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Chapter 1

Introduction

In this chapter, we set c = ℏ = kB = 1. In 1972, Bekenstein proposed that a black hole has thermal
entropy proportional to its horizon A [1]. After that, Hawking showed by semi-classical approximation
that a black hole emits thermal radiation, which is referred to as the Hawking radiation today, the
temperature of which is

T =
1

8πGM
(1.0.1)

for a Schwarzschild black hole with mass M [2]. Thus a black hole is not perfectly “black”. Since the
“energy” of a Schwarzschild black hole equals to M [3], when we regard Eq. (1.0.1) as the black hole’s
temperature, its thermal entropy SBH is calculated as

SBH =
A

4G
, (1.0.2)

where A = 4π(2GM)2, via the thermodynamic relation

∂SBH
∂M

=
1

T
. (1.0.3)

SBH is called Bekenstein-Hawking (BH) entropy. In addition, Gibbons and Hawking used the Euclidean
action for gravity, evaluated the partition function by semi-classical approximation and derived the BH
entropy as a thermodynamic potential for a stationary black hole [4]. In statistical mechanics, the entropy
of a micro canonical ensemble is defined as S = lnW , where W is the number of microstates with a given
energy. Therefore the fact a black hole has the BH entropy implies that it has a lot of microstates.

However, the uniqueness theorem [5–7] states that every 4-dimensional stationary black hole solution
to the Einstein-Maxwell equation in general relativity is just the Kerr-Newman metric which is completely
characterized by just three parameters, mass, angular momentum and electric charge. Thus, it does not
seem that there exist such a lot of degrees of freedom. What is the origin of microstates contributing to
the BH entropy?

So far, a great deal of effort has been devoted to explaining the origin of the BH entropy. In field
theory, the BH entropy is suggested to be derived from quantum entanglement [8, 9]. It is also pointed
out that entanglement may be the origin of the BH entropy in quantum gravity [10–13]. Besides, in
string theory, special D-branes correspond to extremal black holes in the classical regime. The value
of logarithm of the number of BPS states of the branes approaches the value of its corresponding BH
entropy [14].

Another possible origin is microstates generated by asymptotic symmetry on a horizon. General
relativity is invariant under diffeomorphisms. Sometimes, it is argued that diffeomorphisms are gauge
transformations in general relativity, which do not change the state of the system physically. If so, the
metrics connected by diffeomorphisms cannot be distinguished from each other and hence diffeomorphisms
may seem to have nothing to do with the origin of microstates. However, in fact, not all diffeomorphisms
generate gauge transformations. A way to judge whether a diffeomorphism is not a gauge transformation is
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Chapter 1 : Introduction

to check the value of the charge generating the transformation. If the value of a charge is not constant, then
it is not a gauge transformation since the original metric and the transformed one can be discriminated.
Such a physical transformation generates microstates that may contribute to the BH entropy. Note that
the fact there exists such a diffeomorphism does not contradict to the uniqueness theorem because the
theorem determines the metric up to diffeomorphisms. As we will see in Chapter 3 in detail, the value of
a charge generating an infinitesimal diffeomorphism is given by an integral over the boundary of Cauchy
surface of a spacetime in general relativity. Thus, the asymptotic behavior of a diffeomorphism and
the metric play a crucial role to identify transformations which cannot be gauged away. An asymptotic
symmetry is a symmetry whose charge given by a boundary integral cannot be gauge away. In the case
of asymptotically flat black hole, there are two boundaries of Cauchy surface. In fact, the energy of such
a black hole is given by an integral over one of the boundaries, i.e. spatial infinity of the Cauchy surface,
as the charge of the asymptotic symmetry associated with the time translation, which is the so-called
ADM energy. Therefore, asymptotic symmetries on the other boundary, i.e. black hole horizon, have
the potential to generate microstates that contribute to the BH entropy. That is, we anticipate that
for a given ADM energy, the logarithm of the number of microstates on a horizon is BH entropy. The
schematic pictures of the situation are shown in Figs. 1.1 and 1.2. To this end, we must identify all the
possible asymptotic symmetries on a horizon.

Such asymptotic symmetries on a horizon of spacetimes have been investigated as a possible origin of
the BH entropy, e.g. in Refs. [15–31]. In 2001, supertranslation and superrotation with non-gauge charges
were discovered as horizon asymptotic symmetries of a Schwarzschild black hole in (1 + 3)-dimensional
general relativity [16, 17]. Supertranslation is time translation depending on the position at the horizon,
while superrotation is a 2-dimensional general diffeomorphisms on the horizon. In 2016, Hawking, Perry
and Strominger rediscovered the symmetries and named the micro states generated by the transformations
as soft hair [18]. Their work has stimulated interest in the quest for other symmetries at the horizon [19,
24].

Despite such an importance, studies on asymptotic symmetries often take enormous efforts. In the
conventional approach, we first specify the asymptotic behavior of the metrics near the boundary and
solve the asymptotic Killing equation. The set of all asymptotic Killing vectors forms an algebra which
generates a diffeomorphism. Next, we check whether the so-called integrability condition is satisfied. It
ensures that the charges associated with diffeomorphisms are well-defined. If it is not, we have to go
back to the beginning to get a well-defined charge. Even when the integrability condition is satisfied,
there remains a possibility that all the charges are constant for any metric in question. In this case,
since the metric cannot be discriminated by the value of the charge, the diffeomorphism can be gauged
away. Thus, to find a non-trivial charge, we also have to restart the above protocol from the beginning.
In this sense, it is important but sometimes difficult to find an appropriate asymptotic behavior of the
metrics in the first step which result in non-trivial and integrable charges by trials and errors. Although
there are several ways to construct a charge in general relativity, such as the Regge-Teitelboim method
[32] and the covariant phase formalism developed in Refs. [33–40] which is also adopted in our approach
introduced later, all of them require such efforts in trials and errors.

Instead of the conventional approach, the author and collaborators propose an approach without
imposing asymptotic behaviors of metrics by hand in Ref. [41]. We call it “A Lie algebra-based approach”.
In contrast to the conventional approach, in our approach, we first pick a pair of two vector fields such
that the Poisson bracket of the charges that generate infinitesimal diffeomorphisms along them does not
vanish at a fixed but arbitrary metric ḡµν , which we call the background metric. We then fix a Lie algebra
A, which contains those vector fields. Instead of the metrics with an asymptotic behavior introduced
by hand, we adopted the set of metrics S which are connected to ḡµν by diffeomorphisms generated by
A. The algebra of the charges is non-trivial by construction as long as the integrability condition is
satisfied since there is a set of elements whose Poisson bracket does not vanish. This implies that the
obtained charges cannot be gauge away. In Ref. [41], we applied this approach to the Rindler horizon and
found a new symmetry which we refer to as superdilatation. This superdilatation includes two classes of
diffeomorphisms. One of them is an extension of dilatation in the direction perpendicular to the horizon.
The other is an extension of dilatation in the time direction. We explicitly calculate the expression of
charges for an example of the superdilatation algebra.

Although our approach proposed in Ref. [41] may be powerful in finding asymptotic symmetries,
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Figure 1.1: The Penrose diagram of a back hole formed by collapsed matters. Σ is a Cauchy surface
which has two boundaries, spatial infinity i0 and the intersection with horizon H.

Figure 1.2: The ADM energy EADM is the charge of the asymptotic symmetry associated with the time
translation around i0. Asymptotic symmetries on horizon generate microstates for a given EADM .
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Chapter 1 : Introduction

there remains a hard task, namely to check the integrability of the charges directly. We need to solve
differential equations to obtain all the diffeomorphisms generated by A and identify S. Although such
differential equations can be solved for the example in Ref. [41], in general, it is quite difficult to solve
the differential equations for a given A. Therefore, the author and collaborator proposed a modified
approach to over come this issue in Ref. [42]. A key ingredient is a sufficient condition for charges to be
integrable, which can be checked at the background metric ḡµν . It enables us to check the integrability
condition without solving any differential equation. Since the algebra of integrable charges can be fully
characterized by calculating the value of the Poisson bracket at the background metric ḡµν , there is
no need to identify diffeomorphisms generated by A or S directly. We call this modified approach “A
modified Lie algebra approach”. As an explicit example, we investigated the asymptotic symmetries
on the Killing horizon with our approach. We found a new asymptotic symmetry composed of a class
of supertranslations, superrotations and superdilatations in D-dimensional spacetimes with the Killing
horizon. In particular, the algebra of the charges in 4-dimensional spacetimes with a spherical Killing
horizon was calculated explicitly, which was shown to be a central extension of A. In Chapter 4, we will
explain the Lie algebra-based approach and modified Lie algebra-based approach in detail.

This Ph.D thesis is organized as follows: In Chapter 2, we review the covariant phase space formal-
ism, which is adopted in this thesis to construct the charges generating infinitesimal diffeomorphisms.
In Chapter 3, we introduce the concept of asymptotic symmetry and the conventional approach to find
asymptotic symmetries with examples. Chapter 4 is the main part of the thesis. Instead of the conven-
tional approach, we propose a Lie algebra-based approach first developed in Ref. [41] and a modified Lie
algebra-based approach in Ref. [42], and exhibit two examples as applications of it. In Sec. 5, we present
the conclusion and outlook of this thesis. In this thesis, we set the speed of light to unity: c = ℏ = kB = 1.
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Chapter 2

Covariant phase space formalism

In this thesis, we will use the covariant phase space formalism developed in Refs. [33–40]. An advantage
of the method of investigating the asymptotic symmetries in general relativity is that we can carry out
a covariant treatment unlike the Hamiltonian method, e.g. the Arnowitt-Deser-Misner (ADM) decom-
position [43]. In this chapter, let us review the covariant phase space formalism to calculate the charge
corresponding to a diffeomorphism. In Sec. 2.1, we will introduce our notations and terminologies adopted
in the thesis. In Sec. 2.2, Hamiltonian mechanics with constraint system will be reviewed from the point
of view of symplectic manifold. In Sec. 2.3, we will give a review of the covariant phase space formalism.

2.1 Notations and terminologies

In this thesis, we use the terminology of differential geometry. Here, we summarize the notations and
terminology adopted in this thesis.

Let us consider the D-dimensional manifold M . The X(M) denotes a set of vector fields on manifold
M and Ωp(M) denotes a set of p-form on M . The bracket [ ] for indices is the antisymmetrization
defined as

A[µ1···µd] :=
1

d!

∑
σ∈Sd

(−1)σAµσ(1)···µσ(d) , (2.1.1)

where Sd is a permutation group. In a coordinate chart (U,ϕ) such that ϕ(p) = (x1(p), · · · , xD(p)) for
p ∈ U ⊂M , a p-form ω ∈ Ωp(M) is written in a coordinate basis as

ω =
1

p!
ωµ1···µpdx

µ1 ∧ · · · ∧ dxµp , (2.1.2)

where ωµ1···µp = ω[µ1···µp]. The exterior derivative is defined to be the linear map d : Ωk(M) → Ωk+1(M)
which has the following properties:

1. df is the total differential for a 0-form f .

2. d2 = 0.

3. d(α ∧ β) = dα ∧ β + (−1)p(α ∧ dβ) where α is p-form.

In the coordinate basis,

dω =
1

p!
∂µ0ωµ1···µpdx

µ0 ∧ dxµ1 ∧ · · · ∧ dxµp . (2.1.3)

The interior product is defined to be the contraction of a differential form with a vector field. If X ∈ X(M),
then iX : Ωk(M) → Ωk−1(M) is the map which has the property that

(iXω)(X1, · · · , Xp−1) = ω(X,X1, · · · , Xp−1) (2.1.4)
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Chapter 2 : Covariant phase space formalism

for any vector fields X1, · · · , Xp−1. The Lie derivative of p-form is calculated by the Cartan magic formula

£Xω = iX(dω) + d(iXω). (2.1.5)

We use the integral measure defined as

(dD−px)µ1...µp :=
εµ1...µpµp+1...µD

p!(D − p)!
dxµp+1 ∧ · · · ∧ dxµD . (2.1.6)

In Eq. (2.1.6), εµ1···µd is the D-dimensional Levi-Civita symbol defined as

εµ1···µD = ε[µ1···µD] (2.1.7)

ε1···d = 1. (2.1.8)

When ω is the (D − 1)-form on M , the (generalized) Stokes’ theorem states that∫
M

dω =

∫
∂M

ω, (2.1.9)

where ∂M is the boundary of M . We say that a p-form ω is closed if dω = 0 holds, and is exact if
there exists a (p − 1)-form f such that ω = df . An exact form is also a closed form because d2 = 0.
The Poincaré lemma states that the converse is also true under the assumption that M is contractible.
Through the thesis, it is assumed that M is contractible at least for the region of manifold in question.
For a vector field V µ and anti-symmetric tensor field Wµν , we have∫

V

dDx
√
−g∇µV

µ =

∫
∂V

(dD−1x)µ
√
−gV µ, (2.1.10)∫

Σ

(dD−1x)µ
√
−g∇νW

µν =

∫
∂Σ

(dD−2x)µν
√
−gWµν , (2.1.11)

where V is the D-dimensional submanifold of M and Σ is the (D − 1)-dimensional submanifold of M .

2.2 Hamiltonian mechanics

In this section, we give a review of Hamiltonian mechanics from the point of view of symplectic geometry.
In particular, a gauge reduction is introduced for a constrain system, which is a common concept in the
covariant phase space formalism discussed in the next section.

2.2.1 Symplectic manifold and Poisson bracket

Let us consider the classical Lagrangian L(qi, q̇i) of non-relativistic N particles, which does not depend

on t explicitly. For the time being, we assume that L is not singular (i.e. det
(

∂L
∂q̇i∂q̇j

)
6= 0). The

Hamiltonian is defined by the Legendre transformation of L(qi, q̇i) as H(qi, pi) := piq̇
i − L.

The phase space of N particles is parameterized by (qi, pi)(i=1,...,N). Once the value of (qi, pi) is given
at the time t = 0, we can uniquely determine the trajectories of the particles (qi(t), pi(t)) by using the
following equation of motion:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.2.1)

We can treat this system more abstractly and geometrically in a symplectic geometry as follows.
Given a two form ω ∈ Ω2(M) on a manifold M , which is called symplectic if

1. ω is non-degenerate:

∀Y ∈ X(M) iY iXω = ω(X,Y ) = 0 =⇒ X = 0, (2.2.2)

6



2.2 Hamiltonian mechanics

2. ω is closed:

dω = 0, (2.2.3)

are satisfied. Equation. (2.2.2) means that given an arbitrary vector field X ∈ X(M) the map

ω(X, ·) : X(M) → C∞(M)

Y 7→ ω(X,Y ) (2.2.4)

is an isomorphism, or equivalently, Ker ω(X, ·) = {0}. In some coordinate (QI)(I=1,...,2N), we can write

ω = 1
2ωIJdQ

I ∧dQJ and the matrix ωIJ has its inverse ωIJ due to its non-degeneracy, where ωIJ = −ωJI
and ωIJ = −ωJI .

For a smooth function f ∈ C∞(M), there exists the vector field Xf satisfying

df = iXfω. (2.2.5)

In a coordinate (QI), it can be written as

∂Jf = ωIJX
I
f . (2.2.6)

Such a Xf is uniquely determined by

XI
f = −ωIJ∂Jf (2.2.7)

since ω is non-degenerate. In addition, Xf preserves ω, that is,

£Xfω = iXf (dω) + d(iXfω) = d(df) = 0. (2.2.8)

We call the vector field Xf the Hamiltonian vector field associated with f .
Conversely, let us consider a vector field X satisfying £Xω = 0. Since

0 = £Xω = iX(dω) + d(iXω) = d(iXω), (2.2.9)

we have

∃f ∈ C∞(M) df = iXω (2.2.10)

due to the Poincaré lemma. Thus the necessary and sufficient condition that there exists f ∈ C∞(M)
satisfying df = iXω for a given X is

d(iXω) = 0 (or equivalently, £Xω = 0), (2.2.11)

which we call the integrability condition. A vector field which satisfies Eq. (2.2.11) is referred to as a
symplectic vector field. In a coordinate (QI), it can be written as

∀I, J ∂I(ωKJX
K)− ∂J(ωKIX

K) = 0. (2.2.12)

When the integrability condition is satisfied, we obtain the function f by

f(Q;Q0) =

∫
γ

iXω (2.2.13)

=

∫
γ

ωIJX
IdQJ , (2.2.14)

where γ is an arbitrary path from a reference point Q0 to a point Q on M . The integrability condition
ensures that f obtained by Eq. (2.2.14) does not depend on the choice of γ because for two different
curves γ and γ′, ∫

γ′
iXω −

∫
γ

iXω =

∮
∂B

iXω =

∫
B

d(iXω) = 0 (2.2.15)
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Chapter 2 : Covariant phase space formalism

holds, where B is the region such that its boundary ∂B = γ ∪ γ′, where we have used the Stokes theorem
at the second equality. Note that if we shift f → f + const., it is also a solution of Eq. (2.2.5). Thus we
often redefine f so that it takes the value zero at the reference point Q0 by shifting a constant. Such a
function f is referred to as the generating function associated with X, and evaluated at some point Q we
call it the charge associated with X. In the following, we often denote by HX the generating function
associated with X.

On the phase space M , the transformation induced by X is described through the integral curve Q(t)
of X, which is the curve on M satisfying

dQI

dt
= XI(Q(t)), (2.2.16)

where we take a chart (U,ϕ) on M , QI(t) denoting the I-th component of ϕ(Q(t)), and X = XI ∂
∂QI

.

If we take σ(t,Q0) as the integral curve of X and which passes the point Q0 at t = 0, that is, σ(t,Q0)
satisfies

d

dt
σI(t,Q0) = XI(σ(t,Q0)) (2.2.17)

and

σI(0, Q0) = QI0, (2.2.18)

it defines the map σ : R×M →M called the flow generated by X. A flow σ : R×M →M satisfies

1. σ(0, Q) = Q,

2. t 7→ σ(t,Q) is the solution of Eqs.(2.2.17) and (2.2.18),

3. σ(t, σ(s,Q)) = σ(t+ s,Q).

For a fixed t, σt(Q) :M →M is a diffeomorphism on M .
As an example, we consider the Hamiltonian vector field XH associated with the Hamiltonian H,

which satisfies

dH = iXHω. (2.2.19)

Taking the coordinate (QI) = (qi, pi) such that ω = dqi ∧ dpi
∗, we get

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
(2.2.20)

and the equations of its integral curve (QI(t)) = (qi(t), pi(t)) are

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, (2.2.21)

which is just the equation of motion Eq. (2.2.1).
In addition, we can define the Poisson bracket {·, ·} : C∞(M)× C∞(M) → C∞(M) on M as

{f, g} := −iXf iXgω = ω(Xf , Xg) (2.2.22)

The Poisson bracket has the following properties:

1. Anti-commutativity: {f, g} = −{g, f},

2. Bilinearity: {af + bg, h} = a{fh}+ b{g, h}, {h, af + bg} = {ah, f}+ b{h, g} a, b ∈ R,

3. Leibniz’s rule: {fg, h} = f{g, h}+ {f, h}g,
∗We can always take such a coordinate due to Darboux’s theorem and it is called Darboux coordinate [44].
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2.2 Hamiltonian mechanics

4. Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

The Poisson bracket defines the Lie algebra of C∞(M) often called the Poisson algebra. By using the
Poisson bracket, the time evolution of an arbitrary function f(qi, pi) on M can be written as

df

dt
=

dqi

dt

∂f

∂qi
+

dpi
dt

∂f

∂pi
= XH(f) = df(XH) = {f,H}. (2.2.23)

The equation of motion is the special case where we take qi and pi as f . In general, {f, g} = Xg(f)
equals to the variation of f along the flow generated by g. By using the inverse matrix ωIJ ,

{f, g} = −ωIJ∂If∂Jg. (2.2.24)

2.2.2 Symmetries and conserved charges

As clearly seen from Eq. (2.2.23), a function f which commutes with the Hamiltonian under the Poisson
bracket, {f,H} = 0, does not depend on time and defines a conserved charge. This is Noether’s thorem
for the Hamiltonian mechanics. We can also see that for any two functions f and g commuting with the
Hamiltonian H, their Poisson bracket also commutes with H since

{H, {f, g}} = −{f, {g,H}} − {g, {H, f}} = 0 (2.2.25)

holds from the Jacobi identity. Therefore, conserved charges form an closed algebra.
Independently of whether or not the functions are conserved charges, there is the correspondence

between the Poisson algebra of C∞(M) and the Lie algebra of symplectic vector fields on X(M). For the
vector fields X and Y which satisfy the integrability condition, there exist the corresponding generating
functions HX and HY respectively, and

i[X,Y ]ω = £X iY ω − iY£Xω = £X iY ω

= d(iX iY ω) + iXd(iY ω)

= d(ω(Y,X))

= d(−{HX ,HY }) (2.2.26)

holds. Thus the generating function of [X,Y ] is −{HX ,HY } and then we have

{HX ,HY } = −H[X,Y ] + C, (2.2.27)

where we have used Eq. (2.2.14) and C is a constant. Conversely, for given the two functions f and g,
there exist the corresponding vector fields Xf and Xg, and

[Xf , Xg] = −X{f,g} (2.2.28)

holds. Thus the Lie bracket of two Hamiltonian vector fields is also Hamiltonian vector fields. Note that
the map ι : C∞(M) → X(M) is the Lie algebra homomorphism, not the isomorphism in general since
ker ι = {C : constant function on M} which means that two functions whose difference is a constant
correspond the same Hamiltonian vector fields. Since we can redefine a generating function by adding
an arbitrary constant, there is a possibility that C in Eq. (2.2.27) is set to be zero. If it is, the Poisson
algebra of C∞(M) is isomorphic to the Lie algebra of X(M). If not, it is a central extension of that of
X(M).

2.2.3 Constraint system

Although we have assumed so far that Lagrangian is not singular, as is well known in gauge theories this
is not the case in general. If the Lagrangian is singular, det

(
∂L/∂q̇i∂q̇j

)
= 0, there exist m independent

primary constraints χA(q,p) = 0 (a = 1, · · · ,m) where m = N − rank
(
∂L/∂q̇i∂q̇i

)
. The treatment of

9



Chapter 2 : Covariant phase space formalism

such a constraint system was developed in Refs. [45–48]. In the primary constraint, the time evolution
of an arbitrary quantity f is

df

dt
= {f,H ′} (2.2.29)

H ′ = H + λAχA. (2.2.30)

In addition, the consistency condition that the constraints should hold at any time {χa,H ′} = 0 results
in the determination of some coefficient λA, or additional k secondary constrains ζA′(q,p) = 0 (A′ =
m+1, · · · ,m+ k). When we obtain the secondary constraints, we should impose a consistency condition
such that no additional constraints are generated. In this way, we finally get K independent constraints
χa = 0 (a = 1, · · · ,K) and the dynamics is now confined to a constraint submanifold N ⊂ M which is
the co-dimension K hypersurface characterized by χa = 0 (a = 1, · · · ,K) in M .

By the inclusion map i : N ↪→ M , the induced symplectic form ω̃ on N is defined as ω̃ = i∗ω. More
concretely, introducing the coordinates (QI) (I = 1, · · · , D) and (qi(Q)) (i = 1, · · · , D −K) on N ,

ω̃ =
1

2
ω̃ijdq

i ∧ dqj (2.2.31)

where

ω̃ij = ωIJ
∂QI

∂qi
∂QJ

∂qj
. (2.2.32)

ω̃ is closed but may be degenerate. In the degenerate case where at each point on N ωIJX
IY J = 0 for

all vectors Y I tangent to N implies that XI is also a non-vanishing tangent vector to N .
About the rank of ω̃ij , we have the following theorem: [49]

Theorem 1. D − 2K ≤ rank ω̃ij ≤ D −K

Proof. Since ω̃ij is a (D − K) × (D − K) matrix, the upper bound is trivial. Let us take the basis
vectors {XI

a , Y
I
ā } at each point on N where XI

a (a = 1, · · · , A) is a basis of degeneracy vectors of ω̃ij and
Y Iā (ā = A+1, · · · , D−K) are additional vectors such that {XI

a , Y
I
ā } is a basis of N . We add K vectors

ZIα (α = D −K + 1, · · · , D) for {XI
a , Y

I
ā , Z

I
α} to obtain a basis of M .

First, since {XI
a} are degeneracy vectors of ω̃ij , we have on N

ωIJX
IXJ = ωIJX

IY J = 0 (2.2.33)

where XI = AaXI
a and Y I = BāY Iā are arbitrary linear combinations in each basis.

Second, consider the following K homogeneous equations for A unknown coefficients Ca

CaXI
aωIJZ

J
α = 0. (2.2.34)

If A > K, these have non-trivial solutions whatever ωIJX
I
aZ

j
α is. In that case,

ωIJX
IZJ = 0 (2.2.35)

where XI = CaXI
a and ZI = DαZIα. However Eqs. (2.2.33) and (2.2.35) imply that ωIJX

I = 0 at each
point on N since {XI

a , Y
I
ā , Z

I
α} is a basis of M , which contradicts the fact that ωIJ is non-degenerate.

Therefore, we have A ≤ K and D − 2K ≤ rank ω̃ij .

In general, constrains are classified into two classes [45]:

1. {χa, χb} = f c
ab χc first class

2. {χa, χb} 6= f c
ab χc second class

where fabc is an arbitrary function on M . Defining Cab := {χa, χb}, detCab ≈ 0 for the first class, and
detCab 6≈ 0 for the second class, where ≈ ( 6≈) represents being equal (not equal) on N . For each χa, the
corresponding Hamiltonian vector fields Va are

V Ia = −ωIJ∂Jχa. (2.2.36)

The constraint submanifold (N, ω̃ij) has different properties depending on which class of constrains are
given.

10



2.2 Hamiltonian mechanics

2.2.3.1 First class case

When all the constraints are first class, we have the following theorem:

Theorem 2. If χa are first class,

rank ω̃ij = D − 2K (2.2.37)

and its degeneracy vector fields are Va.

Proof. First note that a vector Y I is tangent to N if and only if Y I∂Iχa ≈ 0. Since V Ia ∂Iχb =
−ωIJ∂Jχa∂Iχb = {χa, χb} ≈ 0, Va are tangent to N . Second, ωIJV

I
a Y

J = 0 holds on N for an ar-
bitrary tangent vector Y I to N since ωIJV

I
a Y

J = Y J∂Jχa. Therefore, Va are K degeneracy vectors of
ω̃ij and rank ω̃ij = D −K −K = D − 2K.

Conversely, the following theorem also holds.

