many of these studies have employed the 

method requiring survey participants to use wearable devices with GPS and 

accelerometers (Katapally et al., 2020). They demonstrated that such methods enable the 

exclusion of recall bias in questionnaire surveys (Brown et al., 2014) and help extensively 

observe the changes in physical activities of participants during specific events (Cohen et 

al., 2016). 

 However, technical challenges in the observation of urban spaces and dynamics 

on a large scale continue to persist. While the virtual audit of streetscapes enables the 

efficient assessment of multiple cities by a unified criterion, it is still difficult to observe 

a large area because of a dependency on the manual method. In addition, automatic 

streetscapes evaluations based on machine learning methods recognize limited elements 

such as the sky (Yin and Wang, 2016) or greenness (Lu, 2018; Villeneuve et al., 2018). 

Complex cityscapes, as seen by pedestrians, are not captured comprehensively. 

Furthermore, in many studies based on tracking observations, the survey participants 

were recruited in specific regions and periods; therefore, it is still difficult to capture the 

human mobility dynamically over a wide range of space and time. 

 

1.6 Objective  

 The issues pertaining to mobility and health in urban informatics and 
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geographies of health are summarized as follows. First, in urban informatics, despite the 

development of sustainable human mobility, there is still a lack of research investigating 

the relationship among mobility, health outcomes, and environmental, social, and 

individual contexts. Second, in geographies of health, although ample knowledge on the 

interaction between human mobility and health has been accumulated, it is still difficult 

to observe the urban environment, human mobility, and health outcomes on a high spatial-

temporal scale by using spatial big data owing to technical challenges. 

 The objective of this thesis is to reduce the spatio-temporal limitations in the 

observation of health-related human mobility and its environmental context by integrating 

approaches of urban informatics into the study in geographies of health (Fig. 1.2). 

Furthermore, to analyze health and well-being in social contexts, this thesis attempts to 

examine the geographical and social backgrounds of human mobility that are difficult to 

capture with big data alone. This thesis aims to contribute to the development of 

geographies of health and urban informatics by recommending the following three 

methods: extensive quantitative evaluation of micro-scale environmental factors related 

to mobility by using spatial big data; dynamic mobility observation for public health 

measures in emergencies using data obtained by ubiquitous and continuous systems; and 

exploring the social contexts of human mobility by combining information obtained from 

mobile phones and a social survey. In addition, at the end of the thesis, the benefits, 

possibilities, and challenges of applying urban informatics in geographies of health will 

be discussed. It is important to note that the geographic movement of people on a daily 

basis, and in the short term, will be considered as human mobility in this study. Therefore, 

long-term migration and social mobility that represents changes in social classes are not 

within the scope of this thesis. 
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Fig. 1.2. Objective of this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. Structure of this thesis 
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Fig. 1.3 shows the structure of the present thesis. Chapters 2, 3, and 4 will discuss 

studies that examined human mobility and the built environment, as well as the 

geographic and socioeconomic contexts related to mobility by using big data, deep 

learning, and statistical approaches. In Chapters 2 and 3, to implement precise and 

quantitative mobility evaluation methods for geographies of health, the observation of 

micro-scale physical context of the healthy mobility and dynamic human mobility at 

specific places related to the infectious disease spread using spatial big data was attempted. 

Chapter 2 demonstrates the method for automatic neighborhood assessment by 

using the streetscape imagery platform. The frequency of physical activity is related to 

the neighborhood environment, and “walkability” has attracted attention as the 

environment promoting walking (Saelens and Handy, 2008). While macro-scale 

environments such as land use can be extensively assessed using existing GIS data, micro-

scale walkability related to people's perceptions such as streetscapes has traditionally 

been observed through field surveys, making extensive assessment impractical from a 

cost perspective (Duncan et al., 2018). Chapter 2 explains the method for constructing a 

model for automatic and comprehensive evaluation of streetscapes facilitating older 

adults’ walking for leisure based on GSV images, the deep learning model, and the 

statistical approach. 

 Chapter 3 demonstrates the observation of dynamic mobility during the COVID-

19 pandemic in Japan. The significant relationship between human mobility and the 

spread of the COVID-19 outbreak has been well documented (Kraemer et al., 2020). 

However, little attention has been given to the “place” where the relationship is 

remarkably confirmed. Chapter 3 examines the relationship between dynamic mobility in 

nightlife places, workplaces, and residential places observed by mobile phone networks 
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and the number of infected people in the metropolitan area of Japan. 

 Furthermore, to capture the social contexts of the changes in activity related to 

health due to a specific event, Chapter 4 explores the relationship between social and 

geographic background and human mobility during the COVID-19 pandemic by 

combining mobile device-based data with social surveys. The amount of physical activity 

has declined throughout the world owing to the pandemic (Tison et al., 2020; Yamada et 

al., 2020). However, individual aspects related to decreased physical activity during the 

outbreak have not been clearly understood. Chapter 4 examines the relationship between 

physical inactivity during the pandemic, individual geographic and socioeconomic 

background, changes in work situation, and the perception of anxiety related to infection, 

based on an online survey and healthcare app data installed on smartphones. 

 Finally, Chapter 5 discusses the benefits, future possibilities, and challenges in 

geographies of health, based on the results discussed in Chapters 2, 3, and 4.  



17 

 

2. An automatic evaluation method for streetscape walkability related to leisure 

walking 

 

 

 The next three chapters, including the present one, are a series of research results 

on urban informatics approaches to the geographies of health. First, in the context of 

physical activity and environment—a topic of recent interest in the geographies of 

health—this chapter will demonstrate a novel method for assessing human mobility-

related micro-scale neighborhood environments using streetscape imagery. 

 

2.1 Introduction 

Physical inactivity is a leading risk factor for non-communicable diseases, 

including coronary heart disease, type 2 diabetes, and breast and colon cancers (Lee et al., 

2012; World Health Organization, 2017). Guthold et al. (2018) reported that 27.5% of the 

total population worldwide are insufficiently active. Walking is a physical activity that 

most can do relatively easily (Handy et al., 2002) and contributes to risk reduction of 

chronic disease, including cardiovascular disease (Hu et al., 2001), type 2 diabetes (Hu et 

al., 1999), and hypertension (Williams and Thompson, 2013). It has been found that the 

built environment of one’s neighborhood, including distances to non-residential 

destinations, street connectivity, and the condition of pedestrian infrastructure, affects 

walking behavior (Christiansen et al., 2016; Saelens and Handy, 2008; Sugiyama et al., 

2014). Therefore, understanding the construction of walkable or unwalkable places is 

crucial for urban planners and epidemiologists. 

 It has been well documented that macro-scale walkability, based on objective 
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measurements of land use mix, street connectivity, and distance to facilities, is related to 

the choice of walking as a mode of transportation (Owen et al., 2007; Saelens and Handy, 

2008) due to the abundance of data and the ready availability of GIS methods. Although 

it has been proven in many contexts that micro-scale walkability, as determined by 

pedestrian perception, including the attractiveness of streetscape and the condition of the 

sidewalks, is effective for promoting walking (Cain et al., 2014; Ewing et al., 2016; Kim 

et al., 2014), measuring these attributes with traditional methods (audits/systematic social 

observation) requires time and resources (Duncan et al., 2018). Thus, it is difficult to use 

traditional methods to assess micro-scale walkability over a large area. 

 In recent years, several studies have effectively used Google Street View (GSV) 

to evaluate micro-scale walkability, a method that achieves cost reduction, remote 

evaluation of neighborhoods over a wide range of global contexts, and automated 

assessment (Rzotkiewicz et al., 2018). Pliakas et al. (2017) demonstrated that GSV-based 

audits can provide significant reduction in time costs compared with foot-based audits 

while maintaining audit quality. In addition, Hanibuchi et al. (2019) developed a simple 

checklist for virtual audits of streetscape walkability (SW) and proved inter-source 

(between in-person and virtual audits) and inter-rater (between two trained auditors and 

between trained auditors and untrained crowd-sourced workers) reliability for GSV-based 

evaluation. From an urban informatics approach, several studies have extracted elements 

of streetscapes through assessment of images from GSV and similar services (e.g., 

Tencent Street View) using machine learning or deep learning methods for automatic 

observation (Lu, 2018; Villeneuve et al., 2018; Wang et al., 2019a; Yin et al., 2015; Yin 

and Wang, 2016). These studies analyzed the relationships among each component 

element to SW, physical activity, or walking behavior. For example, methods of detecting 



19 

 

pedestrians from GSV images with deep learning showed acceptable accuracy for 

automated audits (Yin et al., 2015). In studies that examined the relationship between 

specific component elements of the streetscape extracted from GSV and SW or walking 

behavior, Yin and Wang (2016) ascertained a significant correlation between visual 

enclosure, determined by sky visibility, and WalkScore® or pedestrian volume. Further, 

Lu (2018) found that neighborhood greenness is significantly related to walking behavior. 

Cai et al. (2018) published an open-source library called “Treepedia” that allows 

calculation, using GSV images, of the amount of vegetation cover along a street, and 

Villeneuve et al. (2018) showed the relationship between promoting summer leisure 

physical activity and neighborhood greenness calculated by Treepedia. 

However, several issues continue to have importance to fulfill automated 

assessment study based on streetscape images and machine/deep learning approach. 

Previous studies have proposed protocols, such as imageability, enclosure, human scale, 

transparency, and complexity, as quantitatively measurable aspects of urban design for 

walkability (Ewing et al., 2016, 2006; Ewing and Handy, 2009). For instance, “enclosure,” 

measured by the proportion of street wall or sky, indicates an area’s room-like quality that 

can make pedestrians feel comfortable and secure (Ewing, 1996). “Human scale” is 

evaluated by the proportion of buildings whose first floors have windows, the number of 

small planters, and other similar factors presenting the size, texture, and articulation of 

physical elements corresponding to the speed at which humans walk. Although multiple 

components of streetscapes influence walkability, the number of streetscape components 

found by automated methods and their relationship to walking behavior are still limited. 

Wang et al. (2019a) produced an automatic classification of cityscape images including 

multiple components such as trees and grasses into six types (wealthy, safe, lively, 
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depressing, boring, and beautiful) based on human perception and clarified the 

relationship between each category of perception and types of associated physical activity. 

However, how these streetscape components, such as vegetation, affect walkability or 

walking behavior has not been sufficiently discussed. Moreover, although several studies 

have indicated that micro-scale walkability, such as sidewalk conditions and the 

streetscape aesthetics, affects physical activity for leisure (de Bourdeaudhuij et al., 2005; 

Inoue et al., 2010; Saelens and Handy, 2008; Witten et al., 2012), little attention has been 

paid to the relationship between SW, as determined from GSV images, and leisure 

walking. 

 Lately, a number of semantic segmentation methods and annotated datasets have 

been developed (Lateef and Ruichek, 2019), making it possible to recognize the multiple 

objects that a streetscape image contains. The combination of such resources and 

statistical approach will help us understand the relationship between objects in a 

streetscape and walking behavior in detail. In this study, the relationships among multiple 

streetscape components, micro-scale walkability, and older adults’ leisure walking using 

semantic segmentation and a statistical approach to GSV images has been examined. A 

systematic review describes the positive relationship between a neighborhood’s physical 

environment and older people’s physical activity (Yen et al., 2010). Thus, management to 

ensure pedestrian-friendly neighborhoods is important to promote older people’s well-

being. The study consists of two phases: building a prediction model for the SW scores 

based on the evaluation of streetscapes by manual audits and the component elements of 

the streetscape, and analyzing the relationships between leisure walking by older people 

and neighborhood SW. In the first phase, we extract component elements of the 

streetscape from GSV images using a semantic image segmentation method of deep 
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learning. The segmented components are used as independent variables in the prediction 

model for SW scores. In the second phase, we predict SW scores for each intersection in 

Bunkyo-ward in central Tokyo and analyze the relationship between the SW score and 

older people’s walking for leisure. This study contributes to the evaluation of the 

effectiveness of the automated assessment of neighborhood environments by using 

quantitative methods to examine the relationship between older people’s leisure walking 

and micro-scale walkability based on multiple components of the streetscape. 

 

 

2.2 Methods 

2.2.1 Data collection 

SW score using manual audits 

 To build an SW score prediction model, the results of an SW evaluation by 

manual audits using GSV were used as the dependent variable. The evaluation was based 

on a checklist developed by Hanibuchi et al. (2019) and is related to SW as regards 

physical conditions, safety, and aesthetics. This checklist was developed to be simple and 

easy to use for practical purposes (i.e., reducing time cost and enabling many untrained 

auditors to participate over large study areas) and included only 14 items with 

dichotomous responses. The checklist was reported to have good inter-rater and inter-

source reliability (Hanibuchi et al., 2019). The 14 items included the presence or absence 

of the following features: sidewalk, wide sidewalk, obstructions, steep slopes, street 

parking, heavy traffic, heavy foot traffic, crosswalk, traffic mirrors, streetlights, street 

trees, attractive streetscapes, graffiti and litter, and abandoned buildings. These were 

selected by considering frequency of use in existing audit tools, multiple aspects of micro-
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scale streetscape, and the Asian and Japanese urban context. Each item is evaluated with 

a binary value (Yes/No) and converted into a numerical point. In the conversion process, 

for items assumed pedestrian-friendly (i.e., presence of sidewalk, wide sidewalk, 

crosswalk, traffic mirrors, streetlights, street trees, and attractive streetscape), “Yes” is 

valued at 1 point, and “No” at 0. For items assumed to create a pedestrian-unfriendly 

environment (i.e., presence of obstructions, steep slopes, street parking, heavy traffic, 

heavy foot traffic, graffiti and litter, and abandoned buildings), “Yes” is valued at 0, and 

“No” at 1. The SW score at each assessed location is the sum of all items’ points, and the 

maximum score is 14. Using the checklist, from August to October 2018, we assessed the 

streetscape in Bunkyo-ward, Tokyo, and the surrounding neighborhoods. After initial 

instruction with brief material provided by Hanibuchi et al. (2019) and repeated 

consultation, a trained auditor (a freelance research assistant) evaluated 2,842 street 

segments connected to 854 intersections using “walking through” target streets on GSV. 

These target intersections were randomly selected, and they amounted to 10% of all 

intersections in the study area. We calculated the means of the scores for the connecting 

streets with the intersection as the SW score assessed by the manual audit. 

 

Walking time data 

 For the walking time source data, we used results of a questionnaire survey 

conducted to analyze the relationship between the neighborhood environment and the 

health of older people in three locations in Japan, including Bunkyo-ward. The details of 

the questionnaire are given in different publications (Amagasa et al., 2019; Inoue et al., 

2011; Kikuchi et al., 2018). The questionnaire includes questions on weekly frequency of 

walking (days/week) and average walking duration each day (min/day) for the purposes 
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of daily errands, leisure, commuting to work, working, etc. The walking measure’s 

validity based on the questionnaire was ascertained by Spearman correlation coefficient 

between walking time and step counts per day assessed by an accelerometer (R = 0.3; p 

< 0.001) (Inoue et al., 2010). Participants were also asked about their lifestyles and health 

conditions such as living arrangements, physical limitations, and perception of 

neighborhood environments. In this study, we calculated participants’ walking time for 

leisure from the frequency (days/week) and duration (min/day) of leisure walking. We 

defined participants as “active leisure walkers” if they walked more than 150 min/week 

for leisure, referring to a guideline by Nelson et al. (2007). Inoue et al. (2011) described 

the sampling methods they used in this survey. In 2010, the authors of this study used 

stratified random sampling, selecting a total of 900 residents in Bunkyo-ward from a 

residential registry to acquire the baseline data. In 2015, we conducted a follow-up survey 

of 373 respondents who had participated in the baseline survey in 2010 and agreed to 

enroll in the follow-up survey in 2015. Of these, 312 residents responded, and their data 

were used for this study (Table 2.1). We used information provided on age, educational 

attainment, living arrangements, working status, car driving, and physical limitations, in 

addition to weekly frequency of walking and average walking duration each day for 

leisure. 

 Before the survey in 2015, ethical approval for this study was obtained from the 

Tokyo Medical University Ethics Committee (No. 2898). Before completing the 

questionnaire, all participants signed an informed consent form. 
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Table 2.1. Participant characteristics by gender   
Overall Male Female   
n = 312 n = 164 n = 148 

Walking for leisure 
    

    ≥150 min/week n (%) 98 (31.4%) 61 (37.2%) 37 (25.0%) 
    <150 min/week n (%) 214 (68.6%) 103 (62.8%) 111 (75.0%) 
    min/week Mean/SD 127.3/188.8 150.2/208.2 101.9/161.7 
Living arrangements 

    

    With others n (%) 252 (80.8%) 143 (87.2%) 109 (73.6%) 
    Alone n (%) 59 (18.9%) 20 (12.2%) 39 (26.4%) 
    Missing n (%) 1 (0.3%) 1 (0.6%) 0 (0.0%) 
Working status 

    

    Working with 
income 

n (%) 111 (35.6%) 76 (46.3%) 35 (23.6%) 

    Not working n (%) 201 (64.4%) 88 (53.7%) 113 (76.4%) 
Educational 
attainment 

    

    ≥13 years n (%) 175 (56.1%) 109 (66.5%) 66 (44.6%) 
    <13 years n (%) 137 (43.9%) 55 (33.5%) 82 (55.4%) 
Car driving 

    

    Routine car 
driving 

n (%) 64 (20.5%) 59 (36.0%) 5 (3.4%) 

    Not routine n (%) 243 (77.9%) 101 (61.6%) 142 (95.9%) 
    Missing n (%) 5 (1.6%) 4 (2.4%) 1 (0.7%) 
Physical limitation 

 
   

    Limited 
(somewhat, 
quite a lot, 
could not do 
physical 
activity) 

n (%) 74 (23.7%) 30 (18.3%) 44 (29.7%) 

    Not limited (not at 
all, very little) 

n (%) 232 (74.4%) 131 (79.9%) 101 (68.2%) 

    Missing n (%) 6 (1.9%) 3 (1.8%) 3 (2.0%) 
Age Mean/SD 74.3/2.9 74.3/3.0 74.3/2.8 

 

 

Streetscape images 

 This study estimated the SW score based on the streetscape images taken at 

intersections in Bukyo-ward. Because the SW score assessed by manual audit was 

summarized at intersections to which streets connect, the estimation of the SW score 

using GSV images at the intersection can simplify the calculation process. Furthermore, 

because the distance between intersections is short in the study area (mean distance = 
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45.6 m), it is possible to evaluate the SW there using GSV images from intersections. We 

requested GSV images for 5,321 intersections using Street View Static API (Google Inc.) 

and collected 17,276 images for 5,317 intersections. GSV images were taken from 2009 

to 2019 and more than 90% after 2016. These intersections are at the same locations where 

SW evaluation was completed by manual audits or covered in 1,000 m network buffers 

from the residence of the participants in the follow-up survey. At each intersection, we 

obtained street images in each direction toward the intersections to which it connects. The 

procedure for obtaining the GSV images for each intersection was as follows: obtain 

latitude and longitude for the intersection; calculate the bearing (heading) from the 

intersection to the street; set API parameters, including location and the bearing; and 

download outdoor images. An example of this procedure and its result is shown for the 

Koishikawakorakuen-iriguchi intersection in Fig. 2.1. The latitude and longitude were set 

to 35.704824 and 139.747541, and the bearings in the A, B, and C directions were 3.23, 

110.89, and 183.55, respectively. Images showing each street from the intersection were 

obtained as a response to the API request. 
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Fig. 2.1. Example of the API request to obtain GSV images 

Sources: Map: Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap 

contributors, and the GIS User Community. Photo: Author’s photo 

 

 

GIS data and software 

 In this study, published GIS data were used as data sources for road segments 

and geographic variables to construct the SW score prediction model and analyze the 

relationships between leisure walking and the SW. For the source of data on the network 

segments and the locations of the intersection, we used ArcGIS Geo Suite Douromo (road 

network) (Esri Japan Inc.). The digital elevation model (DEM) (Geospatial Information 

Authority of Japan) was used to obtain elevation data to calculate slope of the road 
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segments and to build a prediction model for the SW score. Each intersection’s slope 

value was calculated as follows: First, road segments connected from an intersection were 

split into links at every vertex; second, the elevation value of DEM was given to the 

vertices; third, the slope was calculated by the elevation value of the vertices and the 

length of the link between the vertices; fourth, the mean of the slope values was calculated 

for the road segment, weighted by the length of the links; and fifth, the steps above were 

repeated for every intersection. The National Land Numerical Information (Ministry of 

Land, Infrastructure, Transport and Tourism, Japan) and telephone directory data as of 

June 2017 (Eins Inc.) were used as destination data to calculate objective walkability to 

analyze the relationship between leisure walking and SW. Moreover, population density, 

based on the population census of 2015 (Statistics Bureau of Japan) was used for the 

objective walkability score as well. Objective walkability was defined as the sum of z 

scores for population density, intersection density, and variety of destinations, all 

calculated in 1,000 m network buffers from participants’ residences, in accordance with 

a previous study (Kikuchi et al., 2018). We defined the variety of destinations as the sum 

of z scores for the number of destination facilities (station, post office, elementary school, 

community center, bank, bookstore, convenience store, restaurant, supermarket, 

department store, and sports and fitness club) in the 1,000 m network buffer. We used 

ArcGIS Pro 2.3.2 (Esri Inc.) to conduct all GIS processing. 

 

2.2.2 Streetscape segment detection 

 To detect the component elements of each intersection’s streetscape, we used 

DeepLab v3+ (Chen et al., 2018), a deep learning model developed for semantic image 

segmentation. DeepLab v3+ architecture characteristically adopts atrous convolution in 
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encoder–decoder networks (Chen et al., 2018), which are used in semantic image 

segmentation models such as U-Net (Ronneberger et al., 2015) and SegNet 

(Badrinarayanan et al., 2017). Typically, pooling and convolution processes included in 

an encoder module reduce the resolution of feature maps and obtain high semantic 

information using filters based on an object’s feature to be extracted; a decoder module 

gradually recovers spatial information lost during encoding processes (Chen et al., 2018). 

While retaining the feature map’s resolution calculated by Deep Convolutional Neural 

Networks (DCNN), atrous convolution can capture multi-scale information by adjusting 

the filter’s field-of-view (Chen et al., 2018). Fig. 2.2 shows the structure of the encoder–

decoder networks in DeepLab v3+ (Chen et al., 2018). In the encoder module, Atrous 

Spatial Pyramid Pooling (ASPP) investigates the convolutional features at multi-scales 

using atrous convolution with different rates (A) and generates a feature map including 

abundant semantic information (B). In the decoder module, the feature map (B) is up-

sampled four times by bilinear sampling and concatenated with low-level features from 

the network backbone to recover spatial information (C). The feature map before 

processing ASPP is reused as a low-level feature to improve spatial information’s 

recovery accuracy. Finally, predicted segmentation results are exported after refinement 

by convolution processes and four times bilinear up-sampling (D). 

In this study, we used DeepLab v3+ trained on streetscapes using Cityscapes 

Dataset (Cordts et al., 2016). The model is published at “Supervise.ly” (Deep System 

Inc.). The Cityscapes Dataset is an image dataset with annotation of streetscape segments. 

Annotation is defined as 30 classes based on groups recognized as streetscape 

components such as flat, human, vehicle, construction, object, nature, sky, and void. The 

dataset provides 19 classes for training (Table 2.2), while the other 11 classes are excluded 
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from the dataset due to rare segments in streetscapes (Cordts et al., 2016). Regarding 

model validation, we calculated the agreement of segmentation recognition between the 

model and manual process using GSV images in the study area. We employed the kappa 

coefficient to validate the agreement of object recognition. We also used the intersection-

over-union metric (IoU) to validate the agreement of the area recognition of the segments. 

The definition of the IoU is as follows: 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
, 

 

where TP, FP, and FN are the number of true positive, false positive, and false negative 

pixels, respectively, of the segmented images. For kappa coefficient calculation, we 

randomly selected 100 images and added five random points to an image; two 

contributors classified the points into one streetscape segment based on Table 2.2. 

Regarding the IoU calculation, we selected 30 random images, and the model and two 

contributors ran segmentation for the images, respectively. The irr library, which is the R 

package, was used to calculate the kappa coefficient, and the mIoU plugin of the 

Supervise.ly was used to calculate the IoU. 

Every pixel of all GSV images was classified into one of 19 segments by 

DeepLab v3+. We calculated the percentages of segments for each intersection. 
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Fig. 2.2. Structure of encoder–decoder networks of DeepLab v3+ (Chen et al., 2018) 
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Table 2.2. Definition of segment classes provided by Cityscapes Dataset 

Group Class Description 

Flat 

Road 

Area where cars usually drive, e.g., lanes, directions, and 

streets. Areas only delimited by markings from the main 

road are also roads, e.g., bicycle lanes, roundabout lanes, 

or parking spaces. This label does not include curbs. 

Sidewalk 

Area located at the side of a road and delimited from the 

road by some obstacle for pedestrians or cyclists, e.g., 

curbs or poles (perhaps small). This label includes a 

possibly delimiting curb, traffic islands (the walkable 

part), or pedestrian zones (where usually cars are not 

allowed during daytime). 

Human 

Person 

A human walking, standing, or sitting on the ground, on 

a bench, or on a chair. This class includes toddlers and 

someone pushing a bicycle or standing next to it with 

both legs on the same side of the bicycle. This class also 

includes anything carried by the person, e.g., backpack, 

but not items touching the ground, e.g., trolleys. 

Rider 

A human using some device to move, e.g., riders/drivers 

of bicycles, motorbikes, scooters, skateboards, horses, 

roller-blades, wheel-chairs, road cleaning cars, cars 

without a roof. Note that a visible driver of a car with a 

roof can be seen only through the window. Since holes 

are not labeled, the human is included in the car label. 

Vehicle 

Car 
Automobile, jeep, SUV, van with continuous body 

shape, caravan, but no trailers. 

Truck 

Truck, box truck, pickup truck, including their trailers. 

Back part / loading area is physically separated from the 

driving compartment. 

Bus 
Bus for 9+ persons, public transport, or long distance 

transport. 

Train Vehicle on rails, e.g., tram, train. 

Motorcycl

e 

Motorbike, moped, scooter without a driver (a rider—see 

above). 

Bicycle Bicycle without a driver (a rider—see above). 

Construction 

Building 
Building, skyscraper, house, bus stop building, garage, 

car port.  

Wall Individual standing wall. Not part of a building. 

Fence Fence including any holes. 
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Object 

Pole 

Small, mainly vertically oriented pole or having a 

diameter (in pixels) of at most twice the diameter of the 

pole, e.g., sign pole, traffic light poles, streetlights. 

Traffic 

sign 

A sign without a pole, showing information of the 

driver/cyclist/pedestrian in an everyday traffic scene, 

e.g., traffic signs, parking signs, direction signs. This 

label counts only the front side of a sign containing 

information. No ads/commercial signs.  

Traffic 

light 
A traffic light box without its poles. 

Nature 

Vegetation 

Tree, hedge, all kinds of vertical vegetation. Plants 

attached to buildings are usually not annotated separately 

and are labeled “building” as well. If growing at the side 

of a wall or building, it is marked as vegetation if it 

covers a substantial part of the surface (more than 20%). 

Terrain 
Grass, all kinds of horizontal vegetation, soil, or sand. 

This label includes a possibly delimiting curb. 

Sky Sky 
Open sky, without tree leaves. Includes thin electrical 

wires visible in skyscape. 

Note: This table is retrieved from the website of Cityscapes Dataset. More detailed 

information is available at the website (https://www.cityscapes-dataset.com/). 

 

 

2.2.3 Building the SW score prediction model 

 To build the model based on the linear relationship between SW and streetscape 

components, we used a regression analysis on all the SW scores from manual audits as a 

dependent variable and the percentage of streetscape segments detected by the deep 

learning model, slope, and road width as independent variables. All variables were 

calculated for each intersection. The road width was given in ranges (3–5.5, 5.5–13, and 

13 m or more) for each road segment attribute. For the value of the road width, we chose 

the largest width values for the streets connected to the intersection. For the model 

selection, first, the stepwise method was applied to select the independent variables; 
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second, the genetic algorithm (GA) (Holland, 1992) was used to select the model with 

interaction effects based on the Akaike Information Criterion (AIC) to avoid overfitting; 

and lastly, the final model was calibrated as a spatial simultaneous autoregressive error 

(SAR) model (Anselin, 2003). In calibrating the final model, we adopted Gabriel graph 

neighbors (Matula and Sokal, 1980) to create the adjacency matrix between the 

intersections. All processes for the regression analysis were completed in R 3.6.1. The 

glmulti library was used for model selection including the stepwise and GA to select 

statistically meaningful variables and interaction effects, and the spdep library was used 

for spatial regression modeling. 

 

2.2.4 Relationship between leisure walking and SW 

 To ascertain whether any relationship between leisure walking and neighborhood 

SW exists, we estimated the odds ratios (ORs) and 95% confidence intervals (CIs) of the 

neighborhood SW using the logistic regression analysis. The dependent variable was 

defined as “1” if the participant was an active leisure walker or as “0” otherwise. The 

neighborhood SW was used as the independent variable. As control variables, age, 

physical limitation, educational attainment, living arrangements, working status, routine 

car driving, and objective walkability were selected by referring to previous studies 

(Amagasa et al., 2019; Inoue et al., 2011; Kikuchi et al., 2018). Because several studies 

have shown that physical activity data features different trends depending on the walker’s 

gender (Amagasa et al., 2017; Caspersen et al., 2000), regression models were estimated 

for each gender. In calculating the neighborhood SW, first, the SW scores for all 

intersections within 1,000 m network buffers from the participant residence were 

predicted with the SW score prediction model; next, we calculated the median values for 
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the predicted SW score in 500 or 1,000 m as values for neighborhood SW in 500 m or 

1,000 m. Adjusted p-values were calculated by Bonferroni adjustment (Bland and Altman, 

1995) to control Type I Error because we compared the four models (two gender groups 

× two neighborhood definitions of the SW in 500 m and 1000 m). 

 

2.3 Results 

2.3.1 Streetscape segment detection 

 The deep learning model was applied to all images (n = 17,276), and all of the 

19 segments were detected (Table 2.3). The kappa coefficient was 0.76 (agreement = 82%, 

p < 0.001), and IoU was 70%. Then, the percentage of the segments in the GSV images 

was calculated. Fig. 2.3 shows the results of segmentation at the same intersection as Fig. 

2.1. For instance, in the B direction, the largest segment shows vegetation (45.32%), the 

second is the road segment (32.55%), and the third is the building segment (9.92%). 

Likewise, for the mean value of the segments at the intersection, the largest segment 

consists of vegetation (48.39%) (Fig. 2.3). By comparison with the mean values for the 

segments in all images (Table 2.3), the streetscape at the intersection shows abundant 

vegetation. We excluded 1,313 unsuitable images from the streetscape evaluation due to 

massive inclusion of the platform of a subway station, the exterior of a house, or other 

unsuitable items. The criterion for this exclusion was road segment less than 5%. After 

this, the mean values for the proportion per segment were calculated at 5,293 intersections. 
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Table 2.3. Detected segments from all obtained GSV images 

Segments % 
 

Segments % 

Building 45.00 
 

Person 0.74 

Road 23.49 
 

Bicycle 0.50 

Vegetation 9.94 
 

Traffic sign 0.34 

Sky 6.65 
 

Terrain 0.24 

Fence 3.02 
 

Train 0.10 

Wall 2.83 
 

Bus 0.03 

Sidewalk 2.29 
 

Motorcycle 0.03 

Car 2.26 
 

Rider 0.03 

Truck 1.26 
 

Traffic light 0.01 

Pole 1.24 
   

Note: Kappa coefficient was 0.76 (agreement = 82%, p < 0.001), and IoU was 70%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3. Examples of semantic segmentation results 

Sources: Author’s photo and Supervise.ly.  
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2.3.2 Building a prediction model for SW score 

 Table 2.4 shows the optimal combination of independent variables, including 

interaction effects, based on stepwise GA–SAR modeling, and we used this as the 

prediction model for the SW score (R2 = 0.51; MAE = 0.66). Fig. 2.4 shows the spatial 

distribution of SW scores predicted by the model and the streetscape images with high or 

low scores. In the study area, the SW score tends to be higher in the southeast. In addition, 

the high SW sites are distributed in a linear form, while the low SW sites tend to be 

spatially clustered. Regarding the streetscape features, locations with high SW scores are 

well-designed and well-maintained streetscapes, and include sophisticated road facilities, 

such as wide sidewalks or trees lining the street. By contrast, locations with low SW 

scores consist of pedestrian-unfriendly streetscape components, such as narrow and dark 

streets, no sidewalks, or steep slopes. 

From the model results (Table 2.4), nine types of segments (road, building, sky, 

terrain, pole, sidewalk, vegetation, traffic light, and rider), including their interaction 

effects, are associated with SW scores. For a streetscape segment with a positive 

coefficient, the estimated SW score increases when the percentage of the segment in the 

GSV image increases. For instance, since a building segment has a positive coefficient (β 

= 0.047; 95% CI = 0.022 to 0.071), the existence of the building segment increases the 

SW. When the building segment occupies 30% of pixels in the GSV images taken at an 

intersection, the building segment causes an increase in the SW score at the intersection 

by 1.41 points (30 × 0.047). In contrast, a streetscape segment with a negative coefficient 

decreases the estimated SW score. For instance, since a sky segment has a negative 

coefficient (β = −0.153; 95% CI = −0.209 to −0.096), the existence of the sky segment 

relates to a decreased SW. When the sky segment occupies 30% of pixels in the GSV 
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images, the sky segment causes a decreased SW score at the intersection by 4.59 points 

(30 × −0.153).  

The member, as the combination of two streetscape segments shown in Table 2.4, 

is the interaction effect when these segments in the combination appear in the GSV image. 

The interaction effect between a road segment and a terrain segment is positively 

associated with SW (β = 0.006; 95% CI = 0.002 to 0.011). When the road segment 

occupies 30% of pixels and the terrain segment occupies 5% of pixels of GSV images, 

the interaction of the two segments increases the SW score at the intersection by 2.85 

points (30 × 5 × 0.019). The interaction effect between the road segment and the building 

segment is negatively associated with SW (β = −0.003; 95% CI = −0.004 to −0.002).  

Regarding the variable other than streetscape segments, slope is marginally 

associated with a decrease in SW score (β = −0.239; 95% CI = −0.478 to 0.000). When 

the mean value of the slope of the street connected from an intersection is 5%, the SW 

score decreases by 1.195 points (5 × −0.239). The interaction effects between a building 

and road width 5.5–13 m or a building and road width 3–5.5 m relate to a decrease in SW 

score (β = −0.033; 95% CI = −0.045 to −0.021, and β = −0.030; 95% CI = −0.043 to 

−0.017). When the building segment occupies 30% of pixels of the GSV images taken at 

an intersection with the road width of 5.5–13 m, the interaction effect of the two variables 

decreases the SW score at the intersection by 0.99 points (30 × 1 × −0.033). In case of the 

road width of 3–5.5 m, the SW score decreases by 0.9 points (30 × 1 × −0.03). While the 

building segment positively relates to the SW, the influence of the building segment on 

the SW will be small on a narrow street. 
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Table 2.4. Summary of the SW score prediction model 
 

β 95% CI p 
(Intercept) 8.297 7.211 to 9.382 < 0.001 *** 

Road : Building −0.003 −0.004 to −0.002 <0.001 *** 
Road 0.147 0.098 to 0.195 <0.001 *** 

Building : Road Width 5.5–13 m −0.033 −0.045 to −0.021 <0.001 *** 
Sky −0.153 −0.209 to −0.096 <0.001 *** 

Road : Vegetation −0.002 −0.002 to −0.001 <0.001 *** 
Building : Road Width 3–5.5 m −0.030 −0.043 to −0.017 <0.001 *** 

Slope : Traffic light 3.740 2.147 to 5.333 <0.001 *** 
Terrain : Rider −1.712 −2.580 to −0.845 <0.001 *** 

Building 0.047 0.022 to 0.071 <0.001 *** 
Road : Road Width 5.5–13 m 0.029 0.013 to 0.046 <0.001 *** 

Pole −0.864 −1.368 to −0.360 <0.001 *** 
Pole : Vegetation 0.013 0.005 to 0.022 0.002 ** 

Slope : Rider 0.584 0.172 to 0.995 0.005 ** 
Building : Pole 0.011 0.003 to 0.018 0.006 ** 

Pole : Sky 0.022 0.006 to 0.038 0.008 ** 
Road : Sidewalk 0.006 0.002 to 0.011 0.008 ** 
Building : Sky 0.002 0.000 to 0.003 0.008 ** 
Road : Terrain 0.019 0.002 to 0.035 0.026 * 
Road : Rider −0.061 −0.116 to −0.006 0.029 * 

Building : Slope 0.003 0.000 to 0.006 0.039 * 
Pole : Rider 0.815 0.032 to 1.597 0.041 * 

Sidewalk : Terrain 0.059 0.002 to 0.116 0.043 * 
Slope −0.239 −0.478 to 0.000 0.050 . 

Terrain −0.459 −0.928 to 0.01 0.055 . 
Sidewalk : Rider 0.297 −0.033 to 0.627 0.078 . 

Sky : Slope 0.009 −0.001 to 0.020 0.091 . 
Road : Slope −0.005 −0.012 to 0.001 0.121 

 

Pole : Slope 0.026 −0.008 to 0.060 0.128 
 

Sidewalk −0.092 −0.220 to 0.035 0.157 
 

Sidewalk : Road Width 5.5–13 
m 

0.045 −0.038 to 0.128 0.286 
 

Sidewalk : Road Width 3–5.5 m −0.037 −0.123 to 0.049 0.404 
 

Road : Road Width 3–5.5 m 0.003 −0.017 to 0.024 0.753 
 

     
R2 0.51    

MAE 0.66    
AIC 2198    
Λ 0.14 LR test value: 8.381, p value: 0.004 

Note: CI: confidence interval; MAE: Mean Absolute Error; AIC: Akaike Information 

Criterion; and λ: Simultaneous autoregressive error coefficient. 
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Fig. 2.4. Distribution of predicted SW scores and the streetscape images with high scores or low scores 

Sources of Background Map: Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community. 

Photo: Author’s photo 

Note: The predicted SW scores for each intersection were interpolated by Inverse Distance Weighted (search radius: 500 meters). 
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2.3.3 Relationship between walking time and SW 

 Table 2.5 presents the estimated ORs and 95% CI of the neighborhood SW for 

active leisure walkers. The neighborhood SW in 500 m is associated with female active 

leisure walkers, and female participants more actively walked for leisure if the 

neighborhood SW is high (OR = 3.783; 95% CI = 1.459 to 10.409). When the 

neighborhood SW in 500 m increases by one point, the odds of older females walking 

more than 150 min/week for leisure are 3.78 times higher. There is no relationship 

between the neighborhood SW in 500 m and male active leisure walkers, and the 

neighborhood SW in 1000 m is not associated with both male and female active leisure 

walkers. 

We applied multilevel logistic regression models with a random intercept to the 

data using the sampling neighborhood unit (chocho-aza) to consider a possible clustering 

tendency due to the area stratified sampling design; however, it did not improve the model 

performance and produced the same estimates of coefficients and their standard errors. 

 

 

Table 2.5. Estimated odds ratios and 95% confidential intervals of the neighborhood SW 

for active leisure walkers 

    OR 95% CI p Adjusted p 

Male 

(N = 156) 

SW 500 m 1.534 0.696 to 3.438 0.290 1.000 

SW 1000 m 0.810 0.228 to 2.787 0.739 1.000 

Female 

(N = 144) 

SW 500 m 3.783 1.459 to 10.409 0.007** 0.028* 

SW 1000 m 3.373 0.747 to 15.277 0.110 0.440 

Notes: OR: odds ratio; CI: confidence interval; and Adjusted covariates are age, 

educational attainment, living arrangements, working status, routine car driving, physical 

limitation, and objective walkability. Participants who had at least one missing variable 

were excluded. Active leisure walker is defined as a participant who walks for leisure 

more than 150 min/week. Adjusted p-values were calculated by Bonferroni adjustment. 
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2.4 Discussion 

 This is the first study to examine the relationship among leisure walking, micro-

scale walkability, and multiple components of streetscape using GSV images and a deep 

learning approach. We built a prediction model for the SW score that can evaluate micro-

scale walkability in relation to streetscape images and examined the relationship between 

older females walking for leisure and predicted neighborhood SW. 

Through the construction of the prediction model for SW scores, the 

relationships that we found between each component of the streetscape and micro-scale 

walkability support quantitative evaluation for pedestrian-(un)friendly streetscapes. 

Previous studies attempted extracting features associated with walkable urban design 

using objective or automated methods quantitively to understand pedestrian-friendly 

streetscapes (Purciel et al., 2009; Yin, 2017; Yin and Wang, 2016). Purciel et al. (2009) 

translated urban design variables into GIS measures, but there are still no data for several 

types of features, such as the proportion of sky and number of small planters. Furthermore, 

Yin and Wang (2016) demonstrated an automated measurement of proportion of sky using 

a machine learning approach, and Yin (2017) suggested that GSV and computer vision 

can assist in the evaluation of urban design. This study supports the assertion that GSV 

and the computer vision approach can produce usable results, including semantic image 

segmentation performed by deep learning approach, for walkable urban design. 

Supporting the results of Ewing and Handy (2009) and Yin and Wang (2016) on 

visual enclosure, the results of our regression show that building segments lead to 

increases in SW, and sky segments are negatively associated with SW. This suggests that 

locations enclosed by buildings increase pedestrian comfort, unlike streets with low-rise 

buildings, such as those found in suburban residential area. However, the model also 
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indicates that several interaction effects, including building segment, have negative 

effects on the SW. For instance, interaction effects between road and building lead to 

decreases in SW. It is conceivable that locations mostly occupied by road segments and 

building segments, such as shown in Fig. 2.5, are situated on highly enclosed streets, and 

such locations could be dark and make pedestrians feel unsafe. A highly enclosed 

streetscape may have a negative influence on the psychology of pedestrians that would 

carry over to their sense of the street. Further research is needed to clarify the optimality 

of quantitative enclosures and to advance the semantic segmentation methods that can 

help measure the amount of enclosure. 

Besides small planters and street trees in urban design variables (Ewing and 

Handy, 2009; Yin, 2017), our model indicated interaction effects between the road and 

the terrain segments or between the sidewalk and terrain segments cause increases in the 

SW. Although the plant factor increases the perception of human scale of the urban design 

protocol (Ewing and Handy, 2009), it is difficult to obtain the distribution of this factor 

from objective data sources. The results of semantic segmentation indicate that a small 

planter or street tree may exist at locations where there is a combination of a terrain 

segment and a road segment or of a terrain segment and a sidewalk segment (Fig. 2.6). 

Although further research is needed to improve accuracy, it is certain that GSV and the 

deep learning approach can objectively extract plant components related to human scale. 

In case of the vegetation segment, contrast to terrain segment, the interaction effects with 

the road segment have a negative relationship to SW. However, locations with high 

proportions of road and vegetation segments include both maintained street plants and 

dense vegetation in yards and parks (Fig. 2.6). Although greenness is commonly 

recognized as an effective positive factors promoting physical activity and mental health 



43 

 

(Bell et al., 2008; Lu, 2018; Sugiyama et al., 2008), dense vegetation that creates a blind 

space could potentially lead to an increase in fear of crime (Bogar and Beyer, 2016) and 

perceptions of unsafety (Jansson et al., 2013). Clarifying the best arrangement of 

greenness to increase physical activity by objective methods, such as computer vision, 

would be needed. 

 

 

 

 

 

 

Fig. 2.5. Examples of locations mostly occupied by road and building segments 

Source: Author’s photo at the same location as the GSV images used for the analysis. 

 

 

 

 

 

 

 

Fig. 2.6. Examples of locations with nature-related segments  

Source: Author’s photo at the same location as the GSV images used for the analysis. 
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 From the analytical results on the association between leisure walking and the 

neighborhood SW, improving the neighborhood SW based on the condition of pedestrian 

infrastructure, safety, and aesthetics facilitates older females’ active walking for leisure 

although there is no association with male leisure walking. The positive relationship 

between micro-scale walkability and leisure walking has been clarified by previous 

studies (de Bourdeaudhuij et al., 2005; Inoue et al., 2010; Saelens and Handy, 2008; 

Witten et al., 2012). Moreover, several studies also proved that street safety and condition 

encourage females’ physical activity (Richardson et al., 2017; Suminski et al., 2005). To 

the best of our knowledge, however, little work has been done to analyze this relationship 

based on walkability evaluated by an automatic method. Saelens and Handy (2008) found 

that measurement of the built environment related to aesthetics varies widely across 

studies. That is, the quantitative understanding of suitable streetscapes for leisure walking 

is not yet complete. Therefore, automated method of the SW evaluation that this study 

demonstrated can help enable the evaluation of the locations that comprise leisure 

walking-friendly streetscapes with a unified criterion.  