Theorem 3. If det ω̃ij = D − 2K, the submanifold N is described by the first constrains χa = 0.

Proof. An arbitrary vector Y I tangent to N is subject to the condition Y I∂Iχa = ωIJY
IV Ja ≈ 0 only

and no others. Then the vector field XI satisfying ωIJY
IXI ≈ 0 for an arbitrary vector Y I is the linear

combination V Ia = −ωIJ∂Jχa. Since rank ω̃ij = D − 2K, there exist K degeneracy vector fields of ω̃ij
which we can choose to be V Ia . Thus we get 0 ≈ ωIJV

I
a V

J
b = {χa, χb}, which implies χa are first class.

In this case, (N, ω̃ij) is in fact not a symplectic manifold since ω̃ij is degenerate. The equation of
motion dH = iXH ω̃ has non unique solutions XH and XH + Ker ω̃. Physically, the orbit of XH and
that of XH +Ker ω̃ represent the same state. Thus the transformations generated by Ker ω̃ correspond
to gauge transformations. We can construct a symplectic manifold by identifying a point on N with all
other points connected to it by a gauge transformation.

First for two arbitrary degeneracy vector fields Xi and Y i, we have

i[X,Y ]ω̃ = [£X , iY ]ω̃ = −iY£X ω̃ = −iY d(iX ω̃) = 0 (2.2.38)

where we have used iX ω̃ = iY ω̃ = 0. Thus the commutators between degeneracy vector fields are also
degeneracy vector fields, that is, they form a Lie algebra. We can construct the submanifold V ⊂ N
such that its tangent vector space is spanned by degeneracy vector fields due to the Frobenius theorem
(Appendix. A). In a physical context, V is called a gauge orbit. Introducing the equivalent class [x] =
{x ∈ N | x ∼ y} where x ∼ y if and only if x, y ∈ V , meaning that x and y are connected by a gauge
transformation and physically indistinguishable. We can define the quotient space Ξ := N/ ∼ and let π
be a projection map as

π : N → Ξ

∈ ∈

x 7→ [x]. (2.2.39)

A two form ωphys on Ξ is defined by the condition that its pullback is equal to ω̃ under the projection
map π:

ω̃ = π∗ωphys (2.2.40)

or equivalently,

ω̃(A,B) = ωphys(π∗A, π∗B) ∀A,B ∈ X(N), (2.2.41)

where π∗A, π∗B are the pushforwards of A,B to Ξ. All degeneracy vector fields of ω̃ are mapped to zero
vector fields on Ξ. By construction, ωphys is no longer degenerate and thus a symplectic form on Ξ and
(Ξ, ωphys) is a symplectic manifold. (Ξ, ωphys) is the so-called reduced phase space and this procedure is
called a gauge reduction.

11



Chapter 2 : Covariant phase space formalism

Figure 2.1: A schematic picture of a gauge reduction.

Note that since £X ω̃ = d(iX ω̃) = 0 for a gauge direction X = Ker ω̃, we get the generating function
of X as

HX =

∫
γ

iX ω̃ = C0 (const.). (2.2.42)

Thus the charge of a gauge transformation is constant on N . Physically, it means that we cannot
distinguish the points on N connected by the transformation generated by X from each other by their
charge.

2.2.3.2 Second class case

When all the constrains are second class, the following theorem holds.

Theorem 4. χa is second class if and only if rank ω̃ij = D −K,

det ω̃ij 6= 0 (2.2.43)

Proof. An arbitrary vector Y I tangent to N is subject to the condition Y I∂Iχa = ωIJY
IV Ja ≈ 0 only

and no others. Thus the vector field AI satisfying ωIJY
IAI ≈ 0 for an arbitrary vector Y I is the linear

combination AI = aaV Ia . If ω̃ij is degenerate, there exists AI 6= 0 such that ωIJA
IV Jb = aaωIJV

I
a V

J
b =

aa{χa, χb} = aaCab ≈ 0. However since detCab 6≈ 0, we have aa ≈ 0. Thus ω̃ij is non-degenerate,
det ω̃ij 6= 0. Conversely, if det ω̃ij 6= 0, aaCab ≈ 0 has the only solution aa ≈ 0. Thus detCab 6≈ 0, that
is, second class.

In this case, we can determine the dynamics uniquely since (N, ω̃) is a symplectic submanifold. Any
Hamiltonian vector field Va of the constraints χa is not tangent to N and does not generate the allowed
transformation since the transformed states are off the constraint submanifold.

We can define the Poisson bracket on N by ω̃ as

{f, g}∗ := ω̃(Xf , Xg) ∀f, g ∈ C∞(N). (2.2.44)

In fact, Eq. (2.2.44) can be rewritten as an operation on C∞(M). Let us take the coordinates (qi, χa)
on M such that {qi, χa} ≈ 0, where (qi) is a coordinate on N . Such a coordinate can always be chosen
because if (q′i) is an arbitrary coordinate on N , then qi = q′i + λiaχa where λiaCab = −{q′i, χb} satisfies
{qi, χa} = 0. In this coordinate, we get on N ,

ωIJ ≈
(

{qi, qj} 0
0 Cab

)
(2.2.45)

so that det{qi, qj} 6≈ 0. Since Cab is invertible,

ωIJ ≈
(
ω̃ij 0
0 Cab

)
(2.2.46)
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2.3 Covariant phase space formalism

where ω̃ik{qk, qj} = δ ji and CacC
cb = δ b

a . For a function F on M such that F |N = f , we have

{F, χa}|N = σIJ∂IF∂Jχa|N = σbc∂bF∂cχa|N = σba∂bF |N = Cba∂bF. (2.2.47)

Therefore,

{F,G}|N = σIJ∂IF∂JG = σij∂iF∂jG|N + σab∂aF∂bG|N
= σij∂if∂jg + Cab∂aF∂bG|N
= σij∂if∂jg + Cab{F, χc}Cca{G,χd}Cdb|N
= {f, g}∗ + {F, χa}Cab{χb, G}|N . (2.2.48)

Finally we get

{f, g}∗ = {F,G}D|N (2.2.49)

where

{F,G}D := {F,G} − {F, χa}Cab{χb, G}. (2.2.50)

is known as the Dirac bracket defined on M . Eq. (2.2.49) implies that the Poisson bracket on N defined
by ω̃ij is equal to the Dirac bracket defined on M evaluated on N .

2.2.3.3 Mixed case

In general, the constraints contain both first class and second class constraints. In the case that k (< K)
first class constrains and K − k second class constraints exist, we find

rank ω̃ij = D −K − k. (2.2.51)

for the induced symplectic form ω̃ on the co-dimension K constraint submanifold N . ω̃ has k degeneracy
vector fields and we can obtain the reduced phase space (Ξ, ωphys) by quotienting N by the gauge orbits
generated by the degeneracy vector fields. Now that (Ξ, ωphys) has only second class constraints, all the
dynamics can be determined by the use of the Dirac bracket defined by ωphys.

2.3 Covariant phase space formalism

In a field theory, an action is defined as the integral on the spacetime M

S[φ] =

∫
M

dDxL[φa, ∂µφa, ∂µ∂νφa, · · · ],

where φa denotes all the fields considered, e.g. metric and matter, and the Lagrangian density L is the
scalar density (including

√
−g) and can contain finite order derivatives of the field φa. When we move

to the Hamiltonian mechanics, we need the split of the spacetime into “time” and “space” because we
have to introduce the canonical momentum πa = ∂L/∂φ̇. This is clearly not a covariant treatment.
In particular, general relativity was established based on the principle of general covariance, where a
particular “time” direction and “’space’ directions do not exist. Although the Arnowitt-Deser-Misner
(ADM) formalism [43] is a Hamiltonian treatment of general relativity and has been used for a long time,
it breaks general covariance. Thus, in the study of general relativity, some covariant treatments have
been introduced, e.g. [50]. The covariant phase space formalism, introduced by Crynkovic and Witten
[33], is such a covariant treatment. In this formalism, we view as the “phase space” all the solutions of
the equation of motion. In the following, we make a review of this formalism. The recent mathematically
rigorous treatment of it can be seen in Ref. [51].
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Chapter 2 : Covariant phase space formalism

2.3.1 Pre-symplectic form on covariant phase space

In the covariant phase space formalism, first we define the space of field configurations C as a set of fields
φa on the spacetime M with some boundary conditions, on which the action

S[φ] =

∫
M

dDxL[φa, ∂µφa, ∂µ∂νφa, · · · ] (2.3.1)

is defined. For example, C is a set of all field configuration φa that decay “quickly” enough close to the
spatial infinity, which are not necessarily solutions to the equation of motion.

Second, we consider a one parameter family φaλ with φaλ=0 = φa. The first variation of the action is

δS =

∫
M

dDxδL[δφ] (2.3.2)

where

δL[δφ] = dL[φaλ, ∂µφaλ, · · · ]
dλ

∣∣∣
λ=0

= Eaδφa + ∂µθ
µ[φ, δφ], (2.3.3)

and we have used integration by parts and defined

δφa =
dφaλ
dλ

∣∣∣
λ=0

, (2.3.4)

Ea :=
∂L
∂φa

+
∑
n≥0

(−1)n∂µ1 · · · ∂µn
(

∂L
∂(∂µ1

· · · ∂µnφa)

)
, (2.3.5)

which is the equation of motion, and

θµ[φ, δφ] :=
∂L

∂(∂µφa)
δφa + · · · , (2.3.6)

which is the so-called pre-symplectic potential density. It enables us define the real-valued functional of
φ and δφ denoted by Θ[φ, δφ] as

Θ[φ, δφ] =

∫
Σ

(dD−1x)µθ
µ[φ, δφ] (2.3.7)

where Σ is an arbitrary Cauchy surface of M. Note that Θ[φ, δφ] depends on the choice of the Cauchy
surface Σ.

Third, consider a two parameters family φaλ1,λ2
such that

φaλ1,λ2

∣∣∣
λ1=λ2=0

= φa, δ1φ
a =

∂

∂λ1
φaλ1,λ2

∣∣∣
λ1=λ2=0

, δ2φ
a =

∂

∂λ2
φaλ1,λ2

∣∣∣
λ1=λ2=0

. (2.3.8)

Since

δ2L[δ2φ] =
∂L
∂λ2

∣∣∣∣∣
λ2=0

= Eaδ2φa + ∂µθ
µ[φ, δ2φ], (2.3.9)

the second variation of L is

δ1δ2L = (δ1Ea)δ2φa + Ea(δ1δ2φa) + ∂µδ1θ
µ[φ, δ2φ], (2.3.10)

where δ1Ea is the linearized equation of motion around φa. From above, we get

0 = (δ1δ2L − δ2δ1L)
= (δ1Ea)δ2φa − (δ2Ea)δ1φa + ∂µω

µ[φ, δ1φ, δ2φ] (2.3.11)
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2.3 Covariant phase space formalism

where we have used the relation δ1δ2φ = δ2δ1φ and ωµ is so-called the pre-symplectic current density
defined by

ωµ[φ, δ1φ, δ2φ] := δ1θ
µ[φ, δ2φ]− δ2θ

µ[δφ, δ1φ]. (2.3.12)

For example, in the case where L contains up to the first order derivative ∂µφ
a, we have

ωµ[φ, δ1φ, δ2φ] =
∂2L

∂φa∂(∂µφb)
[δ1φ

aδ2φ
b − δ2φ

aδ1φ
b] +

∂2L
∂(∂νφa)∂(∂µφb)

[(∂νδ1φ
a)δ2φ

b − (∂νδ2φ
a)δ1φ

b].

(2.3.13)

When φaλ1,λ2
is a two parameter family of solutions of the equation of motion Ea = 0, δ1φ

a and δ2φ
a are

solutions to the linearized equation of motions δ1Ea = 0 and δ2Ea = 0 respectively, and we get

∂µω
µ[φ, δ1φ, δ2φ] ≈ 0 (2.3.14)

from Eq. (2.3.11), where the symbol ≈ represents the equality holding on-shell†. The pre-symplectic
current density enables us define the real-valued functional of φ, δ1φ and δ2φ denoted by Ω[φ, δ1φ, δ2φ] as

Ω[φ, δ1φ, δ2φ] :=

∫
Σ

(dD−1x)µω
µ[φ, δ1φ, δ2φ]. (2.3.15)

Ω[φ, δ1φ, δ2φ] depends on the choice of the Cauchy surface Σ in general. For two arbitrary Cauchy surfaces
Σ and Σ′, we have∫

Σ

(dD−1x)µω
µ −

∫
Σ′
(dD−1x)µω

µ =

∮
∂B

(dD−1x)µω
µ −

∫
C

(dD−1x)µω
µ

=

∫
B

(dDx)∂µω
µ −

∫
C

(dD−1x)µω
µ

≈ −
∫
C

(dD−1x)µω
µ (2.3.16)

where we have used Stokes’ theorem and Eq. (2.3.14). C is the co-dimension one surface whose boundary
is ∂Σ ∪ ∂Σ′ and B is the region whose boundary is Σ ∪ Σ′ ∪ C (see Fig. 2.2). Therefore, when the
most right hand side of Eq. (2.3.16) vanishes, Ω[φ, δ1φ, δ2φ] does not depend on the choice of the Cauchy
surface on-shell.

Figure 2.2: B is the region whose boundary is the union of Σ, Σ′, and C.

†Hereafter we use this symbol to represent the on-shell equality, not the one on constraint manifold as is the previous
section.
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Formally, we regard C as (infinite-dimensional) manifold. A vector field X on C is defined as

X =

∫
M

dDxδφa(x)
δ

δφa(x)
, (2.3.17)

and an one-form Dφ(x) on C is defined via the following natural pairing

Dφa(x)

(
δ

δφb(x′)

)
=
δφa(x)

δφb(x′)
= δab δ(x− x′). (2.3.18)

For an arbitrary φ ∈ C, Θ[φ, ·] is a linear function of a vector δφ since θµ is linear in δφ. Therefore, we
can define the so-called pre-symplectic potential Θ as a one-form on C via

Θϕ(X) = Θ[φ, δφ] ∀φ ∈ C. (2.3.19)

Also for an arbitrary φ ∈ C, Ω[φ, ·, ·] is an anti-symmetric bilinear function of vectors since ωµ is linear
and anti-symmetric in δ1φ and δ2φ. Thus we can define the so-called pre-symplectic form Ω as a two-form
on C via

Ωϕ(X1, X2) = Ω[φ, δ1φ, δ2φ] ∀φ ∈ C, (2.3.20)

where

X1,2 =

∫
Σ

dDxδ1,2φ
a(x)

δ

δφa(x)
. (2.3.21)

From Eq. (2.3.12), we have the functional relation

Ω[φ, δ1φ, δ2φ] = δ1Θ[φ, δ2φ]− δ2Θ[φ, δ1φ], (2.3.22)

or equivalently, in terms of the differential forms

Ω = DΘ (2.3.23)

where “D” denotes the exterior derivative on C, which should be distinguished from that on M denoted
by “d”. As with an ordinary exterior derivative, D is defined to be a linear operator mapping from Ωk(C)
to Ωk+1(C) with the following properties [33]:

1. For an arbitrary function F , DF = δF [ϕ]
δϕa Dφa,

2. D2 = 0,

3. For P ∈ Ωp(C) and Q ∈ Ωq(C), D(P ∧Q) = (DP ) ∧Q+ (−1)pP ∧ (DQ).

The action of D on n-form A is

D(Aa1···anDφ
a1 ∧ · · · ∧Dφan) =

δAa1···an
δφa0

Dφa0 ∧Dφa1 ∧ · · · ∧Dφan . (2.3.24)

For the case of Eq. (2.3.13), the pre-symplectic form is

Ω =

∫
Σ

(dD−1x)µ

[
∂2L

∂φa∂(∂µφb)
Dφa ∧Dφb +

∂2L
∂(∂νφa)∂(∂µφb)

(∂νDφ
a) ∧Dφb

]
(2.3.25)

In the following, we refer to both the functional Ω[φ, δ1φ, δ2φ] and the two form Ω as pre-symplectic form.
Finally, let us introduce the covariant phase space S which is defined to be the subset of C as

S := {φa ∈ C | Ea = 0}. (2.3.26)

The space S contains the set of all solutions to the equation of motion obeying the same boundary
conditions as C, and its tangent space TϕS corresponds to the set of all solutions to the linearized
equation of motion δEa = 0. The on-shell equality ≈ means that the equality holds on S. Note that the
pre-symplectic form Ω is closed which follows from Eq. (2.3.23) and degenerate in general.
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2.3 Covariant phase space formalism

2.3.2 Symmetries and charges

In the covariant phase space formalism, we can also consider a symmetry of the system and a generating
function of it. Let us consider the infinitesimal transformation of φa ∈ C

φa → φa + δ̂φa. (2.3.27)

In order to distinguish from an arbitrary variation δφa, we use a hat over δ. When the variation of L
associated with the above transformation satisfies

δ̂L = ∂µα
µ, (2.3.28)

the action S =
∫
M

dDxL is invariant under the transformation. In such a case, we say that δ̂φa is a

symmetry of the system. The Noether current associated with δ̂φa is defined as

Jµ := θµ[φ, δ̂φ]− αµ (2.3.29)

Since

∂µJ
µ = ∂µθ

µ[φ, δ̂φ]− ∂µα
µ = δ̂L − Eaδ̂φa − δ̂L

= −Eaδ̂φa

≈ 0, (2.3.30)

the Noether current is conserved on S. By using the Poincaré lemma on the spacetime M, there exists
the anti-symmetric tensor Qµν on M such that

Jµ ≈ ∂νQ
µν , Q[µν] = Qµν . (2.3.31)

We can define the Noether charge as

Q :=

∫
Σ

(dD−1x)µJ
µ ≈

∫
Σ

(dD−1x)µ∂νQ
µν ≈

∮
∂Σ

(dD−2)µνQ
µν . (2.3.32)

On the other hand, we can define the generating function HX of a vector field

X =

∫
M

dDxδ̂φa(x)
δ

δφa(x)
(2.3.33)

on C satisfying £XΩ = 0 as has been done in Eq. (2.2.14). It is the function on C satisfying

DHX = −iXΩ (2.3.34)

where the minus sign is just a convention. We call the condition £XΩ = 0 also the integrability condition.
As a functional, the integrability condition is recast to (cf. Eq. (2.2.12))

∀I, J δIΩ[φ, δJφ, δ̂φ]− δJΩ[φ, δIφ, δ̂φ] = 0 (2.3.35)

and Eq. (2.3.34) is recast to

δHX [φ] = Ω[φ, δφ, δ̂φ]. (2.3.36)

As with Eq. (2.2.14), we get

HX [φ;φ0] =

∫
γ

Ω(φ, δφ, δ̂φ) (2.3.37)

where the integral is thought of as the line integral along γ which is an arbitrary path from a reference
point φ0 to φ on C.
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Chapter 2 : Covariant phase space formalism

For example, let us consider the case that there is only one field φ and δ̂φ = £ξφ where ξ is a vector
fields on the spacetime M, that is, consider the infinitesimal transformation φ → φ + £ξφ. In the next
subsection, we will consider the infinitesimal transformation of the metric g → g+£ξg in general relativity

as a particular case. In such a case, δ̂L = £ξL = ∂µ(ξ
µL) since L is scalar density. Thus the associated

Noether current denoted by J [ξ] is

Jµ[ξ] = θµ[φ,£ξφ]− ξµL. (2.3.38)

By an arbitrary variation of it, we have

δJµ = δθµ[φ,£ξφ]− ξµδL
= δθµ[φ,£ξφ]− ξµ (Eϕδφ+ ∂νθ

ν [φ, δφ])

≈ δθµ[φ,£ξφ]−£ξθ
µ[φ, δφ]− ∂ν(2ξ

[µθν][φ, δφ])

= ωµ[φ, δφ,£ξφ]− ∂ν(2ξ
[µθν][φ, δφ]) (2.3.39)

where we have used in the third line the relation

£ξθ
µ = ξν∂νθ

µ + ∂νξ
µθν + ∂νξ

νθµ (2.3.40)

which follows from the fact that the pre-symplectic current takes the form θµ =
√
−gAµ (density vector

field) in general, and have used in the last line the definition of ωµ. Therefore, the variation of the
generating function, now denoted by H[ξ], of £ξφ is

δH[ξ] ≈
∫
Σ

(dD−1x)µδJ
µ[ξ] +

∮
∂Σ

(dD−2x)µν2ξ
[µθν][φ, δφ] (2.3.41)

The integrability condition Eq. (2.3.35) is recast to∮
∂Σ

(dD−2x)µνξ
[µδ1θ

ν][φ, δ2φ]−
∮
∂Σ

(dD−2x)µνξ
[µδ2θ

ν][φ, δ1φ] =

∮
∂Σ

(dD−2x)µνξ
[µων][φ, δ1φ, δ2φ] = 0

(2.3.42)

For ξ which satisfies the above equation, we obtain

H[ξ] ≈
∫
γ

(∫
Σ

(dD−1x)µδJ
µ[ξ] +

∮
∂Σ

(dD−2x)µν2ξ
[µθν][φ, δφ]

)
=

∫
γ

(∮
∂Σ

(dD−2x)µνδQ
µν [ξ] + 2ξ[µθν][φ, δφ]

)
=

∫ 1

0

dλ

(∮
∂Σ

(dD−2x)µν∂λQ
µν [ξ] + 2ξ[µθν][φ, ∂λφ]

)
(2.3.43)

where we parameterize φλ such that φλ=0 = φ0 and φλ=1 = φ to carry out the line integral along γ. Thus
only the boundary terms contribute to the generating function H[ξ] evaluated on S.

2.3.3 Gauge transformation

If X is a symmetry of the system and is a degeneracy vector field of Ω, the integrability condition
£XΩ = D(iXΩ) = 0 clearly holds, and we can get the generating function HX = C (const.). It means
that all points on S connected to each other by the transformation generated by X have the same charge
and we cannot physically distinguish them by their charges. Therefore, we regard such a symmetry as a
gauge symmetry.

For arbitrary two degeneracy vector fields X and Y ,

i[X,Y ]Ω = [£X , iY ]Ω = 0 (2.3.44)

since £XΩ = 0 and iY Ω = 0. Thus we find that the Lie bracket of two degeneracy vector fields is a
degeneracy vector field. That is, degeneracy vector fields of the pre-symplectic form Ω form a Lie algebra.
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2.3 Covariant phase space formalism

Since degeneracy vector fields form a Lie algebra, we can carry out the same reduction procedure as has
been done in Subsec. 2.2.3.1. First, we construct the submanifold W ⊂ S such that its tangent vector
space is spanned by degeneracy vector fields from the Frobenius theorem (Appendix. A). W is also called
a gauge orbit. Next, we introduce the equivalent class [φ] = {ϕ ∈ S | ϕ ∼ φ} where ϕ ∼ φ if and
only if ϕ, φ ∈ W , which means that ϕ and φ are connected by a gauge transformation and physically
indistinguishable. Thus we can define the quotient space Γ := S/ ∼ with π being a projection map as

π : S → Γ

∈ ∈

φ 7→ [φ]. (2.3.45)

Finally, a two form Ωphys on Γ is defined by the condition that its pullback is equal to Ω under the
projection map π:

Ω = π∗Ωphys, (2.3.46)

or equivalently,

Ω(A,B) = Ωphys(π∗A, π∗B) ∀A,B ∈ X(S), (2.3.47)

where π∗A, π∗B are the pushforwards of X,Y to Γ. Degeneracy vector fields of Ω are mapped to zero
vector fields on Γ. By construction, Ωphys is no longer degenerate and becomes a symplectic form on Γ
and then (Γ,Ωphys) is a symplectic manifold.

Figure 2.3: A schematic picture of a symplectic reduction.

The above construction of a symplectic manifold from a pre-symplectic one is sometimes called a
gauge reduction which is illustrated in Fig. 2.3. Γ is called the reduced phase space or physical phase
space.

In Tab. 2.1, we summarize the relation between the Hamiltonian mechanics and the covariant phase
space formalism.
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Chapter 2 : Covariant phase space formalism

Hamiltonian formalism Covariant phase space formalism

Phase space M Configuration space C

Constraint submanifold (N, ω̃) Covariant phase space (S,Ω)
(χa = 0) (Eϕ = 0)

Gauge orbits Gauge orbits
(generated by Ker ω̃) (generated by Ker Ω)

Reduced phase space (Ξ, ωphys) Reduced phase space (Γ,Ωphys)
(ω̃ = π∗ωphys) (Ω = π∗Ωphys)

Table 2.1: Caption

2.3.4 Poisson bracket on the covariant phase space

As in the Hamiltonian formalism, the Poisson bracket on S is defined as [52]

{F,G} := Ω(XF , XG) (2.3.48)

Note that although XF , XG cannot be determined uniquely due to the degeneracy of Ω (i.e. Ker Ω 6= {0}),
the above Poisson bracket is well-defined since

Ω(XF , XG) = Ω(XF +Ker Ω, XG) = Ω(XF , XG +Ker Ω). (2.3.49)

In this case, also

i[X,Y ]Ω = £X iY Ω− iY£XΩ = £X iY Ω

= D(iX iY Ω) + iXD(iY Ω)

= D(Ω(Y,X))

= D(−{HX ,HY }) (2.3.50)

holds. Thus, the generating function of [X,Y ] is {HX ,HY } and then we have

{HX ,HY } = H[X,Y ] + C (2.3.51)

where C are constant functions. If the constant C cannot be absorbed in a redefinition of the generating
function, this algebra is a central extension. In the case that a infinitesimal transformation is described
by φ→ φ+£ξφ,

{H[ξ],H[η]} = H [[ξ, η]] + C. (2.3.52)

Note that the Lie bracket in the argument of H is the one on the spacetime M, not on the phase space
S.

Using the Poisson bracket, the definition that X is a degeneracy vector field of Ω

∀Y ∈ X(S) Ω(X,Y ) = 0 (2.3.53)

is also represented as

∀Y ∈ X(S) {HX ,HY } = 0. (2.3.54)

When X satisfies Eq. (2.3.54), we get HX = const.. Conversely, when HX = const., Eq. (2.3.54) is clearly
satisfied. Equation. (2.3.54) is the key ingredient of our approach to get non-gauge symmetries that we
will show in Chapter 4.