 In terms of neighborhood distance, for GIS-based objective walkability scores 

based on destinations’ density and accessibility, several studies have found that 

walkability in the 1,000 m buffer affects physical activity (Arvidsson et al., 2012; de Sa 

and Ardern, 2014). Furthermore, a longitudinal study has specified that walkability in the 

1,000 m network buffer has a greater effect on physical activity than walkability in the 

500 m network buffer (Kikuchi et al., 2018). Conversely, this study’s results reveal that 

although a relationship does appear between the neighborhood SW in 500 m and older 

females walking for leisure, the neighborhood SW in 1,000 m is not related to walking 

behavior for leisure. In brief, the area in which micro-scale walkability based on 
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pedestrian perceptions affects walking behavior is smaller than objective walkability. This 

suggests a functional difference between objective walkability and micro-scale 

walkability. Neighborhoods that have abundant destinations, such as stations, shops, and 

restaurants, include purposes for walking behavior, and its area is often stipulated using 

a range of about 1,000 m, which matches the distance that most people are willing to walk 

(Arvidsson et al., 2012; Lee and Moudon, 2006). On the other hand, neighborhoods 

including safe streets, well-maintained pedestrian infrastructure, and attractive 

streetscapes encourage older females to go out. Conditions around one’s residence are 

particularly important. 

 This study’s result was adjusted by objective walkability. Considered together 

with the foregoing discussion, it is found that older female residents could lose interest in 

leisure walking when nearby streets are pedestrian-unfriendly, despite an abundance of 

destinations in the neighborhood. Maintaining a pedestrian-friendly environment and 

street on a micro-scale (e.g., for each residential unit) is a subject of concern, in addition 

to enhancing accessibility to destinations on the macro-scale. The results of our study 

enable us to envisage an automatic detection of streetscapes that should be maintained or 

repaired in detailed spatial resolution to the level of the intersection. 

This study has several limitations. First, GSV images were not taken in the same 

years or seasons. Although more than 90% of the GSV images we used were taken from 

2016 to 2019, some images might not reflect the current streetscapes. How the changes 

of streetscapes by year or season influence micro-scale walkability should be studied 

further. Second, the deep learning model used is to segment the general streetscape but 

not specifically based on pedestrian perceptions. Although the regression model based on 

the semantic segmentation of the streetscape can predict the SW score, there are other 
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components that encourage or discourage walking behavior, such as the presence of 

historic buildings, color, graffiti, and noise. Further studies are needed to increase the 

accuracy of the model based on walkability-specific components. Third, there is bias due 

to study design. Although active older people might select more walkable neighborhoods 

for their residences, the cross-sectional study has difficulty explaining whether the 

walkable neighborhood causes older people to be more active or not. Additionally, since 

leisure walking time is self-reported, we need to consider recall bias. Future studies 

should reduce this bias through a longitudinal approach and objective measurement of 

walking behavior. Fourth, the study area and the ages of the participants that we examined 

are limited. In relation to the analysis of the relationship between micro-scale walkability 

and leisure walking behavior, this study found that SW based on automated evaluation is 

positively related to active leisure walking by older females. It is possible that pedestrian 

perceptions of streetscapes vary depending on other stipulations, such as age and location. 

Therefore, extensive tests of multiple aspects, such as age, other sociodemographic 

characteristics, and other cities, are also needed. 

 

2.5 Conclusion 

 Micro-scale walkability in relation to pedestrian perceptions is an important 

factor in walking behavior. This study found that the deep learning approach is a useful 

tool to quantify streetscapes. Furthermore, we found a relationship between leisure 

walking by older females and micro-scale walkability based on the quantified streetscape. 

The proposed automated method allows assessment of the micro-scale aspects of the 

neighborhood environment with a unified objective criterion and the detection of leisure 

walking-(un)friendly streetscapes over large areas. This may be of widespread benefit to 
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urban planning and studies on the urban environment and human health. 
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3. Dynamic observation of the relationship of human mobility in specific places to 

the COVID-19 pandemic in Japan 

 

 

The previous chapter discussed the method for the evaluation of the micro-scale 

environment related to healthy mobility in daily activity. In addition, dynamic observation 

of the relationship between human mobility and health can help provide efficient public 

health measures for suitable places in real-time. This chapter will present a method for 

human mobility observation in specific places, using dynamic mobility data during the 

COVID-19 pandemic.  

 

3.1 Introduction 

With the global spread of the novel coronavirus disease (COVID-19), many 

countries have implemented non-pharmaceutical interventions, including lockdowns and 

travel restrictions, to control the pandemic (Chinazzi et al., 2020; Flaxman et al., 2020). 

In Japan, the government declared a state of emergency (SOE) on April 7, 2020 for seven 

prefectures, where the confirmed cases had increased markedly (Fig. 3.1), and requested 

people to adopt self-restraining behaviors, such as cancelling nonessential outings and 

avoiding the “3Cs” conditions (closed spaces, crowded places, and close-contact settings) 

(Ministry of Health, Labour and Welfare, 2020a). On April 11, the Prime Minister urged 

people to work from home (Prime Minister’s Office of Japan, 2020), and governors 

advised people to refrain from visiting nightlife spots, such as nightclubs and bars. SOE 

was applied to all 47 prefectures on April 16 (Ministry of Health, Labour and Welfare, 

2020a).  
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To understand contact patterns while such social measures were in place, 

published studies, including one from Japan, reported that human mobility was associated 

with the incidence of COVID-19 (Badr et al., 2020; Cartenì et al., 2020; Glaeser et al., 

2020; Kraemer et al., 2020; Li et al., 2020; Yabe et al., 2020; Zhou et al., 2020). Despite 

numerous studies, the effectiveness of reducing contact in focal areas at high risk (e.g., 

workplaces or nightlife places) is yet to be understood. To efficiently control the infection, 

it is important to identify the high-risk areas within cities and reduce the mobility in such 

areas by an appropriate amount. The present study aimed to examine the mobility changes 

in work, nightlife, and residential places in Japan based on mobile device data and to 

clarify the association of mobility change at these places with COVID-19 incidences. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Number of daily confirmed cases in major metropolitan areas. Vertical dash lines 

represent the start/end date of state of emergency (SOE) declaration. (On April 7, 2020, 

SOE declaration for Tokyo, Osaka, Kanagawa, Saitama, Chiba, Hyogo, and Fukuoka; on 

April 16, 2020, SOE declaration for the remaining prefectures; on May 14, 2020, lifting 

of SOE declaration for prefectures excluding the ones in Hokkaido, Tokyo, and Osaka 

metropolitan areas; on May 21, 2020, lifting of SOE declaration for Kyoto, Osaka, and 

Hyogo; on May 25, 2020, lifting of SOE declaration for Hokkaido, Saitama, Chiba, Tokyo, 

and Kanagawa.) 
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3.2 Methods 

We observed the mobility changes resulting from the outbreak of COVID-19 in 

three major metropolitan areas — Tokyo, Osaka, and Nagoya — from March 1 to July 

31, 2020. Although there are multiple definitions of metropolitan areas in Japan, in this 

study, Tokyo, Kanagawa, Saitama, and Chiba Prefectures were defined as the Tokyo 

metropolitan area; Osaka, Kyoto, Hyogo, Shiga, Nara, and Wakayama Prefectures were 

defined as the Osaka metropolitan area; and Aichi, Gifu, and Mie Prefectures were 

defined as the Nagoya metropolitan area. 

 

3.2.1 Mobility data and defining the specific places 

To observe the mobility change dynamics during the outbreak, “Mobile Spatial 

Statistics” (DOCOMO InsightMarketing, Inc., Tokyo, Japan), which provide the 

estimated hourly population in a 500-m-square grid based on mobile device locations 

(Terada et al., 2013), were employed. We classified the grids into work, nightlife, or 

residential place based on the median of population at specific times (midnight: 3:00 AM–

5:59 AM, daytime: 2:00 PM–4:59 PM, nighttime: 8:00 PM–10:59 PM) of each weekday 

from January 3 to February 6, 2020. When the median of daytime population was 10,000 

or more and twice as large as the median of midnight population, the corresponding grid 

was designated as a “workplace.” When the median of nighttime population was 10,000 

or more and twice as large as the median of midnight population, the grid was designated 

as a “nightlife place.” When the median of midnight population was 100 or more and 

smaller than the median of daytime population, the grid was set as a “residential place.”  
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3.2.2 Mobility change index 

For the mobility change index of each place type, we determined the ratio of the 

daily population to the baseline population in each grid from March to July 2020. 

Specifically, the mobility change index m of each specific place type p on day t is as 

follows: 

 

𝑚𝑝,𝑡 =
𝑃𝑜𝑝𝑝,𝑡

𝐵𝑝
, 

 

where 𝑃𝑜𝑝𝑝,𝑡 is the total hourly population in p at specific times (workplaces: 2:00 PM–

4:59 PM; nightlife places: 8:00 PM–10:59 PM; residential places: 3:00 AM–5:59 AM) on 

day 𝑡. The baseline in each place type (𝐵𝑝) was defined according to the median of the 

total hourly population at the corresponding time on a day, from January 3 to February 6, 

2020. In the statistical analysis described below, we employed a 7-day moving average to 

exclude the day-of-the-week effects on the daily mobility change index, 𝑚. The moving 

average 𝑀 of each specific place type 𝑝 on the day 𝑡 is as follows: 

 

𝑀𝑝,𝑡 =
∑ 𝑚𝑡

𝑖=𝑡−6 𝑝,𝑖

7
. 

 

3.2.3 Epidemiological data 

For obtaining the daily counts of positively confirmed cases, we used the open-

source epidemiological data provided by J.A.G JAPAN Corp, which summarizes the 

press releases of confirmed cases published by local governments. We counted the 



52 

 

number of daily positive cases, excluding re-positive cases, by each metropolitan area 

based on the confirmed date (or reported date if confirmed date of the case is unknown). 

 

3.2.4 Statistical analysis 

To evaluate the relationship between mobility changes and COVID-19 

incidences, we employed the following model (model 1) to predict the cumulative number 

of confirmed cases in the last 7 days beginning from day 𝑡, 𝑦𝑡: 

 

𝑦𝑡 = 𝛼 + 𝛽𝑡𝑦𝑡−7 + 𝜀𝑡, 

𝛽𝑡 = 𝛽0 + 𝛽1𝑀𝑝,𝑡−𝐿 , 

𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝜔𝑡, 

 

where 𝛼, 𝛽0, 𝛽1, and 𝜌 are parameters to be estimated through generalized least squares. 

The response variable, 𝑦𝑡, is defined as: 

 

𝑦𝑡 = ∑ 𝑐𝑖
𝑡
𝑖=𝑡−6 , 

 

where 𝑐𝑖 is the number of daily confirmed cases on day 𝑖. In the model, the coefficient, 

𝛽𝑡, is the increasing rate of the 7-day cumulative cases, 𝑦𝑡, compared to the earlier 7 days 

(𝑦𝑡−7 = ∑ 𝑐𝑖
𝑡−7
𝑖=𝑡−13 ). This parameter approximately represents the number of people an 

infected person infects on day 𝑡. We assumed that 𝛽𝑡 is dependent on the mobility change 

index of the specific place 𝑝  at day 𝑡  with 𝐿  day lag, 𝑀𝑝,𝑡−𝐿 . Because the mobility 
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changes may be associated with the incidence after around 2 weeks, due to the time lag 

between infection and diagnosis or reporting (Badr et al., 2020), we substituted the value 

from 7 to 20 for the lag period, 𝐿, and selected the optimal value of 𝐿 to estimate 𝛽𝑡 based 

on the Akaike Information Criterion (AIC) by each specific place type and metropolitan 

area. In addition, with the independent and identically distributed white noise, 

𝜔𝑡~𝑖𝑖𝑑𝑁(0, 𝜎2), we used the first-order autoregressive error, 𝜀𝑡, to adjust the temporal 

dependency caused by unknown factors, where ρ is the so-called autocorrelation 

parameter; 𝐸(𝜀𝑡) = 0, 𝑉𝑎𝑟(𝜀𝑡) = 𝜎2 (1 − 𝜌2)⁄ , and 𝐶𝑜𝑣(𝜀𝑡, 𝜀𝑡−1) =  𝜌 𝜎2/(1 − 𝜌2). 

 We also considered the model in which 𝛽𝑡 is simultaneously dependent on the 

mobility change indices of all place types to improve the predictive accuracy of the model 

(model 2). In this model, 𝛽𝑡 is as follows: 

 

𝛽𝑡 = 𝛽0 + ∑ 𝛽𝑝𝑝∈{𝑊𝑜𝑟𝑘,𝑁𝑖𝑔ℎ𝑡𝑙𝑖𝑓𝑒,𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙}  𝑀𝑝,𝑡−𝐿𝑝
. 

 

Regarding the lag period of each place category, 𝑝 (𝐿𝑝), we substituted the optimal value 

for each place type determined through the results of model 1 in the respective 

metropolitan areas. 

 

3.3 Results 

Regarding the specific place based on the hourly population, Fig. 3.2 and Fig. 

3.3 shows the geographical distribution of the workplace and nightlife-place grids we 

defined, respectively. In addition, to ascertain the validity of the distribution, we also 

overlaid the primary business districts and nightlife spots on the maps. The primary 

business districts were identified 500 m square grids where there was a large working 
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population—in central Tokyo, Nagoya City, and Osaka City—based on the 2014 

Economic Census. When the number of employees was equal to or larger than its mean 

plus one standard deviation, the grid was herewith defined as a primary business district. 

The primary nightlife spots were identified by referring the materials disclosed on the 

police department websites of Tokyo, Osaka City, and Nagoya City (Aichi Prefectural 

Police Department, 2018; Metropolitan Police Department, 2018; Osaka Prefectural 

Police Department, 2006, 2005). 

Although the distribution of the primary business districts/nightlife spots and the 

workplaces/nightlife-places we defined overlap in many parts, there are a few gaps 

between them. Since we identified these specific places based on the ratio of the 

daytime/nighttime population to midnight population, the workplaces or nightlife places 

did not include the business districts or nightlife spots where large populations reside. 

However, we considered areas with mixed land-use composing both business districts or 

nightlife spots and residential area as inappropriate for measuring the mobility changes 

because the increase in residential population and the decrease in visitor population in 

daytime/nighttime often occur simultaneously in such areas. Therefore, as we defined, 

the workplaces/nightlife places based on the population differences between midnight and 

daytime/nighttime should be suitable for analyzing the mobility changes. 
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Fig. 3.2. Geographical distribution of the primary business districts and 

workplaces in Central Tokyo (A), Nagoya City (B), and Osaka City (C). 

Solid green areas represent the workplaces we defined. Red-hatched 

areas represent the primary business districts based on the 2014 

Economic Census. Map sources: Esri, HERE, Garmin, FAO, NOAA, 

USGS, (c) OpenStreetMap contributors, and the GIS User Community. 
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Fig. 3.3. Geographical distribution of the primary nightlife spots and 

nightlife places in Central Tokyo (A), Nagoya City (B), and Osaka City 

(C). Solid blue areas represent the nightlife places we defined. Red points 

or red-hatched areas represent the primary nightlife spots listed by the 

police department websites. Map sources: Esri, HERE, Garmin, FAO, 

NOAA, USGS, (c) OpenStreetMap contributors, and the GIS User 

Community. 
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In terms of the mobility changes during the pandemic, although the indices in 

workplaces and nightlife places had already declined slightly as of early March, it showed 

a drastic downward trend in all regions from late March, before SOE was declared (Fig. 

3.4A and Fig. 3.4B). Because mobility reduction in nightlife places was particularly 

significant during SOE, it can be presumed that the majority of people refrained from 

visiting nightlife spots, as requested by the government. In contrast, the index in 

residential places that reflected staying at home showed an upward trend from March to 

May (Fig. 3.4C). 

According to the estimated 𝛽1 and the optimal lag period of the models with the 

single mobility change index (model 1), the mobility changes in workplaces and nightlife 

places were positively associated with the incidence after 8 to 16 days in all metropolitan 

areas, and the residential places’ mobility was negatively associated (Table 3.1); that is, 

the decrease in people visiting workplaces or nightlife places, as well as the increase in 

stay-at-home population, could have led to reducing the outbreak, although its sensitivity 

varied by area type. Notably, judging from Nagelkerke's R2, the mobility changes in the 

nightlife spots better explained the outbreak of COVID-19 compared to workplaces and 

residential areas in the respective metropolitan areas. However, the goodness of fit of the 

models based on the Tokyo metropolitan area’s mobility changes was lower than that of 

the other areas’ models. 

 In addition, while the models with all mobility change variables (model 2) 

slightly improved the accuracy of predicting the number of new positive cases, their 

results also indicate that the mobility changes in nightlife places were more significantly 

associated with the outbreak than those in workplaces and residential places in each 

metropolitan area (Table 3.2). Model 2 also shows that the relationships of the residential 
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places’ mobility changes to the outbreak were statistically significant only in the Nagoya 

metropolitan area, and the mobility changes in workplaces were no longer significantly 

associated with the outbreak in all metropolitan areas. 
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Fig. 3.4. Daily change of mobility in workplaces (A), nightlife places (B), and residential places (C). The solid and dashed lines represent 

the 7-day moving average of the mobility change index and the 7-day moving average of the mobility change index delayed by the optimal 

lag period, respectively. The mobility change index is represented by the ratio of the population of each place at specific times (workplaces: 

2:00 PM–4:59 PM, nightlife places: 8:00 PM–10:59 PM, residential places: 3:00 AM–5:59 AM) to the baseline population. The baseline 

in each place was defined based on the median of population at corresponding time of each day from January 3, 2020 to February 6, 2020. 

The optimal lag period was determined using AIC. Vertical dash lines represent the start/end date of state of emergency (SOE) declaration. 

(On April 7, 2020, SOE declaration for Tokyo, Osaka, Kanagawa, Saitama, Chiba, Hyogo, and Fukuoka; on April 16, 2020, SOE 

declaration for the remaining prefectures; on May 14, 2020, lifting of SOE declaration for prefectures excluding the ones in Hokkaido, 

Tokyo, and Osaka metropolitan areas; on May 21, 2020, lifting of SOE declaration for Kyoto, Osaka, and Hyogo; on May 25, 2020, lifting 

of SOE declaration for Hokkaido, Saitama, Chiba, Tokyo, and Kanagawa.) 
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Table 3.1. Estimated α and βt of Model 1 

Area Place Lag period AIC R2 

 α  

Coef. 95% CI p 

Tokyo 

metropolitan 

Workplace 16 1,706.30 0.25 857.28 -657.63 to 2372.18 0.265 

Nightlife 

place 
15 1,697.88 0.29 701.99 -487.91 to 1891.88 0.246 

Residential 

place 
16 1,705.05 0.25 805.57 -587.56 to 2198.69 0.255 

Nagoya 

metropolitan 

Workplace 9 1,253.60 0.72 154.87 -181.81 to 491.54 0.365 

Nightlife 

place 
8 1,238.71 0.75 138.51 -176.25 to 453.28 0.386 

Residential 

place 
9 1,249.40 0.73 157.82 -180.05 to 495.68 0.358 

Osaka 

metropolitan 

Workplace 13 1,436.46 0.54 295.18 -266.09 to 856.45 0.300 

Nightlife 

place 
13 1,426.41 0.57 251.57 -223.78 to 726.92 0.297 

Residential 

place 
13 1,435.25 0.54 306.93 -277.43 to 891.28 0.301 

(βt is shown on the next page) 
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Table 3.1 (continued) 

Area Place Lag period AIC R2 

 β0 
   β1 

 

Coef. 95% CI p  Coef. 95% CI p 

Tokyo 

metropolitan 

Workplace 16 1,706.30 0.25 -0.91 -1.43 to -0.39 <0.001***  2.06 1.27 to 2.84 <0.001*** 

Nightlife 

place 
15 1,697.88 0.29 -0.37 -0.66 to -0.08 0.012*  1.55 1.05 to 2.06 <0.001*** 

Residential 

place 
16 1,705.05 0.25 6.31 4.10 to 8.52 <0.001***  -5.20 -7.13 to -3.27 <0.001*** 

Nagoya 

metropolitan 

Workplace 9 1,253.60 0.72 -2.50 -3.70 to -1.31 <0.001***  5.23 3.72 to 6.75 <0.001*** 

Nightlife 

place 
8 1,238.71 0.75 -1.07 -1.74 to -0.41 0.002**  4.11 3.11 to 5.10 <0.001*** 

Residential 

place 
9 1,249.40 0.73 26.05 19.35 to 32.75 <0.001***  -22.86 -29.12 to -16.60 <0.001*** 

Osaka 

metropolitan 

Workplace 13 1,436.46 0.54 -1.01 -1.52 to -0.50 <0.001***  2.41 1.74 to 3.08 <0.001*** 

Nightlife 

place 
13 1,426.41 0.57 -0.22 -0.49 to 0.06 0.119  1.70 1.28 to 2.12 <0.001*** 

Residential 

place 
13 1,435.25 0.54 10.99 8.19 to 13.78 <0.001***  -9.42 -11.99 to -6.84 <0.001*** 

Notes: AIC, Akaike Information Criterion; CI, confidence interval. *Coef.: Coefficient, R2: Nagelkerke's R2 with the null model assuming 

zero coefficients of explanatory variables with AR1 error, “***,” “**,” and “*,” denote the statistical significance at 0.1%, 1%, and 5% 

levels, respectively. The sample size for each model was 153. 
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Table 3.2. Estimated α and βt of Model 2 

Area AIC R2 

   

 α  

Coef. 95% CI p 

Tokyo 

metropolitan 
1,699.55 0.30 719.36 -512.11 to 1950.84 0.250 

Nagoya 

metropolitan 
1,238.50 0.76 141.58 -176.40 to 459.56 0.380 

Osaka 

metropolitan 
1,427.24 0.58 254.21 -229.55 to 737.97 0.301 

(βt is shown on the next page) 
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Table 3.2 (continued) 

Area AIC R2 

    Workplaces  Nightlife places  Residential places 

 β0 
   βWork 

   βNightlife 
   βResidential 

 

Coef. 95% CI p  Coef. 95% CI p  Coef. 95% CI p  Coef. 95% CI p 

Tokyo 

metropolitan 
1,699.55 0.30 0.69 

-9.78 to 

11.17 
0.896  0.44 

-2.50 to 

3.39 
0.766  1.15 

0.41 to 

1.89 
0.003**  -1.00 

-8.58 to 

6.57 
0.794 

Nagoya 

metropolitan 
1,238.50 0.76 22.70 

-1.36 to 

46.76 
0.064  -3.63 

-8.69 to 

1.42 
0.158  3.65 

1.80 to 

5.51 
<0.001***  -19.28 

-38.56 to 

0.00 
0.050* 

Osaka 

metropolitan 
1,427.24 0.58 9.95 

-1.54 to 

21.44 
0.089  -2.37 

-5.36 to 

0.62 
0.119  1.96 

0.82 to 

3.10 
<0.001***  -7.90 

-16.89 to 

1.09 
0.085 

Notes: AIC, Akaike Information Criterion; and CI, confidence interval. “***,” *Coef.: Coefficient, R2: Nagelkerke's R2 with the null 

model assuming zero coefficients of explanatory variables with AR1 error, “**,” and “*,” denote the statistical significance at the 0.1%, 

1%, and 5% levels, respectively. The sample size for each model was 153. 
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3.4 Discussion 

We demonstrated that the mobility changes in all types of places were associated 

with COVID-19 incidence in Japan. Although the mobility had been slightly reduced in 

March, possibly reflecting the increased individual awareness of infection prevention, 

mobility in nightlife places was clearly reduced from mid-April to mid-May and was more 

strongly associated with the trends of confirmed cases compared to other potential 

locations of transmission. In fact, a published study has shown that the proportion of 

positive cases in the nightlife group was significantly higher than that in the non-nightlife 

group based on the SARS-CoV-2 PCR test at a clinic in Tokyo from early March to late 

April (Takaya et al., 2020). Our finding and such published evidence imply that SOE and 

public warnings to avoid nightlife places were effective in reducing the outbreak. 

Regarding the regional differences in the relationship between the mobility 

change and outbreak, the sensitivity and predictive accuracy of mobility in the Tokyo 

metropolitan area to new positive cases was the lowest in the results of models with a 

single mobility change (model 1). Moreover, the models with all mobility change 

variables (model 2) showed that the mobility changes in residential places were related to 

the outbreak only in the Nagoya metropolitan area, but those in the Tokyo and Osaka 

metropolitan areas were not. These findings suggest that there may still be various 

opportunities having risks of infection (such as a nosocomial infection, infection at jobs 

where face-to-face interaction is required, or infections at daily life areas near residential 

places) in largely populated regions, such as the Tokyo and Osaka metropolitan areas, 

even though mobility was reduced in highly-sensitive places, and the stay-at-home 

population increased. 

The ongoing COVID-19 pandemic has also been the cause of economic damages. 
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A previous study indicates that if Tokyo were locked down for a month, the economic 

impacts would spill over to other regions and the total loss of productive activity in Japan 

would be 5.2% of the annual GDP (Inoue and Todo, 2020). Therefore, it would be 

important to stimulate economic activities while monitoring the mobility in high-risk 

locations such as nightlife places. The observation of mobility using mobile phone 

networks, as shown in this study, can be applied to capture changes in mobility at specific 

places in near-real-time, thereby facilitating immediate infection control measures. In 

addition, for a more detailed analysis of the spatial characteristics of the contacts that 

cause the infection, the observation of GPS-based mobility in nightlife places would be 

required. 

Our study has several limitations. First, we used the confirmed date to compile 

the incidence data, because several local governments have not disclosed their onset date, 

but ideally the date of illness onset would more properly reflect the epidemic dynamics. 

The differences in the optimal lag periods among the metropolitan areas could possibly 

be explained by regional differences in the period from onset to diagnosis/reporting, due 

to the testing system. Second, the choice of “place” we analyzed was defined only by the 

ratio of population during a specific time, and there is a possibility that some places might 

have been wrongly identified as nightlife places. However, we manually ascertained that 

the primary business/nightlife districts are correctly included in workplaces/nightlife 

places that we defined. Third, our study considered only the mobility changes as an 

environmental factor that was associated with the outbreak of COVID-19. Further studies 

are needed to ascertain the effect of mobility changes on the outbreak by taking into 

account other environmental factors, such as improvements in testing and treatment 

systems, seasonal effects, and increase in individual awareness of infection prevention. 
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Our study’s methods and findings can be used for designing future public health and 

social measures against COVID-19. The results indicate that mobility reduction, 

particularly in nightlife places, may contribute to reducing the transmission of infectious 

diseases. This will help us to accurately observe the mobility associated with a high risk 

of infection and implement prompt infection control measures at appropriate places in the 

future. 
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4. Individual and geographic background of changes in physical activity during the 

COVID-19 pandemic in Japan 

 

 

The previous two chapters demonstrated the usefulness of spatial big data for 

observing mobility and its related environmental context in the geographies of health. In 

addition, to promote people's health and well-being, the social factors impacting disease 

and health inequalities should also be considered. This chapter will explore the individual 

and geographic background of changes in mobility during a specific event by combining 

mobile phone data and an online survey. 

 

4.1 Introduction 

The novel coronavirus disease (COVID-19) pandemic is ongoing as of August 

2021. Although vaccinations have been administered in many countries, the World Health 

Organization reported that as of August 3, 2021, the number of new COVID-19 cases per 

week worldwide is still increasing (World Health Organization, 2021). Up until August 

10, 2021, more than 200 million cases have been confirmed globally, including more than 

4.3 million deaths (Johns Hopkins Coronavirus Resource Center, 2021). To reduce the 

spread of infection, non-pharmaceutical interventions (NPIs), such as social distancing 

measures and lockdowns, were implemented in many countries (BBC, 2021; 

Courtemanche et al., 2020; Lau et al., 2020). In Japan, to prevent the health system from 

collapsing due to rapid increase in new positive cases, the government declared a state of 

emergency (SoE) four times until August 10, 2021 and requested people to show self-

restraining behaviors such as shortening business hours at restaurants, avoiding 
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nonessential outings, and working from home (Office for Novel Coronavirus Disease 

Control Cabinet Secretariat, Government of Japan, 2020). 

Previous studies have revealed the effects of changes in human mobility related 

to NPIs during the COVID-19 outbreak (Amagasa et al., 2020; Badr et al., 2020; Li et al., 

2020; Nagata et al., 2021; Yabe et al., 2020; Zhou et al., 2020). Reduced mobility that 

effectively reduces the spread of infection could cause physical inactivity, which is 

concerning (Hall et al., 2021; Lippi et al., 2020). A descriptive study showed that globally, 

within 30 days of declaration of the pandemic, there was a 27.3% reduction in the mean 

number of steps taken (Tison et al., 2020). Further, several studies have shown that 

reduced physical activity during the COVID-19 pandemic is associated with mental 

health issues, such as depression, loneliness, stress, anxiety, and sadness (Meyer et al., 

2020; Pieh et al., 2020; Silva et al., 2020). Additionally, according to the World Health 

Organization, physical inactivity is a major risk factor for non-communicable diseases 

(World Health Organization, 2020) and is estimated to cause 6–10% of coronary heart 

diseases, type 2 diabetes, and breast and colon cancers worldwide (Lee et al., 2012). 

Therefore, it is important to analyze reduced physical activity caused by the 

implementation of NPIs to plan long-term measures against the current and any future 

pandemics. 

 Much has been discussed on the factors encouraging or discouraging physical 

activity. Many studies consistently demonstrate that individuals of higher socioeconomic 

status (SES) are more likely to be physically active during leisure time, while those of 

lower SES are more likely to engage in job-related physical activity (Beenackers et al., 

2012; McNeill et al., 2006). Furthermore, neighborhood environments are also associated 

with the amount of physical activity. High-walkability neighborhoods, which have mixed 
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land use or favorable esthetic qualities, promote residents’ walking behavior (Saelens et 

al., 2003; Saelens and Handy, 2008; Sallis et al., 2009), but those living in highly-deprived 

neighborhoods are more likely to be physically inactive (Cubbin et al., 2006; Hillsdon et 

al., 2008). During the COVID-19 pandemic, people with low incomes in the USA and the 

UK showed decreased physical activity (Fearnbach et al., 2021; Robinson et al., 2021). 

Conversely, a study from Bangladesh demonstrated that highly educated individuals with 

high income is more likely to be physically inactive (Rahman et al., 2020). Considering 

such differences reflect social structures and the measures taken against COVID-19 in 

each country; further evaluation based on the situations in different countries is needed. 

 In Japan, decreased physical activity was observed during the COVID-19 

outbreak (Hino and Asami, 2021; Makizako et al., 2021; Yamada et al., 2020). Hino and 

Asami (2021) suggested that proximity to large parks could effectively mitigate decreased 

walking among female older adults during the SoE. Hanibuchi et al. (2021) reported that 

reduced time spent outdoors is associated with individual attributes such as age, gender, 

income, or residential location and perception of anxiety related to the infection or the 

stigma. Moreover, Koohsari et al. (2021) revealed that the implementation of working-

from-home was associated with decreased work-related physical activity and increased 

sitting time. However, few studies have attempted to clarify the comprehensive 

relationships between physical inactivity and individual attributes such as age, residential 

location, work situation changes, or anxiety related to the pandemic. This study employed 

data from a smartphone application and an online survey to retrospectively observe 

changes in physical activity, particularly decreased walking and increased sedentary 

behaviors, during the first wave of the COVID-19 pandemic in Japan, and explore the 

relationship between individual attributes, including demographic, socioeconomic, and 
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geographic characteristics, work situation changes, and perception of anxiety. 

 

4.2 Methods 

4.2.1 Data collection 

We conducted a nationwide online survey among registered panel members of a 

survey company (Cross Marketing Inc.) from May 19 to May 23, 2020. People aged 20–

69 years with diverse demographic and socioeconomic backgrounds, owning iPhones, 

and living in Japan were recruited from 4.65 million panel members. The quota sample 

was designed to have the same distribution of population by age, gender, and geographical 

region based on the 2015 Japan population census. As for the definition of the 

geographical region, we classified the prefectures into metropolitan areas that consist of 

Tokyo, Kanagawa, Saitama, Chiba, Aichi, Gifu, Mie, Osaka, Hyogo, Kyoto and Nara and 

nonmetropolitan areas that consist of the rest. However, this sampling design was not 

applied to participants aged 60–69 years because of fewer responses from females of this 

age group. 

 

4.2.2 Measurement of changes in walking and sedentary behaviors 

 To analyze changes in sedentary behavior, the participants were asked regarding 

change is duration of sitting since COVID-19 outbreak when compared with before the 

pandemic. Participants selected answers from the following options: significant reduction, 

slight reduction, no change, slight rise, significant rise. The answers were converted to 

integer values (1: significant reduction, 2: slight reduction, 3: no change, 4: slight rise, 5: 

significant rise) to obtain ordinal variables for statistical analyses. 

 Additionally, to observe changes in walking behavior objectively and 
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retrospectively, from the participants, we collected screenshot images of the pre-installed 

“iPhone Health App” (Apple Inc.), which automatically records daily step counts. The 

screenshots of number of daily steps were captured for the previous 3 months by the 

participants. We then extracted this information through image processing and optical 

character recognition methods using Python 3.7.7, OpenCV 4.2.0, and Tesseract 5.0.0. 

Details of the image processing methods to obtain the step counts in numbers have been 

described previously (Adachi et al., 2021). Subsequently, we calculated the differences 

between the number of mean steps before and after the first SoE for each participant and 

used them for each period to measure the changes in walking behavior. According to a 

previous study, the pre-SoE period was from February 19, 2020 to March 23, 2020 and 

the post-SoE period was from April 16, 2020 to May 19, 2020 (Adachi et al., 2021). 

 

4.2.3 Demographic, socioeconomic, and geographic variables 

 The demographic and socioeconomic attributes of the participants considered as 

variables were: gender (0: males, 1: females), age (20–29 years, 30–39 years, 40–49 years, 

50–59 years, 60–69 years), chronic disease (0: no, 1: yes), educational status (junior high 

school/high school, junior (technical) college/vocational school, undergraduate/graduate 

school), occupation (white-collar job including administrators, professionals, and office 

clerks; gray-collar job including sales clerks and service workers; blue-collar job 

including security workers and production, construction, and transportation workers; and 

other/not working), household annual income (<3 million yen, 3–7 million yen, ≥7 

million yen, and unknown), living alone (0: no, 1: yes), living with child(ren) under 18 

years (0: no, 1: yes), and living with person(s) aged 65 years and older (0: no, 1: yes). The 

data corresponding to the categorical variables, such as age, educational status, 
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occupation, and household income, were converted to a binary system indicating whether 

the participants belong to each group or not (0: no, 1: yes). 

Neighborhood-level population density and deprivation were considered as 

geographic variables. The neighborhoods were defined by the postal code of the 

participants’ residential address and were categorized as follows into groups of 

approximately equal sample sizes: lowest density (non-densely-inhabited-district (non-

DID), defined by the 2015 Japan population census), middle-low density (DID with 7,015 

people/km2 or fewer), middle-high density (DID with 7,016–10,214 people/km2), and 

highest density (DID with 10,215 people/km2 or more). The neighborhood-level 

deprivation indicator was calculated using the area deprivation index (ADI) derived from 

the 2015 Japan population census, which has been explained previously (Nakaya et al., 

2014). A higher ADI indicates that the neighborhood has more deprived conditions. We 

categorized the neighborhoods based on ADI quartiles as lowest ADI, middle-low ADI, 

middle-high ADI, and highest ADI groups.  

 

4.2.4 Variables representing changes related to work situation and anxiety 

 We hypothesized that the work situation changes and perception of anxiety due 

to COVID-19 are also associated with walking and sedentary behaviors. The variables 

that indicate changes in work situation were: introduction of work-from-home/standby-

at-home measures (0: no, 1: yes) and decreased amount of work (0: no, 1: yes). Three 

anxiety variables were also used: strong anxiety about getting infected (0: no, 1: yes), 

spreading the infection to others (0: no, 1: yes), and stigma associated with going out (0: 

no, 1: yes). 
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4.2.5 Statistical analysis 

To examine the direct and indirect relationships among the individual attributes 

including demographic, socioeconomic, and geographic variables, changes in work 

situation, perception of anxiety due to the pandemic, and changes in physical activity, we 

assumed the following models (Fig. 4.1): model A represents that the individuals’ 

background affected their work situation and perception of anxiety which affected the 

changes in physical activity; model B assumes the inverse relationship between 

perception of anxiety and the changes in physical activity represented by model A to 

account for the possibility that the physical inactivity causes increased anxiety during the 

pandemic (Silva et al., 2020); model C and D assumes the direct relationship between the 

work situation changes and perception of anxiety in addition to the frameworks of model 

A and B. All models assume the direct relationships between the individuals’ background 

and the changes in physical activity. 

We examined the relationships by path analysis, a special case of structural 

equation modeling, and evaluated the most suitable model to explain the comprehensive 

relationships by comparative fit index (CFI) and root mean square error of approximation 

(RMSEA) which indicate how well the model fits. CFI is expressed as a value between 0 

and 1, and models with a value greater than 0.95 are often interpreted as good fitting 

(Ullman and Bentler, 2012). RMSEA represents that the smaller the value, the better 

fitting the model, and values of 0.06 or less can be interpreted as good fitting (Ullman 

and Bentler, 2012). Furthermore, to evaluate the relationship between each variable, the 

relationship was considered statistically significant if the path’s p-value was less than 0.05. 

To estimate the coefficients to the dichotomous variables indicating changes in work 

situation and perception of anxiety and ordinal variables indicating changes in time spent 
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in sedentary behavior, binary probit and ordered probit regression models were employed, 

respectively. All statistical analyses were performed using R 3.6.1, and the lavaan package, 

version 0.6-7, was used to run path analysis. 

This study was approved by the Research Ethics Committee of the Graduate 

School of Engineering, Tohoku University (approval number: 20A-3). Informed consent 

was obtained from all participants. 
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Fig. 4.1. Conceptual frameworks of the models indicating hypotheses of the relationships among individual attributes, work situation 
changes, perception of anxiety, and changes in physical activity  
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4.3 Results 

 In the online survey, 1,200 panel members participated. We excluded the data of 

282 participants from whom the daily step counts could not be obtained for more than 15 

days both before and after the SoE because of errors such as low image resolution. We 

excluded the data of five participants whose educational data was unavailable and 17 

participants whose postal code was missing. Finally, data of 896 participants were used 

for analyses (Fig. 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Flow diagram of participant inclusion 
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Fig. 4.3 shows the differences in mean step counts between late-February and 

mid-May, 2020. The step counts decreased gradually from late-February, and there was 

more than 20% reduction after the SoE. Table 4.1 summarizes the changes in walking and 

sedentary behaviors during the COVID-19 outbreak based on demographic, 

socioeconomic, and geographic attributes. More than 60% of participants increasingly 

spent time in sedentary behavior. The average step count consistently decreased across 

all attributes, while sedentary behavior increased during the outbreak. There were 

significant differences in step count reductions when considering age, educational status, 

living with child(ren), neighborhood density, ADI, and introduction of work-from-

home/standby-at-home measures. Furthermore, the changes in time spent in sedentary 

behavior across groups categorized according to gender, educational status, neighborhood 

density, ADI, introduction of work-from-home/standby-at-home, decreased amount of 

work, and strong anxiety about getting infected, spreading the infection to others, and the 

stigma associated with going out, were significant. 
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Fig. 4.3. Changes in mean step counts of the participants (7-day moving average). Vertical 

dash lines represent the start/end date of state of emergency (SoE) declaration (April 7, 

2020, SoE declaration for Tokyo, Osaka, Kanagawa, Saitama, Chiba, Hyogo, and 

Fukuoka; April 16, 2020, SoE declaration for the remaining prefectures; May 14, 2020, 

lifting of SoE for prefectures excluding Hokkaido, Saitama, Chiba, Tokyo, Kanagawa, 

Kyoto, Osaka, and Hyogo). 
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Table 4.1. Changes in walking and sedentary behaviors during the COVID-19 outbreak based on characteristics of respondents  
n %  Average change in step 

counts a)b) 

 
Number of participants by change levels of sedentary behavior c) 

 
   

  
Significant 

reduction 

Slight 

reduction 

No change Slight rise Significant rise 

Total 896 
 

 -918.4 (SD=2276.2) 
 

1 (0.1%) 9 (1.0%) 321 (35.8%) 293 (32.7%) 272 (30.4%)    
 

       

Gender 
  

 p=0.263 
 

p=0.002 
    

  Males 459 51.2  -1001.5 (SD=2318.7) 
 

1 (0.2%) 5 (1.1%) 178 (38.8%) 160 (34.9%) 115 (25.1%) 

  Females 437 48.8  -831.2 (SD=2230.0) 
 

0 (0.0%) 4 (0.9%) 143 (32.7%) 133 (30.4%) 157 (35.9%)    
 

       

Age 
  

 p<0.001 
 

p=0.066 
    

  20-29 years 134 15.0  -1991.5 (SD=2604.2) 
 

0 (0.0%) 3 (2.2%) 40 (29.9%) 34 (25.4%) 57 (42.5%) 

  30-39 years 180 20.1  -771.0 (SD=2586.5) 
 

0 (0.0%) 2 (1.1%) 60 (33.3%) 64 (35.6%) 54 (30.0%) 

  40-49 years 214 23.9  -907.6 (SD=1903.6) 
 

0 (0.0%) 1 (0.5%) 78 (36.4%) 71 (33.2%) 64 (29.9%) 

  50-59 years 171 19.1  -756.1 (SD=1921.4) 
 

1 (0.6%) 1 (0.6%) 73 (42.7%) 52 (30.4%) 44 (25.7%) 

  60-69 years 197 22.0  -475.9 (SD=2186.2) 
 

0 (0.0%) 2 (1.0%) 70 (35.5%) 72 (36.5%) 53 (26.9%)    
 

       

Chronic disease 
  

 p=0.388 
 

p=0.983 
    

  No 682 76.1  -952.9 (SD=2338.1) 
 

1 (0.1%) 7 (1.0%) 243 (35.6%) 225 (33.0%) 206 (30.2%) 

  Yes 214 23.9  -808.5 (SD=2067.8) 
 

0 (0.0%) 2 (0.9%) 78 (36.4%) 68 (31.8%) 66 (30.8%)    
 

       

Educational status 
  

 p<0.001 
 

p=0.025 
    

  Junior high school/high school 177 19.8  -493.9 (SD=1849.1) 
 

1 (0.6%) 1 (0.6%) 77 (43.5%) 52 (29.4%) 46 (26.0%) 

  Junior (technical) 

college/vocational school 

219 24.4  -668.6 (SD=2506.6) 
 

0 (0.0%) 3 (1.4%) 84 (38.4%) 69 (31.5%) 63 (28.8%) 

  Undergraduate/graduate school 500 55.8  -1178.1 (SD=2276.6) 
 

0 (0.0%) 5 (1.0%) 160 (32.0%) 172 (34.4%) 163 (32.6%)    
 

       

Occupation 
  

 p=0.788 
 

p=0.601 
    

  White-collar job 407 45.4  -901.1 (SD=1876.6) 
 

0 (0.0%) 3 (0.7%) 152 (37.3%) 126 (31.0%) 126 (31.0%) 

  Gray-collar job 152 17.0  -1067.1 (SD=2910.4) 
 

0 (0.0%) 1 (0.7%) 57 (37.5%) 45 (29.6%) 49 (32.2%) 

  Blue-collar job 75 8.4  -913.1 (SD=2575.5) 
 

0 (0.0%) 0 (0.0%) 31 (41.3%) 27 (36.0%) 17 (22.7%) 

  Other/not working 262 29.2  -860.6 (SD=2343.2) 
 

1 (0.4%) 5 (1.9%) 81 (30.9%) 95 (36.3%) 80 (30.5%) 
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Table 4.1 (continued) 
   

 Average change in step 

counts a)b) 

 
Number of participants by change levels of sedentary behavior c) 

 
n %  

  
Significant 

reduction 

Slight 

reduction 

No change Slight rise Significant 

rise 

Household annual income 
  

 p=0.347 
 

p=0.085 
    

  Less than 3 million yen 122 13.6  -808.0 (SD=3125.0) 
 

0 (0.0%) 3 (2.5%) 50 (41.0%) 35 (28.7%) 34 (27.9%) 

  3-7 million yen 377 42.1  -886.4 (SD=2082.5) 
 

0 (0.0%) 2 (0.5%) 128 (34.0%) 121 (32.1%) 126 (33.4%) 

  7 million yen or more 298 33.3  -950.5 (SD=1965.7) 
 

1 (0.3%) 2 (0.7%) 100 (33.6%) 108 (36.2%) 87 (29.2%) 

  Unknown 99 11.0  -1079.9 (SD=2619.3) 
 

0 (0.0%) 2 (2.0%) 43 (43.4%) 29 (29.3%) 25 (25.3%)    
 

       

Living alone 
  

 p=0.134 
 

p=0.363 
    

  No 736 82.1  -856.5 (SD=2159.7) 
 

1 (0.1%) 6 (0.8%) 267 (36.3%) 246 (33.4%) 216 (29.3%) 

  Yes 160 17.9  -1203.5 (SD=2739.1) 
 

0 (0.0%) 3 (1.9%) 54 (33.8%) 47 (29.4%) 56 (35.0%)    
 

       

Living with child(ren) under 18 

years 

  
 p<0.001 

 
p=0.226 

    

  No 650 72.5  -1084.2 (SD=2295.6) 
 

1 (0.2%) 7 (1.1%) 225 (34.6%) 213 (32.8%) 204 (31.4%) 