The Poisson bracket defined by Eq. (2.3.48) is shown to be equivalent to the so-called Peierls bracket
[50], which was introduced in the early fifties to define the Poisson bracket covariantly, for gauge invariant
quantities. See Refs. [51, 53–55] for the details.
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Chapter 3

Asymptotic symmetries in general
relativity

In this chapter, we will introduce the concept of asymptotic symmetries in general relativity. Roughly
speaking, asymptotic symmetries in general relativity consist of all the diffeomorphisms that preserve
the boundary conditions imposed on the metric in question, and that are not gauge symmetries. Their
charges transform states to physically nonequivalent ones. We will review the conventional approach to
find asymptotic symmetries in general relativity with (1 + 3)-dimensional asymptotically flat spacetime
and (1 + 2)-dimensional asymptotic anti-de Sitter spacetime as examples.

3.1 Covariant phase space formalism on general relativity

Since general relativity is a covariant theory, it is suitable to apply the covariant phase space formalism.
Actually, a lot of asymptotic symmetries have been investigated by this formalism. Consider the Einstein-
Hilbert action including the cosmological constant

S =

∫
M

dDxLEH , (3.1.1)

where the Lagrangian density is given by LEH := 1
16πG

√
−g(R − 2Λ), g and R are the determinant of

the metric gµν and the Ricci scalar, respectively. The variation of LEH is given by

δLEH = −
√
−g

16πG
Gµνδgµν + ∂µθ

µ[g, δg], (3.1.2)

where Gµν is the Einstein tensor and Θ is the pre-symplectic potential defined by

θµ[g, δg] =

√
−g

16πG

(
gµα∇βδgαβ − gαβ∇µδgαβ

)
. (3.1.3)

In the following, for notational symplicity, the metric gµν is abbreviated as g in the arguments of functions.
The Einstein-Hilbert action is invariant under the Lie derivative along an arbitrary vector field ξ up

to a total derivative term. Therefore, for an infinitesimal transformation of the metric δξgµν = £ξgµν
where £ξ represents the Lie derivative with respect to ξ, the corresponding Noether current Eq. (2.3.29),
denoted by J [ξ], is given by

Jµ[ξ] := θµ[g,£ξg]− ξµLEH , (3.1.4)

which satisfies

∂µJ
µ[ξ] =

√
−g

16πG
Gµν£ξgµν . (3.1.5)
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Chapter 3 : Asymptotic symmetries in general relativity

For a solution gµν of the Einstein equations Gµν = 0, the current is conserved:

∂µJ
µ[ξ] ≈ 0. (3.1.6)

Since

J [ξ] =

√
−g

16πG

(
gµα∇β£ξgαβ − gαβ∇µ£ξgαβ − (R− 2Λ)ξµ

)
=

√
−g

16πG
(∇ν∇µξν +∇ν∇νξµ − 2∇µ∇νξ

ν − (R− 2Λ)ξµ)

=

√
−g

16πG

(
2Gµνξ

ν + 2∇ν(∇[νξµ])
)

=

√
−g

8πG
Gµνξ

ν + ∂ν

(
−
√
−g

8πG
∇[µξν]

)
, (3.1.7)

we have

Jµ[ξ] ≈ ∂νQ
µν [ξ]. (3.1.8)

where

Qµν [ξ] = −
√
−g

8πG
∇[µξν]. (3.1.9)

The corresponding Noether charge of ξ is given by

Q[ξ] :=

∫
Σ

(dD−1x)µJ
µ[ξ]

≈
∫
Σ

(dD−1x)µ∂νQ
µν [ξ]

=

∮
∂Σ

(dD−2x)µνQ
µν [ξ], (3.1.10)

where Σ is a (d − 1)-dimensional submanifold embedded in M, ∂Σ is the boundary of Σ. In the third
line in Eq. (3.1.10), we have used Stokes’ theorem. Equation (3.1.10) is called Komar integral.

Let δ1g and δ2g be arbitrary linearized perturbations of the metric g in question. Let δif [g] denote
the variation of a function f [g] with respect to each perturbation δig. With these notations, the pre-
symplectic current is calculated as

ωµ[g, δ1g, δ2g] = δ1θ
µ[g, δ2g]− δ2θ

µ[g, δ1g]

=

√
−g

16πG
Pµαβγρσδ[1gρσ∇γδ2]gαβ , (3.1.11)

where

Pµαβγρσ := gµα
(
gρσgβγ − 2gρβgσγ

)
+ 2gµγgρ[αgσ]β + gµρgαβgσγ . (3.1.12)

The detailed derivation is shown in Appendix. B.
Let H[ξ] denote the charge which generates an infinitesimal transformation along a vector field ξ. The

variation of the charge with respect to an arbitrary perturbation δg is given by

δH[ξ] = Ω[g, δg,£ξg] =

∫
Σ

(dD−1x)µω
µ[g, δg,£ξg]. (3.1.13)

The variation of the Noether current can be recast into

δJµ[ξ] ≈ ωµ[g, δg,£ξg]− ∂ν

(
2ξ[µθν][g, δg]

)
. (3.1.14)
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3.2 Asymptotic symmetries in general relativity

Note that on the covariant phase space S, gµν is a solution of the Einstein equations and δgµν is the
solution of the linearized Einstein equations. Equation (3.1.14) can be rewritten as

ωµ[g, δg,£ξg] ≈ ∂νS
µν [g, δg,£ξg] , (3.1.15)

where we have defined

Sµν [g, δg,£ξg] := δQµν [ξ] + 2ξ[µθν][g, δg]

=

√
−g

8πG

(
−1

2
δgαα∇[µξν] + δgα[µ∇αξ

ν] −∇[µδgν]αξα + ξ[µ∇αδg
ν]α − ξ[µ∇ν]δgαα

)
.

(3.1.16)

Thus

δH[ξ] ≈
∮
∂Σ

(dD−2x)µνS
µν [g, δg,£ξg]. (3.1.17)

Now the integrability condition Eq. (2.3.42) on S is∮
∂Σ

(dD−2x)µνξ
[µων][g, δ1g, δ2g] = 0, (3.1.18)

for arbitrary linearized perturbations δ1g and δ2g of the metric in question. Shifting the charge by a

constant, it is always possible to make the charges vanish at a reference metric g
(0)
µν . By using a smooth

one-parameter set of solutions gµν(λ) such that gµν(0) = g
(0)
µν and gµν(1) = gµν , the charge is given by

H[ξ] =

∫ 1

0

dλ

∫
∂Σ

(dD−2x)µν

(
∂λQ

µν [ξ](g, ∂λg) + 2ξ[µθν][g, ∂λg]
)
. (3.1.19)

Note again that the charge defined in Eq. (3.1.19) is independent of the choice of the path gµν(λ) as long
as Eq. (3.1.18) is satisfied. Therefore, given a symmetry δξgµν = £ξgµν , the corresponding charge H[ξ]
is described by the integral on the boundary of a Cauchy surface Σ. In many practical calculations, we
may as well find the vector field B directly such that

δ

(∮
∂Σ

(dD−2x)µν2ξ
[µBν]

)
=

∮
∂Σ

(dD−2x)µν2ξ
[µθν][g, δg] (3.1.20)

instead of directly checking Eq. (3.1.18) to confirm its integrability. If such a B is found, we immediately
get

H[ξ] =

∫
∂Σ

(dD−2x)µν

(
Qµν [ξ] + 2ξ[µBν]

)
+ C (3.1.21)

where C is constant on S.

3.2 Asymptotic symmetries in general relativity

3.2.1 Asymptotic symmetry group

We can determine whether a symmetry δξgµν = £ξgµν is gauge or not by checking whether the condition
Eq. (2.3.54) holds. This condition is now rewritten as∫

Σ

(dD−1x)µω
µ[g, δg,£ξg] ≈

∮
∂Σ

(dD−2x)µνS
µν [g, δg,£ξg] = 0 ∀δg. (3.2.1)

Therefore, when we want to find non-gauge symmetries, we have to find a vector field ξ on M which
satisfies the following two conditions:∮

∂Σ

(dD−2x)µνξ
[µων][g, δ1g, δ2g] = 0 ∀δ1g, δ2g (Integrability condition) (3.2.2)∮

∂Σ

(dD−2x)µνS
µν [g, δg,£ξg] 6= 0 ∃δg (Non-gauge condition) (3.2.3)
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Chapter 3 : Asymptotic symmetries in general relativity

As we have already seen in the last part of the previous chapter, Eq. (3.2.3) holds if and only if H[ξ] 6=
const.. Since the charge Eq. (3.1.19) and the above conditions are described by an integral on the
boundary of a Cauchy surface Σ, whether the symmetries are gauge ones or not depends on the asymptotic
behavior of ξ and g. For example, if ξ has no support on ∂Σ, the charge H[ξ] is constant by Eq. (3.1.21)
while Eq. (3.2.2) is clearly satisfied. This means that a bulk transformation £ξg is always a gauge
transformation. If ξ has finite support around ∂Σ, we cannot determine whether £ξg is gauge or not
unless we calculate Eqs. (3.2.2) and (3.2.3) in general. Now we define the Asymptotic symmetry group
(ASG) as the quotient

ASG =
All diffeomorphisms generated by {ξ}

Diffeomorphisms corresponding to gauge transformations
(3.2.4)

where {ξ} represents all the vector fields such that ∀gµν ∈ S, gµν + £ξgµν ∈ S. The ASG is the group
of physical state-changing transformations and an element of which is called asymptotic symmetry or
transformation. Note that ASG is defined not only for the covariant phase space formalism but also for
the ordinary Hamiltonian formalism in the same way. It is the quotient of the set of all diffeomorphisms
which preserve the boundary conditions we first impose on the solutions by the ones that correspond to
gauge transformations.

3.2.2 Conventional approach with examples

So far, a lot of ASG have been discovered. While there are some minor differences, most of them follow the
same approach. Here we will introduce such a conventional approach to find the asymptotic symmetries
in general relativity for some examples.

In the conventional approach, first we consider the configuration space C which is a set of gµν obeying
some boundary conditions around ∂Σ. The covariant phase space S is a set of the solutions to the
Einstein equation obeying the boundary conditions. Of course, S may be empty depending on the
boundary conditions. Next, find the vector fields such that the metric transformed by them by an
arbitrary element of S belongs to S again. That is, we want to find

ξ ∈ X(M) s.t. ∀g ∈ S, gµν +£ξgµν ∈ S. (3.2.5)

The equation (∀g ∈ S, g + £ξg ∈ S) is called the asymptotic Killing equation. If the integrability
condition is satisfied, the charges H[ξ] associated with ξ can be obtained via Eq. (3.1.19) or Eq. (3.1.21),
which may be constant. In the case that all H[ξ] are constant, £ξg are gauge transformations for S, and
the boundary conditions we first assumed turn out not to be appropriate.

3.2.2.1 ADM energy of an (1 + 3) dimensional asymptotically flat spacetime

In order to explain this situation more concretely, first let us consider the (1 + 3) dimensional asymp-
totically flat metric as the set S. When we have a coordinate chart, with coordinates (t, x, y, z) which
behaves like a Cartesian chart on Minkowski spacetime far from the origin, such a metric is written as

gµν = ηµν + hµν , hµν = O(r−1), ∂ρhµν = O(r−2) (r → ∞) (3.2.6)

where ηµν is the Minkowski metric and r2 = x2 + y2 + z2. As a boundary of Cauchy surface ∂Σ, we
take the S2 sphere which is characterized by t = const. and r → ∞. Around the ∂Σ, we introduce polar
coordinates (t, r, θ, φ). The vector field t = tµ∂µ = (1 + O(r−1), 0, 0, 0) is the asymptotic Killing vector
field because gµν +£tgµν has the same asymptotic behavior as Eq. (3.2.6). Since we calculate

Q[t] =

∫
S2

(d2x)µνQ
µν [t] =

∫
S2

dθdφQtr[t] = − 1

8πG

∫ π

0

dθ

∫ 2π

0

dφr2 sin θgtµgrν∂[µtν]

= − 1

16πG

∫ π

0

dθ

∫ 2π

0

dφr2 sin θ(∂rhtt − ∂thrt) (3.2.7)
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and

2

∫
S2

(d2x)µνt
[µθν] =

1

16πG

∫ π

0

dθ

∫ 2π

0

dφr2 sin θgrµgρσ(∇σδgµρ −∇µδgρσ)

=
1

16πG

∫ π

0

dθ

∫ 2π

0

dφr2 sin θ
(
−∂tδhrt + ∂rδhtt + δij∂rx

k(∂ihkj − ∂khij)
]

= −δQ[t] + δ

(
1

16πG

∫ π

0

dθ

∫ 2π

0

dφr2 sin θδij∂rx
k(∂ihkj − ∂khij)

)
, (3.2.8)

we can directly obtain the charge without checking the integrability as

H[t] =
1

16πG

∫ π

0

dθ

∫ 2π

0

dφr2 sin θδij∂rx
k(∂ihkj − ∂khij), (3.2.9)

where we have set the constant such that H[t] = 0 at gµν = ηµν . This is called the ADM energy. For
example, in the case of a Schwarzschild black hole, the metric is

ds2 = −
(
1− 2GM

r

)
dt2 +

(
δij +

2GMxixj
r3

)
dxidxj (r → ∞) (3.2.10)

and then we get

H[t] =
1

16πG

∫ π

0

dθ

∫ 2π

0

dφ sin θ(4GM) =M. (3.2.11)

Thus the parameter M of a Schwarzschild black hole is just its ADM energy.

3.2.2.2 Asymptotic anti-de Sitter spacetime

Next, we make a brief review of the work in Ref. [56], where the authors analyzed asymptotic symmetries
in (1 + 2)-dimensional asymptotic anti-de Sitter (AdS) spacetime. While the original work was done
by the ADM formalism and the Regge-Teitelboim method [32], here we use the covariant phase space
formalism and get the same result.

In the original work the authors considered the background metric ḡµν , which is given by

 ḡtt ḡtr ḡtϕ
ḡrt ḡrr ḡrϕ
ḡϕt ḡϕr ḡϕϕ

 =


−
(
r2

l2 + 1
)

0 0

0
(
r2

l2 + 1
)−1

0

0 0 r2

 , (3.2.12)

where l = (−1/Λ)1/2. It describes the exact AdS metric which is a solution of the Einstein equations
with negative cosmological constant Λ. The exact AdS spacetime has six Killing vectors, thus the goal
of exploration of the asymptotic symmetries is to get at least six asymptotic Killing vectors. The AdS
boundary is located at r = ∞.

Let us consider two forms of the metric. One of them is the following ansatz:

(gµν) =


−
(
r2

l2 + 1
)

0 A
(
r2

l2 + 1
)

0
(
r2

l2 + 1
)−1

0

A
(
r2

l2 + 1
)

0 α2r2 −A2
(
r2

l2 + 1
)
 , (|A| < α|l|). (3.2.13)

The covariant phase space S is specified by two parameters α and A. The variation of metric is

(δgµν) =


0 0 δA

(
r2

l2 + 1
)

0 0 0

δA
(
r2

l2 + 1
)

0 2αδαr2 − 2AδA
(
r2

l2 + 1
)
.

 (3.2.14)
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When α = 1 and A = 0, Eq. (3.2.13) goes back to the exact AdS spacetime. It can be shown that the
independent asymptotic Killing vector fields are t = tµ∂µ = ∂t and m = mµ∂µ = ∂ϕ. In this case, since
we calculate

Qtr[t] =
αr2

8πGl2
, (3.2.15)

Qtr[m] =
Aα

8πG
, (3.2.16)

and

2t[tθr] = − (l2 + r2)δα

8πGl2
, (3.2.17)

2m[tθr] = 0, (3.2.18)

we can directly obtain the charge without checking the integrability condition as

H[t] =

∫ 2π

0

dφ

(
r2α

8πGl2
− (l2 + r2)α

8πGl2

)
+ C =

1− α

4G
, (3.2.19)

H[m] =

∫ 2π

0

dφ
Aα

8πG
+ C ′ =

Aα

4G
, (3.2.20)

where each constant has been chosen such that H[t] = H[m] = 0 at the exact AdS spacetime. The Lie
algebra of vector fields is

[t,m] = 0, (3.2.21)

and the algebra of charges is

{H[t],H[m]} = 0. (3.2.22)

These are the energy and angular momentum of locally flat 1 + 2 gravity [57, 58].
In order to get more than one non-gauge charge, we set the asymptotic form of the metric near the

AdS boundary as

gµν = ḡµν + hµν . (3.2.23)

where

(hµν) =

 O(1) O(r−3) O(1)
O(r−3) O(r−4) O(r−3)
O(1) O(r−3) O(1)

 r → ∞. (3.2.24)

Since ḡµν is fixed, the variation of metric is δgµν = δhµν . The solution of the asymptotic Killing equation
is obtained as r → ∞ by

ξ =

 ξt

ξr

ξϕ

 =

 lT (t, φ) + l3

r2T (t, φ) +O(r−4)
rR(t, φ) +O(r−1)

Φ(t, φ) + l2

r2Φ(t, φ) +O(r−4)

 , (3.2.25)

where the functions T (t, φ), T (t, φ), R(t, φ),Φ(t, φ) and Φ(t, φ) satisfy

l∂tT (t, φ) = ∂ϕΦ(t, φ) = −R(t, φ), ∂ϕT (t, φ) = l∂tΦ(t, φ),

T (t, φ) = − l

2
∂tR(t, φ), Φ(t, φ) =

1

2
∂ϕR(t, φ). (3.2.26)

Since

2

∫
dφξ[tθr] =

∫
dφ

[
T (t, φ)

16πGl3
(
2r4δhrr − l4δhtt + l2δhϕϕ

)]
= δ

∫
dφ

(
T (t, φ)

16πGl3
(
2r4hrr − l4htt + l2hϕϕ

)
+ C[ḡ]

)
(3.2.27)
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3.2 Asymptotic symmetries in general relativity

where C[ḡ] depends only on ḡ, the charge of ξ is integrable. In addition, the Komar integral is calculated
as

Q[ξ] =

∫
dφ

[
T (t, φ)

16πGl3
(
−r4hrr + l4htt + l2hϕϕ

)
+

1

16πGl4
(
2l4htϕΦ(t, φ)

)]
. (3.2.28)

Thus we obtain the charge

H[ξ] =
1

16πG

∫
dφ

[(
r4hrr
l3

+
2hϕϕ
l

)
T (t, φ) + 2htϕΦ(t, φ)

]
(3.2.29)

where we have chosen the constant such that H[ξ] = 0 evaluated at ḡ. To investigate the algebra of the
charges, we take the more convenient coordinate x± = (t/l)± φ, and get from the relations Eq. (3.2.26)

T (t, φ) = T+(x+) + T−(x−), (3.2.30)

Φ(t, φ) = T+(x+)− T−(x−), (3.2.31)

R(t, φ) = −∂+T+(x+)− ∂−T
−(x−) (3.2.32)

T̄ (t, φ) =
1

2
[∂2+T

+(x+) + ∂2−T
−(x−)] (3.2.33)

Φ̄(t, φ) = −1

2
[∂2+T

+(x+)− ∂2−T
−(x−)]. (3.2.34)

Thus we rewrite ξ as

ξ(t, r, φ) = ξ+(r, x+) + ξ−(r, x−) (3.2.35)

where

ξ±(r, x±) :=


l
(
T± + l2

2r2 ∂
2
±T

±
)
+O(r−4)

−r∂±T± +O(r−1)

±
(
T± − l2

2r2 ∂
2
±T

±
)
+O(r−4)

 . (3.2.36)

By the Fourier expansion T±(x±) = 1
2

∑
n e

inx±
T±
n , the basis {ξ±n } of ξ± is

ξ±n (r, x
±) = einx

±


l
(

1
2 − l2n2

4r2

)
+O(r−4)

− inr
2 +O(r−1)

±
(

1
2 + l2n2

4r2

)
+O(r−4)

 (3.2.37)

for r → ∞. Its algebra is computed as

[ξ±m, ξ
±
n ] = −i(m− n)ξ±m+n, [ξ

+
m, ξ

−
n ] = 0, (3.2.38)

which is the direct sum of two so-called Witt algebras. The algebra of charges is written as

{H[ξ±m],H[ξ±n ]} = −i(m− n)H[ξ±m+n] +K(ξ±m, ξ
±
n ; ḡ) (3.2.39)

{H[ξ±m],H[ξ∓n ]} = K(ξ±m, ξ
∓
n ; ḡ), (3.2.40)

where the constants K depend only on ḡµν . When we set H[ξ±m+n]|ḡµν = 0 by a redefinition of charge,
evaluating Eqs. (3.2.39) and (3.2.40) at ḡµν , we have

K(ξ±m, ξ
±
n ; ḡ) = {H[ξ±m],H[ξ±n ]}|ḡµν = H[ξ±m]|hµν=£

ξ
±
n
ḡµν (3.2.41)

K(ξ±m, ξ
∓
n ; ḡ) = {H[ξ±m],H[ξ∓n ]}|ḡµν = H[ξ±m]|hµν=£

ξ
∓
n
ḡµν . (3.2.42)
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Since we calculate as

(£ξ±n ḡµν) ∼

 0 0 ileinx
± n(n2−1)

2

0 −in l
4

r4 e
inx±

0

ileinx
± n(n2−1)

2 0 il2 n
3

2 e
inx±

 (3.2.43)

(£ξ∓n ḡµν) ∼

 0 0 ileinx
∓ n(n2−1)

2

0 −in l
4

r4 e
inx∓

0

ileinx
∓ n(n2−1)

2 0 il2 n
3

2 e
inx∓

 (3.2.44)

for r → ∞, the constants K’s are obtained as

K(ξ±m, ξ
±
n ; ḡ) = H[ξ±m]|£

ξ
±
n
ḡµν =

1

16πG

∫ 2π

0

dφ

[(
(−inl)einx

±
+ (in3l)einx

±
) eimx±

2
+ iln(n2 − 1)einx

±
eimx

± 1

2

]

=
iln(n2 − 1)

16πG

∫ 2π

0

dφei(m+n)x±

∣∣∣∣∣
t=0

=
iln(n2 − 1)

8G
δm+n,0, (3.2.45)

K(ξ±m, ξ
∓
n ; ḡ) = H[ξ±m]|£

ξ
∓
n
ḡµν =

1

16πG

∫ 2π

0

dφ

[(
(−inl)einx

±
+ (in3l)einx

±
) eimx±

2
− iln(n2 − 1)einx

±
eimx

± 1

2

]
= 0. (3.2.46)

Thus, we get the following algebra of charges:

{H[ξ±m],H[ξ±n ]} = −i(m− n)H[ξ±m+n]−
ilm(m2 − 1)

8G
δm+n,0, (3.2.47)

{H[ξ±m],H[ξ∓n ]} = 0, (3.2.48)

which is a central extension of the Witt algebra Eq. (3.2.38). When we perform the canonical quantization
{·, ·} → −i[̂·, ·̂],

{Ĥ[ξ±m], Ĥ[ξ±n ]} = (m− n)Ĥ[ξm+n] +
c

12
m(m2 − 1)δm+n,0, (3.2.49)

{Ĥ[ξ±m], Ĥ[ξ∓n ]} = 0, c =
3l

2G
. (3.2.50)

This is the direct sum of two Virasoro algebras whose central charge c = 3l
2G , and is an early evidence

of the AdS/CFT correspondence [59] since the Virasoro algebra is the generator of symmetries of two
dimensional conformal field theory.

The conventional approach is shown schematically in FIG. 3.1. In the first step, we determine an
asymptotic form of the metric near the boundary. In the second step, we solve the asymptotic Killing
equations for the metric components so that the asymptotic form of the metric is preserved under diffeo-
morphisms generated by vector fields. In the third step, we check whether the charges associated with
the diffeomorphisms are integrable. If the charges are not integrable, we have to repeat the above three
steps until we successfully find an appropriate asymptotic condition. In the fourth step, if the charges
are integrable, we check whether they take various values for solutions of the Einstein equations. If they
do, we obtain non-trivial charges. However, if not, we have to restart from the first step since all the
diffeomorphisms generated by the vector fields we have selected are gauge freedom. Such a failure often
happens in the conventional approach. As we have seen, we have to determine the asymptotic form of
metric by trials and errors. There is no systematic way to find such a successful asymptotic form in
Eq. (3.2.24). It usually takes much efforts and might turn out not to serve the purpose in the end.
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Fix an asymptotic
form of metric

Find vector fields preserving
the asymptotic form.

Check whether the charges are integrable.
No

Calculate the charges.

Yes

Check whether the charges take various values for solutions.
No

Get the charges.

Yes

Figure 3.1: A flow chart of the conventional approach. At the third and fourth step, there is a possibility
that we have to go back to the first step.
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Chapter 4

A Lie algebra-based approach

This chapter is the main part of my Ph.D thesis. Instead of the conventional approach where a lot of
trials and errors are required, we provide the more algorithmic approach first developed in Ref. [41],
which we call “A Lie algebra-based approach”. In our work [41], we proposed a guiding principle which
helps us to find a non-trivial algebra of the charges. This principle ensures the existence of two elements
in the algebra such that their Poisson bracket does not vanish. Therefore, as long as the integrability
condition of the charges is satisfied, the transformation generated by the algebra cannot be gauged away.
By using this approach, we discovered new asymptotic symmetries on a Rindler horizon. In the following,
together with one of the co-authors of Ref. [41], we provided the sufficient condition for the charges to be
integrable, which can be evaluated only at the background metric [42]. This condition reduces the efforts
to check the integrability condition drastically. We investigated the asymptotic symmetries on a Killing
horizon and derived the charge algebra.

In Sec. 4.1, we will introduce the main idea of a Lie algebra-based approach, which is common to
both Ref. [41] and Ref. [42]. In Sec. 4.2, the sufficient condition for the charges to be integrable will be
derived, and we will propose a modified Lie algebra-based approach. In Sec. 4.3, asymptotic symmetries
of two spacetime examples will be investigated by using our approach. In Sec. 4.4, we will summarize
this chapter.

4.1 Main idea of a Lie algebra-based approach

In order to investigate the asymptotic symmetries of a background metric ḡµν of interest with the covariant
phase space formalism, we have to specify

(i) the set of metrics which includes ḡµν denoted by S

(ii) the set of vector fields which form a closed algebra denoted by A.

These sets must be chosen such that an element of S is mapped into itself under any infinitesimal
diffeomorphism generated by A. Note again that only the asymptotic behavior of the metrics and the
vector fields are relevant for the charges. As we have seen in the previous chapter, in prior studies, such as
[56], it is common to fix the algebra A as the set of vectors satisfying the asymptotic Killing equation for
a given S. In those approaches, lots of trials and errors are required to find S such that the integrability
condition is satisfied and that the charges form a non-trivial algebra.

In the Lie algebra-based approach proposed in [41], an alternative way is adopted to fix S and A;
given an algebra A, we define S by

S := {φ∗ḡµν |φ ∈ {all diffeomorphism generated by A}} , (4.1.1)

where φ∗ denotes the pullback. In this case, we need to choose A carefully so that the resulting charges
are integrable and do not correspond to a gauge. In the rest of this chapter, the set S is always defined
by Eq.(4.1.1).
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4.1 Main idea of a Lie algebra-based approach

There are advantages to adopt the set S defined in Eq.(4.1.1). First, if ḡµν is a solution of the Einstein
equations, then any element of S automatically satisfies the Einstein equations. In addition, a linearized
perturbation δgµν is generated by an infinitesimal diffeomorphism and can be written as

δgµν = £χgµν (4.1.2)

with a vector field χ ∈ A. In the following, the variation corresponding to such a perturbation is denoted
by δχ. This property is particularly important to find a candidate of A with the Lie algebra-based
approach as we will see soon. A schematic picture of the set of metrics S is shown in FIG. 4.1.

Figure 4.1: A schematic picture of the set of metrics S defined in Eq.(4.1.1). Vector fields ξ and η are
elements of a Lie algebra A. All metrics in S are connected to the background metric ḡµν by diffeomor-
phisms generated by A. For any metric gµν ∈ S, there exists a smooth path gµν(λ) from ḡµν to gµν . For
any perturbation δgµν(λ) tangent to this path gµν(λ) at a point in S, there exists a vector field χ ∈ A
such that δgµν(λ) = £χgµν(λ).

Now, let us review the key idea of [41], which is helpful to find A yielding a non-trivial algebra of
charges. The non-gauge condition Eq. (3.2.3) is written as

∃ξ, η ∈ A, ∃gµν ∈ S, {H[ξ],H[η]}
∣∣∣
gµν

6= 0

⇐⇒ ∃ξ, η ∈ A, ∃gµν ∈ S,
∫
∂Σ

(dD−2x)µνS
µν(g,£ηg,£ξg) 6= 0 (4.1.3)

where we have used Eq. (4.1.2). More explicitly, Eq. (4.1.3) is computed as

∃ξ, η ∈ A, ∃gµν ∈ S,

1

8πG

∫
∂Σ

[
(2∇αηµ∇αξ

ν −∇αη
α∇µξν +∇αξ

α∇µην)− C µν
αβ ξαηβ +

4Λ

D − 1
ξµην

]
ϵµν 6= 0. (4.1.4)

where C µν
αβ := gµγgνδCαβγδ is the Weyl tensor and ϵµν :=

√
−g(dD−2x)µν . The detailed derivation of

Eq. (4.1.4) is shown in Appendix. C. The diffeomorphism associated with the algebra cannot be gauged
away if Eq. (4.1.3) is satisfied. Otherwise, all the charges vanish for any metric, implying that the metrics
in S cannot be discriminated by the value of charges and that the diffeomorphisms generated by A may
be gauged away.

Note that it may be hard to check the condition in Eq. (4.1.3) directly since the set of metrics S
depends on A. Instead, we adopt a sufficient condition

∃ξ, η ∈ A, {H[ξ],H[η]}|ḡµν 6= 0

⇐⇒ ∃ξ, η ∈ A,
∫
∂Σ

(dD−2x)µνS
µν(ḡ,£η ḡ,£ξ ḡ) 6= 0 (4.1.5)
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as a guiding principle to fix A. More precisely, we first derive a formula for∫
∂Σ

(dD−2x)µνS
µν(ḡ,£η ḡ,£ξ ḡ) (4.1.6)

for arbitrary vector fields ξ and η. Since Eq. (4.1.5) can be calculated at ḡµν , we do not need to specify
S nor A at this point. By using it, we then fix two vector fields ξ and η so that Eq.(4.1.6) does not
vanish. We define A as a closed algebra containing η and ξ, which can be obtained by calculating the
commutators of ξ and η. The algebra A defined in this way trivially satisfies Eq.(4.1.3) and hence the
diffeomorphisms generated by A cannot be gauged away by construction.

Of course, we also need to impose Eq. (3.2.2) to get integrable charges. This condition can be recast
into

0 =

∫
∂Σ

(
dD−2x

)
µν
ξ[µ∂αS

ν]α (g,£ηg,£χg) , ∀ξ, η, χ ∈ A, ∀gµν ∈ S (4.1.7)

where we have used Eq. (4.1.2).
For a given background metric ḡµν , Eq. (4.1.5) works as a guiding principle to find non-gauge charges.

However, there still remains a difficulty to find integrable charges since we have to choose ξ and η so that
Eq. (4.1.7) is also satisfied, which requires trials and errors. It often takes an effort to check Eq. (4.1.7)
for an arbitrary gµν ∈ S since we have to calculate the asymptotic behavior of gµν near the boundary.
As a necessary condition, in Ref. [41], we adopted Eq. (4.1.7) at the background metric, i.e.,∫

∂Σ

(
dD−2x

)
µν
ξ[µ∂αS

ν]α (ḡ,£η ḡ,£χḡ) = 0, ∀ξ, η, χ ∈ A (4.1.8)

before checking Eq. (4.1.7) directly. This condition can be checked relatively easily since we only need
the background metric ḡµν and the algebra A. The approach proposed in Ref. [41] can be summarized
as the following six steps:

Step. 1 Fix a background metric ḡµν of interest.

Step. 2 For the background metric, find two vector fields ξ and η satisfying Eq. (4.1.5). These are the
candidates generating non-trivial diffeomorphism whose charges are integrable.

Step. 3 Introduce the minimal Lie algebra A including ξ and η by calculating their commutators. Check
whether the integrability condition at the background metric, i.e., Eq. (4.1.8), is satisfied for the
algebra A as a necessary condition for Eq. (4.1.7). If it holds, go to the next step. Otherwise, go
back to Step 2.

Step. 4 Construct the set S of metrics gµν which are connected to the background metric ḡµν via
diffeomorphisms generated by A.

Step. 5 Check the integrability condition in Eq. (4.1.7). If it is satisfied, then go to the following step.
If not, go back to Step 2.

Step. 6 Calculate the charges by using Eq. (3.1.19). Here, we fix the reference metric as the background

metric: g
(0)
µν = ḡµν .

An advantage of the above algorithmic protocol is the fact that Steps 2 and 3 can be done by using only the
background metric ḡµν . In particular, it should be noted that no trials and errors are required to calculate
the left hand side of Eq. (4.1.5). Furthermore, the diffeomorphism generated by A cannot be gauged
away since the corresponding charge algebra has non-vanishing Poisson bracket by construction. This
may significantly reduce the efforts involved in finding an appropriate algebra and asymptotic behavior
of the metric in the conventional approach. In other words, Eq. (4.1.5) is the guiding principle to find a
non-trivial charge algebra. Such a guiding principle does not exist in the conventional approach. A flow
chart of our approach is shown in Fig. 4.2. We call this approach “A Lie algebra-based approach”.
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4.1 Main idea of a Lie algebra-based approach

Fix a background metric ḡµν .

Find two vector fields satisfying Eq. (4.1.5).

Intoduce the minimal algebra A and
check whether Eq. (4.1.8) is satisfied.No

Construct a set of metrics gµν .

Yes

Is the integrability in Eq. (4.1.7) satisfied?
No

Calculate the charges
by using Eq. (3.1.19).

Yes

Figure 4.2: Flow chart of the Lie algebra-based approach in Ref. [41].
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4.2 Modification of the Lie algebra-based approach

In Step 2 of the above algorithmic protocol, Eq. (4.1.5) plays the role of a guiding principle to find non-
trivial charges. In addition, Eq. (4.1.8) in Step 3 helps to reduce useless calculations on the charges which
turn out not to be integrable. An advantage of the above algorithmic protocol is the fact that calculations
in Steps 2 and 3 can be done by using only the background metric ḡµν . However, there still remains the
following hard tasks: In Step 4, it is required to identify all diffeomorphisms generated by vector fields
in A to obtain S, which is usually difficult. Only after this step is completed, the integrability condition
can be checked for all metrics in S in Step 5.

To overcome this issue, in this section, we propose a sufficient condition for the charges to be integrable,
which can be checked at the background metric ḡµν [42]. It enables us to find an algebra A yielding non-
trivial and integrable charges without explicitly calculating diffeomorphisms generated by A or the metrics
in S. This is a key advantage of our approach adopted in this thesis. Of course, to calculate the charges
explicitly, we still need to identify A and S. However, the sufficient condition ensures that the charges
are integrable, thus excluding the possibility that the efforts in calculating A and S are wasted.

It should be noted that the algebra of charges can be identified without calculating the value of the
charges explicitly. In fact, the Poisson bracket of the charges satisfies

{H[ξ],H[η]} = H
[
[ξ, η]

]
+K(ξ, η), (4.2.1)

where [ξ, η] is a commutator of ξ, η and K(ξ, η) is a constant not dependent on gµν but on ḡµν . Evaluating
the left hand side of Eq. (4.2.1) at the background metric ḡµν , which is exactly the left hand side of

Eq. (4.1.5), we get K(ξ, η) since it is always possible to make the value of charges H[χ]
∣∣∣
ḡµν

at the

background metric ḡµν vanish for all χ ∈ A. If K(ξ, η) can be absorbed into the charges by shifting them
by constants, the algebra of the charges is isomorphic to A. If not, the algebra of the charges is a central
extension of A. Therefore, we can fully characterize the algebra of charges itself without calculating the
diffeomorphisms generated by A explicitly, overcoming the difficulties in the approach in Fig. 4.2.

4.2.1 Sufficient condition for integrability

Given an algebra A, the integrability condition is∮
∂Σ

(dD−2x)µνξ
[µ(x)ων](g,£ηg,£χg;x) = 0 ∀ξ, η, χ ∈ A, ∀g ∈ S, (4.2.2)

where S is the set of metrics defined in Eq. (4.1.1) and ων(g, δ1g, δ2g;x) is given by

ων(g, δ1g, δ2g;x) =

√
−g(x)
16πG

(
gνα(x)

(
gρσ(x)gβγ(x)− 2gρβ(x)gσγ(x)

)
+2gνγ(x)gρ[α(x)gσ]β(x) + gνρ(x)gαβ(x)gσγ(x)

)
δ[1gρσ(x)∇γδ2]gαβ(x) (4.2.3)

for a solution gµν of the Einstein equation and linearized perturbations δ1gµν and δ2gµν satisfying the
linearized Einstein equations. To check whether Eq.(4.2.2) is satisfied directly, we need the asymptotic
behavior of the integrand near the boundary ∂Σ. By using the well-known duality between a diffeomor-
phism and a coordinate transformation of tensor fields, we derive a formula to calculate the asymptotic
behavior under certain assumptions which will be stated below.

We here give a brief review of such a duality. See Appendix. D for the details. Let M and N be
D-dimensional manifolds. We consider a C∞ map φ :M → N and the pullback g = φ∗ḡ. We take charts
(U,ϕ) around p ∈ U ⊂M and (V, ψ) around q = φ(p) ∈ V ⊂ N . Each coordinate system is denoted by

ϕ(p) = (x0(p), · · · , xD−1(p)) (4.2.4)

ψ(q) = (y0(q), · · · , yD−1(q)). (4.2.5)

The components of the metrics g and ḡ are related as

gµν(x(p)) = ḡρσ(y(q))
∂yρ

∂xµ
∂yσ

∂xν
, (4.2.6)
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where g|p = gµν(x(p))dx
µ|p ⊗ dxν |p and ḡ|q = ḡρσ(y(q))dy

ρ|q ⊗ dyσ|q. Since ψ ◦ φ is a smooth function

M → RD, we can introduce a new coordinate system around p ∈M

ψ ◦ φ(p) = (x′0(p), · · · , x′D−1(p)). (4.2.7)

From Eq.(4.2.6), the metric g satisfies

ḡµν(y(q)) = gµν(x
′(p)), (4.2.8)

where g|p = gµν(x
′(p)) dx′µ|p ⊗ dx′ν |p. This means that the components of ḡ|q ∈ T ∗

qN ⊗ T ∗
qN in a

coordinate system ψ : N → RD are equal to the components of g|p ∈ T ∗
pM ⊗ T ∗

pM in another coordinate

system ψ ◦ φ :M → RD. Note that √
−ḡ(y(q)) =

√
−g(x′(p)) (4.2.9)

also holds, where g(x′(p)) and ḡ(y(q)) are the determinants of the metrics.
In general, for the pullback of the (r, s)-tensor T = φ∗T̄ , we have

Tµ1···µr
ν1···νs(x(p)) = T

ρ1···ρr
σ1···σs(y(q))

∂xµ1

∂yρ1
· · · ∂x

µr

∂yρr
∂yσ1

∂xν1
· · · ∂y

σs

∂xνs
(4.2.10)

T
µ1···µr

ν1···νs(y(q)) = Tµ1···µr
ν1···νs(x

′(p)). (4.2.11)

Equation (4.2.11) shows the duality between the active viewpoint, i.e, a diffeomorphism, and the passive
viewpoint, i.e., a coordinate transformation, on an arbitrary tensor. We can show

φ∗(∇χ̄T )
∣∣
p
= ∇χT |p (4.2.12)

where χ̄ ∈ Tϕ(p)N , T ∈ TpM
⊗r ⊗ T ∗

pM
⊗s is an arbitrary (r, s)-tensor and we have defined

χ := φ∗χ̄ ∈ TpM, T := φ∗T ∈ TpM
⊗r ⊗ T ∗

pM
⊗s. (4.2.13)

Since

φ∗(£χ̄ḡ)
∣∣∣
p
= £χg

∣∣∣
p

(4.2.14)

holds, we get

φ∗(∇χ̄£ξ̄ ḡ)
∣∣∣
p
= ∇χ£ξg

∣∣∣
p
, (4.2.15)

where g = φ∗ḡ ∈ T ∗
pM⊗T ∗

pM ,∇ and∇ denote covariant derivatives compatible with ḡ and g, respectively.
As a consequence, each component satisfies

(£χ̄ḡ)µν(y(φ(p))) = (£χg)µν(x
′(p)) (4.2.16)

(∇χ̄£ξ̄ ḡ)µν(y(φ(p))) = (∇χ£ξg)µν(x
′(p)). (4.2.17)

Next, we introduce our set-up and several assumptions to derive the sufficient condition for the
charges to be integrable. We fix a D-dimensional background spacetime (M, ḡ) and a Cauchy surface Σ.
For notational simplicity, we fix a specific coordinate system ψ :M → RD in such a way that the Cauchy
surface is characterized by t = const. and that its boundary is specified by ρ = 0, where we have defined

ψ(p) = (y0(p), y1(p), yM (p)) = (t, ρ, σM ) (M = 2, · · · , D − 1). (4.2.18)

Let H denote the union of the boundary for all t:

H := {p ∈ ∂Σt for some t}, (4.2.19)
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or equivalently,

H = {p ∈M |y1(p) = 0}. (4.2.20)

Figure 4.3: A schematic picture of our set-up. Σt1 and Σt2 are the Cauchy surfaces characterized by
t = t1 and t = t2, respectively. H is specified by ρ = 0.

In this set-up, the integrability condition evaluated at the background metric is given by∮
∂Σ

(dD−2y)µν ξ̄
[µ(y)ων](ḡ,£η̄ ḡ,£χ̄ḡ; y) =

∫
ψ(∂Σ)

dσ2dσ3 · · · dσD ξ̄[t(y)ωρ](ḡ,£η̄ ḡ,£χ̄ḡ; y)

= 0 ∀ξ̄, η̄, χ̄ ∈ A. (4.2.21)

We assume that any diffeomorphism generated by A does not map a point in the outside (resp. inside)
of {Σt}t to a point in the inside (resp. outside) of {Σt}t. Then, the ρ-component of the vector fields
generating the diffeomorphism must vanish on the boundary. Thus, we impose the following condition
on the asymptotic behavior of the vector fields:

∀ξ ∈ A, ξt(y) = O(1), ξρ(y) = O(ρ), ξM = O(1) (ρ→ 0). (4.2.22)

Let us assume that

∀η, χ ∈ A, ωt(ḡ,£η ḡ,£χḡ; y) = O(1), ωρ(ḡ,£η ḡ,£χḡ; y) = O(ρ),

ωM (ḡ,£η ḡ,£χḡ; y) = O(1) (ρ→ 0). (4.2.23)

hold. Under these assumptions, we get

∀ξ̄, η̄, χ̄ ∈ A, ξ̄(y)[µων](ḡ,£η̄ ḡ,£χ̄ḡ; y) =



0 O(ρ) O(1) · · · · · · O(1)
O(ρ) 0 O(ρ) · · · · · · O(ρ)
O(1) O(ρ) 0 O(1) · · · O(1)
...

... O(1)
. . .

. . .
...

...
...

...
. . .

. . . O(1)
O(1) O(ρ) O(1) · · · O(1) 0


. (4.2.24)

Since Eq. (4.2.21) is clearly satisfied when Eq.(4.2.24) holds, Eqs. (4.2.22) and (4.2.23) are a sufficient
condition for Eq. (4.2.21) to hold.

Now we further show that Eqs. (4.2.22) and (4.2.23) are a sufficient condition for the charges to be
integrable at an arbitrary metric, i.e., Eq. (4.2.2). Fix a diffeomorphism φ : M → M generated by A.
The integrability condition (4.2.2) at g = φ∗ḡ is written as∮

∂Σ

(dD−2x′)µνξ
[µ(x′)ων](g,£ηg,£χg;x

′) = 0 ∀ξ, η, χ ∈ A, (4.2.25)
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where we have adopted another coordinate system ϕ, which is related to ψ by

ϕ = ψ ◦ φ : p ∈ M 7→ ϕ(p) = (x′0(p), · · · , x′D−1(p)). (4.2.26)

By using Eqs. (4.2.9), (4.2.11), (4.2.16) and (4.2.17), we have

ξ[µ(x′(p))ων](g,£ηg,£χg;x
′(p)) = ξ̄[µ(y(φ(p)))ων](ḡ,£η̄ ḡ,£χ̄ḡ; y(φ(p))), (4.2.27)

where the vector field ξ̄ is defined by ξ̄ := (φ∗)−1ξ. On the other hand, for the algebra A whose elements
satisfy the asymptotic condition in Eq. (4.2.22), we have

x′(y) = (O(1),O(ρ),O(1), · · · ,O(1)) (ρ→ 0). (4.2.28)

See Appendix E.1 for proof. The integral measure in Eq. (4.2.25) is explicitly calculated as

(dD−2x′)µν

∣∣∣
∂Σ

=
1

(D − 2)!2!
εµνα2···αD−1

eα2

M2
· · · eαD−1

MD−1
dσM2 ∧ · · · ∧ dσMD−1 (4.2.29)

where eαM := ∂x′α

∂σM
. By using Eq. (4.2.28), the asymptotic behavior of eαM is given by(
e0M , e

1
M , e

2
M , · · · , eD−1

M

)
= (O(1),O(ρ),O(1), · · · ,O(1)) (ρ→ 0) (4.2.30)

for any M = 2, 3, · · ·D − 1. By using Eqs. (4.2.27) and (4.2.29), the left hand side of Eq. (4.2.25) is
proportional to∫

ϕ(∂Σ)

ξ̄[µ(y)ων](ḡ,£η̄ ḡ,£χ̄ḡ; y)εµνα2···αD−1
eα2

M2
· · · eαD−1

MD−1
dσM2 ∧ · · · ∧ dσMD−1 . (4.2.31)

From the asymptotic behavior of the coordinates in Eq. (4.2.28), any points in H is mapped into itself
by a diffeomorphism φ generated by A. Therefore, the integral region φ(∂Σ) corresponds to the limit
of ρ → 0. Note that, since εµνα2···αD−1

is anti-symmetric under the change in its indices, the integrant
in Eq. (4.2.31) vanishes except for the contributions coming from the contractions of indices where one
of (µ, ν, αM2 , · · · , αMD−1

) is ρ. Such a contribution is always O(ρ) since Eqs. (4.2.24) and (4.2.30) hold.
Thus, we finally get

(4.2.31) ∝ lim
ρ→0

∫
ϕ(∂Σ)

O(ρ)dσ2 · · · dσD−1 = 0 (4.2.32)

and conclude that Eqs. (4.2.22) and (4.2.23) are sufficient conditions for the integrability condition to
be satisfied at any metric gµν in S.

4.2.2 A modified Lie algebra-based approach

Here as an alternative to the approach in Fig. 4.2, our approach adopted in this thesis is summarized in
the following steps:

Step. 1 Fix a background metric ḡµν of interest.

Step. 2 For the background metric ḡµν , find two vector fields ξ and η with the asymptotic form in
Eq. (4.2.22) satisfying Eq. (4.1.5). These are the candidates of the vector fields which generate
non-trivial diffeomorphism whose charges are integrable.

Step. 3 Introduce the minimal Lie algebra A including ξ and η by calculating their commutators. Check
whether Eq. (4.2.23) holds. If it does, go to the next step since the charges are integrable. Otherwise,
go back to Step 2.

Ste. 4 Construct a set of metrics gµν .

Step. 5 Calculate the charges by using Eq. (3.1.19).
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Chapter 4 : A Lie algebra-based approach

A flow chart is shown in Fig. 4.4. In particular, when we are interested only in the algebra of charges not
in the charges themselves, the necessary steps are reduced to

Step. 1 Fix a background metric ḡµν of interest.

Step. 2 For the background metric ḡµν , find two vector fields ξ and η with the asymptotic form in
Eq. (4.2.22) satisfying Eq. (4.1.5). These are the candidates of the vector fields which generate
non-trivial diffeomorphism whose charges are integrable.

Step. 3 Introduce the minimal Lie algebra A including ξ and η by calculating their commutators. Check
whether Eq. (4.2.23) holds. If it does, go to the next step since the charges are integrable. Otherwise,
go back to Step 2.

Step. 4 Investigate the algebra of the charges for A via (4.1.5).

A flow chart is shown in Fig. 4.5. To distinguish the approach in Fig. 4.4 or Fig. 4.5 from that in Fig. 4.2,
we call it “A modified Lie algebra-based approach”.

We should emphasize that a crucial difference between the approach in Fig. 4.2 and that in Fig. 4.4 or
Fig. 4.5 is the step where we check the integrability condition. In Fig. 4.2, we checked whether Eq.(4.1.7)
holds for candidates of vector fields satisfying Eq.(4.1.5). It takes efforts in this step since we need to
calculate all the diffeomorphisms generated by the algebra of the vector fields. Furthermore, these efforts
may be wasted since the charges sometimes turn out not to be integrable. In contrast, in Fig. 4.4 or
Fig. 4.5, we adopted Eq.(4.2.23) as a sufficient condition for the charges to be integrable, which can be
checked at the bachground metric. It is much easier to check Eq.(4.2.23) than Eq.(4.1.7) since we do not
need to identify the diffeomorphisms generated by the algebra of the vector fields.

As a demonstration, we investigate asymptotic symmetries on Rindler horizons and Killing horizons in
the following section. Adopting our approach, besides the ordinary supertranslation and superrotation, we
find a new asymptotic symmetry, which we call superdilatation, on Rindler horizons. In addition, we show
that there exist the charges associated with the algebra consisting of supertranslation, divergenceless part
of superrotation, and superdilatation on Killing horizons. The algebra of charges is the central extension
of that of vector fields.

4.3 Examples

In this section, first we will show that the new asymptotic symmetries, which we call superdilatation, on
Rindler horizons can be discovered by the approach in Fig. 4.4. In this case, we explicitly calculate the
charges of superdilatation. Second, by using the approach in Fig. 4.5, we will investigate the asymptotic
symmetries on Killing horizons, discover the integrable charges including superdilatation, and analyze
the algebra of them.

4.3.1 Asymptotic symmetries on Rindler horizon

In this subsection, we demonstrate our approach in Fig. 4.4 in the case where the background metric is
(1 + 3)-dimensional Rindler spacetime. In particular, we will investigate asymptotic symmetries on the
Rindler horizon.

Step1 : Fix a background metric ḡµν .
Here, the background metric is fixed to be the Rindler metric given by

ds̄2 = −κ2ρ2dτ2 + dρ2 + dy2 + dz2, (4.3.1)

where −∞ < τ < ∞, 0 < ρ < ∞, −∞ < y < ∞, −∞ < z < ∞ and κ > 0 is a constant. The Rindler
horizon is located at ρ = 0.

Step 2 : Select two vector fields V1 and V2 satisfying Eq. (4.1.5).
Since we are interested in asymptotic symmetries in Rindler spacetime, we will analyze diffeomorphisms
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Fix a background metric ḡµν .

Find two vector fields with the asymptotic
form in Eq. (4.2.22) satisfying Eq. (4.1.5)

Intoduce the minimal algebra A and
check whether Eq. (4.2.23) is satisfied.No

Yes

Construct a set of metrics gµν

Calculate the charges
by using Eq. (3.1.19).

Figure 4.4: Flow chart of the modified Lie algebra-based approach to get the integrable and non-gauge
charges. We still need the calculation of diffeomorphisms generated by A in Step. 4.
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Fix a background metric ḡµν .

Find two vector fields with the asymptotic
form in Eq. (4.2.22) satisfying Eq. (4.1.5)

Intoduce the minimal algebra A and
check whether Eq. (4.2.23) is satisfied.No

Yes

Investigate the algebra of
the charges for A via (4.1.5).

Figure 4.5: Flow chart of the modified Lie algebra-based approach to analyze the algebra of charges. We
no longer need the calculation of diffeomorphisms explicitly.