  Yes 246 27.5  -480.3 (SD=2168.3) 
 

0 (0.0%) 2 (0.8%) 96 (39.0%) 80 (32.5%) 68 (27.6%)    
 

       

Living with person(s) aged 65 

years and older 

  
 p=0.423 

 
p=0.091 

    

  No 762 85.0  -942.0 (SD=2314.5) 
 

1 (0.1%) 6 (0.8%) 268 (35.2%) 248 (32.5%) 239 (31.4%) 

  Yes 134 15.0  -784.7 (SD=2047.5) 
 

0 (0.0%) 3 (2.2%) 53 (39.6%) 45 (33.6%) 33 (24.6%)    
 

       

Neighborhood density 
  

 p<0.001 
 

p<0.001 
    

  Lowest density 218 24.3  -360.0 (SD=2117.8) 
 

1 (0.5%) 1 (0.5%) 99 (45.4%) 66 (30.3%) 51 (23.4%) 

  Middle-low density 232 25.9  -506.8 (SD=2046.2) 
 

0 (0.0%) 0 (0.0%) 87 (37.5%) 80 (34.5%) 65 (28.0%) 

  Middle-high density 229 25.6  -1029.4 (SD=2268.8) 
 

0 (0.0%) 3 (1.3%) 81 (35.4%) 80 (34.9%) 65 (28.4%) 

  Highest density 217 24.2  -1802.4 (SD=2399.2) 
 

0 (0.0%) 5 (2.3%) 54 (24.9%) 67 (30.9%) 91 (41.9%) 
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Table 4.1 (continued) 
   

 Average change in step 

counts a)b) 

 
Number of participants by change levels of sedentary behavior c) 

 
n %  

  
Significant 

reduction 

Slight 

reduction 

No change Slight rise Significant 

rise 

Areal deprivation index (ADI) 
  

 p=0.002 
 

p=0.019 
    

  Lowest ADI 224 25.0  -1118.2 (SD=2699.2) 
 

1 (0.4%) 3 (1.3%) 75 (33.5%) 66 (29.5%) 79 (35.3%) 

  Middle-low ADI 224 25.0  -1278.3 (SD=2359.6) 
 

0 (0.0%) 0 (0.0%) 66 (29.5%) 84 (37.5%) 74 (33.0%) 

  Middle-high ADI 224 25.0  -661.9 (SD=2055.4) 
 

0 (0.0%) 2 (0.9%) 93 (41.5%) 71 (31.7%) 58 (25.9%) 

  Highest ADI 224 25.0  -615.3 (SD=1840.5) 
 

0 (0.0%) 4 (1.8%) 87 (38.8%) 72 (32.1%) 61 (27.2%)    
 

       

Introduction of work-from-

home/standby-at-home 

  
 p<0.001 

 
p<0.001 

    

  No 595 66.4  -638.5 (SD=1996.7) 
 

1 (0.2%) 5 (0.8%) 249 (41.8%) 193 (32.4%) 147 (24.7%) 

  Yes 301 33.6  -1471.8 (SD=2664.6) 
 

0 (0.0%) 4 (1.3%) 72 (23.9%) 100 (33.2%) 125 (41.5%)    
 

       

Decreased amount of work 
  

 p=0.080 
 

p<0.001 
    

  No 724 80.8  -849.8 (SD=2234.5) 
 

1 (0.1%) 7 (1.0%) 284 (39.2%) 233 (32.2%) 199 (27.5%) 

  Yes 172 19.2  -1207.2 (SD=2429.5) 
 

0 (0.0%) 2 (1.2%) 37 (21.5%) 60 (34.9%) 73 (42.4%)    
 

       

Strong anxiety about getting infected 
  

 p=0.806 
 

p=0.002 
    

  No 613 68.4  -932.1 (SD=2112.0) 
 

1 (0.2%) 6 (1.0%) 233 (38.0%) 209 (34.1%) 164 (26.8%) 

  Yes 283 31.6  -888.8 (SD=2600.3) 
 

0 (0.0%) 3 (1.1%) 88 (31.1%) 84 (29.7%) 108 (38.2%)    
 

       

Strong anxiety about spreading the 

infection to others 

  
 p=0.499 

 
p=0.002 

    

  No 668 74.6  -883.5 (SD=2063.6) 
 

1 (0.1%) 6 (0.9%) 253 (37.9%) 226 (33.8%) 182 (27.2%) 

  Yes 228 25.4  -1020.8 (SD=2810.7) 
 

0 (0.0%) 3 (1.3%) 68 (29.8%) 67 (29.4%) 90 (39.5%)    
 

       

Strong anxiety about stigma 

associated with going out 

  
 p=0.942 

 
p<0.001 

    

  No 745 83.1  -915.2 (SD=2070.3) 
 

1 (0.1%) 7 (0.9%) 280 (37.6%) 251 (33.7%) 206 (27.7%) 

  Yes 151 16.9  -934.4 (SD=3107.0) 
 

0 (0.0%) 2 (1.3%) 41 (27.2%) 42 (27.8%) 66 (43.7%) 

a) Changes in step counts were calculated by the differences in the mean step counts between the pre-SoE period (from February 19, 2020 
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to March 23, 2020) the post-SoE period (from April 16, 2020 to May 19, 2020). 

b) p for ANOVA or t-test 

c) p for Wilcoxon rank sum test or Kruskal-Wallis test 

 

 

Table 4.2. Fit indices of each model 

Model CFIa) RMSEAb) 

A 0.064 0.753 

B 0.996 0.057 

C 0.913 0.364 

D 0.995 0.124 

a) Comparative Fit Index 

b) Root Mean Square Error of Approximation 
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Table 4.2 summarizes the fit indices of each model based on path analysis. 

Judging from CFI and RMSEA, model B best explained the relationships among the 

demographic, socioeconomic, and geographic variables, changes in work situation, 

perception of anxiety, and changes in walking and sedentary behaviors (CFI = 0.996, 

RMSEA = 0.057). 

Fig. 4.4 shows the significant paths in model B. Details of all the estimated 

coefficients of the models are provided in the appendix. Considering individual attributes 

and the changes in physical activity, respondents aged 20–29 years, aged 40–49 years, 

and living in the highest-density neighborhoods were more likely to experience reduced 

step counts. However, white-collar workers and living with child(ren) under 18 years 

were positively associated with differences in step counts and such individuals were less 

likely to experience reduced walking behavior. Moreover, females and workers in jobs 

other than white, gray, and blue-collar jobs or non-working participants were more likely 

to show increased sedentary behavior, while participants with household income less than 

3 million yen were less likely to show increased sedentary behavior. 

 The work-from-home/standby-at-home group was positively associated with 

undergraduate/graduate school, and white-collar jobs, along with middle-low density, 

middle-high density, and highest density neighborhoods, while it was negatively 

associated with female respondents and the other jobs/not working group. Decreased 

amount of work was positively associated with an income of less than 3-million-yen 

group and negatively associated with the other jobs/not working group. The work-from-

home/standby-at-home group and the decreased work group were associated with 

decreased step counts and increased time spent in sedentary behavior. 

Female participants, age 30–39 years, and incomes less than 3 million yen were 
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positively associated with strong anxiety about getting infected and about spreading the 

infection to others. Further, participants aged 20–29 years, aged 30–39 years, living with 

child(ren) under 18 years were positively associated with strong anxiety about the stigma 

of going out. Living in middle-low ADI were negatively associated with strong anxiety 

about spreading the infection to others and living in the highest density neighborhoods 

were negatively associated with the stigma of going out. Decreased step counts were 

associated with strong anxiety about spreading the infection to others or about the stigma 

of going out while increased time spent in sedentary behavior was associated with all 

anxiety variables. 
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Fig. 4.4. Coefficients of model B estimated by path analysis.  

Only significant paths and their coefficients among demographic, socioeconomic, and 

geographic variables, changes in work situation and perception of anxiety, and changes 

in walking and sedentary behaviors are shown. 

*** statistical significance at 0.1%; ** statistical significance at 1%; * statistical 

significance at 5%. 

CFI = 0.996, RMSEA = 0.057. 

Changes in step counts were determined by calculating the difference in the mean step 
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counts between the pre-state of emergency (SoE) period (from February 19, 2020 to 

March 23, 2020) and the post-SoE period (from April 16, 2020 to May 19, 2020). The 

ordered categories of change in time spent in sedentary behavior were defined as follows: 

1: significant reduction, 2: slight reduction, 3: no change, 4: slight rise, 5: significant rise. 

 

 

4.4 Discussion 

 Several studies have documented decreased physical activity during the COVID-

19 outbreak in Japan (Adachi et al., 2021; Hino and Asami, 2021; Makizako et al., 2021; 

Yamada et al., 2020). However, to the best of our knowledge, this is the first study to 

examine the association of changes in physical activity during the COVID-19 outbreak 

in Japan with the demographic, socioeconomic, and geographical attributes, and changes 

in work situation and perception of anxiety, simultaneously. 

We found that overall, people became inactive during the first wave of the 

outbreak; based on the direct relationships estimated by path analysis, especially younger 

individuals and those living in high-density neighborhoods were more likely have 

decreased walking behavior. Previous studies have shown a similar trend in outing and 

walking behaviors (Adachi et al., 2021; Hanibuchi et al., 2021; Hino and Asami, 2021), 

and this could be attributed to more walks for daily activities before the pandemic among 

younger individuals and residents in urban area, thereby resulting in a significant decrease 

in the number of steps. Additionally, sedentary behavior clearly increased among females, 

similar to previous reports that showed that females became inactive during the outbreak 

in Japan (Hanibuchi et al., 2021; Hino and Asami, 2021; Makizako et al., 2021). 

Containment measures such as school closure or self-isolation may have increased the 

burden of housework on females (Hanibuchi et al., 2021; Power, 2020), making them 
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more inactive. 

As for the indirect relationships between individual attributes and the changes in 

physical activity via changes in work situation, individuals of higher SES, such as 

undergraduate/graduate school graduates and white-collar job workers, were more likely 

to implement preventive measures like work-from-home or standby-at-home, which were 

associated with decreased step counts and increased sedentary behavior. This could be 

because of decreased walking needed for commuting. Moreover, those living in high-

density neighborhoods were more likely to implement work-from-home or standby-at-

home strategies. This is expected as companies not requiring on-site work, such as 

information technology companies, are normally located in urban areas. Moreover, it is 

suggested that those with incomes less than 3 million yen were more likely to experience 

decreased work causing decreased step counts and increased sedentary behavior. 

Therefore, individuals with lower SES were more likely to experience economic 

problems and decreased physical activity simultaneously. Previous studies have revealed 

that unemployment is often associated with deterioration of mental health (Paul and 

Moser, 2009) and increased smoking and drinking behaviors (Montgomery et al., 1998). 

Individuals with lower SES with decreased work would have particularly high health risks 

during the pandemic. 

 Our results showed that changes in physical activity were associated with 

perception of anxiety, similar to several previous studies (Pieh et al., 2020; Silva et al., 

2020). The model assuming that decreased physical activity causes increased anxiety 

better explained the comprehensive relationships compared to the model assuming that 

anxiety causes physical inactivity or the models assuming direct relationships between 

the work situation changes and anxiety. Increased anxiety during the pandemic is a crucial 
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concern as a previous study demonstrated that COVID-19 related anxiety was strongly 

associated with functional impairment, alcohol or drug coping, negative religious coping, 

extreme hopelessness, and passive suicidal ideation (Lee, 2020). Our path model showed 

that females, younger individuals, and those living in high-density neighborhoods were 

more likely to experience decreased physical activity associated with anxiety. During the 

pandemic in Japan, several studies reported an increase in the number of females 

committing suicide (Nomura et al., 2021; Tanaka and Okamoto, 2021) and high 

urbanization to be associated with severe psychological distress and new-onset suicidal 

ideation (Okubo et al., 2021). These indicated that decreased physical activity could be 

one of the factors affecting such serious mental health problems during the pandemic in 

Japan. 

 Furthermore, the variables of anxiety regarding spreading the infection to others 

and stigma associated with going out were related to decreased walking behavior while 

the variable of anxiety about getting infected was not. This may be because in Japanese 

society with tight social norms (Gelfand et al., 2021), people are more anxious about 

disrupting social harmony by spreading the infection or going out than about getting 

infected. Although Gelfand et al. (2021) suggested that tightening social norms may 

mitigate the COVID-19 outbreak, in strict societies, social isolation due to decrease in 

opportunities to go out would increase people’s concerns about disturbing others or being 

criticized by others which may make people more inactive. Appropriate social norms 

should be considered based on overall health risks including infection, physical inactivity, 

and mental health. 

 This study has several limitations. First, the method of sample selection was not 

random, and the questionnaire has not been validated using external data; therefore, our 
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findings are limited in their generalization. Second, a bias may have occurred due to the 

method of observation of walking behavior. Although we observed only the steps walked 

while the participants carried their iPhones, its frequency may vary according to personal 

attributes such as gender and age. We employed a simple method for quantitatively 

counting steps before the survey during the emergency; however, measurements by 

wearing an accelerometer at all times would have ideally reflected the changes in physical 

activity more accurately. Third, we attempted to explore the relationships between the 

changes in physical activity and individual attributes, the work situation changes, and 

perception of anxiety during the COVID-19 pandemic by comparing the path models 

based on several hypotheses; however, this cross-sectional study could not conclude the 

causality. To address these limitations, it is important to build an application for 

simultaneously observing step counts and location, and conducting a social survey for a 

larger scale and duration. 

 

 

4.5 Conclusion 

 Physical inactivity during the COVID-19 pandemic is a serious concern causing 

various health problems. By examining the relationship of the changes in step count and 

time spent in sedentary behavior during the first wave of the outbreak in Japan to 

individual circumstances, the present study revealed that younger individuals, those living 

in high-density neighborhoods, and females were clearly associated with decreased 

walking behavior or increased sedentary behavior, and the changes in physical activity 

were associated with strong anxiety related to the pandemic. Further, while individuals 

with high SES were more likely to implement preventions such as work-from-home or 



91 

 

standby-at-home, lower SES leads to decreased amounts of work, and both of those 

changes in work situation were related to decreased walking behavior and increased 

sedentary behavior. The health of people with low SES facing economic burden and 

females, younger individuals, and those living in urban areas who experience decreased 

physical activity should be continuously observed. Finally, considering that the pandemic 

is a changing, evolving situation, further analyses of changes in physical activity are 

warranted. 
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5. Discussions and conclusion 

 

 

 In the previous chapters, novel methods to evaluate the urban environment and 

mobility related to people's health by using spatial big data were discussed. The present 

chapter discusses the benefits of the proposed approach to health geography research, 

possibilities in future research, and the challenges of applying urban informatics in 

geographies of health. 

 

5.1 Benefits of applying urban informatics to geographies of health 

 Table 5.1 summarizes the main results and benefits discussed in each chapter. A 

major benefit of urban informatics approaches to geographies of health is the ability to 

reduce data-dependent spatio-temporal limitations. This thesis demonstrated that 

streetscape imagery and mobile phone-based data can capture mobility and its related 

environment with detailed spatio-temporal resolution in a large area. 

Miller (2017b) argues that the past failure of macro-geography which seeks 

general laws is due to poor computer technology and lack of data and that the current 

development of data-driven geography with big data obtained by ubiquitous and 

continuous systems will facilitate meso-geographical analysis. Miller (2017b) adds, 

meso-geography lies between descriptive micro-geography and macro-geography, 

assuming the existence of general laws but allowing for spatio-temporal specificity. That 

is, increased availability of detailed dynamic geographic information will allow 

generalizations about a phenomenon that includes specificity in different spaces and times, 

rather than generalizations based on one aspect at a specific point in time. 
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Table 5.1. Summary of main results  

Chapter Data Resolution Results Benefits for 

geographies of 

health  

  Spatial Temporal   

2 Streetscape 

imagery 

Micro A few months 

to a few years 

Developing an 

automatic 

evaluation 

method for the 

micro-scale 

environment 

related to 

mobility 

Micro-scale 

environment 

evaluation in 

any location 

based on 

unified criteria 

3 Mobile 

phone 

network 

Micro Continuous Identifying 

places where 

mobility is 

particularly 

related to the 

COVID-19 

infection 

Dynamic 

observation of 

the human 

mobility related 

to the infection 

at near-real-

time 

4 Mobile 

phone 

data/Online 

survey 

Mobile phone 

data:  

Does not include 

spatial information 

 

Online survey: 

Zip code 

Mobile phone 

data: 

Continuous 

 

Online survey: 

Dependent on 

time of survey 

Exploring social 

and geographic 

background of 

mobility changes 

during the 

COVID-19 

pandemic 

Understanding 

of social 

contexts behind 

human mobility 

changes at 

specific events 

 

 

In case of the context of geographies of health, population density or 

accessibility to facilities, which can be measured in a wide area by statistical survey data 

and existing GIS data, were usually used to evaluate the objective walkability. This 

method enabled to generalize the relationship between neighborhood walkability and 

walking behavior from a macro perspective at a certain temporal point. However, it often 

excludes pedestrians’ perceptual factors that may influence walking, such as safety and 

neighborhood aesthetics (Duncan et al., 2011). As a result, it is difficult to quantitatively 

evaluate the effects of the spatial specificity represented by minute environmental factors, 

that cannot be captured by density and accessibility, on walking. In addition, traditionally, 
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since the evaluation of such micro-scale neighborhood environments required systematic 

observations or questionnaire surveys, it is difficult to evaluate consistently over a wide 

area.  

The streetscape image evaluation using semantic segmentation and statistical 

approaches, as shown in Chapter 2, can strongly present a solution to this dilemma. 

Currently, streetscape imagery platforms, including Google Street View (GSV), cover a 

wide area of the world and enable to quantitatively evaluate streetscapes in any location 

based on unified criteria. Furthermore, observation of the neighborhood environment 

using streetscape images has been attempted in various micro-scale factors, including not 

only the aesthetics of the streetscape, but also safety (Wang et al., 2019b) and graffiti 

(Novack et al., 2020). In the future, it may be possible to cover a wider range of 

environmental factors related to perceptions of pedestrians. This technological progress 

will enable to build a model that includes spatial specificity that has been overlooked in 

conventional objective evaluations and to generalize how human mobility interacts with 

the macro-scale and the micro-scale factors based on observations in various locations. 

 In addition, ubiquitous and ongoing data flows have made it possible to observe 

dynamics that include temporal specificity, owing to events both mundane and unusual 

(Miller, 2017b). In Chapters 3 and 4, by using data obtained constantly from mobile 

phones, the dynamic examination of human mobility during specific events was 

demonstrated. If the data is obtained continuously, the methods can evaluate the impact 

of events on human mobility and health in near-real-time, regardless of the scale or type 

of event. Furthermore, most big data are suitable for observing changes over minutes, 

hours, or days, rather than years or decades (Batty, 2013), allowing studies in geographies 

of health to analyze data in unprecedented multi-temporal scales. Although not real-time 
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data, GSV images can be used to observe the temporal changes in streetscapes, since they 

are updated at intervals of several months to several years in major urban areas. In the 

future, by using the dashboard camera data of taxis, buses, and emergency vehicles, the 

observation of streetscapes in near-real-time could be possible. 

 Since the dataset used in Chapter 4 is a small sample size compared to the typical 

data used in urban informatics and has spatio-temporal limitations, it may not be regarded 

as big data (Batty, 2013). However, the methodology, which combines the smartphone 

application and the Internet-based social survey, can be useful in supporting the 

understanding of the individual and geographical contexts behind human mobility 

changes in emergencies, and in implementing precise public health measures. In the 

future, research is expected to be extended to a large-scale with dynamic surveys by 

building applications that can simultaneously conduct social surveys with GPS-based 

locations and step observations. 

 The analysis of people’s health and urban environment following the urban 

informatics approach will contribute greatly to public health measures in the future. 

Knowledge based on geographies of health and geographic information science has 

contributed to public health measures, and numerous studies on the health hazards caused 

by social inequalities and the appropriate allocation of health services have been 

conducted (Dummer, 2008; Rushton, 2003). However, the application of spatial big data 

will strongly help to implement appropriate policies in situations that require an 

immediate response. A good example of this is the mobile phone-based mobility analysis 

conducted by health geographers at the forefront of the COVID-19 response team in Japan 

(Ministry of Health, Labour and Welfare, 2020b). Furthermore, extensive unified 

retrospective environmental observations using big data allow the evaluation of the 
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impact of policy interventions on people's health at a low cost and in a short period of 

time. The application of urban informatics may be effective in increasing the use of the 

health geographic approach in public health measures. 

 

5.2 Future possibilities and research 

 The objective of urban informatics is to use systematic theories and methods 

based on new information technologies for analyzing urban systems and to apply them to 

improve urban design (Shi et al., 2021). That is, it is necessary to systematize the 

individual findings on urban phenomena obtained by big data analysis and reflect them 

in urban planning. The neighborhood environment evaluation and mobility observation 

based on spatial big data presented in this thesis, show independent results. However, the 

goal of this study is to further elaborate and systematize these research approaches, which 

results in developing a framework to support healthy urban planning. To develop this 

thesis’s approach into a systematic urban environmental assessment, the possibilities of 

more detailed observations of environment and mobility and the development of the 

framework will be discussed in this section. 

 First, to implement a more detailed environmental assessment, future studies will 

need to increase the variety of micro-scale observation targets. Although the micro-scale 

evaluation model, as shown in Chapter 2, was developed based on the scores that 

integrated multiple aspects related to pedestrians’ perceptions, it would also be necessary 

to individually evaluate the relationships between mobility and each environmental 

element such as safety and aesthetics. Furthermore, there are other micro-scale 

environment factors that cannot be measured by streetscape images but should be 

considered, such as air and noise pollution (Cerin et al., 2011; Howell et al., 2019; Saelens 
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and Handy, 2008). It will also be necessary to adopt a citizen scientific approach 

(Silvertown, 2009) to enable high-resolution and dynamic measurement of these factors. 

For instance, Apte et al. (2017) have proposed a method for mapping the spatial 

distribution of air pollution at a 30 meters-scale, using vehicles with a fast-response 

pollution measurement platform, and stated that high spatial resolution and routine air 

pollution measurements could be possible by using taxis, delivery vehicles, and public 

transit. In addition, Ghosh et al. (2019) developed a mobile-phone-based participatory 

sensing system for measuring urban noise pollution. Similar approaches would be useful 

in solving the issues discussed in Chapter 4. To develop this area of study further, 

cooperation of the government and citizens will be essential. 