Figure 4.6: Penrose diagram of the Rindler spacetime. A Cauchy surface Σ is characterized by τ = const.
and its boundary ∂Σ is specified by ρ = 0.
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which map a point in the Rindler spacetime into itself. Let ξ be the Lie algebra of such a diffeomorphism.
Through an infinitesimal diffeomorphism generated by ξ, a point x of the spacetime is mapped into

xµ 7→ xµ + εξµ +O(ε2) (ε→ 0). (4.3.2)

Since the Rinder horizon is located at ρ = 0 in our coordinate system, unless the ρ-component of the
vector field ξ vanishes in the limit ρ→ 0, a point inside (resp. outside) the Rinder horizon can be mapped
to the outside (resp. inside). Therefore, we require that the vector field ξ has the following asymptotic
behavior

ξτ = O(1), ξρ = O(ρ), ξy = O(1), ξz = O(1) (ρ→ 0) (4.3.3)

near the Rindler horizon. This assumption is just Eq. (4.2.22). In addition, we assume that the vector
fields have support in a finite region near the Rindler horizon. In this case, we can ignore the charges on
a opposite boundary ρ → ∞, which trivially vanish. In general, the components of the vector fields V1
and V2 can be written for ρ→ 0 as

V1 = (Xτ (τ, y, z) +O(ρ), Xρ(τ, y, x)ρ+O(ρ2), XA(τ, y, z) +O(ρ)),

V2 = (Y τ (τ, y, z) +O(ρ), Y ρ(τ, y, z)ρ+O(ρ2), Y A(τ, y, z) +O(ρ)), (4.3.4)

where A runs over y and z. Equation (4.1.5) is evaluated as∮
∂Σ

(dD−2x)µνS
µν(ḡ,£V2

ḡ,£V1
ḡ)

=
1

8πGκ

∫
R2

[
(2κ2Y τ + ∂τY

ρ)∂AX
A + ∂τX

ρ∂τY
t − (X ↔ Y )

]
dydz, (4.3.5)

where we took the limit ρ→ 0 in the second line since the Rindler horizon is located at ρ = 0. From this
formula, we can identify several candidates for vector fields which yield a non-trivial charge algebra.

As a known example, consider the case where Xρ = Y ρ = 0. If Y τ and ∂AX
A do not vanish, the

corresponding Poisson bracket does not vanish. In this case, the vector fields V1 and V2 correspond to a
special class of diffeormorhisms called superrotation and supertranslation, respectively, which are shown
to be integrable on the Rindler horizon in Ref. [23] ∗.

Another interesting candidate, which we will investigate in detail here, is the case where Xρ = XA = 0
and Y τ = Y A = 0. If

∫
dydz∂τX

τ∂τY
ρ 6= 0, the Poisson bracket does not vanish. The vector field

V1 = (Xτ +O(ρ), 0, 0, 0) generates a class of dilatation transformation in time direction since ∂τX
τ 6= 0

must hold. On the other hand, the vector field V2 = (0, ρY ρ + O(ρ2), 0, 0) generates a dilatation in
ρ direction. We term these two transformations superdilatations since the generators depend on the
position in spacetime in general.

As a particular case, we will analyze the charges corresponding to two vector fields as ρ→ 0

V1 = (τT1(y, z) +O(ρ2),O(ρ2),O(ρ2),O(ρ2)),

V2 = (O(ρ2), τρT2(y, z) +O(ρ2),O(ρ2),O(ρ2)), (4.3.6)

where T1 and T2 are arbitrary functions of y, z.

Step 3: Construct the Lie algebra A including V1 and V2 and check whether Eq. (4.2.23) is satisfied.
Since the vector fields in Eq. (4.3.6) satisfy

[V1, V2] = V3, (4.3.7)

where

V3 = (O(ρ2), τρT3(y, z) +O(ρ2),O(ρ2),O(ρ2)), T3(y, z) := T1(y, z)T2(y, z), (4.3.8)

∗Precisely, the authors considered the τ + ρ → 0 boundary, which is different from ρ → 0. For comparison, see
Appendix F.1 for detailed calculations of the charges of our setup.
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the algebra A defined by

A
:=
{
V = (τT1(y, z) +O(ρ2), τρT2(y, z) +O(ρ2),O(ρ2),O(ρ2)) | T1, T2 are arbitrary functions of y, z

}
(4.3.9)

forms a closed algebra. A straightforward calculation shows that

∀η, χ ∈ A, ωτ (ḡ,£η ḡ,£χḡ) = O(1), ωρ(ḡ,£η ḡ,£χḡ) = O(ρ),

ωy,z(ḡ,£η ḡ,£χḡ) = O(1) (ρ→ 0) (4.3.10)

and then Eq. (4.2.23) is satisfied.

Step 4: Calculate the set of metrics.
Since we investigate the asymptotic symmetries near the Rindler horizon, let us identify the asymptotic
behavior of all the diffeomorphisms φµ(x) generated by the Lie algebra A.

We here first calculate the asymptotic behavior of the diffeomorphisms in the form of φµξ (x) :=
exp[ξ](xµ) for ξ ∈ A, where exp[ ] is the exponential map.

Introducing a real parameter λ and calculating the integral curve ϕµλ(x) := exp[λξ](xµ) of the vector
field ξ, the diffeomorphism φµξ (x) is given by φµξ (x) = ϕµξ;λ=1(x). The integral curve is the solution of the
following differential equation:

d

dλ
ϕµξ;λ(x) = ξµ(ϕ(x)), ϕµξ;0(x) = xµ. (4.3.11)

Any vector field ξ of the algebra A can be can be decomposed into two parts:

ξµ(x) = Ξµ(x) + hµ(x), (4.3.12)

Ξµ(x) := (τF1(y, z), τρF2(y, z), 0, 0), (4.3.13)

hµ(x) := (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) (ρ→ 0), (4.3.14)

where F1 and F2 are arbitrary functions of (y, z). When ξ = Ξ, the solution of the differential equation
is straightforwardly calculated as

ϕµΞ;λ(x) =

(
τeF1(y,z)λ, ρ exp

(
F2(y, z)

F1(y, z)
τ
(
eF1(y,z)λ − 1

))
, y, z

)
. (4.3.15)

In Appendix E.2, it is proven that

ϕµξ;λ(x) = ϕΞ;λ(x) + (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) (ρ→ 0). (4.3.16)

This is the asymptotic behavior of the integral curve. Thus, the asymptotic behavior of the diffeomor-
phism φµξ (x) = exp[ξ](xµ) is given by

φµξ (x) = ϕµξ;λ=1(x)

= φµΞ(x) + (O(ρ2),O(ρ2),O(ρ2),O(ρ2))

=

(
τeF1(y,z), ρ exp

(
F2(y, z)

F1(y, z)
τ
(
eF1(y,z) − 1

))
, y, z

)
+ (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) (4.3.17)

as ρ→ 0.
So far, we have calculated the asymptotic behavior of the diffeomorphisms in the form of φµξ (x) =

exp[ξ](xµ) for ξ ∈ A. In general, diffeomorphisms generated by A and connected to the identity trans-
formation are given by a product of such maps [60, 61], i.e.,

(φξ(1) ◦ φξ(2) ◦ · · · ◦ φξ(N))(x) (4.3.18)

42



4.3 Examples

for some N . Let us analyze the asymptotic behavior for N = 2. For two vector fields(
ξ(i)
)µ

(x) = (τF
(i)
1 (y, z) +O(ρ2), τρF

(i)
2 (y, z) +O(ρ2),+O(ρ2),+O(ρ2)), i = 1, 2, (4.3.19)

as ρ→ 0, Eq.(4.3.17) implies that

(φξ(1) ◦ φξ(2))µ(x)

=

(
τeF̃1(y,z), ρ exp

(
F̃2(y, z)

F̃1(y, z)
τ
(
eF̃1(y,z) − 1

))
, y, z

)
+ (O(ρ2),O(ρ2),O(ρ2),O(ρ2)), (4.3.20)

where we have defined

F̃1(y, z) := F
(1)
1 (y, z) + F

(2)
1 (y, z),

F̃2(y, z) := F̃1(y, z)

(
F

(2)
2 (y, z)

F
(2)
1 (y, z)

(
eF

(2)
1 (y,z) − 1

)
+
F

(1)
2 (y, z)

F
(1)
1 (y, z)

eF
(2)
1 (y,z)

(
eF

(1)
1 (y,z) − 1

))
. (4.3.21)

Repeating the same argument, it is shown that the asymptotic behavior of a general diffeomorphism
χ(F1,F2) is characterized by two real functions F1 and F2 of (y, z) as

χµ(F1,F2)
(x) =

(
τeF1(y,z), ρ exp

(
F2(y, z)

F1(y, z)
τ
(
eF1(y,z) − 1

))
, y, z

)
+ (O(ρ2),O(ρ2),O(ρ2),O(ρ2))

(4.3.22)

for ρ→ 0.
Thus, the asymptotic behavior of the components of the metrics in question is characterized by

arbitrary functions F1 and F2 of (y, z) as(
g(F1,F2)
µν (x)

)
:=

(
∂χα(F1,F2)

∂xµ

∂χβ(F1,F2)

∂xν
ḡαβ(χ(F1,F2)(x))

)

=


J11ρ

2 J12ρ J1yρ
2 J1zρ

2

J12ρ J22 J2yρ J2zρ
J1yρ

2 J2yρ 1 0
J1zρ

2 J2zρ 0 1

+ (higher order term), (4.3.23)

where we have defined

J11(τ, y, z) := e2f(y,z)τ
(
−κ2e2F1(y,z) + f2(y, z)

)
,

J12(τ, y, z) := f(y, z)e2f(y,z)τ , J1A(τ, y, z) := τe2f(y,z)τ (−κ2∂AF1(y, z)e
2F1(y,z) + f(y, z)∂Af(y, z)),

J22(τ, y, z) := e2f(y,z)τ , J2A(τ, y, z) := τ∂Af(y, z)e
2f(y,z)τ , (4.3.24)

and

f(y, z) :=
F2(y, z)

F1(y, z)

(
eF1(y,z) − 1

)
. (4.3.25)

As explicit calculations show, it turns out that the second term in Eq. (4.3.23) does not affect the
expression of the charges.

Step 5: Calculate the charges.
To calculate the charges for V1, V2 defined in Eq. (4.3.6), we need Qτρ,Θτ and Θρ in Eq. (3.1.19). Since
the integrability condition is satisfied, the parametrization of the metric in Eq. (3.1.19) can be taken

arbitrarily. In order to calculate the charges at metric
(
g
(F1,F2)
µν (x)

)
given in Eq. (4.3.23), we adopt here

the following:

(gµν(x;λ)) =

(
∂χα(λF1,λF2)

∂xµ

∂χβ(λF1,λF2)

∂xν
ḡαβ(χ(λF1,λF2)(x))

)
. (4.3.26)
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For λ = 1, (gµν(x;λ = 1)) =
(
g
(F1,F2)
µν (x)

)
, while for λ = 0, (gµν(x;λ = 0)) = (ḡµν(x)) up to the higher

order terms in Eq. (4.3.23), which do not affect the charges, shown as follows: From Eq. (3.1.9), we get

Qτρ [V1]

∣∣∣∣
(gµν(x;λ))

=
T1

8πGκ
e−λF1

(
κ2e2λF1τ +

f

2

)
+O(ρ) (4.3.27)

Qτρ [V2]

∣∣∣∣
(gµν(x;λ))

=
T2

16πGκ
e−λF1 +O(ρ) (4.3.28)

as ρ→ 0. On the other hand, from Eq. (3.1.3), we have

θτ = O(ρ) (4.3.29)

θρ = − κ

8πG
∂λ(e

λF1) +O(ρ) (4.3.30)

as ρ→ 0. Thus, the second term in Eq. (4.3.23) does not contribute to the expression of the charges.
From Eq. (3.1.19), the charges are evaluated as

H[V1] =
1

16πGκ

∫
dydz T1(y, z)

F2(y, z)

F1(y, z)

(
1− e−F1(y,z)

)
, (4.3.31)

H[V2] =
1

16πGκ

∫
dydz T2(y, z)

(
e−F1(y,z) − 1

)
. (4.3.32)

where the reference of the charges are chosen so that they vanish at the background metric, which
corresponds to the case where F1 = F2 = 0.

The transformation generated by the vector fields V1 and V2 is an example of superdilatation. To the
authors’ knowledge, the algebra of charges corresponding to the supardilatation on the horizon has not
been investigated neither in the Rindler spacetime nor in the Schwarzschild spacetime in prior researches.

4.3.2 Asymptotic symmetries on Killing horizon

Next, let us investigate the asymptotic symmetries at a Killing horizon of a spacetime with our approach
in Fig. 4.5. We will find a new class of asymptotic symmetries and show that the algebra of the corre-
sponding charges is a central extension of the algebra of vector fields generating the transformation of
the symmetries.

Step1 : Fix a background metric ḡµν .
Here, we adopt the following D-dimensional metric as the background metric:

(ḡµν) =


−κ2ρ2 +O(ρ4) O(ρ4) ftψρ

2 +O(ρ4) ftAρ
2 +O(ρ4)

O(ρ4) 1 +O(ρ2) O(ρ4) O(ρ3)
ftψρ

2 +O(ρ4) O(ρ4) fψψ +O(ρ2) O(ρ2)
ftAρ

2 +O(ρ4) O(ρ3) O(ρ2) ΩAB +O(ρ2)

 (ρ→ 0) (4.3.33)

in the coordinate (t, ρ, ψ, θA) for A = 3, · · · , D − 1, where all coefficient functions ftψ, ftA, fψψ and ΩAB
depend on θA while κ is a constant. We assume that the coefficient functions and κ are fixed so that the
metric satisfies the Einstein equations. This class of metrics contains important spacetimes, for example,
de-Sitter spacetime and the Kerr spacetime. It is known that the asymptotic behavior of the metric near
the Killing horizon located at ρ = 0 is given by Eq.(4.3.33) and that the Cauchy surface is characterized
by t = const. [20].

Step 2 : Select two vector fields ξ and η satisfying Eq. (4.1.5).
Next we consider two vector fields ξ and η which have the asymptotic forms given by Eq. (4.2.22):

ξµ = (Xt(t, ψ, θA) +O(ρ), Xρ(t, ψ, θA)ρ+O(ρ2), Xψ(t, ψ, θA) +O(ρ), XA(t, ψ, θA) +O(ρ)), (4.3.34)

ηµ = (Y t(t, ψ, θA) +O(ρ), Y ρ(t, ψ, θA)ρ+O(ρ2), Y ψ(t, ψ, θA) +O(ρ), Y A(t, ψ, θA) +O(ρ)) (4.3.35)
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as ρ→ 0, where all coefficients are arbitrary functions of t, ψ and θA. In addition, as with in the previous
example, we assume that the vector fields have support in a finite region near the Killing horizon. In
this case, we can ignore the charges on the opposite boundary ρ → ∞, which trivially vanish. For the
metric (4.3.33), vector fields (4.3.34) and (4.3.35), our guiding principle in Eq. (4.1.5) can be calculated
as follows:

1

8πG

∫
∂Σ

2
√
Ωfψψ

κ

[
1

2
∂tY

ρ∂tX
t+DMY

M

(
κ2Xt − ftNX

N +
1

2
∂tX

ρ

)
+ ∂AftψX

ψY A

+ (∂BftA − ∂AftB)X
AY B − (X ↔ Y )

]
dσ2 · · · dσD−1 6= 0 (4.3.36)

where M,N = 2, · · · , D− 1 and DM denotes the covariant derivative on the (D− 2)-dimensional hyper-
surface characterized by t = const. and ρ = const.. The detailed derivation of Eq. (4.3.36) is shown in
Appendix. G.3.

As a set of vector fields satisfying Eq.(4.3.36), we adopt

ξt = F1(x
M ) + tG1(x

M ) +O(ρ2), ξρ = (H1(x
M ) + tJ1(x

M ))ρ+O(ρ2), ξM = KM
1 (xN ) +O(ρ2),

(4.3.37)

ηt = F2(x
M ) + tG2(x

M ) +O(ρ2), ηρ = (H2(x
M ) + tJ2(x

M ))ρ+O(ρ2), ηM = KM
2 (xN ) +O(ρ2)

(4.3.38)

in the rest of this section, where Fi(x
M ), Gi(x

M ),Hi(x
M ), Ji(x

M ) and KM
i (xN ) are arbitrary functions

of xM .
Of course, we may adopt another set of vector fields. For example, for given functions T (xM ) and

VM (xN ) of xM , the vector fields defined by

ξt = T (xM ) +O(ρ2), ξρ = O(ρ2), ξM = O(ρ2), (4.3.39)

ηt = O(ρ2), ηρ = O(ρ2), ηM = VM (xN ) +O(ρ2) (4.3.40)

also satisfy Eq.(4.3.36). In fact, if we start with this set of vector fields, we will get a well-known class
of transformations called supertranslations and superrotations. See Appendix F.2 for a comment on the
integrability of the charges for this algebra.

Step 3: Construct the Lie algebra A including ξ and η and check whether Eq. (4.2.23) is satisfied.
For an arbitrary set of vector fields with asymptotic behavior in Eq. (4.3.35), the pre-symplectic current
at the background metric given in Eq. (3.1.15) can be calculated as

ωt(ḡ,£η ḡ,£ξ ḡ) ≈ ∂M

(
−
√
Ωfψψ

2κρ

[
∂tX

M
(
∂tY

t −DNY
N
)
− (X ↔ Y )

])
+O(1). (4.3.41a)

ωρ(ḡ,£η ḡ,£ξ ḡ) ≈ −
√
Ωfψψ

κ
∂t

(
1

2
∂tY

ρ∂tX
t +DMY

M (κ2Xt

− ftMX
M +

1

2
∂tX

ρ) + ∂AftψX
ψY A + (∂BftA − ∂AftB)X

AY B − (X ↔ Y )

)

+ ∂M

(√
Ωfψψ

κ

[(
−κ2Y t + ftNY

N − ∂tY
ρ
)
∂tX

M − (X ↔ Y )
])

+O(ρ) (4.3.41b)

ωM (ḡ,£η ḡ,£ξ ḡ) ≈
√

Ωfψψ

2κρ
∂t

(
∂tX

M
(
∂tY

t −DNY
N
)
− (X ↔ Y )

)
+ ∂N

(
−
√
Ωfψψ

κρ

[
∂tY

M∂tX
N − (X ↔ Y )

])
+O(1). (4.3.41c)
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for ρ→ 0. The calculation details are shown in Appendix. G.4.
The components of the commutator of the vector fields in Eqs. (4.3.37) and (4.3.38) are calculated as

[ξ, η]t = (F1G2 −G1F2 +KM
1 ∂MF2 −KM

2 ∂MF1) + t(KM
1 ∂MG2 −KM

2 ∂MG1) +O(ρ2)

[ξ, η]ρ =
{
(F1J2 − J1F2 +KM

1 ∂MH2 −KM
2 ∂MH1) + t(G1J2 − J1G2 +KM

1 ∂MJ2 −KM
2 ∂MJ1)

}
ρ+O(ρ2)

[ξ, η]M =
(
KN

1 ∂NK
M
2 −KN

2 ∂NK
M
1

)
+O(ρ2) (4.3.42)

for ρ→ 0. Thus, let us define the closed algebra A′ including ξ, η

A′

:=
{
V =

(
F (xM ) + tG(xM ) +O(ρ2), ρ

(
H(xM ) + tJ(xM )

)
+O(ρ2),KM (xN ) +O(ρ2)

)}
. (4.3.43)

In this case, since we have

ωt(ḡ,£η ḡ,£ξ ḡ) = O(1), ωρ(ḡ,£η ḡ,£ξ ḡ) = O(1), ωM (ḡ,£η ḡ,£ξ ḡ) = O(1) (ρ→ 0) ∀η, ξ ∈ A′

(4.3.44)

from Eqs. (4.3.41a)∼(4.3.41c), Eq. (4.2.23) is not satisfied. Thus, A′ is not suitable for our purpose.
From Eq. (4.3.41b), it immediately turns out that if we impose an additional condition

DMK
M = 0, (4.3.45)

then we get ωρ(ḡ,£η ḡ,£ξ ḡ) = O(ρ) and hence Eq. (4.2.23) is satisfied. This condition in Eq. (4.3.45)
means that we pick up only a divergenceless part in the superrotation. Since

DM (KN
1 ∂NK

M
2 −KN

2 ∂NK
M
1 ) = DMK

N
1 DNK

M
2 −DMK

N
2 DNK

M
1 +KN

1 DMDNK
M
2 −KN

2 DMDNK
M
1

= KN
1 RLNK

L
2 +KN

1 DNDMK
M
2 −KN

2 RLNK
L
1 −KN

2 DNDMK
M
1

= 0,

holds, the algebra

A
:=
{
V =

(
F (xM ) + tG(xM ) +O(ρ2), ρ

(
H(xM ) + tJ(xM )

)
+O(ρ2),KM (xN ) +O(ρ2)

)
| DMK

M = 0
}

(4.3.46)

is closed. Therefore, instead of A′, we hereafter adopt A. Since Eqs. (4.1.5) and (4.2.23) are satisfied for
A, the charges are integrable and form a non-trivial algebra.

Step 4: Investigate the algebra of the charges for A via (4.1.5).
Let us investigate the algebra of charges for A. For simplicity, in the following, we will analyze

(ḡµν) =


−κ2ρ2 +O(ρ4) O(ρ4) ftθρ

2 +O(ρ4) ftϕρ
2 +O(ρ4)

O(ρ4) 1 +O(ρ2) O(ρ4) O(ρ3)
ftθρ

2 +O(ρ4) O(ρ4) A+O(ρ2) O(ρ2)
ftϕρ

2 +O(ρ4) O(ρ3) O(ρ2) A sin2 θ +O(ρ2)

 (4.3.47)

as ρ→ 0 in the coordinate system (t, ρ, θ, φ) (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) for D = 4. In this case, the induced
metric on the horizon is given by ds2|∂Σ = A(dθ2 + sin2 θdφ2), where A > 0 is a parameter describing
the area of the horizon.

Functions characterizing an element in A in Eq. (4.3.46) can be expanded as follows:

F (θ, φ) =
∑
lm

almYlm(θ, φ), G(θ, φ) =
∑
lm

blmYlm(θ, φ), (4.3.48)

H(θ, φ) =
∑
lm

clmYlm(θ, φ), J(θ, φ) =
∑
lm

dlmYlm(θ, φ), (4.3.49)

KA(θ, φ) = − 1

sin θ
εAB∂BΨ(θ, φ), Ψ(θ, φ) =

∑
lm

elmYlm(θ, φ), (4.3.50)
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where

Ylm(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ)eimϕ (4.3.51)

are the spherical harmonics, Pml (cos θ) are the associated Legendre polynomials and

εθϕ = −εϕθ = 1, (4.3.52)

εθθ = εϕϕ = 0. (4.3.53)

All the independent generators are listed as

J
(t,0)
lm = Ylm∂t, (4.3.54a)

J
(t,1)
lm = tYlm∂t, (4.3.54b)

J
(ρ,0)
lm = ρYlm∂ρ, (4.3.54c)

J
(ρ,1)
lm = tρYlm∂ρ, (4.3.54d)

J
(R)
lm =

1

sin θ
(∂θYlm∂ϕ − ∂ϕYlm∂θ) , (4.3.54e)

where we have omitted O(ρ2) in each component of the generators since it does not affect the alge-
braic structure nor the calculation on the constant term K(ξ, η) in Eq. (4.2.1). Their commutators are
calculated † as

[J
(t,0)
lm , J

(t,0)
l′m′ ] = 0, [J

(t,0)
lm , J

(t,1)
l′m′ ] =

∑
Gl

′′m′′

lml′m′J
(t,0)
l′′m′′ , (4.3.55a)

[J
(t,0)
lm , J

(ρ,0)
l′m′ ] = 0, [J

(t,0)
lm , J

(ρ,1)
l′m′ ] =

∑
Gl

′′m′′

lml′m′J
(ρ,0)
l′′m′′ , (4.3.55b)

[J
(t,0)
lm , J

(R)
l′m′ ] = −

∑
Cl

′′m′′

lml′m′J
(t,0)
l′′m′′ , (4.3.55c)

[J
(t,1)
lm , J

(t,1)
l′m′ ] = 0, [J

(t,1)
lm , J

(ρ,0)
l′m′ ] = 0, (4.3.55d)

[J
(t,1)
lm , J

(ρ,1)
l′m′ ] =

∑
Gl

′′m′′

lml′m′J
(ρ,1)
l′′m′′ , (4.3.55e)

[J
(t,1)
lm , J

(R)
l′m′ ] = −

∑
Cl

′′m′′

lml′m′J
(t,1)
l′′m′′ , (4.3.55f)

[J
(ρ,0)
lm , J

(ρ,0)
l′m′ ] = 0, [J

(ρ,0)
lm , J

(ρ,1)
l′m′ ] = 0, (4.3.55g)

[J
(ρ,0)
lm , J

(R)
l′m′ ] = −

∑
Cl

′′m′′

lml′m′J
(ρ,0)
l′′m′′ , (4.3.55h)

[J
(ρ,1)
lm , J

(ρ,1)
l′m′ ] = 0, (4.3.55i)

[J
(ρ,1)
lm , J

(R)
l′m′ ] = −

∑
Cl

′′m′′

lml′m′J
(ρ,1)
l′′m′′ , (4.3.55j)

[J
(R)
lm , J

(R)
l′m′ ] =

∑
Cl

′′m′′

lml′m′J
(R)
l′′m′′ , (4.3.55k)

where the structure constants Gl
′′m′′

lml′m′ and Cl
′′m′′

lml′m′ satisfy the following relations

YlmYl′m′ =
∑
l′′m′′

Gl
′′m′′

lml′m′Yl′′m′′ , Gl
′′m′′

lml′m′ = Gl
′′m′′

l′m′lm, (4.3.56)

1

sin θ
(∂θYlm∂ϕYl′m′ − ∂ϕYlm∂θYl′m′) =

∑
l′′m′′

Cl
′′m′′

lml′m′Yl′′m′′ , Cl
′′m′′

lml′m′ = −Cl
′′m′′

l′m′lm. (4.3.57)

From Eq.(4.3.36), we find that there are two non-vanishing Poisson brackets evaluated at the background
metric. One of them is{

H[J
(t,1)
lm ],H[J

(ρ,1)
l′m′ ]

} ∣∣∣
ḡ
=

A

8πGκ

∑
l′′m′′

Gl
′′m′′

lml′m′

∫ 2π

0

∫ π

0

Yl′′m′′ sin θdθdφ, (4.3.58)

†The algebra of vector fields on sphere is calculated in Appendix. G.5.
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while the other is{
H[J

(R)
lm ],H[J

(R)
l′m′ ]

} ∣∣∣
ḡ
=

A

8πGκ

∑
l′′m′′

Cl
′′m′′

lml′m′

∫ 2π

0

∫ π

0

2∂ϕftθYl′′m′′dθdφ. (4.3.59)

By using these formulas, let us investigate whether the algebra of the charges is a central extension
of the algebra of the vector fields. For the latter Poisson bracket in Eq.(4.3.59), shifting the charge by a
constant as

H ′[J
(R)
lm ] := H[J

(R)
lm ] +

A

8πGκ

∫ 2π

0

∫ π

0

2∂ϕftθYlmdθdφ, (4.3.60)

Eq.(4.3.59) can be rewritten as{
H ′[J

(R)
lm ],H ′[J

(R)
l′m′ ]

}
=
∑
l′′m′′

Cl
′′m′′

lml′m′H ′[J
(R)
l′′m′′ ]. (4.3.61)

This redefinition of the charge does not affect other Poisson brackets. On the other hand, for the former
one in Eq. (4.3.58), we may redefine

H ′[J
(ρ,1)
lm ] := H[J

(ρ,1)
lm ] +

A

8πGκ

∫ 2π

0

∫ π

0

Ylm sin θdθdφ, (4.3.62)

so that Eq. (4.3.58) is recast into{
H[J

(t,1)
lm ],H ′[J

(ρ,1)
l′m′ ]

}
=
∑
l′′m′′

Gl
′′m′′

lml′m′H ′[J
(ρ,1)
l′′m′′ ]. (4.3.63)

However, since
{
H[J

(ρ,1)
lm ],H[J

(R)
l′m′ ]

} ∣∣∣
ḡ
= 0, this redefinition affects another Poisson bracket in such a

way that{
H ′[J

(ρ,1)
lm ],H[J

(R)
l′m′ ]

}
= −

∑
l′′m′′

Cl
′′m′′

lml′m′H[J
(ρ,1)
l′′m′′ ]

= −
∑
l′′m′′

Cl
′′m′′

lml′m′

(
H ′[J

(ρ,1)
l′′m′′ ]−

A

8πGκ

∫ 2π

0

∫ π

0

Yl′′m′′ sin θdθdφ

)
(4.3.64)

holds. Thus, these constants cannot be absorbed into the generators by redefinition. They are calculated
as

Klml′m′ :=
{
H[J

(t,1)
lm ],H[J

(ρ,1)
l′m′ ]

} ∣∣∣
ḡ
=

A

8πGκ

∫ 2π

0

∫ π

0

sin θYlmYl′m′dθdφ

=
A

8πGκ
(−1)m

∫ 2π

0

∫ π

0

sin θYlmY
∗
l′(−m′)dθdφ

=
A

8πGκ
(−1)mδll′δm(−m′). (4.3.65)

Summarizing the above arguments, we finally get the following charge algebra:{
H[J

(t,1)
lm ],H[J

(ρ,1)
l′m′ ]

}
=
∑
l′′m′′

Gl
′′m′′

lml′m′H[J
(ρ,1)
l′′m′′ ] +

A

8πGκ
(−1)mδll′δm(−m′), (4.3.66)

others are isomorphic to A in Eqs. (4.3.55a)-(4.3.55k) except for (4.3.55e). (4.3.67)
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Note that since we calculate{
{H[J

(t,1)
lm ],H[J

(t,1)
l′m′ ]},H[J

(ρ,1)
l′′m′′ ]

}
= H[[J

(t,1)
lm , J

(t,1)
l′m′ ], J

(ρ,1)
l′′m′′ ](= 0), (4.3.68){

{H[J
(t,1)
l′m′ ],H[J

(ρ,1)
l′′m′′ ],H[J

(t,1)
lm ]}

}
= H[[J

(t,1)
l′m′ , J

(ρ,1)
l′′m′′ ], J

(t,1)
lm ]− A

8πGκ

∑
pq

Gpql′m′l′′m′′

∫ 2π

0

∫ π

0

sin θYpqYlmdθdφ

= H[[J
(t,1)
l′m′ , J

(ρ,1)
l′′m′′ ], J

(t,1)
lm ]− A

8πGκ

∫ 2π

0

∫ π

0

sin θYl′m′Yl′′m′′Ylmdθdφ,

(4.3.69){
{H[J

(ρ,1)
l′′m′′ ],H[J

(t,1)
lm ],H[J

(t,1)
l′m′ ]}

}
= H[[J

(ρ,1)
l′′m′′ , J

(t,1)
lm ], J

(t,1)
l′m′ ] +

A

8πGκ

∑
pq

Gpql′′m′′lm

∫ 2π

0

∫ π

0

sin θYpqYl′m′dθdφ

= H[[J
(ρ,1)
l′′m′′ , J

(t,1)
lm ], J

(t,1)
l′m′ ] +

A

8πGκ

∫ 2π

0

∫ π

0

sin θYl′′m′′YlmYl′m′dθdφ,

(4.3.70)

we have{
{H[J

(t,1)
lm ],H[J

(t,1)
l′m′ ]},H[J

(ρ,1)
l′′m′′ ]

}
+
{
{H[J

(t,1)
l′m′ ],H[J

(ρ,1)
l′′m′′ ],H[J

(t,1)
lm ]}

}
+
{
{H[J

(ρ,1)
l′′m′′ ],H[J

(t,1)
lm ],H[J

(t,1)
l′m′ ]}

}
= H[[J

(t,1)
lm , J

(t,1)
l′m′ ], J

(ρ,1)
l′′m′′ ] +H[[J

(t,1)
l′m′ , J

(ρ,1)
l′′m′′ ], J

(t,1)
lm ] +H[[J

(ρ,1)
l′′m′′ , J

(t,1)
lm ], J

(t,1)
l′m′ ]

= H[0] = 0. (4.3.71)

Similarly, we have{
{H[J

(t,1)
lm ],H[J

(ρ,1)
l′m′ ]},H[J

(ρ,1)
l′′m′′ ]

}
+
{
{H[J

(ρ,1)
l′m′ ],H[J

(ρ,1)
l′′m′′ ],H[J

(t,1)
lm ]}

}
+
{
{H[J

(ρ,1)
l′′m′′ ],H[J

(t,1)
lm ],H[J

(ρ,1)
l′m′ ]}

}
= 0.

(4.3.72)

Thus, we can confirm that the Jacobi identity holds. Since A 6= 0, the algebra of the charges is a central
extension of A. Equations (4.3.66) and (4.3.67) are the main results in this subsection.

4.4 Summary of chapter

In this chapter, we suggest a Lie algebra-based approach to investigate asymptotic symmetries replacing
the conventional approach. This approach was first introduced in Ref. [41] and then modified in Ref. [42].
The key ingredient of a modified Lie algebra-based approach is making use of Eqs. (4.1.5) and (4.2.23)
to find the algebra A of vector fields that generates transformations of asymptotic symmetries with non-
gauge and integrable charges. As we have seen in Sec. 4.2.1, Eq. (4.2.23) provides a sufficient condition
for the charges to be integrable, which can be checked at the background metric. This saves the efforts of
calculating all the diffeomorphisms generated by A required in checking the integrability. As is mentioned
in Sec. 4.2.1, the Poisson brackets of the charges can be calculated at the background metric and hence
the algebra of the charges can be fully identified without calculating the diffeomorphisms generated by
A explicitly.

In Sec. 4.3, as a demonstration of the modified Lie algebra-based approach, we have investigated
asymptotic symmetries on Rindler horizons and that of spacetimes with the Killing horizon with metrics
in Eq. (4.3.33). In both cases, we found that a new class of asymptotic symmetries, which we call superdi-
latation. In the former case, we explicitly calculated the charges of the superdilatation Eqs. (4.3.31) and
(4.3.32). In the latter case, we showed that algebra of supertranslations, superrotations and superdilata-
tions in Eq. (4.3.46) yields a non-trivial algebra of integrable charges. It is proven that for the algebra in
Eq. (4.3.46), we have to eliminate rotationless part of superrotations to obtain integrable charges. As a
particular example, for (1+3)-dimensional spacetime with metrics in Eq.(4.3.47), we explicitly calculated
the algebra of charges, which is shown to be a central extension of the algebra of the vector fields.

It should be emphasized that our approach can be applied to any spacetime as long as we consider
diffeomorphisms which do not shift the boundary on which charges are defined. Of course, it should be
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noted that there may be asymptotic symmetries which cannot be found in our approach since Eqs. (4.1.5)
and (4.2.23) are sufficient conditions for the charges to be integrable and form a non-trivial algebra.
Nevertheless, we expect that our approach proposed here is helpful to find new asymptotic symmetries
as we have demonstrated the example in Sec. 4.3.2.
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Chapter 5

Conclusion and Outlook

In this Ph.D thesis, we propose a useful approach to construct integrable and non-gauge charges in
general spacetime shown in Chapter 4. Our approach may significantly reduce the effort involved in
finding proper asymptotic conditions by trials and errors in the conventional approach.

Our approach has two key ingredients. One of them is to use Eq. (4.1.5) to find an algebra of symme-
tries with a non-vanishing Poisson bracket at the background metric ḡµν . The metrics connected to the
background metric through a diffeomorphism generated by the Lie algebra A satisfying Eq. (4.1.5) can
be physically distinguished from each other since the Poisson brackets do not vanish. In our analysis, we
have investigated a set of metrics which are connected to a fixed background metric by diffeomorphisms
generated by a Lie algebra of vector fields. Since all the metrics are diffeomorphic to the background met-
ric, it is possible to investigate the properties of the asymptotic symmetries of the background spacetime.
The set in our approach is different from that in the conventional approach, where the set of metrics
are defined by their asymptotic behaviors. The other key ingredient of our approach is making use of
Eqs. (4.2.23) to check the integrability. As we have seen in Sec. 4.2.1, Eq. (4.2.23) provides a sufficient
condition for the charges to be integrable, which can be checked at the background metric. This saves
the efforts of calculating all the diffeomorphisms generated by A. In addition, the Poisson brackets of
the charges can be calculated at the background metric and hence the algebra of the charges can be fully
identified without calculating the diffeomorphisms generated by A explicitly. Our approach contains two
cases depending on the purpose. One of them is used to obtain the charges themselves, and is shown in
Fig. 4.4. The other one is used to get only the algebra of charges, and is shown in Fig. 4.5. In particular,
in the latter case, we can carry out all the steps only for a background metric.

As a demonstration of our approach, we have investigated asymptotic symmetries on a Rindler horizon
and that of spacetimes with the Killing horizon with metrics given in Eq. (4.3.33). In both cases, we
found a new asymptotic symmetry, which we term superdilatation. In the former case, we got the
expression of charges explicitly. In the latter case, we obtained the algebra of charges and found that
it is a central extension of vector fields algebra A. We expect that our approach will be helpful to
investigate other important spacetimes with non-Killing horizon. Although our approach can be applied
to any spacetime as long as we consider diffeomorphisms which do not shift the boundary on which
charges are defined, there may be asymptotic symmetries which cannot be found in our approach since
Eqs. (4.1.5) and (4.2.23) are sufficient conditions for the charges to be integrable and form a non-trivial
algebra. Therefore we will explore the possibility of extending our approach to identify all the asymptotic
symmetries as the future work. One possibility is to derive a condition under which Eq. (4.1.3) holds at
a particular metric gµν but not at the background metric ḡµν . In our approach, we have started with
two vector fields satisfying Eq. (4.1.5) and constructed a minimal Lie algebra A spanned by the vector
fields and their commutators. To proceed the classification of the symmetry in general relativity, it will
be quite interesting to investigate how the charge algebra changes by adding other elements to A.

As we have introduced in Chapter 1, in order to get the BH entropy, we must identify the number
of microstates generated by asymptotic symmetries on a horizon. The representation of the algebra of
charges is required to construct the Hilbert space of the corresponding quantum system. As we have seen
in Eqs. (4.3.66) and (4.3.67), in general, the algebra of charges is an infinite dimensional Lie algebra.
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Thus we need the representation theory of an infinite dimensional Lie algebra, which is more difficult
to treat than finite dimensional one. To the author’s knowledge, this task has been done for only a few
cases, e.g. Virasoro like asymptotic symmetries. We hope that mathematicians and physicists will tackle
this problem together.
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Appendix A

Frobenius theorem

In this appendix, we introduce the Frobenius theorem without proof. See Ref. [62] for the proof. The
Frobenius theorem shows that when there exist vector fields on manifold M that form the Lie algebra,
we can foliate M by hyper surfaces.

First several definitions are introduced.

Definition 1. For the subspace Dp ⊂ TpM such that

∃ω1, · · · , ωD−r ∈ Ω1(M) Dp := {X ∈ TpM | ω1
p(X) = · · · = ωD−r

p (X) = 0}, (A.0.1)

the assignment D : p→ Dp is called an r-dimensional differential system.

Definition 2. A submanifold N ⊂M is called an integral manifold of D if

TpN = Dp ∀p ∈ N. (A.0.2)

Definition 3. If for every point p ∈M and neighborhood U of p there exist functions f i ∈ C∞(U) such
that ωi = df i (i = 1, · · · , D − r), D is called completely integrable.

When D is completely integrable, we can define a submanifold N ⊂ M which is also an integral
manifold of D as follows:

N = {x ∈ U | fi(x) = fi(q) (i = 1, · · · , D − r) ∀q ∈ U}. (A.0.3)

Equivalently, N is the r-dimensional hypersurface foliation in M characterized by f i = const. (i =
1, · · · , D − r).

Next, the following lemma holds.

Lemma 1. When D is an assignment of p ∈ M to an r-dimensional subspace Dp ⊂ TpM , D is an
r-dimensional differential system if and only if

∀p ∈M, ∃U : neighborhood of p, ∃X1, · · · , Xr : vector fields on U such that

{X1
q , · · · , Xr

q } is a basis of Dq ∀q ∈ U.

We refer to {X1, · · · , Xr} as a local basis of D on U .
Finally, the Frobenius theorem is

Theorem 5 (Frobenius). When D is an r-dimensional differential system of a D-dimensional manifold
M , D is completely integrable if and only if for a local basis {X1, · · · , Xr} of D on some open set V ⊂M ,
there exist c k

ij ∈ C∞(V ) such that

[Xi, Xj ] = c k
ij Xk. (A.0.4)
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Appendix B

The detailed derivation of Eq. (3.1.11)

The pre-symplectic potential density is

θν [g, δg] =

√
−g

8πG
gνρgασ∇[αδgρ]σ. (B.0.1)

Defining

kµν := δ1gµν , hµν := δ2gµν , fµν := δ1δ2gµν = δ2δ1gµν , (B.0.2)

the variation δ1θ
ν consists of

δ1
√
−ggνρgασ∇[αhρ]σ =

1

2

√
−ggβγgνρgασkβγ∇[αhρ]σ (B.0.3)

√
−g(δ1gνρ)gασ∇[αhρ]σ = −

√
−ggνβgργgασkβγ∇[αhρ]σ (B.0.4)

√
−ggνρ(δ1gασ)∇[αhρ]σ = −

√
−ggνρgαβgσγkβγ∇[αhρ]σ (B.0.5)

√
−ggνρgασδ1(∇[αhρ]σ) =

√
−ggνρgασ

(
∇[αfρ]σ − δ1Γ

β
[α|σ|hρ]β

)
(B.0.6)

where

δ1Γ
β
ασ =

1

2
gβγ (∇αkγσ +∇σkαγ −∇γkασ) . (B.0.7)

Thus we get

δ1θ
ν [g, δ2g] =

√
−g

8πG

(
1

2
gβγgν[ρgα]σ − gνβgγ[ρgα]σ − gν[ρgα]βgσγ

)
kβγ∇αhρσ

+

√
−g

8πG
gν[ρgα]σ

(
∇αfρσ − δ1Γ

β
ασhρβ

)
(B.0.8)

and

δ2θ
ν [g, δ1g] =

√
−g

8πG

(
1

2
gβγgν[ρgα]σ − gνβgγ[ρgα]σ − gν[ρgα]βgσγ

)
hβγ∇αkρσ

+

√
−g

8πG
gν[ρgα]σ

(
∇αfρσ − δ2Γ

β
ασkρβ

)
. (B.0.9)

The pre-symplectic current density ωµ is calculated as

ωµ[g, δ1g, δ2g] := δ1θ
µ[g, δ2g]− δ2θ

µ[g, δ1g]

=

√
−g

8πG

(
1

2
gβγgµ[ρgα]σ − gµβgγ[ρgα]σ − gµ[ρgα]βgσγ

+
1

2
gµ[βgα]σgγρ +

1

2
gµ[βgρ]αgγσ − 1

2
gµ[βgρ]σgγα

)
(kβγ∇αhρσ − hβγ∇αkρσ)

=

√
−g

16πG
Pµαβγρσδ[1gρσ∇γδ2]gαβ . (B.0.10)
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where

Pµαβγρσ := gµα
(
gρσgβγ − 2gρβgσγ

)
+ 2gµγgρ[αgσ]β + gµρgαβgσγ . (B.0.11)
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Appendix C

The detailed derivation of Eq. (4.1.4)

The left hand side of the (4.1.3) is∫
∂Σ

(dd−2x)µνS
µν(g,£ηg,£ξg) =

ϵµν
8πG

(−∇αη
α∇µξν +∇αηµ∇αξ

ν +∇µηα∇αξ
ν−ξα∇µ∇νηα−ξα∇µ∇αη

ν

−ξµ∇α∇νηα + ξµ∇2ην + 2ξµgνβRαβη
α
)
.

(C.0.1)

Each term can be calculated as

ϵµν(∇µηα∇αξ
ν − ξµ∇α∇νηα) = ϵµν(∇µηα∇αξ

ν +∇αξ
µ∇νηα −∇α(ξ

µ∇νηα))

= −ϵµν∇α(ξ
µ∇νηα) (C.0.2)

ϵµν(∇αηµ∇αξ
ν + ξµ∇α∇αην) = ϵµν(∇αηµ∇αξ

ν +∇α(ξ
µ∇αην)−∇αξ

µ∇αην)

= ϵµν(2∇αηµ∇αξ
ν +∇α(ξ

µ∇αην)) (C.0.3)

ϵµν(−ξα∇µ∇νηα) = ϵµν(−ξα∇ν∇µηα + ξαgµρgνσRβαρσηβ)

= ϵµνξ
α(∇µ∇νηα + gµρgνσRβαρσηβ)

∴ ϵµν(−ξα∇µ∇νηα) =
1

2
ϵµνξ

αgµρgνσRβαρσηβ (C.0.4)

ϵµν(−∇αη
α∇µξν − ξα∇µ∇αη

ν) = ϵµν(−∇αη
α∇µξν − ξα∇α∇µην + ξαgµρgνσRβσραηβ)

= ϵµν(−∇αη
α∇µξν −∇α(ξ

α∇µην) +∇αξ
α∇µην + ξαgµρgνσRβσραηβ).

(C.0.5)

Then ξ ↔ η antisymmetric terms are

(antisymmetric terms) = ϵµν(2∇αηµ∇αξ
ν −∇αη

α∇µξν +∇αξ
α∇µην)

+

(
1

2
Rβαρσ +Rβσρα

)
ξαηβϵρσ + 2ϵ µ

[α ξαηβRβ]µ. (C.0.6)

The fourth term is simplified to(
1

2
Rβαρσ +Rβσρα

)
ϵρσ =

(
1

2
Rβαρσ −Rβρσα

)
ϵρσ

=
1

2
ϵρσ (Rβαρσ −Rβρσα +Rβαρσ +Rβσαρ)

= ϵρσRβαρσ

= −ϵρσRαβρσ (C.0.7)

On the other hand, the surface terms are

(surface temrs) = ϵµν∇α(−ξµ∇νηα + ξµ∇αην − ξα∇µην). (C.0.8)
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Then the non-trivial condition is

1

8πG

∫
∂Σ

(Sη,ξ + SRξ,η + Ssymη,ξ ) +
1

8πG

∫
∂∂Σ

SBξ,η 6= 0, (C.0.9)

where

Sη,ξ = (2∇αηµ∇αξ
ν −∇αη

α∇µξν +∇αξ
α∇µην)ϵµν , (C.0.10)

SRξ,η = ξαηβ
(
−Cαβµνϵµν +

2(D − 4)

D − 2
ϵ µ
[αRβ]µ +

2

(D − 1)(D − 2)
Rϵαβ

)
, (C.0.11)

Ssymη,ξ = 2ϵ µ
(α ξ

αηβRβ)µ, (C.0.12)

SBξ,η = ϵµνα(−ξµ∇νηα + ξµ∇αην − ξα∇µην), (C.0.13)

and we have used Riemann tensor decomposition

Rαβµν = Cαβµν +
2

D − 2

(
gα[µRν]β − gβ[µRν]α

)
− 2

(D − 1)(D − 2)
Rgα[µgν]β . (C.0.14)

Using Einstein equation

Rαβ =

(
1

2
R− Λ

)
gαβ , (C.0.15)

the relation

(D − 2)R = 2DΛ. (C.0.16)

holds. We get

Ssymη,ξ = 0, (C.0.17)

SRη,ξ =

(
−Cαβρσϵρσ +

D − 4

D − 2
(R− 2Λ)ϵαβ +

2R

(D − 1)(D − 2)
ϵαβ

)
ξαηβ

=

(
−Cαβρσϵρσ +

4Λ

D − 1

)
ξαηβ (C.0.18)

When the boundary of the boundary ∂∂Σ = null, the final result of the non-trivial condition is∫
∂Σ

[
(2∇αηµ∇αξ

ν −∇αη
α∇µξν +∇αξ

α∇µην)− C µν
αβ ξαηβ +

4Λ

D − 1
ξµην

]
ϵµν 6= 0. (C.0.19)
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Appendix D

Duality between a diffeomorphism
and a coordinate transformation of
tensor fields

Let M and N be m-dimensional and n-dimensional manifold, respectively. We consider a C∞ map
φ :M → N .

For a function f : N → R, its pullback is defined by φ∗f :M → R, where

φ∗f := f ◦ φ, (D.0.1)

i.e.,

φ∗f(p) := f(φ(p)), p ∈M. (D.0.2)

The pushforward φ∗ : TpM → TqN , where q := φ(p), is defined by

(φ∗v)(f) := v(φ∗f) (D.0.3)

for f : N → R. Let ϕ be a coordinate system at p ∈ M , i.e., a smooth map ϕ : M → Rm. For a point
p ∈M , we define ϕ(p) = (x1(p), · · ·xm(p)). For a function F :M → Rm,

∂

∂xµ

∣∣∣∣
p

F (p) =
∂

∂xµ
(F ◦ ϕ−1)(x), x := ϕ(p) ∈ Rm. (D.0.4)

For simplicity, we sometimes write

(F ◦ ϕ−1)(x) =: F (xµ), (D.0.5)

that is,

∂

∂xµ

∣∣∣∣
p

F (p) =
∂

∂xµ
F (xµ). (D.0.6)

With this notation, we have(
φ∗

∂

∂xµ

) ∣∣∣∣
q=ϕ(p)

f(q) =
∂

∂xµ

∣∣∣∣
p

f ◦ φ(p)

=
∂

∂xµ
f ◦ φ(ϕ−1(x))

=
∂

∂xµ
(f ◦ ψ−1) ◦ (ψ ◦ φ ◦ ϕ−1)(x)

=
∂

∂yν
(f ◦ ψ−1(y))

∂

∂xµ
yν(x)

=
∂yν(x)

∂xµ
∂

∂yν

∣∣∣∣
q

f(q) (D.0.7)
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where ψ : N → Rn is a smooth map and ψ ◦ φ ◦ ϕ−1(x) = ψ(q) =: (y1(x), · · · yn(x)). Therefore,(
φ∗

∂

∂xµ

) ∣∣∣∣
q=ϕ(p)

=
∂yν(x)

∂xµ
∂

∂yν

∣∣∣∣
q

, (D.0.8)

implying that ”the matrix components” of φ∗ are given by

(φ∗)
ν
µ =

∂yν(x)

∂xµ
. (D.0.9)

The pullback for the dual vectors φ∗ : T ∗
ϕ(p)N → T ∗

pM is defined by

(φ∗µ)
∣∣
p
(v) := µ

∣∣
ϕ(p)

(φ∗v) , µ ∈ T ∗
ϕ(p)N, v ∈ TpM. (D.0.10)

In particular,

(φ∗dyµ)

∣∣∣∣
p

(
∂

∂xν

∣∣∣∣
p

)
= dyµ

∣∣∣∣
ϕ(p)

(
φ∗

∂

∂xν

∣∣∣∣
ϕ(p)

)

=
∂yρ(x)

∂xν
dyµ

∣∣∣∣
q=ϕ(p)

(
∂

∂yρ

∣∣∣∣
q

)

=
∂yµ(x)

∂xν

=
∂yµ(x)

∂xρ
dxρ

∣∣∣∣
p

(
∂

∂xν

∣∣∣∣
p

)
, (D.0.11)

i.e.,

(φ∗dyµ)

∣∣∣∣
p

=
∂yµ(x)

∂xρ
dxρ

∣∣∣∣
p

(D.0.12)

We now assume that dimM = dimN and consider a diffeomorphism φ. For a metric tensor ḡ|q =
ḡ(y)µνdy

µ|q ⊗ dyν |q, where q = φ(p) ∈ N , its pullback is a metric on p ∈M given by

g
∣∣
p
:= (φ∗ḡ)

∣∣
p

:= ḡµν(y(q))(φ
∗dyµ)

∣∣
p
⊗ (φ∗dyν)

∣∣
p

= ḡµν(y(q))
∂yµ(x)

∂xρ
∂yν(x)

∂xσ
dxρ

∣∣
p
⊗ dxσ

∣∣
p
, (D.0.13)

where q := φ(p) ∈ N . On the other hand, g|p is expanded as

g
∣∣
p
= gµν(x(p))dx

µ
∣∣
p
⊗ dxν

∣∣
p
. (D.0.14)

Therefore, we get

gρσ(x(p)) = ḡµν(y(q))
∂yµ(x)

∂xρ
∂yν(x)

∂xσ
. (D.0.15)

Note that ψ ◦ φ : M → Rm is also a coordinate system of the manifold M . We define ψ ◦
φ(p) =: (x′1(p), · · · , x′m(p)) for p ∈ M . Note that in our notation, ψ ◦ φ(p) = (x′1(p), · · · , x′m(p)) =
(y1(q), · · · ym(q)), where q := φ(p). In this coordinate system, the metric g can be expanded as

g
∣∣
p
= gµν(x

′(p))dx′µ
∣∣
p
⊗ dx′ν

∣∣
p
, (D.0.16)

where p ∈M . Since we have two coordinate systems ϕ and ψ ◦ φ on M , we may introduce a coordinate
transformation map ψ ◦ φ ◦ ϕ−1 : Rm → Rm. i.e., yµ(x), in the neighborhood of p ∈ M . From the
ordinary formula of coordinate transformation, we get

g
∣∣
p
= gµν(x

′(p))
dyµ(x)

dxρ
dyν(x)

dxσ
dxρ

∣∣
p
⊗ dxσ

∣∣
p
. (D.0.17)
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Therefore,

ḡµν(y(φ(p))) = gµν(x
′(p)). (D.0.18)

In other words, the components of ḡ ∈ T ∗
ϕ(p)N ⊗ T ∗

ϕ(p)N in the coordinate system ψ : N → Rm are the
same as those of g ∈ T ∗

pM ⊗ T ∗
pM in the coordinate system ψ ◦ φ :M → Rm.