 Second, although Chapter 3 of the thesis indicates the observation of the mobility 

change, which was used hourly population in a 500-m-square grid based on mobile device 

locations, individual movement can be tracked in detail by using GPS-based location 

history. By combining detailed trajectories with the high-resolution environmental 

assessment described above, it is possible to measure the environmental elements people 

are exposed to during their movement. Furthermore, in recent years, the process of 

transportation mode estimation from GPS logs has been developing (Dabiri et al., 2020; 

Yang et al., 2018). The transportation mode is useful to assess detailed health benefits and 

risks based on the amount of physical activity, frequencies of exposure to noise and air 

pollution, and road traffic injury rates during travel (Apparicio et al., 2018; Woodcock et 

al., 2014). Future studies will need to apply these techniques to build a model to evaluate 

the effect of mobility on people’s health from large-scale GPS data obtained in a large 

area. 

 Third, in addition to the detailed observation of mobility and environment using 
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the urban informatics approach, future studies will also need to consider the development 

of a framework for the assessment of the healthy urban environment, by referring to the 

health impact assessment (HIA) (Centers for Disease Control and Prevention, 2016), 

which is a systematic method for assessing the impact of urban planning and policy 

intervention on health. The HIA process consists of the following steps (Centers for 

Disease Control and Prevention, 2016; National Research Council (US) Committee on 

Health Impact Assessment, 2011): “Screening” identifies whether HIA is useful for plans 

and policies; “Scoping” considers the possible benefits and health risks of plans and 

policies; “Assessment” identifies affected populations and quantifies the health impacts 

due to plans and policies; “Recommendations” suggests actions to promote positive 

health impacts and minimize negative impacts; “Reporting” presents the impact of plans 

or policies to decision-makers, communities, and other stakeholders; and “Monitoring 

and evaluation” tracks the implementation of plans and policies and evaluates the HIA 

itself and impact on health outcomes. In the past, HIA has been implemented to evaluate 

the health impacts of various plans and policies, such as programs to encourage children 

to walk to school and multimodal transportation systems, from both benefit and risk 

perspectives (Dannenberg et al., 2008). 

 Urban informatics techniques, such as big data analysis, simulation, Web and 

real-time GIS, and urban sensing, can be applied to the HIA process in health evaluation, 

planning, information disclosure, and monitoring after policy intervention. First, in the 

Assessment step based on the detailed observation and modeling described above, 

people’s health in the current environment can be quantified. Although the relationship 

between human mobility and health is complex, Woodcock et al. (2014) quantitatively 

assessed the impact of introducing a bicycle sharing system on population health by 
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calculating disability-adjusted life years (DALYs) (World Health Organization, 2013) 

based on physical activity, air pollution exposure, and road traffic injury. Similarly, future 

research should attempt to quantitatively evaluate the impact of mobility change on 

people's health by modeling the relationship between travel modes and associated health 

benefits and risks. Next, to consider the appropriate plans or policy interventions in the 

Recommendations step, simulation models can be used to predict the behavioral changes 

and health impacts due to them. Here, the application of microsimulation and agent-based 

models would be useful to simulate the interaction between individual mobility and the 

urban environment at a high-resolution spatial scale (Birkin, 2021; Crooks et al., 2021). 

In addition, Web GIS and real-time GIS technologies, which have developed remarkably 

in recent years, can strongly support information sharing in the Reporting step and allow 

continuous monitoring after the implementation of the planning and intervention during 

the Monitoring and evaluation step (Gong et al., 2015; Mbuh et al., 2020; Nourjou and 

Hashemipour, 2017). Applying the aforementioned steps, future study will build a 

systematic and circulative framework for healthy urban planning (Fig. 5.1). Furthermore, 

future study also aims at evolving the framework to a near-real-time observation and 

planning system (Silva et al., 2018), which would facilitate smart and healthy city 

management. 
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Fig. 5.1. Framework for healthy urban planning based on urban informatics 

 

 

5.3 Challenges 

 Although the application of urban informatics will bring many benefits and 

possibilities to geographies of health, there are challenges that need to be discussed. The 

first is the issue of technical resources in the field of human geography. Kitchin (2013) 

argued that most scholars of human geography are largely underprepared for the big data 

era, although the ongoing data revolution requires a wider appreciation of the various 

emerging data sources and data types, as well as skills in coding, modeling, and 

simulation. Additionally, in Japan, given the situation that many laboratories of geography 

in universities are part of the faculty of letters (The Association of Japanese Geographers, 

2021), many geographers may not be able to utilize the abundant computer resources for 

their research. In this situation, it is of course necessary to promote programming and 
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computer science education in geography programs in universities (Bowlick et al., 2017), 

in addition to the conventional instructions for field observation and GIS techniques. 

However, it is not realistic to expect geographers to be responsible for all processes such 

as building databases to store continuously flowing big data, analyzing spatial laws, and 

applying the research results in urban planning. For incorporating urban informatics into 

geographic studies, it is necessary to establish an interdisciplinary research group with 

specialists in information science, urban planning, public health, and human geography, 

as well as industry–government–academia collaboration that includes private companies 

and local governments. 

 The second is the issue pertaining to the data and machine learning models. Since 

most of the big data employed for urban observation are accumulated by private 

companies for commercial purposes, the accuracy and representativeness of the data vary 

(Kitchin, 2020; Struijs et al., 2014). Therefore, the presence of bias in the data should 

always be considered. For instance, mobility observation using mobile phone data, as 

shown in Chapters 3 and 4, may include bias due to the frequencies of carrying the device 

and users’ attributes. Furthermore, tracking data often have a limited demographic context 

(Kitchin, 2020). To address these biases and limitations, it is necessary to validate big 

data using public statistical data or survey data based on random sampling. 

 In addition, the availability of data is also biased. For instance, although GSV 

images enable the observation of cityscapes of any place in the world at a multi-scale 

time, its maintenance frequency and area vary by location and time (Cândido et al., 2018; 

Fry et al., 2020; Rzotkiewicz et al., 2018). Also, the deep learning model used for 

semantic segmentation, as shown in Chapter 2, was only trained on German cityscape 

images (Cordts et al., 2016) and cannot identify elements such as graffiti and garbage, 
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which may influence pedestrians’ perceptions. It is expected that such limitations due to 

availability will be relieved with the progress of technology; however, it should be noted 

that some places and perception-related factors are excluded from the analysis owing to 

the aforementioned issues in the current situation. 

 Furthermore, in the context of geographies of health, there is little high-

resolution epidemiological data to compare with detailed mobility data. As shown in 

Chapter 3, the changes in mobility can be observed at high-resolution scales by using the 

mobile phone data and used in crisis response such as the COVID-19 pandemic. However, 

the public epidemiological data that correspond to the mobility changes are only available 

in coarse spatial units such as prefectures during the pandemic. To model how human 

mobility causes the spread of infections or contributes to human health in detail, it is 

necessary to increase the availability of high-resolution epidemiological data. 

 The third is that it is difficult to analyze complex urban phenomena with only 

quantitative approaches. This is the same as the criticism against positivist geography 

over the past several decades (Kitchin, 2020). Despite the application of big data, the 

generalization of urban systems eliminates diverse individuals and complex multi-

dimensional social structures (Kitchin, 2020). As argued in this study, urban informatics 

provides a multi-scale spatio-temporal view of cities, enabling one to observe phenomena 

within cities from multiple angles. However, as described above, not everything in a city 

can be data-driven, and some aspects are still impossible to observe. It is necessary to 

take into account the lack of geographic or temporal objects due to data availability, or 

lack of cultural or social aspects due to overgeneralization. In addition, there is the 

concern that correlation is relied on, rather than causality, in a situation of massive data 

flow in real-time (Miller, 2018). 
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 Although there are no easy solutions to urban problems, big data undoubtedly 

provide numerous opportunities to examine particular urban systems and issues, and 

urban science can provide useful insights into the same (Kitchin, 2020). O’Sullivan and 

Manson (2015) stated that many geographers are moving away from quantitative research 

when other fields are moving toward the analysis of the geographical topics by using 

quantitative approach. Additionally, they argued that unquestioningly importing methods 

from physics is problematic; however, applying quantitative analysis to geography is 

important (O’Sullivan and Manson, 2015). In this situation, exploring the geographical 

context behind the phenomenon and avoiding overgeneralization or over-abstraction of 

space is important for geographers to apply urban informatics (Derudder and van 

Meeteren, 2019; O’Sullivan and Manson, 2015). In geographies of health, rather than 

only observing the correlation between big-data-based mobility and health, it will be 

necessary to explore what environmental factors influence mobility and what social 

backgrounds make those environmental factors. In addition to big data analysis, 

traditional social surveys and qualitative approaches continue to play an important role in 

gaining a more precise and deeper understanding of the relationship between the urban 

environment and people's health (O’Sullivan and Manson, 2015). 

 The last is the issue of ethics. Urban informatics and the use of big data raise 

several ethical issues, which have received little consideration so far (Kitchin, 2020). In 

general, since much of the data used by researchers is provided by private companies with 

anonymization, it is difficult to identify individuals using specific data alone. However, 

combining multiple anonymized big data may make this possible (Herschel and Miori, 

2017). In addition, although the applications that obtain people’s location information 

usually seek consent for handling the personal information when users sign up, many do 
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not read the full terms (Sabel et al., 2021). As a result, people may participate in studies 

without their knowledge and the results may be fed back into governments or private 

companies for decision-making, affecting people's lives (Kitchin, 2020; Sabel et al., 

2021). Furthermore, since the results of big data analysis are often trusted despite their 

incompleteness and bias, there is a risk of inappropriate decision-making (Herschel and 

Miori, 2017). It is necessary to consider an appropriate balance between privacy 

protection and the wider availability of data (Sabel et al., 2021). 

 

5.4 Final remarks 

 The present thesis attempted the application of urban informatics for enhancing 

geographies of health in the big data era. The results demonstrated that big data, deep 

learning, and statistical analysis techniques are useful in facilitating healthy cities and 

regions by enabling one to observe urban environments, mobility, and health at 

unprecedented spatio-temporal scales. It is still not enough to solve the complex urban 

mechanism in spite of the application of big data, and urban informatics would not replace 

the mainstream of geographic research. However, urban informatics will undoubtedly 

provide new insights on further understanding of the comprehensive and detailed 

relationship between the urban environment and people’s health, and will contribute to 

the progress of geographies of health. 
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Appendix 

Table A.1 
Estimated coefficients of all paths to introduction of work-from-home/standby-at-home 
measures for model A 

From Coef. 95% CI p 

Gender (Ref. Male) 
   

  Female -0.24 -0.45 to -0.02  0.029*     

Age (Ref. 60-69 years) 
   

  20-29 years 0.05 -0.30 to 0.40  0.795 

  30-39 years 0.15 -0.18 to 0.49  0.363 

  40-49 years 0.28 -0.05 to 0.61  0.093 

  50-59 years -0.04 -0.37 to 0.29  0.793     

Chronic disease (Ref. No) 
   

  Yes -0.02 -0.28 to 0.23  0.856     

Educational status (Ref. Junior high school/high school) 
   

  Junior (technical) college/vocational school 0.28 -0.06 to 0.62  0.110 

  Undergraduate/graduate school 0.40 0.10 to 0.70  0.010*     

Occupation (Ref. Blue-collar job) 
   

  White-collar job 0.59 0.20 to 0.97  0.003** 

  Gray-collar job 0.24 -0.17 to 0.66  0.256 

  Other/not working -0.77 -1.24 to -0.30  <0.001***     

Household annual income (Ref. 7 million yen or more) 
   

  Less than 3 million yen -0.13 -0.48 to 0.22  0.458 

  3-7 million yen -0.08 -0.32 to 0.15  0.489 

  Unknown -0.09 -0.43 to 0.24  0.586     

Living alone (Ref. No) 
   

  Yes 0.16 -0.12 to 0.45  0.257     

Living with child(ren) under 18 years (Ref. No) 
   

  Yes -0.15 -0.41 to 0.11  0.268     

Living with person(s) aged 65 years and older (Ref. No) 
   

  Yes -0.10 -0.40 to 0.19  0.490     

Neighborhood density (Ref. Lowest density) 
   

  Middle-low density 0.35 0.07 to 0.64  0.016* 

  Middle-high density 0.41 0.13 to 0.69  0.004** 

  Highest density 0.64 0.34 to 0.94  <0.001***     

Areal deprivation index (ADI) (Ref. Lowest ADI) 
   

  Middle-low ADI 0.02 -0.26 to 0.29  0.901 

  Middle-high ADI -0.12 -0.40 to 0.17  0.429 

  Highest ADI -0.11 -0.41 to 0.18  0.463 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.2 

Estimated coefficients of all paths to decreased amount of work for model A 

From Coef. 95% CI p 

Gender (Ref. Male) 
   

  Female 0.09 -0.13 to 0.31  0.437     

Age (Ref. 60-69 years) 
   

  20-29 years 0.07 -0.30 to 0.43  0.723 

  30-39 years 0.09 -0.26 to 0.45  0.606 

  40-49 years 0.08 -0.27 to 0.43  0.653 

  50-59 years 0.05 -0.29 to 0.40  0.758     

Chronic disease (Ref. No) 
   

  Yes 0.00 -0.26 to 0.27  0.981     

Educational status (Ref. Junior high school/high school) 
   

  Junior (technical) college/vocational school -0.01 -0.34 to 0.31  0.938 

  Undergraduate/graduate school 0.05 -0.24 to 0.33  0.757     

Occupation (Ref. Blue-collar job) 
   

  White-collar job -0.18 -0.56 to 0.19  0.336 

  Gray-collar job 0.11 -0.29 to 0.50  0.599 

  Other/not working -0.68 -1.09 to -0.27  0.001**     

Household annual income (Ref. 7 million yen or more) 
   

  Less than 3 million yen 0.62 0.27 to 0.96  <0.001*** 

  3-7 million yen 0.22 -0.03 to 0.47  0.084 

  Unknown 0.08 -0.31 to 0.48  0.685     

Living alone (Ref. No) 
   

  Yes 0.11 -0.18 to 0.40  0.449     

Living with child(ren) under 18 years (Ref. No) 
   

  Yes 0.03 -0.24 to 0.31  0.813     

Living with person(s) aged 65 years and older (Ref. No) 
   

  Yes 0.01 -0.31 to 0.34  0.932     

Neighborhood density (Ref. Lowest density) 
   

  Middle-low density -0.17 -0.47 to 0.13  0.274 

  Middle-high density -0.03 -0.32 to 0.27  0.859 

  Highest density 0.19 -0.13 to 0.51  0.242     

Areal deprivation index (ADI) (Ref. Lowest ADI) 
   

  Middle-low ADI 0.29 -0.02 to 0.59  0.066 

  Middle-high ADI 0.25 -0.07 to 0.56  0.123 

  Highest ADI 0.25 -0.09 to 0.58  0.146 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.3 
Estimated coefficients of all paths to strong anxiety about getting infected for model A 

From Coef. 95% CI p 

Gender (Ref. Male) 
   

  Female 0.32 0.12 to 0.52  0.002**     

Age (Ref. 60-69 years) 
   

  20-29 years 0.03 -0.30 to 0.35  0.873 

  30-39 years 0.40 0.10 to 0.70  0.009** 

  40-49 years 0.28 -0.02 to 0.57  0.067 

  50-59 years 0.28 -0.01 to 0.57  0.057     

Chronic disease (Ref. No) 
   

  Yes 0.20 -0.01 to 0.41  0.065     

Educational status (Ref. Junior high school/high school) 
   

  Junior (technical) college/vocational school 0.13 -0.15 to 0.41  0.354 

  Undergraduate/graduate school 0.11 -0.14 to 0.36  0.399     

Occupation (Ref. Blue-collar job) 
   

  White-collar job -0.02 -0.38 to 0.33  0.899 

  Gray-collar job 0.09 -0.29 to 0.48  0.638 

  Other/not working 0.06 -0.33 to 0.44  0.772     

Household annual income (Ref. 7 million yen or more) 
   

  Less than 3 million yen 0.42 0.10 to 0.73  0.010* 

  3-7 million yen 0.09 -0.13 to 0.31  0.420 

  Unknown 0.06 -0.27 to 0.38  0.726     

Living alone (Ref. No) 
   

  Yes -0.19 -0.46 to 0.09  0.190     

Living with child(ren) under 18 years (Ref. No) 
   

  Yes 0.16 -0.08 to 0.40  0.187     

Living with person(s) aged 65 years and older (Ref. No) 
   

  Yes -0.13 -0.41 to 0.14  0.347     

Neighborhood density (Ref. Lowest density) 
   

  Middle-low density 0.20 -0.05 to 0.46  0.112 

  Middle-high density 0.00 -0.26 to 0.26  0.990 

  Highest density -0.02 -0.29 to 0.25  0.876     

Areal deprivation index (ADI) (Ref. Lowest ADI) 
   

  Middle-low ADI -0.08 -0.33 to 0.18  0.551 

  Middle-high ADI -0.01 -0.28 to 0.25  0.919 

  Highest ADI -0.01 -0.27 to 0.26  0.956 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.4 
Estimated coefficients of all paths to strong anxiety about spreading the infection to others 
for model A 

From Coef. 95% CI p 

Gender (Ref. Male) 
   

  Female 0.30 0.09 to 0.50 0.005**     

Age (Ref. 60-69 years) 
   

  20-29 years 0.13 -0.20 to 0.46 0.445 

  30-39 years 0.42 0.10 to 0.74 0.009** 

  40-49 years 0.20 -0.12 to 0.51 0.227 
  50-59 years 0.15 -0.17 to 0.47 0.366     

Chronic disease (Ref. No) 
   

  Yes 0.18 -0.04 to 0.40 0.114     

Educational status (Ref. Junior high school/high school) 
   

  Junior (technical) college/vocational school 0.13 -0.16 to 0.42 0.377 
  Undergraduate/graduate school 0.15 -0.12 to 0.42 0.274     

Occupation (Ref. Blue-collar job) 
   

  White-collar job -0.19 -0.56 to 0.18 0.320 

  Gray-collar job 0.01 -0.39 to 0.41 0.970 
  Other/not working -0.04 -0.44 to 0.36 0.843     

Household annual income (Ref. 7 million yen or more) 
   

  Less than 3 million yen 0.30 -0.02 to 0.63 0.065 
  3-7 million yen 0.04 -0.19 to 0.28 0.722 

  Unknown -0.05 -0.39 to 0.29 0.779     

Living alone (Ref. No) 
   

  Yes -0.02 -0.30 to 0.27 0.915     

Living with child(ren) under 18 years (Ref. No) 
   

  Yes 0.07 -0.18 to 0.31 0.603     

Living with person(s) aged 65 years and older (Ref. No) 
   

  Yes -0.16 -0.46 to 0.15 0.308     

Neighborhood density (Ref. Lowest density) 
   

  Middle-low density 0.18 -0.08 to 0.45 0.175 

  Middle-high density 0.04 -0.24 to 0.31 0.803 
  Highest density -0.04 -0.34 to 0.25 0.766     

Areal deprivation index (ADI) (Ref. Lowest ADI) 
   

  Middle-low ADI -0.26 -0.53 to 0.01 0.057 

  Middle-high ADI -0.01 -0.29 to 0.26 0.920 
  Highest ADI -0.07 -0.34 to 0.21 0.618 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.5 

Estimated coefficients of all paths to strong anxiety about stigma associated with going 
out for model A 

From Coef. 95% CI p 

Gender (Ref. Male) 
   

  Female 0.02 -0.23 to 0.27 0.896     

Age (Ref. 60-69 years) 
   

  20-29 years 0.66 0.28 to 1.04 <0.001*** 

  30-39 years 0.54 0.17 to 0.92 0.004** 

  40-49 years 0.28 -0.11 to 0.67 0.154 

  50-59 years 0.35 -0.03 to 0.73 0.07     

Chronic disease (Ref. No) 
   

  Yes 0.17 -0.09 to 0.42 0.198     

Educational status (Ref. Junior high school/high school) 
   

  Junior (technical) college/vocational school 0.29 -0.04 to 0.62 0.080 

  Undergraduate/graduate school 0.03 -0.28 to 0.34 0.872     

Occupation (Ref. Blue-collar job) 
   

  White-collar job -0.13 -0.53 to 0.26 0.511 

  Gray-collar job -0.14 -0.56 to 0.28 0.517 

  Other/not working -0.04 -0.47 to 0.38 0.839     

Household annual income (Ref. 7 million yen or more) 
   

  Less than 3 million yen 0.11 -0.26 to 0.47 0.560 

  3-7 million yen -0.19 -0.45 to 0.08 0.166 

  Unknown -0.12 -0.50 to 0.26 0.534     

Living alone (Ref. No) 
   

  Yes 0.17 -0.16 to 0.49 0.312     

Living with child(ren) under 18 years (Ref. No) 
   

  Yes 0.27 -0.01 to 0.55 0.055     

Living with person(s) aged 65 years and older (Ref. No) 
   

  Yes -0.11 -0.45 to 0.22 0.506     

Neighborhood density (Ref. Lowest density) 
   

  Middle-low density 0.08 -0.21 to 0.38 0.589 

  Middle-high density -0.08 -0.39 to 0.23 0.597 

  Highest density -0.23 -0.56 to 0.10 0.172     

Areal deprivation index (ADI) (Ref. Lowest ADI) 
   

  Middle-low ADI 0.03 -0.28 to 0.35 0.840 

  Middle-high ADI 0.21 -0.10 to 0.52 0.190 

  Highest ADI 0.15 -0.16 to 0.47 0.340 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.6 

Estimated coefficients of all paths to the changes in step counts (in thousands) between 
the pre-SoE and post-SoE periods for model A 

From Coef. 95% CI p 

Gender (Ref. Male) 
   

  Female 0.04 -0.37 to 0.44 0.863     

Age (Ref. 60-69 years) 
   

  20-29 years -1.23 -1.80 to -0.65 <0.001*** 

  30-39 years -0.03 -0.69 to 0.62 0.923 

  40-49 years -0.44 -1.04 to 0.15 0.144 

  50-59 years -0.15 -0.73 to 0.44 0.628     

Chronic disease (Ref. No) 
   

  Yes 0.08 -0.36 to 0.52 0.722     

Educational status (Ref. Junior high school/high school) 
   

  Junior (technical) college/vocational school 0.24 -0.39 to 0.86 0.457 

  Undergraduate/graduate school -0.13 -0.69 to 0.43 0.648     

Occupation (Ref. Blue-collar job) 
   

  White-collar job 0.61 -0.01 to 1.23 0.054 

  Gray-collar job 0.31 -0.33 to 0.96 0.339 

  Other/not working -0.10 -0.77 to 0.58 0.776     

Household annual income (Ref. 7 million yen or more) 
   

  Less than 3 million yen 0.27 -0.31 to 0.86 0.360 

  3-7 million yen -0.03 -0.49 to 0.42 0.885 

  Unknown -0.17 -0.77 to 0.42 0.571     

Living alone (Ref. No) 
   

  Yes 0.40 -0.10 to 0.91 0.119     

Living with child(ren) under 18 years (Ref. No) 
   

  Yes 0.69 0.18 to 1.19 0.008**     

Living with person(s) aged 65 years and older (Ref. No) 
   

  Yes 0.00 -0.56 to 0.57 0.988     

Neighborhood density (Ref. Lowest density) 
   

  Middle-low density 0.14 -0.36 to 0.64 0.596 

  Middle-high density -0.41 -0.89 to 0.07 0.098 

  Highest density -0.99 -1.47 to -0.50 <0.001***     

Areal deprivation index (ADI) (Ref. Lowest ADI) 
   

  Middle-low ADI -0.35 -0.81 to 0.12 0.146 

  Middle-high ADI 0.14 -0.36 to 0.64 0.575 

  Highest ADI 0.19 -0.33 to 0.71 0.473 
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Table A.6 (continued) 

From Coef. 95% CI p 

Introduction of work-from-home/standby-at-home (Ref. No) 
   

  Yes -0.46 -0.59 to -0.33 <0.001***     

Decreased amount of work (Ref. No) 
   

  Yes -0.14 -0.30 to 0.03 0.104     

Strong anxiety about getting infected (Ref. No) 
   

  Yes -0.16 -0.28 to -0.03 0.014*     

Strong anxiety about spreading the infection to others (Ref. 

No) 

   

  Yes -0.30 -0.40 to -0.21 <0.001***     

Strong anxiety about stigma associated with going out (Ref. 

No) 

   

  Yes -0.33 -0.42 to -0.24 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.7 
Estimated coefficients of all paths to the changes in time spent in sedentary behavior for 
model A 

From Coef. 95% CI p 

Gender (Ref. Male) 
   

  Female 0.30 0.11 to 0.49 0.002**     

Age (Ref. 60-69 years) 
   

  20-29 years 0.10 -0.20 to 0.39 0.530 

  30-39 years -0.22 -0.53 to 0.08 0.157 

  40-49 years -0.12 -0.42 to 0.17 0.418 

  50-59 years -0.21 -0.50 to 0.09 0.165     

Chronic disease (Ref. No) 
   

  Yes 0.00 -0.21 to 0.20 0.990     

Educational status (Ref. Junior high school/high school) 
   

  Junior (technical) college/vocational school -0.12 -0.39 to 0.14 0.366 

  Undergraduate/graduate school 0.08 -0.17 to 0.32 0.544     

Occupation (Ref. Blue-collar job) 
   

  White-collar job -0.18 -0.52 to 0.15 0.285 

  Gray-collar job -0.15 -0.51 to 0.21 0.415 

  Other/not working 0.30 -0.06 to 0.67 0.105     

Household annual income (Ref. 7 million yen or more) 
   

  Less than 3 million yen -0.44 -0.73 to -0.14 0.004** 

  3-7 million yen 0.07 -0.14 to 0.28 0.495 

  Unknown -0.22 -0.52 to 0.08 0.157     

Living alone (Ref. No) 
   

  Yes -0.14 -0.39 to 0.10 0.253     

Living with child(ren) under 18 years (Ref. No) 
   

  Yes -0.19 -0.42 to 0.04 0.109     

Living with person(s) aged 65 years and older (Ref. No) 
   

  Yes -0.01 -0.26 to 0.23 0.930     

Neighborhood density (Ref. Lowest density) 
   

  Middle-low density 0.02 -0.22 to 0.26 0.872 

  Middle-high density 0.03 -0.23 to 0.29 0.810 

  Highest density 0.18 -0.07 to 0.44 0.156     

Areal deprivation index (ADI) (Ref. Lowest ADI) 
   

  Middle-low ADI 0.11 -0.14 to 0.35 0.399 

  Middle-high ADI -0.16 -0.41 to 0.08 0.198 

  Highest ADI -0.12 -0.37 to 0.14 0.365 
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Table A.7 (continued) 

From Coef. 95% CI p 

Introduction of work-from-home/standby-at-home (Ref. No) 
   

  Yes 0.30 0.22 to 0.38 <0.001***     

Decreased amount of work (Ref. No) 
   

  Yes 0.25 0.15 to 0.34 <0.001***     

Strong anxiety about getting infected (Ref. No) 
   

  Yes 0.15 0.06 to 0.24 <0.001***     

Strong anxiety about spreading the infection to others (Ref. 

No) 

   

  Yes 0.15 0.06 to 0.24 <0.001***     

Strong anxiety about stigma associated with going out (Ref. 

No) 

   

  Yes 0.21 0.12 to 0.31 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
The ordered categories of change in time spent in sedentary behavior were defined as 
follows: 1: significant reduction, 2: slight reduction, 3: no change, 4: slight rise, 5: 
significant rise. 

  



133 

 

Table A.8 
Estimated coefficients of all paths to introduction of work-from-home/standby-at-home 
measures for model B 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female -0.24 -0.45 to -0.02 0.029* 
    

Age (Ref. 60-69 years)    

  20-29 years 0.05 -0.30 to 0.40 0.796 

  30-39 years 0.15 -0.18 to 0.49 0.363 

  40-49 years 0.28 -0.05 to 0.61 0.093 

  50-59 years -0.04 -0.37 to 0.29 0.793 
    

Chronic disease (Ref. No)    

  Yes -0.02 -0.28 to 0.23 0.856 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.28 -0.06 to 0.62 0.11 

  Undergraduate/graduate school 0.40 0.10 to 0.70 0.01* 
    

Occupation (Ref. Blue-collar job)    

  White-collar job 0.59 0.20 to 0.97 0.003** 

  Gray-collar job 0.24 -0.17 to 0.66 0.256 

  Other/not working -0.77 -1.24 to -0.30 0.001** 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen -0.13 -0.48 to 0.22 0.458 

  3-7 million yen -0.08 -0.32 to 0.15 0.489 

  Unknown -0.09 -0.43 to 0.24 0.586 
    

Living alone (Ref. No)    

  Yes 0.16 -0.12 to 0.45 0.257 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes -0.15 -0.41 to 0.11 0.268 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.10 -0.40 to 0.19 0.490 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.35 0.07 to 0.64 0.016* 

  Middle-high density 0.41 0.13 to 0.69 0.004** 

  Highest density 0.64 0.34 to 0.94 <0.001*** 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI 0.02 -0.26 to 0.29 0.901 

  Middle-high ADI -0.12 -0.40 to 0.17 0.429 

  Highest ADI -0.11 -0.41 to 0.18 0.463 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.9 
Estimated coefficients of all paths to decreased amount of work for model B 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.09 -0.13 to 0.31 0.437 
    

Age (Ref. 60-69 years)    

  20-29 years 0.07 -0.30 to 0.43 0.723 

  30-39 years 0.09 -0.26 to 0.45 0.606 

  40-49 years 0.08 -0.27 to 0.43 0.653 

  50-59 years 0.05 -0.29 to 0.40 0.758 
    

Chronic disease (Ref. No)    

  Yes 0.00 -0.26 to 0.27 0.981 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school -0.01 -0.34 to 0.31 0.938 

  Undergraduate/graduate school 0.05 -0.24 to 0.33 0.757 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.18 -0.56 to 0.19 0.336 

  Gray-collar job 0.11 -0.29 to 0.50 0.599 

  Other/not working -0.68 -1.09 to -0.27 0.001** 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.62 0.27 to 0.96 <0.001*** 

  3-7 million yen 0.22 -0.03 to 0.47 0.084 

  Unknown 0.08 -0.31 to 0.48 0.685 
    

Living alone (Ref. No)    

  Yes 0.11 -0.18 to 0.40 0.449 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.03 -0.24 to 0.31 0.813 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes 0.01 -0.31 to 0.34 0.932 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density -0.17 -0.47 to 0.13 0.274 

  Middle-high density -0.03 -0.32 to 0.27 0.859 

  Highest density 0.19 -0.13 to 0.51 0.242 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI 0.29 -0.02 to 0.59 0.066 

  Middle-high ADI 0.25 -0.07 to 0.56 0.123 

  Highest ADI 0.25 -0.09 to 0.58 0.146 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.10 
Estimated coefficients of all paths to the changes in step counts (in thousands) between 
the pre-SoE and post-SoE periods for model B 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female -0.12 -0.50 to 0.25 0.521 
    

Age (Ref. 60-69 years)    

  20-29 years -1.47 -2.00 to -0.94 <0.001*** 

  30-39 years -0.37 -0.99 to 0.25 0.246 

  40-49 years -0.59 -1.17 to -0.02 0.043* 

  50-59 years -0.35 -0.92 to 0.22 0.234 
    

Chronic disease (Ref. No)    

  Yes -0.06 -0.49 to 0.36 0.773 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.11 -0.49 to 0.71 0.721 

  Undergraduate/graduate school -0.15 -0.69 to 0.39 0.589 
    

Occupation (Ref. Blue-collar job)    

  White-collar job 0.75 0.17 to 1.33 0.012* 

  Gray-collar job 0.39 -0.20 to 0.98 0.196 

  Other/not working -0.28 -0.93 to 0.37 0.397 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.17 -0.38 to 0.71 0.551 

  3-7 million yen 0.03 -0.41 to 0.47 0.903 

  Unknown -0.12 -0.70 to 0.45 0.673 
    

Living alone (Ref. No)    

  Yes 0.42 -0.06 to 0.89 0.086 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.54 0.05 to 1.03 0.030* 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes 0.10 -0.45 to 0.65 0.718 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.03 -0.44 to 0.51 0.889 

  Middle-high density -0.35 -0.83 to 0.13 0.157 

  Highest density -0.79 -1.25 to -0.32 <0.001*** 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.22 -0.67 to 0.24 0.354 

  Middle-high ADI 0.11 -0.38 to 0.60 0.664 

  Highest ADI 0.19 -0.31 to 0.69 0.459 
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Table A.10 (continued)    

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes -0.58 -0.71 to -0.45 <0.001*** 
    

Decreased amount of work (Ref. No)    

  Yes -0.30 -0.46 to -0.14 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.11 
Estimated coefficients of all paths to the changes in time spent in sedentary behavior for 
model B 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.41 0.24 to 0.58 <0.001*** 
    

Age (Ref. 60-69 years)    

  20-29 years 0.25 -0.03 to 0.53 0.075 

  30-39 years 0.01 -0.27 to 0.28 0.968 

  40-49 years -0.01 -0.30 to 0.27 0.920 

  50-59 years -0.07 -0.33 to 0.20 0.629 
    

Chronic disease (Ref. No)    

  Yes 0.09 -0.10 to 0.29 0.347 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school -0.04 -0.29 to 0.21 0.760 

  Undergraduate/graduate school 0.09 -0.15 to 0.33 0.462 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.28 -0.60 to 0.05 0.099 

  Gray-collar job -0.19 -0.52 to 0.15 0.282 

  Other/not working 0.39 0.03 to 0.75 0.033* 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen -0.33 -0.60 to -0.06 0.019* 

  3-7 million yen 0.05 -0.15 to 0.24 0.645 

  Unknown -0.24 -0.53 to 0.05 0.105 
    

Living alone (Ref. No)    

  Yes -0.16 -0.39 to 0.07 0.183 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes -0.09 -0.31 to 0.13 0.429 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.07 -0.30 to 0.15 0.521 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.08 -0.16 to 0.32 0.503 

  Middle-high density 0.00 -0.25 to 0.23 0.941 

  Highest density 0.07 -0.17 to 0.31 0.579 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI 0.04 -0.19 to 0.27 0.714 

  Middle-high ADI -0.13 -0.36 to 0.10 0.278 

  Highest ADI -0.10 -0.34 to 0.13 0.389 
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Table A.11 (continued) 

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes 0.37 0.29 to 0.45 <0.001*** 
    

Decreased amount of work (Ref. No)    

  Yes 0.30 0.21 to 0.40 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
The ordered categories of change in time spent in sedentary behavior were defined as 
follows: 1: significant reduction, 2: slight reduction, 3: no change, 4: slight rise, 5: 
significant rise. 
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Table A.12 
Estimated coefficients of all paths to strong anxiety about getting infected for model B 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.28 0.08 to 0.48 0.007** 
    

Age (Ref. 60-69 years)    

  20-29 years -0.05 -0.38 to 0.28 0.761 

  30-39 years 0.37 0.08 to 0.67 0.013* 

  40-49 years 0.24 -0.05 to 0.53 0.107 

  50-59 years 0.28 -0.01 to 0.57 0.057 
    

Chronic disease (Ref. No)    

  Yes 0.19 -0.02 to 0.40 0.080 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.12 -0.15 to 0.40 0.388 

  Undergraduate/graduate school 0.07 -0.18 to 0.31 0.605 
    

Occupation (Ref. Blue-collar job)    

  White-collar job 0.00 -0.35 to 0.36 0.985 

  Gray-collar job 0.11 -0.28 to 0.49 0.589 

  Other/not working 0.08 -0.30 to 0.46 0.683 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.44 0.12 to 0.76 0.006** 

  3-7 million yen 0.08 -0.14 to 0.30 0.471 

  Unknown 0.09 -0.23 to 0.41 0.597 
    

Living alone (Ref. No)    

  Yes -0.17 -0.45 to 0.11 0.232 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.19 -0.04 to 0.43 0.108 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.11 -0.39 to 0.16 0.409 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.18 -0.07 to 0.43 0.155 

  Middle-high density -0.03 -0.29 to 0.22 0.793 

  Highest density -0.10 -0.37 to 0.17 0.470 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.10 -0.36 to 0.15 0.429 

  Middle-high ADI 0.00 -0.26 to 0.26 0.994 

  Highest ADI 0.01 -0.26 to 0.27 0.964 
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Table A.12 (continued) 
From Coef. 95% CI p 

Changes in step counts (in thousands) between the pre-SoE 

and the post-SoE periods 
-0.03 -0.05 to 0.00 0.052 

    

Changes in time spent sedentary behavior during the 

COVID-19 outbreak 
0.12 0.05 to 0.20 0.001** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.13 
Estimated coefficients of all paths to strong anxiety about spreading the infection to others 
for model B 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.25 0.05 to 0.46 0.017* 
    

Age (Ref. 60-69 years)    

  20-29 years 0.01 -0.33 to 0.34 0.965 

  30-39 years 0.38 0.07 to 0.70 0.018* 

  40-49 years 0.14 -0.18 to 0.45 0.394 

  50-59 years 0.13 -0.18 to 0.45 0.409 
    

Chronic disease (Ref. No)    

  Yes 0.17 -0.05 to 0.39 0.137 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.12 -0.17 to 0.41 0.411 

  Undergraduate/graduate school 0.10 -0.17 to 0.36 0.47 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.15 -0.52 to 0.22 0.426 

  Gray-collar job 0.03 -0.37 to 0.43 0.891 

  Other/not working -0.01 -0.40 to 0.38 0.973 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.33 0.01 to 0.65 0.044* 

  3-7 million yen 0.03 -0.20 to 0.27 0.776 

  Unknown -0.03 -0.36 to 0.31 0.879 
    

Living alone (Ref. No)    

  Yes 0.01 -0.27 to 0.29 0.950 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.12 -0.13 to 0.36 0.353 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.14 -0.44 to 0.16 0.374 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.16 -0.10 to 0.42 0.238 

  Middle-high density -0.01 -0.29 to 0.26 0.919 

  Highest density -0.16 -0.45 to 0.14 0.291 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.29 -0.56 to -0.03 0.031* 

  Middle-high ADI 0.01 -0.27 to 0.28 0.985 

  Highest ADI -0.05 -0.33 to 0.22 0.715 
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Table A.13 (continued) 

From Coef. 95% CI p 

Changes in step counts (in thousands) between the pre-SoE 

and the post-SoE periods 
-0.06 -0.08 to -0.04 <0.001*** 

    

Changes in time spent sedentary behavior during the 

COVID-19 outbreak 
0.11 0.04 to 0.19 0.004** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.14 

Estimated coefficients of all paths to strong anxiety about stigma associated with going 
out for model B 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female -0.04 -0.29 to 0.21 0.772 
    

Age (Ref. 60-69 years)    

  20-29 years 0.52 0.14 to 0.90 0.007** 

  30-39 years 0.50 0.13 to 0.87 0.008** 

  40-49 years 0.22 -0.17 to 0.61 0.270 

  50-59 years 0.34 -0.04 to 0.72 0.078 
    

Chronic disease (Ref. No)    

  Yes 0.15 -0.10 to 0.40 0.239 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.28 -0.05 to 0.61 0.096 

  Undergraduate/graduate school -0.04 -0.35 to 0.27 0.814 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.09 -0.48 to 0.30 0.660 

  Gray-collar job -0.12 -0.53 to 0.30 0.585 

  Other/not working -0.01 -0.42 to 0.41 0.979 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.14 -0.23 to 0.51 0.450 

  3-7 million yen -0.20 -0.46 to 0.07 0.139 

  Unknown -0.09 -0.47 to 0.29 0.647 
    

Living alone (Ref. No)    

  Yes 0.20 -0.13 to 0.52 0.236 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.33 0.05 to 0.61 0.020* 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.09 -0.42 to 0.25 0.605 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.05 -0.24 to 0.34 0.741 

  Middle-high density -0.14 -0.45 to 0.17 0.369 

  Highest density -0.36 -0.69 to -0.04 0.030* 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.01 -0.32 to 0.31 0.963 

  Middle-high ADI 0.23 -0.08 to 0.54 0.145 

  Highest ADI 0.17 -0.14 to 0.49 0.278 
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Table A.14 (continued) 

From Coef. 95% CI p 

Changes in step counts (in thousands) between the pre-SoE 

and the post-SoE periods 
-0.06 -0.08 to -0.04 <0.001*** 

    

Changes in time spent sedentary behavior during the 

COVID-19 outbreak 
0.15 0.07 to 0.23 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.15 
Estimated coefficients of all paths to introduction of work-from-home/standby-at-home 
measures for model C 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female -0.24 -0.45 to -0.02 0.029* 
    

Age (Ref. 60-69 years)    

  20-29 years 0.05 -0.30 to 0.40 0.796 

  30-39 years 0.15 -0.18 to 0.49 0.363 

  40-49 years 0.28 -0.05 to 0.61 0.093 

  50-59 years -0.04 -0.37 to 0.29 0.793 
    

Chronic disease (Ref. No)    

  Yes -0.02 -0.28 to 0.23 0.856 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.28 -0.06 to 0.62 0.110 

  Undergraduate/graduate school 0.40 0.10 to 0.70 0.010* 
    

Occupation (Ref. Blue-collar job)    

  White-collar job 0.59 0.20 to 0.97 0.003** 

  Gray-collar job 0.24 -0.17 to 0.66 0.256 

  Other/not working -0.77 -1.24 to -0.30 0.001** 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen -0.13 -0.48 to 0.22 0.458 

  3-7 million yen -0.08 -0.32 to 0.15 0.489 

  Unknown -0.09 -0.43 to 0.24 0.586 
    

Living alone (Ref. No)    

  Yes 0.16 -0.12 to 0.45 0.258 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes -0.15 -0.41 to 0.11 0.268 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.10 -0.40 to 0.19 0.490 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.35 0.07 to 0.64 0.016* 

  Middle-high density 0.41 0.13 to 0.69 0.004** 

  Highest density 0.64 0.34 to 0.94 <0.001*** 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI 0.02 -0.26 to 0.29 0.901 

  Middle-high ADI -0.12 -0.40 to 0.17 0.429 

  Highest ADI -0.11 -0.41 to 0.18 0.463 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.16 
Estimated coefficients of all paths to decreased amount of work for model C 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.09 -0.13 to 0.31 0.437 
    

Age (Ref. 60-69 years)    

  20-29 years 0.07 -0.30 to 0.43 0.723 

  30-39 years 0.09 -0.26 to 0.45 0.606 

  40-49 years 0.08 -0.27 to 0.43 0.653 

  50-59 years 0.05 -0.29 to 0.40 0.758 
    

Chronic disease (Ref. No)    

  Yes 0.00 -0.26 to 0.27 0.981 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school -0.01 -0.34 to 0.31 0.938 

  Undergraduate/graduate school 0.05 -0.24 to 0.33 0.757 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.18 -0.56 to 0.19 0.335 

  Gray-collar job 0.11 -0.29 to 0.50 0.599 

  Other/not working -0.68 -1.09 to -0.27 0.001** 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.62 0.27 to 0.96 <0.001*** 

  3-7 million yen 0.22 -0.03 to 0.47 0.084 

  Unknown 0.08 -0.31 to 0.48 0.685 
    

Living alone (Ref. No)    

  Yes 0.11 -0.18 to 0.40 0.449 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.03 -0.24 to 0.31 0.813 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes 0.01 -0.31 to 0.34 0.932 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density -0.17 -0.47 to 0.13 0.274 

  Middle-high density -0.03 -0.32 to 0.27 0.859 

  Highest density 0.19 -0.13 to 0.51 0.242 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI 0.29 -0.02 to 0.59 0.066 

  Middle-high ADI 0.25 -0.07 to 0.56 0.123 

  Highest ADI 0.25 -0.09 to 0.58 0.146 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.17 
Estimated coefficients of all paths to strong anxiety about getting infected for model C 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.40 0.13 to 0.67 0.003** 
    

Age (Ref. 60-69 years)    

  20-29 years -0.05 -0.52 to 0.42 0.837 

  30-39 years 0.24 -0.19 to 0.67 0.276 

  40-49 years 0.05 -0.37 to 0.46 0.820 

  50-59 years 0.27 -0.16 to 0.70 0.213 
    

Chronic disease (Ref. No)    

  Yes 0.21 -0.08 to 0.51 0.160 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school -0.03 -0.43 to 0.37 0.889 

  Undergraduate/graduate school -0.17 -0.51 to 0.17 0.330 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.25 -0.73 to 0.24 0.319 

  Gray-collar job -0.13 -0.65 to 0.39 0.629 

  Other/not working 1.01 0.49 to 1.54 <0.001*** 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.05 -0.40 to 0.50 0.818 

  3-7 million yen -0.02 -0.33 to 0.30 0.917 

  Unknown 0.06 -0.40 to 0.51 0.81 
    

Living alone (Ref. No)    

  Yes -0.37 -0.74 to 0.01 0.057 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.23 -0.10 to 0.55 0.172 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.08 -0.46 to 0.30 0.684 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.11 -0.25 to 0.47 0.545 

  Middle-high density -0.23 -0.60 to 0.13 0.214 

  Highest density -0.55 -0.92 to -0.17 0.004** 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.30 -0.65 to 0.05 0.097 

  Middle-high ADI -0.12 -0.48 to 0.24 0.512 

  Highest ADI -0.12 -0.50 to 0.26 0.545 
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Table A.17 (continued) 

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes 0.61 0.51 to 0.70 <0.001*** 
    

Decreased amount of work (Ref. No)    

  Yes 0.72 0.63 to 0.80 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.18 
Estimated coefficients of all paths to strong anxiety about spreading the infection to others 
for model C 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.38 0.11 to 0.65 0.006** 
    