Of course, (mathematically speaking), ḡ and g are different tensors since

ḡ|q = ḡµν(y(q))dy
µ|q ⊗ dyν |q ∈ T ∗

qN ⊗ T ∗
qN (D.0.19)

while

g|p = gµν(x
′(p))dx′µ|p ⊗ dx′ν |p ∈ T ∗

pM ⊗ T ∗
pM (D.0.20)

For a given general (r, s) tensor

T̄

∣∣∣∣
ϕ(p)

= T̄µ1···µr
ν1···νs (y(φ(p)))

(
∂

∂yµ1

) ∣∣∣∣
ϕ(p)

⊗ · · ·
(

∂

∂yµr

) ∣∣∣∣
ϕ(p)

⊗ (dyν1)

∣∣∣∣
ϕ(p)

⊗ · · · ⊗ (dyνs)

∣∣∣∣
ϕ(p)

(D.0.21)

at φ(p) ∈ N , where p ∈M , we can define its pullback T := φ∗T̄ at p as follows:

(φ∗T̄ )

∣∣∣∣
p

:= T̄µ1···µr
ν1···νs (y(φ(p)))

(
(φ−1)∗

∂

∂yµ1

) ∣∣∣∣
p

⊗ · · ·
(
(φ−1)∗

∂

∂yµr

) ∣∣∣∣
p

⊗ (φ∗dyν1)

∣∣∣∣
p

⊗ · · · ⊗ (φ∗dyνs)

∣∣∣∣
p

= T̄µ1···µr
ν1···νs (y(φ(p)))

∂xρ1

∂yµ1
· · · ∂x

ρr

∂yµr
∂yν1

∂xσ1
· · · ∂y

νs

∂xσs

(
∂

∂xρ1

) ∣∣∣∣
p

⊗ · · ·
(

∂

∂xρr

) ∣∣∣∣
p

⊗ (dxσ1)

∣∣∣∣
p

⊗ · · · ⊗ (dxσs)

∣∣∣∣
p

.

(D.0.22)

and hence

T ρ1···ρrσ1···σs (x(p)) = T̄µ1···µr
ν1···νs (y(φ(p)))

∂xρ1

∂yµ1
· · · ∂x

ρr

∂yµr
∂yν1

∂xσ1
· · · ∂y

νs

∂xσs
. (D.0.23)

Similar to Eq. (D.0.18), we also have

T̄µ1···µr
ν1···νs (y(φ(p))) = Tµ1···µr

ν1···νs (x
′(p)), (D.0.24)

which shows the duality between the active viewpoint, i.e, a diffeomorphism, and the passive viewpoint,
i.e., a coordinate transformation, on an arbitrary tensor.

Now we show the following:

Proposition 1.

(
φ∗
(
∇̄χ̄T̄

)) ∣∣∣∣
p

= (∇χT )
∣∣∣∣
p

, (D.0.25)

where χ̄ ∈ Tϕ(p)N , T̄ ∈ ⊗rTϕ(p)N ⊗s T ∗
ϕ(p)N , ∇̄ is the covariant derivative compatible with a metric

ḡ ∈ T ∗
ϕ(p)N ⊗ T ∗

ϕ(p)N on N ,

χ := φ∗χ̄ ∈ TpM, T := φ∗T̄ ∈ ⊗rTpM ⊗s T ∗
pM (D.0.26)

and ∇ is the covariant derivative compatible with the metric g defined by

g := φ∗ḡ ∈ T ∗
pM ⊗ T ∗

pM. (D.0.27)
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Proof. Since

∂

∂yµ
ḡνρ(y)

(D.0.23)
=

(
∂xγ

∂yµ
∂

∂xγ
gαβ(x(y))

)
∂xα

∂yν
∂xβ

∂yρ
+ gαβ(x(y))

∂

∂yµ

(
∂xα

∂yν
∂xβ

∂yρ

)
(D.0.28)

holds, we get

Γ̄νµα(y)

:=
1

2
ḡνβ(y)

(
∂

∂yµ
ḡβα(y) +

∂

∂yα
ḡµβ(y)−

∂

∂yβ
gνα(y)

)
(D.0.23)

=
1

2
gν

′β′
(x(y))

∂yν

∂xν′

∂yβ

∂xβ′

(
∂

∂yµ
gβα(y) +

∂

∂yα
gµβ(y)−

∂

∂yβ
gνα(y)

)
(D.0.28)

=
∂yν

∂xν′

∂xµ
′

∂yµ
∂xα

′

∂yα
Γν

′

µ′α′(x(y)) +
∂yν

∂xρ
∂2xρ

∂yµ∂yα
(D.0.29)

where we have defined

Γνµα(x) :=
1

2
gνβ(x)

(
∂

∂xµ
gβα(x) +

∂

∂xα
gµβ(x)−

∂

∂xβ
gνα(x)

)
. (D.0.30)

On the other hand, we have

∂

∂yµ
ξ̄ν(y) =

∂

∂yµ

(
∂yν

∂xρ
ξρ(x(y))

)
=
∂xα

∂yµ
∂

∂xα

(
∂yν

∂xρ
ξρ(x(y))

)
=
∂xα

∂yµ
∂yν

∂xρ
∂

∂xα
ξρ(x(y)) +

∂xα

∂yµ
∂2yν

∂xα∂xρ
ξρ(x(y)) (D.0.31)

By using Eq. (D.0.29), the claim follows immediately. For example, for r = 1 and s = 0, i.e., in the
case where T is a vector ξ, we have

(
φ∗
(
∇̄χ̄ξ̄

)) ∣∣∣∣
p

(D.0.22)
= χ̄µ(y(φ(p)))

(
∇̄µξ̄

ν
)
(y(φ(p)))

∂xρ

∂yν

(
∂

∂xρ

) ∣∣∣∣
p

= χ̄µ(y(φ(p)))

(
∂

∂yµ
ξ̄ν(y(φ(p))) + Γ̄νµα(y(φ(p)))ξ̄

α(y(φ(p)))

)
∂xρ

∂yν

(
∂

∂xρ

) ∣∣∣∣
p

(D.0.23)(D.0.28)(D.0.29)(D.0.31)
= χµ(x(p))(∇µξ

ν)(x(p))

(
∂

∂xν

) ∣∣∣∣
p

= ∇χξ

∣∣∣∣
p

, (D.0.32)

where in the third line, we have used

∂yν

∂xρ
∂2xρ

∂yµ∂yα
+
∂xβ

∂yα
∂2yν

∂xβ∂xρ
∂xρ

∂yµ

=
∂

∂yµ

(
∂yν

∂xρ
∂xρ

∂yα

)
− ∂xρ

∂yα
∂

∂yµ
∂yν

∂xρ
+
∂xβ

∂yα
∂

∂yµ
∂yν

∂xβ
= 0 (D.0.33)
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Therefore, it is shown that

φ∗(£χ̄ḡ)
∣∣∣
p
= £χg

∣∣∣
p

(D.0.34)

and

φ∗
(
∇χ̄£ξ̄ ḡ

) ∣∣∣
p
= ∇χ£ξg

∣∣∣
p

(D.0.35)

hold. As a consequence, we also have

(£χ̄ḡ)µν (y(φ(p)) = (£χg)µν (x
′(p)),

(
φ∗
(
∇χ̄£ξ̄ ḡ

))
µν

(y(φ(p))) = (∇χ£ξg)µν (x
′(p)). (D.0.36)
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Appendix E

Asymptotic behavior of
diffeomorphism

E.1 The asymptotic behavior of x′(y)

In this appendix, we show that for the algebra A whose elements satisfying Eq. (4.2.22), Eq. (4.2.28)
holds. Let us fix a vector field in A such that

ξµ(y) := (O(1),O(ρ),O(1), · · · ,O(1)) (ρ→ 0) (E.1.1)

and consider its integral curve defined by

ϕµξ;λ(y) := exp[λξ]yµ :=

∞∑
n=0

λn

n!
ξnyµ, (E.1.2)

where the action of ξn on a function of yµ is recursively defined as

ξnf(y) = ξn−1ξµ(y)∂µf(y) (n = 1, 2, 3, · · · ), (E.1.3)

ξ0f(y) = f(y). (E.1.4)

Defining

ϕµξ;λ,n(y) :=
λn

n!
ξnyµ, (E.1.5)

we will show the following proposition:

Proposition 2. For any n ∈ N, the following holds

ϕµξ;λ,n(y) = (O(1),O(ρ),O(1), · · · ,O(1)) (ρ→ 0). (E.1.6)

Proof. We show by mathematical induction with respect to n. For n = 0, Eq. (E.1.6) is clearly satisfied.
Assuming Eq. (E.1.6) is satisfied for n = k, we have

ϕµξ;λ,k+1(y) =
λ

k + 1
ξϕµξ;λ,k(y)

=
λ

k + 1
ξα∂α(O(1),O(ρ),O(1), · · · ,O(1))

= (O(1),O(ρ),O(1), · · · ,O(1)), (E.1.7)

where we have used Eq. (E.1.1) and the assumption that n = k in the last line. Therefore, Eq. (E.1.6)
also holds for n = k + 1, concluding the proof.
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E.2 An integral curve of vector field

Since the integral curve generated by ξµ is given by

ϕµξ;λ(y) =
∞∑
n=0

ϕµξ;λ,n(y), (E.1.8)

we have

ϕµξ;λ(y) = (O(1),O(ρ),O(1), · · · ,O(1)). (E.1.9)

Next consider the map φµξ (y) := ϕµξ;λ=1(y). In general, diffeomorphisms generated by A and connected
to the identity transformation are given by a product of such maps, i.e.,

(φξ(1) ◦ φξ(2) ◦ · · · ◦ φξ(N))(y) (E.1.10)

for some N and vector fields ξ(1), ξ(2), · · · , ξ(N). Let us analyze the asymptotic behavior for N = 2. For
two vector fields (

ξ(i)
)µ

(y) = (O(1),O(ρ),O(1), · · · ,O(1)) (i = 1, 2) (E.1.11)

as ρ→ 0, we have

(φξ(1) ◦ φξ(2))µ(y) = (O(1),O(ρ),O(1), · · · ,O(1)). (E.1.12)

Repeating the same argument, it is shown that the asymptotic behavior of a general diffeomorphism φ
generated by A is given by

φµ(y) = (O(1),O(ρ),O(1), · · · ,O(1)) (E.1.13)

for ρ → 0. Therefore, the asymptotic behavior of the corresponding coordinate transformation x′(y) is
also given by

x′(y) = (O(1),O(ρ),O(1), · · · ,O(1)). (E.1.14)

E.2 An integral curve of vector field

In the same way as in the previous section, we show that O(ρ2) terms in a vector field result in O(ρ2)
terms in its integral curve.

Let us define a vector field

ξµ(x) := Ξµ(x) + hµ(x) (E.2.1)

where

Ξµ(x) = (Xt(t, y, z), Xρ(t, y, z)ρ,Xy(t, y, z), Xz(t, y, z)), (E.2.2)

hµ(x) = (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) (ρ→ 0). (E.2.3)

The integral curve of ξµ is defined as

ϕµξ;λ(x) := exp[λξ]xµ =

∞∑
n=0

λn

n!
ξnxµ. (E.2.4)

Defining

ϕµξ;λ,n(x) :=
λn

n!
ξnxµ, (E.2.5)

we will show the following proposition:
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Chapter E : Asymptotic behavior of diffeomorphism

Proposition 3. ∀n ∈ N,

ϕµξ;λ,n(x) =
λn

n!
Ξnxµ + εµn(λ, x) (E.2.6)

where the asymptotic behavior of the first term is (O(1),O(ρ),O(1),O(1)) and that of εµn(λ, x) is (O(ρ2),
O(ρ2),O(ρ2),O(ρ2)) as ρ→ 0.

Proof. We show by mathematical induction with respect to n. For n = 0, the statement is clearly
satisfied. For n = 1, since

ϕµξ;λ,1(x) = λξxµ = λ(Ξα + hα)∂αx
µ = λΞµ(x) + λhµ(x), (E.2.7)

the proposition is satisfied. Assuming the proposition is satisfied for n = k, we have

ϕµξ;λ,k+1(x) =
λ

k + 1
ξϕµξ;λ,k(x)

=
λ

k + 1
(Ξ + h)

(
λk

k!
Ξkxµ + εµk(x)

)
=

λk+1

(k + 1)!

(
Ξk+1xµ + hα∂α(Ξ

kxµ)
)
+

λ

k + 1
(Ξα∂αε

µ
k(x) + hα∂αε

µ
k(x)) . (E.2.8)

By (E.2.2), (E.2.3) and the assumption that n = k, we have for each term:

λk+1

(k + 1)!
Ξk+1xµ =

λk+1

(k + 1)!
Ξα∂α(Ξ

kxµ) =
λk+1

(k + 1)!
Ξα∂α(O(1),O(ρ),O(1),O(1))

= (O(1),O(ρ),O(1),O(1)), (E.2.9)

λk+1

(k + 1)!
hα∂α(Ξ

kxµ) =
λk+1

(k + 1)!
hα∂α(O(1),O(ρ),O(1),O(1))

= (O(ρ2),O(ρ2),O(ρ2),O(ρ2)), (E.2.10)

λ

k + 1
Ξα∂αε

µ
k(x) =

λ

k + 1
Xα∂α(O(ρ2),O(ρ2),O(ρ2),O(ρ2))

= (O(ρ2),O(ρ2),O(ρ2),O(ρ2)), (E.2.11)

λ

k + 1
hα∂αε

µ
k(x) =

λ

k + 1
hα∂α(O(ρ2),O(ρ2),O(ρ2),O(ρ2))

= (O(ρ3),O(ρ3),O(ρ3),O(ρ3)). (E.2.12)

Then, for n = k + 1 the proposition is also satisfied. Thus, the proposition is satisfied for ∀n ∈ N.

The integral curve generated by ξµ is now

ϕµξ:λ(x) =

∞∑
n=0

ϕµξ;λ,n(x)

=

∞∑
n=0

λn

n!
Ξnxµ +

∞∑
n=0

εµn(λ, x)

= exp(λΞ)xµ +

∞∑
n=0

εµn(λ, x), (E.2.13)
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where εµn(λ, x) is defined through the following recurrence relation:

εµ0 (λ, x) = 0, (E.2.14)

εµn+1(λ, x) =
λn+1

(n+ 1)!
hα∂α(ξ

nxµ) +
λ

n+ 1
(ξα∂αε

µ
n(x) + hα∂αε

µ
n(x)) . (E.2.15)

In Eq. (E.2.13), the asymptotic behavior of the first term is (O(1),O(ρ),O(1),O(1)), while that of the
second term is (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) as ρ→ 0. Taking λ = 1, a diffeomorphism φµξ (x) := ϕµξ;λ=1(x)
satisfies

φµξ (x) = φµΞ(x) + (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) (E.2.16)

as ρ→ 0.
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Appendix F

Supertranslations and superrotation

F.1 Supertranslations and superrotation charges on Rindler hori-
zon

In this appendix, we analyze the charges corresponding to two vector fields such that as ρ→ 0,

U1 = (W (y, z) +O(ρ2),O(ρ2),O(ρ2),O(ρ2)), (F.1.1)

U2 = (O(ρ2),O(ρ2), Ry(y, z) +O(ρ2), Rz(y, z) +O(ρ2)) (F.1.2)

where W and RA (A = y, z) are arbitrary functions of y, z. They generate a well-known algebra of
supertranslation and superrotation.

Since they satisfy

[U1, U2] = U3 (F.1.3)

where

U3 = (W ′(y, z) +O(ρ2),O(ρ2),O(ρ2),O(ρ2)), W ′(y, z) := −RA(y, z)∂AW (y, z), (F.1.4)

the algebra B defined by

B :=
{
U = (W (y, z) +O(ρ2),O(ρ2), Ry(y, z) +O(ρ2), Rz(y, z) +O(ρ2))

|W,RA are arbitrary functions of y, z
}

(F.1.5)

forms a closed algebra. A straightforward calculation shows that the integrability condition at the
background metric is satisfied.

Let us introduce a real parameter λ and calculate the integral curve ςµλ (x) := exp[λη](xµ) for η ∈ B,
which satisfies the following differential equation:

d

dλ
ςµη;λ = ηµ(ς(x)). (F.1.6)

Any vector field η of the algebra B can be decomposed into

ηµ(x) = Hµ(x) + hµ(x), (F.1.7)

Hµ(x) := (P (y, z), 0, Gy(y, z), Gz(y, z)), (F.1.8)

hµ(x) = (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) (ρ→ 0), (F.1.9)

where P and G are arbitrary functions of (y, z). As we have shown in Appendix E.2, the asymptotic
behavior of the solution of the differential equation is given by

ςµη;λ = ςµH;λ + (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) (F.1.10)
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F.1 Supertranslations and superrotation charges on Rindler horizon

as ρ→ 0.
Let us analyze the case where η = H. Note that Gy and Gz are functions of (y, z). In addition,

the initial condition ςAH;λ=0 is independent of τ and ρ. Thus, the A-component of the integral curve can
generally be written as

ςAH;λ(τ, ρ, y, z) = G̃A(y, z;λ), A = y, z (F.1.11)

for some functions G̃A of y, z and λ. Since P is a function of (y, z), the τ -component of the differential
equation is given by

d

dλ
ςτH;λ(τ, ρ, y, z) = P (G̃y(y, z;λ), G̃z(y, z;λ)), ςτη;λ=0(τ, ρ, y, z) = τ. (F.1.12)

Its solution is written as

ςτη;λ(τ, ρ, y, z) = τ + P̃ (y, z;λ), (F.1.13)

where P̃ is some function of (y, z) and λ. Therefore, in general, the asymptotic behavior of the diffeo-
morphism σµη (x) := exp[η](xµ) = ςµη;λ=1(x) is given by

σµη (x) = (τ + P̃ (y, z), ρ, G̃y(y, z), G̃z(y, z)) + (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) (F.1.14)

as ρ→ 0, where we have re-defined

P̃ (y, z) := P̃ (y, z;λ = 1), G̃A(y, z) := G̃A(y, z;λ = 1) A = y, z. (F.1.15)

As we have done at Step 4 in Sec. 4.3.1, it can be confirmed that the asymptotic behavior of a general
diffeomorphism γµ

(P̃ ,G̃)
is characterized by three real functions P̃ and G̃A of (y, z) as

γµ
(P̃ ,G̃)

(x) = (τ + P̃ (y, z), ρ, G̃y(y, z), G̃z(y, z)) + (O(ρ2),O(ρ2),O(ρ2),O(ρ2)) (F.1.16)

for ρ → 0. Thus, the asymptotic behavior of the components of the metric in question is characterized
by arbitrary functions P̃ and G̃A of (y, z) as

(
g(P̃ ,G̃)
µν (x)

)
:=

∂γα(P̃ ,G̃)

∂xµ

∂γβ
(P̃ ,G̃)

∂xν
ḡαβ(γ(P̃ ,G̃)(x))



=


−κ2ρ2 0 L1yρ

2 L1zρ
2

0 1 0 0
L1yρ

2 0 Lyy Lyz
L1zρ

2 0 Lyz Lzz

+ (higher order term), (F.1.17)

where we have defined

L1A(y, z) := −κ2∂AP̃ (y, z), LAB(y, z) := ∂AG̃
y(y, z)∂BG̃

y(y, z) + ∂AG̃
z(y, z)∂BG̃

z(y, z). (F.1.18)

A straightforward calculation shows that the above metric satisfies the integrability condition.
Let us adopt the parametrization of metric as

(gµν(x;λ)) :=

∂γα(λP̃ ,λG̃)

∂xµ

∂γβ
(λP̃ ,λG̃)

∂xν
ḡαβ(γ(λP̃ ,λG̃)(x))

 . (F.1.19)

On one hand, from Eq. (3.1.9), we get

Qτρ[U1]

∣∣∣∣
gµν(x;λ)

= λ2
√
Lκ

8πG
W +O(ρ), (F.1.20)

Qτρ[U2]

∣∣∣∣
gµν(x;λ)

= −λ3
√
L

8πGκ
RAL1A +O(ρ) (F.1.21)
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Chapter F : Supertranslations and superrotation

as ρ→ 0, where we have defined L := LyyLzz − L2
yz. On the other hand, from Eq. (3.1.3), we have

Θρ = O(ρ) (F.1.22)

as ρ→ 0.
Therefore, from Eq. (3.1.19), the charges are evaluated as

H[U1] =
κ

8πG

∫
dydz

√
L(y, z)W (y, z), (F.1.23)

H[U2] = − 1

8πGκ

∫
dydz

√
L(y, z)RA(y, z)L1A(y, z), (F.1.24)

where the references of the charges are chosen so that they vanish at the background metric.

F.2 Integrability for Killing horizon

The commutators of vector fields defined in Eqs. (4.3.39) and (4.3.40) are calculated as

[ξ, η]t = (VM1 ∂MT2 − VM2 ∂MT1) +O(ρ2),

[ξ, η]ρ = O(ρ2),

[ξ, η]M = (V N1 ∂NV
M
2 − V N2 ∂NV

M
1 ) +O(ρ2) (F.2.1)

as ρ→ 0. As a closed algebra including ξ, η, let us adopt

A := {V =
(
T (xM ) +O(ρ2),O(ρ2), VM (xN ) +O(ρ2)

)
| T, VM are arbitrary functions of xM}. (F.2.2)

From Eqs. (4.3.41a)-(4.3.41c), for any ξ, η ∈ A, we have

ωt(ḡ,£η ḡ,£ξ ḡ) = O(1), ωρ(ḡ,£η ḡ,£ξ ḡ) = O(ρ), ωM (ḡ,£η ḡ,£ξ ḡ) = O(1) (F.2.3)

as ρ→ 0. Therefore, the corresponding charges are integrable.
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Appendix G

The detailed calculation in
subsection. 4.3.2

Let us consider the metric:

(ḡµν) =


−κ2ρ2 + f

(4)
tt ρ

4 +O(ρ5) O(ρ4) ftψρ
2 +O(ρ4) ftAρ

2 +O(ρ4)
O(ρ4) 1 +O(ρ2) O(ρ4) O(ρ3)

ftψρ
2 +O(ρ4) O(ρ4) fψψ +O(ρ2) O(ρ2)

ftAρ
2 +O(ρ4) O(ρ3) O(ρ2) ΩAB +O(ρ2)

 . (G.0.1)

Its inverse is

(ḡµν) =


− 1
κ2x2 +O(1) O(ρ2)

ftψ
κ2fψψ

+O(ρ2) ftBΩAB

κ2 +O(ρ2)

O(ρ2) 1 +O(ρ2) O(ρ4) O(ρ3)
ftψ

κ2fψψ
+O(ρ2) O(ρ4) 1

fψψ
+O(ρ2) O(ρ2)

ftBΩAB

κ2 +O(ρ2) O(ρ3) O(ρ2) ΩAB +O(ρ2)

 . (G.0.2)

The square of determinant is
√
−ḡ = κ

√
Ωfψψρ+O(ρ2). (G.0.3)

G.1 Christoffel symbols

The Christoeffel symbols of ḡµν are listed:

Γttt = O(ρ2), Γttρ =
1

ρ
+O(ρ), Γttψ = O(ρ2), ΓttA = O(ρ2), (G.1.1)

Γtρρ = O(ρ), Γtρψ = − ftψ
κ2ρ

+O(ρ), ΓtρA = − ftA
κ2ρ

+O(ρ), (G.1.2)

Γtψψ = − 1

2κ2
ftAΩ

AB∂Bfψψ +O(ρ2), ΓtψA =
−fψψ∂Aftψ + ftψ∂Afψψ

2κ2fψψ
+O(ρ2), (G.1.3)

ΓtAB =
ftDΩ

CD (∂BΩCA + ∂AΩCB − ∂CΩAB)− ∂AftB − ∂BftA
2κ2

+O(ρ2), (G.1.4)

Γρtt = κ2ρ+O(ρ3), Γρtρ = O(ρ3), Γρtψ = −ftψρ+O(ρ3), ΓρtA = −ftAρ+O(ρ3), (G.1.5)

Γρρρ = f (2)ρρ ρ+O(ρ2), Γρρψ = O(ρ3), ΓρρA =
1

2
∂Af

(2)
ρρ ρ

2 +O(ρ3), (G.1.6)

Γρψψ = −f (2)ψψρ+O(ρ3), ΓρψA = −f (2)ψAρ+O(ρ3), (G.1.7)

ΓρAB = −Ω
(2)
ABρ+O(ρ3), (G.1.8)
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Γψtt = O(ρ5), Γψtρ = O(ρ3), Γψtψ = O(ρ4), ΓψtA =
∂Aftψρ

2

2fψψ
+O(ρ4), (G.1.9)

Γψρρ = O(ρ3), Γψρψ =
f2tψ + κ2f

(2)
ψψ

κ2fψψ
ρ+O(ρ3), ΓψρA =

ftAftψ + κ2f
(2)
ψA

κ2fψψ
ρ+O(ρ3), (G.1.10)

Γψψψ = O(ρ2), ΓψψA =
∂Afψψ
2fψψ

+O(ρ2), (G.1.11)

ΓψAB = O(ρ2), (G.1.12)

ΓAtt = O(ρ4), ΓAtρ = O(ρ3), ΓAtψ = −1

2
ΩAB∂Bftψρ

2 +O(ρ4), ΓAtB =
1

2
ΩAC(∂BftC − ∂CftB)ρ

2 +O(ρ4),

(G.1.13)

ΓAρρ = O(ρ2), ΓAρψ =
ΩAB

κ2

(
ftψftB + κ2f

(2)
ψB

)
ρ+O(ρ3), ΓAρB =

ΩAC

κ2

(
ftCftB + κ2Ω

(2)
CB

)
ρ+O(ρ3),

(G.1.14)

ΓAψψ = −1

2
ΩAB∂Bfψψ +O(ρ2), ΓAψB = O(ρ2),

(G.1.15)

ΓABC =
ΩAD

2
[∂CΩDB + ∂BΩDC − ∂DΩBC ] +O(ρ2).