Age (Ref. 60-69 years)    

  20-29 years 0.06 -0.40 to 0.52 0.815 

  30-39 years 0.26 -0.17 to 0.69 0.239 

  40-49 years -0.03 -0.47 to 0.40 0.880 

  50-59 years 0.14 -0.31 to 0.58 0.548 
    

Chronic disease (Ref. No)    

  Yes 0.19 -0.11 to 0.50 0.218 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school -0.03 -0.44 to 0.38 0.881 

  Undergraduate/graduate school -0.13 -0.48 to 0.22 0.468 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.42 -0.90 to 0.05 0.082 

  Gray-collar job -0.21 -0.72 to 0.29 0.408 

  Other/not working 0.91 0.39 to 1.44 <0.001*** 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen -0.05 -0.51 to 0.41 0.830 

  3-7 million yen -0.06 -0.38 to 0.26 0.710 

  Unknown -0.05 -0.53 to 0.43 0.841 
    

Living alone (Ref. No)    

  Yes -0.19 -0.56 to 0.17 0.299 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.13 -0.20 to 0.47 0.442 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.10 -0.49 to 0.29 0.602 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.08 -0.29 to 0.46 0.660 

  Middle-high density -0.20 -0.57 to 0.17 0.288 

  Highest density -0.57 -0.96 to -0.19 0.003** 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.47 -0.83 to -0.12 0.009** 

  Middle-high ADI -0.12 -0.49 to 0.25 0.535 

  Highest ADI -0.18 -0.57 to 0.22 0.379 
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Table A.18 (continued) 

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes 0.62 0.52 to 0.71 <0.001*** 
    

Decreased amount of work (Ref. No)    

  Yes 0.70 0.62 to 0.79 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.19 

Estimated coefficients of all paths to strong anxiety about stigma associated with going 
out for model C 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.09 -0.21 to 0.38 0.568 
    

Age (Ref. 60-69 years)    

  20-29 years 0.59 0.11 to 1.08 0.017* 

  30-39 years 0.40 -0.06 to 0.87 0.085 

  40-49 years 0.09 -0.39 to 0.56 0.719 

  50-59 years 0.34 -0.12 to 0.81 0.151 
    

Chronic disease (Ref. No)    

  Yes 0.18 -0.14 to 0.50 0.280 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.16 -0.27 to 0.58 0.469 

  Undergraduate/graduate school -0.21 -0.60 to 0.17 0.280 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.33 -0.81 to 0.16 0.190 

  Gray-collar job -0.33 -0.84 to 0.17 0.199 

  Other/not working 0.78 0.26 to 1.31 0.003** 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen -0.21 -0.69 to 0.28 0.401 

  3-7 million yen -0.28 -0.61 to 0.05 0.092 

  Unknown -0.12 -0.62 to 0.37 0.626 
    

Living alone (Ref. No)    

  Yes 0.01 -0.38 to 0.41 0.949 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.33 -0.01 to 0.67 0.058 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.07 -0.48 to 0.34 0.746 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.00 -0.38 to 0.38 0.993 

  Middle-high density -0.28 -0.66 to 0.09 0.140 

  Highest density -0.69 -1.09 to -0.28 <0.001*** 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.16 -0.54 to 0.23 0.425 

  Middle-high ADI 0.11 -0.28 to 0.50 0.564 

  Highest ADI 0.06 -0.35 to 0.46 0.783 
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Table A.19 (continued) 

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes 0.52 0.42 to 0.63 <0.001*** 
    

Decreased amount of work (Ref. No)    

  Yes 0.62 0.53 to 0.71 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 

 

  



153 

 

Table A.20 
Estimated coefficients of all paths to the changes in step counts (in thousands) between 
the pre-SoE and post-SoE periods for model C 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female -0.23 -0.64 to 0.18 0.270 
    

Age (Ref. 60-69 years)    

  20-29 years -1.48 -2.03 to -0.92 <0.001*** 

  30-39 years -0.47 -1.12 to 0.17 0.151 

  40-49 years -0.65 -1.24 to -0.05 0.033* 

  50-59 years -0.42 -1.02 to 0.18 0.170 
    

Chronic disease (Ref. No)    

  Yes -0.12 -0.57 to 0.32 0.588 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.09 -0.52 to 0.70 0.777 

  Undergraduate/graduate school -0.15 -0.71 to 0.40 0.586 
    

Occupation (Ref. Blue-collar job)    

  White-collar job 0.80 0.18 to 1.42 0.012* 

  Gray-collar job 0.39 -0.23 to 1.01 0.217 

  Other/not working -0.38 -1.24 to 0.48 0.385 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.07 -0.49 to 0.63 0.801 

  3-7 million yen 0.01 -0.45 to 0.47 0.967 

  Unknown -0.14 -0.73 to 0.46 0.656 
    

Living alone (Ref. No)    

  Yes 0.48 -0.03 to 0.98 0.063 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.49 -0.02 to 1.01 0.061 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes 0.14 -0.43 to 0.70 0.635 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density -0.01 -0.50 to 0.48 0.966 

  Middle-high density -0.32 -0.84 to 0.20 0.223 

  Highest density -0.73 -1.30 to -0.15 0.013* 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.16 -0.66 to 0.34 0.526 

  Middle-high ADI 0.12 -0.39 to 0.62 0.647 

  Highest ADI 0.20 -0.32 to 0.72 0.445 
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Table A.20 (continued) 

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes -0.65 -0.99 to -0.31 <0.001*** 
    

Decreased amount of work (Ref. No)    

  Yes -0.35 -0.80 to 0.09 0.118 
    

Strong anxiety about getting infected (Ref. No)    

  Yes 0.22 0.04 to 0.40 0.015* 
    

Strong anxiety about spreading the infection to others (Ref. 

No) 
   

  Yes 0.08 -0.08 to 0.24 0.337 
    

Strong anxiety about stigma associated with going out (Ref. 

No) 
   

  Yes 0.00 -0.15 to 0.15 0.996 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.21 
Estimated coefficients of all paths to the changes in time spent in sedentary behavior for 
model C 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.57 0.32 to 0.82 <0.001*** 
    

Age (Ref. 60-69 years)    

  20-29 years 0.32 -0.09 to 0.72 0.122 

  30-39 years 0.16 -0.23 to 0.55 0.415 

  40-49 years 0.02 -0.37 to 0.41 0.915 

  50-59 years 0.05 -0.33 to 0.43 0.797 
    

Chronic disease (Ref. No)    

  Yes 0.19 -0.08 to 0.47 0.171 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school -0.02 -0.37 to 0.33 0.922 

  Undergraduate/graduate school 0.04 -0.29 to 0.37 0.814 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.41 -0.86 to 0.04 0.072 

  Gray-collar job -0.26 -0.72 to 0.19 0.251 

  Other/not working 0.77 0.18 to 1.36 0.011* 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen -0.32 -0.71 to 0.06 0.098 

  3-7 million yen 0.01 -0.27 to 0.29 0.941 

  Unknown -0.25 -0.66 to 0.15 0.226 
    

Living alone (Ref. No)    

  Yes -0.25 -0.57 to 0.07 0.119 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.01 -0.30 to 0.31 0.961 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.12 -0.44 to 0.19 0.442 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.14 -0.19 to 0.47 0.414 

  Middle-high density -0.10 -0.43 to 0.23 0.564 

  Highest density -0.17 -0.57 to 0.23 0.400 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.11 -0.44 to 0.21 0.499 

  Middle-high ADI -0.16 -0.47 to 0.15 0.320 

  Highest ADI -0.15 -0.47 to 0.17 0.357 
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Table A.21 (continued) 
From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes 0.60 0.36 to 0.85 <0.001*** 
    

Decreased amount of work (Ref. No)    

  Yes 0.60 0.31 to 0.88 <0.001*** 
    

Strong anxiety about getting infected (Ref. No)    

  Yes -0.20 -0.32 to -0.09 <0.001*** 
    

Strong anxiety about spreading the infection to others (Ref. 

No) 
   

  Yes -0.21 -0.32 to -0.09 <0.001*** 
    

Strong anxiety about stigma associated with going out (Ref. 

No) 
   

  Yes -0.10 -0.22 to 0.03 0.128 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
The ordered categories of change in time spent in sedentary behavior were defined as 
follows: 1: significant reduction, 2: slight reduction, 3: no change, 4: slight rise, 5: 
significant rise. 
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Table A.22 
Estimated coefficients of all paths to introduction of work-from-home/standby-at-home 
measures for model D 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female -0.24 -0.45 to -0.02 0.029* 
    

Age (Ref. 60-69 years)    

  20-29 years 0.05 -0.30 to 0.40 0.796 

  30-39 years 0.15 -0.18 to 0.49 0.363 

  40-49 years 0.28 -0.05 to 0.61 0.093 

  50-59 years -0.04 -0.37 to 0.29 0.793 
    

Chronic disease (Ref. No)    

  Yes -0.02 -0.28 to 0.23 0.856 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.28 -0.06 to 0.62 0.110 

  Undergraduate/graduate school 0.40 0.10 to 0.70 0.010* 
    

Occupation (Ref. Blue-collar job)    

  White-collar job 0.59 0.20 to 0.97 0.003** 

  Gray-collar job 0.24 -0.17 to 0.66 0.256 

  Other/not working -0.77 -1.24 to -0.30 0.001** 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen -0.13 -0.48 to 0.22 0.458 

  3-7 million yen -0.08 -0.32 to 0.15 0.489 

  Unknown -0.09 -0.43 to 0.24 0.586 
    

Living alone (Ref. No)    

  Yes 0.16 -0.12 to 0.45 0.257 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes -0.15 -0.41 to 0.11 0.268 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.10 -0.40 to 0.19 0.490 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.35 0.07 to 0.64 0.016* 

  Middle-high density 0.41 0.13 to 0.69 0.004** 

  Highest density 0.64 0.34 to 0.94 <0.001*** 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI 0.02 -0.26 to 0.29 0.901 

  Middle-high ADI -0.12 -0.40 to 0.17 0.429 

  Highest ADI -0.11 -0.41 to 0.18 0.463 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.23 
Estimated coefficients of all paths to decreased amount of work for model D 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.09 -0.13 to 0.31 0.437 
    

Age (Ref. 60-69 years)    

  20-29 years 0.07 -0.30 to 0.43 0.723 

  30-39 years 0.09 -0.26 to 0.45 0.606 

  40-49 years 0.08 -0.27 to 0.43 0.653 

  50-59 years 0.05 -0.29 to 0.40 0.758 
    

Chronic disease (Ref. No)    

  Yes 0.00 -0.26 to 0.27 0.981 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school -0.01 -0.34 to 0.31 0.938 

  Undergraduate/graduate school 0.05 -0.24 to 0.33 0.757 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.18 -0.56 to 0.19 0.336 

  Gray-collar job 0.11 -0.29 to 0.50 0.599 

  Other/not working -0.68 -1.09 to -0.27 0.001** 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.62 0.27 to 0.96 <0.001*** 

  3-7 million yen 0.22 -0.03 to 0.47 0.084 

  Unknown 0.08 -0.31 to 0.48 0.685 
    

Living alone (Ref. No)    

  Yes 0.11 -0.18 to 0.40 0.449 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.03 -0.24 to 0.31 0.813 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes 0.01 -0.31 to 0.34 0.932 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density -0.17 -0.47 to 0.13 0.274 

  Middle-high density -0.03 -0.32 to 0.27 0.859 

  Highest density 0.19 -0.13 to 0.51 0.242 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI 0.29 -0.02 to 0.59 0.066 

  Middle-high ADI 0.25 -0.07 to 0.56 0.123 

  Highest ADI 0.25 -0.09 to 0.58 0.146 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 

  



159 

 

Table A.24 
Estimated coefficients of all paths to the changes in step counts (in thousands) between 
the pre-SoE and post-SoE periods for model D 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female -0.13 -0.50 to 0.25 0.513 
    

Age (Ref. 60-69 years)    

  20-29 years -1.47 -2.00 to -0.94 <0.001*** 

  30-39 years -0.37 -0.99 to 0.25 0.246 

  40-49 years -0.59 -1.17 to -0.02 0.043* 

  50-59 years -0.35 -0.92 to 0.22 0.233 
    

Chronic disease (Ref. No)    

  Yes -0.06 -0.49 to 0.36 0.773 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.11 -0.49 to 0.71 0.717 

  Undergraduate/graduate school -0.15 -0.68 to 0.39 0.594 
    

Occupation (Ref. Blue-collar job)    

  White-collar job 0.76 0.17 to 1.34 0.011* 

  Gray-collar job 0.39 -0.20 to 0.98 0.195 

  Other/not working -0.28 -0.93 to 0.37 0.403 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.16 -0.39 to 0.70 0.570 

  3-7 million yen 0.02 -0.42 to 0.47 0.914 

  Unknown -0.13 -0.70 to 0.45 0.669 
    

Living alone (Ref. No)    

  Yes 0.42 -0.06 to 0.89 0.086 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.54 0.05 to 1.03 0.030* 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes 0.10 -0.45 to 0.65 0.720 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.04 -0.44 to 0.51 0.875 

  Middle-high density -0.34 -0.82 to 0.14 0.160 

  Highest density -0.79 -1.25 to -0.32 <0.001*** 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.22 -0.68 to 0.24 0.347 

  Middle-high ADI 0.10 -0.38 to 0.59 0.674 

  Highest ADI 0.19 -0.32 to 0.69 0.467 
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Table A.24 (continued) 

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes -0.59 -0.71 to -0.46 <0.001*** 
    

Decreased amount of work (Ref. No)    

  Yes -0.29 -0.45 to -0.13 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.25 
Estimated coefficients of all paths to the changes in time spent in sedentary behavior for 
model D 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.42 0.24 to 0.59 <0.001*** 
    

Age (Ref. 60-69 years)    

  20-29 years 0.25 -0.02 to 0.53 0.074 

  30-39 years 0.01 -0.27 to 0.28 0.967 

  40-49 years -0.02 -0.30 to 0.27 0.917 

  50-59 years -0.07 -0.33 to 0.20 0.632 
    

Chronic disease (Ref. No)    

  Yes 0.09 -0.10 to 0.29 0.347 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school -0.04 -0.29 to 0.21 0.751 

  Undergraduate/graduate school 0.09 -0.15 to 0.33 0.470 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.28 -0.61 to 0.05 0.094 

  Gray-collar job -0.19 -0.52 to 0.15 0.282 

  Other/not working 0.39 0.03 to 0.75 0.034* 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen -0.32 -0.60 to -0.05 0.021* 

  3-7 million yen 0.05 -0.15 to 0.25 0.630 

  Unknown -0.24 -0.53 to 0.05 0.107 
    

Living alone (Ref. No)    

  Yes -0.16 -0.39 to 0.07 0.183 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes -0.09 -0.31 to 0.13 0.433 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.07 -0.30 to 0.15 0.523 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.08 -0.16 to 0.32 0.518 

  Middle-high density -0.01 -0.25 to 0.23 0.926 

  Highest density 0.07 -0.17 to 0.30 0.587 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI 0.05 -0.18 to 0.27 0.699 

  Middle-high ADI -0.12 -0.35 to 0.10 0.287 

  Highest ADI -0.10 -0.34 to 0.13 0.400 
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Table A.25 (continued) 
From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes 0.38 0.30 to 0.46 <0.001*** 
    

Decreased amount of work (Ref. No)    

  Yes 0.29 0.20 to 0.39 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
The ordered categories of change in time spent in sedentary behavior were defined as 
follows: 1: significant reduction, 2: slight reduction, 3: no change, 4: slight rise, 5: 
significant rise. 
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Table A.26 
Estimated coefficients of all paths to strong anxiety about getting infected for model D 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.29 0.08 to 0.49 0.006** 
    

Age (Ref. 60-69 years)    

  20-29 years -0.04 -0.37 to 0.29 0.814 

  30-39 years 0.37 0.07 to 0.67 0.015* 

  40-49 years 0.24 -0.06 to 0.53 0.114 

  50-59 years 0.28 -0.01 to 0.57 0.059 
    

Chronic disease (Ref. No)    

  Yes 0.19 -0.02 to 0.40 0.074 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.12 -0.16 to 0.40 0.408 

  Undergraduate/graduate school 0.06 -0.19 to 0.31 0.628 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.01 -0.37 to 0.36 0.969 

  Gray-collar job 0.09 -0.30 to 0.48 0.642 

  Other/not working 0.13 -0.28 to 0.53 0.533 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.41 0.08 to 0.74 0.015* 

  3-7 million yen 0.07 -0.15 to 0.29 0.516 

  Unknown 0.08 -0.24 to 0.40 0.630 
    

Living alone (Ref. No)    

  Yes -0.18 -0.46 to 0.10 0.204 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.19 -0.05 to 0.42 0.117 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.12 -0.39 to 0.15 0.401 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.19 -0.07 to 0.44 0.151 

  Middle-high density -0.04 -0.30 to 0.22 0.783 

  Highest density -0.11 -0.39 to 0.17 0.438 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.11 -0.37 to 0.14 0.388 

  Middle-high ADI -0.01 -0.28 to 0.25 0.930 

  Highest ADI -0.01 -0.27 to 0.26 0.961 
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Table A.26 (continued) 

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes 0.03 -0.12 to 0.17 0.735 
    

Decreased amount of work (Ref. No)    

  Yes 0.05 -0.08 to 0.18 0.447 
    

Changes in step counts (in thousands) between the pre-SoE 

and the post-SoE periods 
-0.02 -0.06 to 0.01 0.224 

    

Changes in time spent sedentary behavior during the 

COVID-19 outbreak 
0.10 0.01 to 0.19 0.035* 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.27 
Estimated coefficients of all paths to strong anxiety about spreading the infection to others 
for model D 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female 0.25 0.04 to 0.47 0.020* 
    

Age (Ref. 60-69 years)    

  20-29 years 0.01 -0.33 to 0.35 0.954 

  30-39 years 0.38 0.07 to 0.69 0.018* 

  40-49 years 0.14 -0.18 to 0.45 0.393 

  50-59 years 0.13 -0.19 to 0.45 0.424 
    

Chronic disease (Ref. No)    

  Yes 0.17 -0.05 to 0.39 0.136 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.13 -0.17 to 0.42 0.398 

  Undergraduate/graduate school 0.10 -0.16 to 0.37 0.450 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.14 -0.51 to 0.24 0.477 

  Gray-collar job 0.02 -0.38 to 0.42 0.907 

  Other/not working 0.02 -0.40 to 0.43 0.930 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.29 -0.04 to 0.63 0.083 

  3-7 million yen 0.02 -0.21 to 0.26 0.849 

  Unknown -0.03 -0.37 to 0.30 0.844 
    

Living alone (Ref. No)    

  Yes 0.00 -0.28 to 0.29 0.979 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.11 -0.14 to 0.36 0.376 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.14 -0.44 to 0.16 0.360 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.17 -0.10 to 0.44 0.207 

  Middle-high density -0.01 -0.28 to 0.27 0.963 

  Highest density -0.16 -0.46 to 0.14 0.310 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.31 -0.57 to -0.04 0.025* 

  Middle-high ADI -0.01 -0.29 to 0.26 0.931 

  Highest ADI -0.07 -0.34 to 0.21 0.640 
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Table A.27 (continued) 

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes -0.01 -0.16 to 0.14 0.901 
    

Decreased amount of work (Ref. No)    

  Yes 0.05 -0.08 to 0.18 0.457 
    

Changes in step counts (in thousands) between the pre-SoE 

and the post-SoE periods 
-0.06 -0.09 to -0.03 <0.001*** 

    

Changes in time spent sedentary behavior during the 

COVID-19 outbreak 
0.10 0.01 to 0.19 0.035* 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 
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Table A.28 

Estimated coefficients of all paths to strong anxiety about stigma associated with going 
out for model D 

From Coef. 95% CI p 

Gender (Ref. Male)    

  Female -0.07 -0.33 to 0.19 0.599 
    

Age (Ref. 60-69 years)    

  20-29 years 0.50 0.12 to 0.89 0.011* 

  30-39 years 0.51 0.14 to 0.87 0.007** 

  40-49 years 0.23 -0.16 to 0.62 0.244 

  50-59 years 0.34 -0.04 to 0.72 0.083 
    

Chronic disease (Ref. No)    

  Yes 0.14 -0.10 to 0.39 0.255 
    

Educational attainment (Ref. Junior high school/high school)    

  Junior (technical) college/vocational school 0.30 -0.03 to 0.64 0.076 

  Undergraduate/graduate school -0.01 -0.33 to 0.30 0.929 
    

Occupation (Ref. Blue-collar job)    

  White-collar job -0.03 -0.43 to 0.37 0.887 

  Gray-collar job -0.09 -0.51 to 0.33 0.673 

  Other/not working -0.07 -0.52 to 0.39 0.765 
    

Household annual income (Ref. 7 million yen or more)    

  Less than 3 million yen 0.14 -0.24 to 0.52 0.469 

  3-7 million yen -0.21 -0.48 to 0.06 0.127 

  Unknown -0.09 -0.47 to 0.29 0.644 
    

Living alone (Ref. No)    

  Yes 0.22 -0.11 to 0.54 0.199 
    

Living with child(ren) under 18 years (Ref. No)    

  Yes 0.33 0.05 to 0.61 0.021* 
    

Living with person(s) aged 65 years and older (Ref. No)    

  Yes -0.09 -0.43 to 0.24 0.591 
    

Neighborhood density (Ref. Lowest density)    

  Middle-low density 0.07 -0.22 to 0.37 0.631 

  Middle-high density -0.11 -0.42 to 0.20 0.469 

  Highest density -0.33 -0.66 to 0.01 0.054 
    

Areal deprivation index (ADI) (Ref. Lowest ADI)    

  Middle-low ADI -0.01 -0.33 to 0.31 0.941 

  Middle-high ADI 0.22 -0.09 to 0.54 0.158 

  Highest ADI 0.17 -0.15 to 0.49 0.292 
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Table A.28 (continued) 

From Coef. 95% CI p 

Introduction of working-from-home/standby at home (Ref. 

No) 
   

  Yes -0.09 -0.25 to 0.08 0.298 
    

Decreased amount of work (Ref. No)    

  Yes -0.01 -0.15 to 0.14 0.942 
    

Changes in step counts (in thousands) between the pre-SoE 

and the post-SoE periods 
-0.07 -0.10 to -0.04 <0.001*** 

    

Changes in time spent sedentary behavior during the 

COVID-19 outbreak 
0.18 0.08 to 0.29 <0.001*** 

* Coef.: Coefficient and CI: confidence interval. “***,” “**,” and “*,” denote the 
statistical significance at 0.1%, 1%, and 5% levels, respectively. The sample size was 896. 

 

 

 

 