(G.1.16)

G.2 Riemann tensor and Weyl tensor

The components of Riemann tensor of ḡ are listed:

R tρ
tρ = O(1), R tρ

tψ = O(ρ), R tρ
tA = O(ρ), (G.2.1)

R tρ
ρψ = O(1), R tρ

ρA = O(1), (G.2.2)

R tρ
ψA =

∂Aftψ
κ2ρ

+O(ρ), (G.2.3)

R tρ
AB =

∂BftA − ∂AftB
κ2ρ

+O(ρ), (G.2.4)

R tψ
tρ = O(ρ), R tψ

tψ = O(1), R tψ
tA = O(1), (G.2.5)

R tψ
ρψ = O(ρ), R tψ

ρA = O(ρ−1), (G.2.6)

R tψ
ψA = O(1), (G.2.7)

R tψ
AB = O(1), (G.2.8)

R tA
tρ = O(ρ), R tA

tψ = O(1), R tB
tA = O(1), (G.2.9)

R tA
ρψ = O(ρ−1), R tB

ρA = O(ρ−1), (G.2.10)

R tB
ψA = O(1), (G.2.11)

R tC
AB = O(1), (G.2.12)

R ρψ
tρ = O(ρ2), R ρψ

tψ = O(ρ3), R ρψ
tA = O(ρ), (G.2.13)

R ρψ
ρψ = O(1), R ρψ

ρA = O(1), (G.2.14)

R ρψ
ψA = O(ρ), (G.2.15)

R ρψ
AB = O(ρ), (G.2.16)
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R ρA
tρ = O(ρ2), R ρA

tψ = O(ρ), R ρB
tA = O(ρ), (G.2.17)

R ρA
ρψ = O(1), R ρB

ρA = O(1), (G.2.18)

R ρB
ψA = O(ρ), (G.2.19)

R ρC
AB = O(ρ). (G.2.20)

The Ricci tensor is

Rµν =


O(ρ2) O(ρ3) O(ρ2) O(ρ2)
O(ρ3) O(1) O(ρ) O(ρ)
O(ρ2) O(ρ) O(1) O(1)
O(ρ2) O(ρ) O(1) O(1)

 , (G.2.21)

and the Ricci scalar is

R = O(1). (G.2.22)

Defining

T µν
αβ := 2(g [µ

α R
ν]
β − g

[µ
β Rν]α) (G.2.23)

and

U µν
αβ := 2Rg [µ

α g
ν]
β , (G.2.24)

Weyl tensor is decomposed as

C µν
αβ := R µν

αβ − 1

D − 2
T µν
αβ +

1

(D − 1)(D − 2)
U µν
αβ . (G.2.25)

The components of T µν
αβ are listed:

T tρ
tρ = O(1), T tρ

tψ = O(ρ), T tρ
tA = O(ρ), (G.2.26)

T tρ
ρψ = O(1), T tρ

ρA = O(1), (G.2.27)

T tρ
ψA = O(ρ2), (G.2.28)

T tρ
AB = O(ρ2), (G.2.29)

T tψ
tρ = O(ρ), T tψ

tψ = O(1), T tψ
tA = O(1), (G.2.30)

T tψ
ρψ = O(ρ), T tψ

ρA = O(ρ2), (G.2.31)

T tψ
ψA = O(1), (G.2.32)

T tψ
AB = O(ρ2), (G.2.33)

T tA
tρ = O(ρ), T tA

tψ = O(1), T tB
tA = O(1), (G.2.34)

T tA
ρψ = O(ρ2), T tB

ρA = O(ρ), (G.2.35)

T tB
ψA = O(1), (G.2.36)

T tC
AB = O(1), (G.2.37)

T ρψ
tρ = O(ρ2), T ρψ

tψ = O(ρ3), T ρψ
tA = O(ρ4), (G.2.38)

T ρψ
ρψ = O(1), T ρψ

ρA = O(1), (G.2.39)

T ρψ
ψA = O(ρ), (G.2.40)

T ρψ
AB = O(ρ4), (G.2.41)
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T ρA
tρ = O(ρ2), T ρA

tψ = O(ρ4), T ρB
tA = O(ρ3), (G.2.42)

T ρA
ρψ = O(1), T ρB

ρA = O(1), (G.2.43)

T ρB
ψA = O(ρ), (G.2.44)

T ρC
AB = O(ρ). (G.2.45)

The components of Weyl tensor are listed:

C tρ
tρ = O(1), C tρ

tψ = O(ρ), C tρ
tA = O(ρ), (G.2.46)

C tρ
ρψ = O(1), C tρ

ρA = O(1), (G.2.47)

C tρ
ψA =

∂Aftψ
κ2ρ

+O(ρ), (G.2.48)

C tρ
AB =

∂BftA − ∂AftB
κ2ρ

+O(ρ), (G.2.49)

C tψ
tρ = O(ρ), C tψ

tψ = O(1), C tψ
tA = O(1), (G.2.50)

C tψ
ρψ = O(ρ), C tψ

ρA = O(ρ−1), (G.2.51)

C tψ
ψA = O(1), (G.2.52)

C tψ
AB = O(1), (G.2.53)

C tA
tρ = O(ρ), C tA

tψ = O(1), C tB
tA = O(1), (G.2.54)

C tA
ρψ = O(ρ−1), C tB

ρA = O(ρ−1), (G.2.55)

C tB
ψA = O(1), (G.2.56)

C tC
AB = O(1), (G.2.57)

C ρψ
tρ = O(ρ2), C ρψ

tψ = O(ρ3), C ρψ
tA = O(ρ), (G.2.58)

C ρψ
ρψ = O(1), C ρψ

ρA = O(1), (G.2.59)

C ρψ
ψA = O(ρ), (G.2.60)

C ρψ
AB = O(ρ), (G.2.61)

C ρA
tρ = O(ρ2), C ρA

tψ = O(ρ), C ρB
tA = O(ρ), (G.2.62)

C ρA
ρψ = O(1), C ρB

ρA = O(1), (G.2.63)

C ρB
ψA = O(ρ), (G.2.64)

C ρC
AB = O(ρ), (G.2.65)

C ψA
tρ = O(ρ), C ψA

tψ = O(ρ2), C ψB
tA = O(ρ2), (G.2.66)

C ψA
ρψ = O(ρ), C ψB

ρA = O(ρ), (G.2.67)

C ψB
ψA = O(1), (G.2.68)

C ψC
AB = O(1), (G.2.69)

C AB
tρ = O(ρ), C AB

tψ = O(ρ2), C BC
tA = O(ρ2), (G.2.70)

C AB
ρψ = O(ρ), C BC

ρA = O(ρ), (G.2.71)

C BC
ψA = O(1), (G.2.72)

C CD
AB = O(1). (G.2.73)
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G.3 The detailed derivation of Eq. (4.3.36)

For

ξ = (Xt(t, ψ, θA) +O(ρ), Xρ(t, ψ, θA)ρ+O(ρ2), Xψ(t, ψ, θA) +O(ρ), XA(t, ψ, θA) +O(ρ)) (G.3.1)

η = (Y t(t, ψ, θA) +O(ρ), Y ρ(t, ψ, θA)ρ+O(ρ2), Y ψ(t, ψ, θA) +O(ρ), Y A(t, ψ, θA) +O(ρ)) (ρ→ 0),
(G.3.2)

the contribution of Weyl tensor in non trivial condition is

√
−ḡC [tρ]

αβ ξαηβ =
√
−ḡC tρ

αβ ξαηβ

=

√
Ωfψψ

κ

(
∂AftψX

ψY A + (∂BftA − ∂AftB)X
AY B − (X ↔ Y )

)
+O(ρ). (G.3.3)

We need to calculate

∇µξ
ν = ∂µξ

ν + Γνµαξ
α. (G.3.4)

The components of it are listed as

∇tξ
t = Xρ + ∂tX

t +O(ρ), ∇tξ
ρ = (κ2Xt − ftMX

M + ∂tX
ρ)ρ+O(ρ2) (M = (ψ, θA)), (G.3.5)

∇tξ
ψ = ∂tX

ψ +O(ρ), ∇tξ
A = ∂tX

A +O(ρ), (G.3.6)

(G.3.7)

∇ρξ
t =

1

κ2ρ
(κ2Xt − ftMX

M ) +O(1), ∇ρξ
ρ = Xρ +O(ρ), (G.3.8)

∇ρξ
ψ = O(1), ∇ρξ

A = O(1), (G.3.9)

(G.3.10)

∇ψξ
t = ∂ψX

t +
1

2κ2

[
−2ftψX

ρ +
XA

fψψ
(−fψψ∂Aftψ + ftψ∂Afψψ)−XψftAΩ

AB∂Bfψψ

]
+O(ρ), ∇ψξ

ρ = O(ρ),

(G.3.11)

∇ψξ
ψ = ∂ψX

ψ +
XA∂Afψψ

2fψψ
+O(ρ), ∇ψξ

A = ∂ψX
A − XψΩAB∂Bfψψ

2
+O(ρ), (G.3.12)

∇Aξ
t = ∂AX

t − ftA
κ2

Xρ +
−fψψ∂Aftψ + ftψ∂Afψψ

2κ2fψψ
Xψ

+
ftDΩ

CD (∂BΩCA + ∂AΩCB − ∂CΩAB)− ∂AftB − ∂BftA
2κ2

XB +O(ρ),

(G.3.13)

∇Aξ
ρ = O(ρ), ∇Aξ

ψ = ∂AX
ψ +

∂Afψψ
2fψψ

Xψ +O(ρ), (G.3.14)

∇Aξ
B = ∂AX

B +
ΩBD

2
[∂CΩDA + ∂AΩDC − ∂DΩAC ]X

C +O(ρ). (G.3.15)

Next,

∇µξν = gµα∇αξ
ν (G.3.16)
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are needed. The components of it are calculated as

∇tξt = −X
ρ + ∂tX

t

κ2ρ2
+O(ρ−1), ∇tξρ = −κ

2Xt − ftMX
M + ∂tX

ρ

κ2ρ
+O(1), (G.3.17)

∇tξψ = −∂tX
ψ

κ2ρ2
+O(ρ−1), ∇tξA = −∂tX

A

κ2ρ2
+O(ρ−1), (G.3.18)

∇ρξt =
κ2Xt − ftMX

M

κ2ρ
+O(1), ∇ρξρ = Xρ +O(ρ), (G.3.19)

∇ρξψ = O(1), ∇ρξA = O(1), (G.3.20)

∇ψξt =
ftψ
κ2fψψ

(Xρ + ∂tX
t) +

1

fψψ

[
∂ψX

t +
1

2κ2

(
− 2ftψX

ρ +
XA

fψψ
(−fψψ∂Aftψ + ftψ∂Afψψ)

−XψftAΩ
AB∂Bfψψ

)]
+O(ρ),

(G.3.21)

∇ψξρ = O(ρ), ∇ψξψ =
ftψ∂tX

ψ

κ2fψψ
+

1

fψψ

(
∂ψX

ψ +
XA∂Afψψ

2fψψ

)
+O(ρ), (G.3.22)

∇ψξA =
ftψ∂tX

A

κ2fψψ
+

1

fψψ

(
∂ψX

A − XψΩAB∂Bfψψ
2

)
+O(ρ), (G.3.23)

∇Aξt =
ftBΩ

AB

κ2
(Xρ + ∂tX

t) + ΩAB
[
∂BX

t − ftB
κ2

Xρ +
−fψψ∂Bftψ + ftψ∂Bfψψ

2κ2fψψ
Xψ (G.3.24)

+
ftEΩ

DE (∂CΩDB + ∂BΩDC − ∂DΩBC)− ∂BftC − ∂CftB
2κ2

XC

]
+O(ρ), (G.3.25)

∇Aξρ = O(ρ), ∇Aξψ = ΩAB
(
ftB∂tX

ψ

κ2
+ ∂BX

ψ +
∂Bfψψ
2fψψ

Xψ

)
+O(ρ), (G.3.26)

∇AξB = ΩAC
[
ftC∂tX

B

κ2
+ ∂CX

B +
ΩBE

2
(∂DΩEC + ∂CΩED − ∂EΩCD)X

D

]
+O(ρ). (G.3.27)

Thus the components of ∇αηµ∇αξ
ν are

∇αηt∇αξ
ρ =

1

κ2ρ

[
Xρ(κ2Y t − ftMY

M )− Y ρ(κ2Xt − ftMX
M )− Y ρ∂tX

ρ − ∂tY
t(κ2Xt − ftMX

M + ∂tX
ρ)
]
+O(1),

(G.3.28)

∇αηt∇αξ
ψ = −∂tX

ψ

κ2ρ2
(Y ρ + ∂tY

t) +O(ρ−1), (G.3.29)

∇αηt∇αξ
A = −∂tX

A

κ2ρ2
(Y ρ + ∂tY

t) +O(ρ−1), (G.3.30)

∇αηρ∇αξ
ψ = −κ

2Y t − ftMY
M + ∂tY

ρ

κ2ρ
∂tX

ψ +O(1), (G.3.31)

∇αηρ∇αξ
A = −κ

2Y t − ftMY
M + ∂tY

ρ

κ2ρ
∂tX

A +O(1), (G.3.32)

∇αηψ∇αξ
A = −∂tY

ψ∂tX
A

κ2ρ2
+O(ρ−1), (G.3.33)

∇αηA∇αξ
B = −∂tY

A∂tX
B

κ2ρ2
+O(ρ−1). (G.3.34)
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Since we have

∇αη
α = 2Y ρ + ∂tY

t + ∂MY
M +

Y A∂Afψψ
2fψψ

+
ΩAD

2
[∂CΩDA + ∂AΩDC − ∂DΩAC ]Y

C +O(ρ)

= 2Y ρ + ∂tY
t +DMY

M

:=Yη

+O(ρ) (G.3.35)

where DMY
M = ∂MY

M + ΓMMNY
N , the components of ∇αη

α∇µξν are listed as

∇αη
α∇tξρ = −κ

2Xt − ftMX
M + ∂tX

ρ

κ2ρ
Yη +O(1), ∇αη

α∇ρξt =
κ2Xt − ftMX

M

κ2ρ
Yη +O(1), (G.3.36)

∇αη
α∇tξψ = −∂tX

ψ

κ2ρ2
Yη +O(ρ−1), ∇αη

α∇ψξt = O(1), (G.3.37)

∇αη
α∇tξA = −∂tX

A

κ2ρ2
Yη +O(ρ−1), ∇αη

α∇Aξt = O(1), (G.3.38)

∇αη
α∇ρξψ = O(1), ∇αη

α∇ψξρ = O(ρ), (G.3.39)

∇αη
α∇ρξA = O(1), ∇αη

α∇Aξρ = O(ρ), (G.3.40)

∇αη
α∇ψξA = O(1), ∇αη

α∇Aξψ = O(1), (G.3.41)

∇αη
α∇AξB = O(1). (G.3.42)

We get

2∇αη[t∇αξ
ρ] =

(
2Xρ

(
κ2Y t − ftMY

M
)
− ∂tX

ρ(Y ρ + ∂tY
t)− ∂tY

t(κ2Xt − ftMX
M )− (X ↔ Y )

)
1

κ2ρ
+O(1)

(G.3.43)

−∇αη
α∇[tξρ] +∇αξ

α∇[tηρ] =

[(
2Y ρ + ∂tY

t +DMY
M
) (
κ2Xt − ftMX

M + 1
2∂tX

ρ
)

κ2ρ
− (X ↔ Y )

]
+O(1)

(G.3.44)

Defining,

S = Sµν(dD−2x)µν , (G.3.45)

Sµν = Sµνη,ξ + SRµνη,ξ + SBµνξ,η (G.3.46)

where

Sµνη,ξ =
√
−g
(
2∇αη[µ∇αξ

ν] −∇αη
α∇[µξν] +∇αξ

α∇[µην]
)
, (G.3.47)

SRµνη,ξ =
√
−g
(
−C [µν]

αβ ξαηβ +
4Λ

D − 1
ξ[µην]

)
, (G.3.48)

SBµνη,ξ =
√
−g∇α

(
−ξ[µ∇ν]ηα + ξ[µ∇|α|ην] − ξα∇[µην]

)
= ∂α

(√
−g
(
−ξ[µ∇ν]ηα + ξ[µ∇|α|ην] − ξα∇[µην]

))
, (G.3.49)

the non-trivial condition is∫
∂Σ

2(dD−2x)tρ
√
−ḡ
(
2∇αη[t∇αξ

ρ] −∇αη
α∇[tξρ] +∇αξ

α∇[tηρ] − C
[tρ]

αβ ξαηβ +
4Λ

D − 1
ξ[tηρ]

)
=

∫
∂Σ

2
√

Ωfψψ

κ

(
1

2
∂tY

ρ∂tX
t +DMY

M (κ2Xt − ftMX
M +

1

2
∂tX

ρ)

+ ∂AftψX
ψY A + (∂BftA − ∂AftB)X

AY B − (X ↔ Y )

)
dxM1 · · · dxMD−2

(G.3.50)
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G.4 The detailed derivation of Eqs. (4.3.41a),(4.3.41b), and (4.3.41c)

The pre-symplectic current is

ωµ ≈ ∂νS
µν = ∂ν(S

µν
η,ξ + SRµνη,ξ ), (G.4.1)

where SBµνη,ξ (Eq. (G.3.49)) does not contribute because ∂νS
Bµν
η,ξ = 0.

Stρ =

√
Ωfψψ

κ

(
1

2
∂tY

ρ∂tX
t +DMY

M (κ2Xt − ftMX
M +

1

2
∂tX

ρ) + ∂AftψX
ψY A

+ (∂BftA − ∂AftB)X
AY B − (X ↔ Y )

)
+O(ρ) (G.4.2)

To get StMη,ξ , we need

2∇αη[t∇αξ
M ] =

[
−∂tX

M

κ2ρ2
(Y ρ + ∂tY

t)− (X ↔ Y )

]
+O(ρ−1). (G.4.3)

−∇αη
α∇[tξM ] +∇αξ

α∇[tηM ] =

[
∂tX

M

2κ2ρ2
(
2Y ρ + ∂tY

t +DNY
N
)
− (X ↔ Y )

]
+O(ρ−1). (G.4.4)

On the other hand,

SRtMη,ξ = O(1). (G.4.5)

Thus we get

StM = StMη,ξ + SRtMη,ξ = −
√
Ωfψψ

2κρ

[
∂tX

M
(
∂tY

t −DNY
N
)
− (X ↔ Y )

]
+O(1) (G.4.6)

and

ωt(ḡ,£η ḡ,£ξ ḡ) ≈ ∂ρS
tρ + ∂MS

tM = ∂M

(
−
√

Ωfψψ

2κρ

[
∂tX

M
(
∂tY

t −DNY
N
)
− (X ↔ Y )

])
+O(1).

(G.4.7)

Similarly, since we have

2∇αη[ρ∇αξ
M ] =

1

κ2ρ

[(
−κ2Y t + ftNY

N − ∂tY
ρ
)
∂tX

M − (X ↔ Y )
]
+O(1) (G.4.8)

−∇αη
α∇[ρξM ] +∇αξ

αη[ρξM ] = O(1) (G.4.9)

SRρMη,ξ = O(ρ), (G.4.10)

we get

SρM =

√
Ωfψψ

κ

[(
−κ2Y t + ftNY

N − ∂tY
ρ
)
∂tX

M − (X ↔ Y )
]
+O(ρ) (G.4.11)

and

ωρ(ḡ,£η ḡ,£ξ ḡ) ≈ ∂tS
ρt + ∂MS

ρM

= ∂t

[
−
√
Ωfψψ

κ

(
1

2
∂tY

ρ∂tX
t +DMY

M (κ2Xt

− ftMX
M +

1

2
∂tX

ρ) + ∂AftψX
ψY A + (∂BftA − ∂AftB)X

AY B − (X ↔ Y )

)]

+ ∂M

(√
Ωfψψ

κ

[(
−κ2Y t + ftNY

N − ∂tY
ρ
)
∂tX

M − (X ↔ Y )
])

+O(ρ). (G.4.12)
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Since we have

2∇αη[M∇αξ
N ] = − 1

κ2ρ2
[
∂tY

M∂tX
N − (X ↔ Y )

]
+O(ρ−1) (G.4.13)

−∇αη
α∇[MξN ] +∇αξ

αη[MξN ] = O(1) (G.4.14)

SRMN
η,ξ = O(1), (G.4.15)

we get

SMN = −
√
Ωfψψ

κρ

[
∂tY

M∂tX
N − (X ↔ Y )

]
+O(1) (G.4.16)

and

ωM (ḡ,£η ḡ,£ξ ḡ) ≈ ∂tS
Mt + ∂ρS

Mρ + ∂NS
MN

= ∂t

(√
Ωfψψ

2κρ

[
∂tX

M
(
∂tY

t −DNY
N
)
− (X ↔ Y )

])

+ ∂N

(
−
√
Ωfψψ

κρ

[
∂tY

M∂tX
N − (X ↔ Y )

])
+O(1). (G.4.17)

G.5 Algebra of vector fields on sphere

The spherical harmonics Eq. (4.3.51) satisfies∫
YlmY

∗
l′m′dΩ = δll′δmm′ (G.5.1)

and

Y ∗
lm = (−1)mYl(−m). (G.5.2)

Any vector fields V tangent to the sphere are decomposed into

V = ∇φ+ n̂×∇ψ (G.5.3)

where ∇ is surface gradient on the sphere, n̂ is unit normal to the sphere and φ, ψ are scalar function on
the sphere. Defining

J
(1)
lm := n̂×∇Ylm = − 1√

σ
εAB∂BYlm∂A, (G.5.4)

J
(2)
lm := ∇Ylm = ∂AYlm∂A, (G.5.5)

they satisfy∫
J
(1)
lm · J (1)∗

l′m′dΩ =

∫
J
(2)
lm · J (2)∗

l′m′dΩ = l(l + 1)δll′δmm′ (G.5.6)∫
J
(1)
lm · J (2)∗

l′m′dΩ =

∫
(er ×LYlm) ·L†Yl′m′dΩ =

∫
dΩL(er ×LYlm)Yl′m′ = 0. (G.5.7)

Thus they form orthogonal basis.
In the following calculation, we use the relation

∆Ylm = ∂2θYlm +
1

tan θ
∂θYlm +

1

sin2 θ
∂2ϕYlm = −l(l + 1)Ylm. (G.5.8)
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First we calculate as

[J
(1)
lm , J

(1)
l′m′ ] =

1√
σ
εAB∂BYlm∂A

(
1√
σ
εCD∂DYl′m′

)
∂C − (lm↔ l′m′)

= − 1√
σ
εAB∂B

[
(∂AYlm)

(
1√
σ
εCD∂DYl′m′

)]
∂C − (lm↔ l′m′)

=
1√
σ
∂θ

[
(∂ϕYlm)

(
1√
σ
εCD∂DYl′m′

)]
∂C − 1√

σ
∂ϕ

[
(∂θYlm)

(
1√
σ
εCD∂DYl′m′

)]
∂C − (lm↔ l′m′)

= − 1√
σ
∂θ

[
(∂ϕYlm)

(
1√
σ
∂θYl′m′

)]
∂ϕ +

1√
σ
∂ϕ

[
(∂θYl′m′)

(
1√
σ
∂ϕYlm

)]
∂θ − (lm↔ l′m′)

=
1√
σ
∂θ

[
1√
σ
(∂θYlm∂ϕYl′m′ − ∂ϕYlm∂θYl′m′)

]
∂ϕ −

1√
σ
∂ϕ

[
1√
σ
(∂θYlm∂ϕYl′m′ − ∂ϕYlm∂θYl′m′)

]
∂θ

= − 1√
σ
εAB∂B

∑
Cl

′′m′′

lml′m′Yl′′m′′∂A

=
∑

Cl
′′m′′

lml′m′J
(1)
l′′m′′ (G.5.9)

Second we have

[J
(2)
lm , J

(2)
l′m′ ] = ∂AYlm∂A∂

BYl′m′∂B − (lm↔ l′m′)

= ∂θYlm∂θ∂
θYl′m′∂θ + ∂θYlm∂θ∂

ϕYl′m′∂ϕ + ∂ϕYlm∂ϕ∂
θYl′m′∂θ + ∂ϕYlm∂ϕ∂

ϕYl′m′∂ϕ − (lm↔ l′m′)

=

[
∂θYlm∂

2
θYl′m′ +

1

sin2 θ
∂ϕYlm∂ϕ∂θYl′m′

]
∂θ +

[
∂θYlm∂θ

(
1

sin2 θ
∂ϕYl′m′

)
+

1

sin4 θ
∂ϕYlm∂

2
ϕYl′m′

]
∂ϕ − (lm↔ l′m′).

(G.5.10)

The components are calculated as

[J
(2)
lm , J

(2)
l′m′ ]

θ = − 1

sin2 θ
(∂θYlm∂

2
ϕYl′m′ + ∂θ∂ϕYlm∂ϕYl′m′)− l′(l′ + 1)∂θYlmYl′m′ − (lm↔ l′m′)

= − 1

sin θ2
∂ϕ(∂θYlm∂ϕYl′m′)+l(l + 1)∂θYl′m′Ylm − (lm↔ l′m′), (G.5.11)

[J
(2)
lm , J

(2)
l′m′ ]

ϕ = −2 cos θ

sin3 θ
∂θYlm∂ϕYl′m′ +

1

sin2 θ
∂θYlm∂θ∂ϕYl′m′ − 1

sin4 θ
∂2ϕYlm∂ϕYl′m′ − (lm↔ l′m′)

=
1

sin2 θ
∂2θYlm∂ϕYl′m′ − cos θ

sin3 θ
∂θYlm∂ϕYl′m′ +

1

sin2 θ
∂θYlm∂θ∂ϕYl′m′ +

1

sin2 θ
l(l + 1)Ylm∂ϕYl′m′

− (lm↔ l′m′)

=
1

sin2 θ
∂θ(∂θYlm∂ϕYl′m′)− cos θ

sin3 θ
∂θYlm∂ϕYl′m′ +

1

sin2 θ
l(l + 1)Ylm∂ϕYl′m′ − (lm↔ l′m′)

=
1

sin θ
∂θ

[
1

sin θ
∂θYlm∂ϕYl′m′

]
+

1

sin2 θ
l(l + 1)Ylm∂ϕYl′m′ − (lm↔ l′m′). (G.5.12)

The following relations

[
∑

Cl
′′m′′

lml′m′J
(1)
l′′m′′ ]

θ = − 1√
σ
∂ϕ

[
1√
σ
(∂θYlm∂ϕYl′m′ − ∂ϕYlm∂θYl′m′)

]
∂θ

= − 1

sin θ2
∂ϕ(∂θYlm∂ϕYl′m′)− (lm↔ l′m′), (G.5.13)

[
∑

Cl
′′m′′

lml′m′J
(1)
l′′m′′ ]

ϕ =
1

sin θ
∂θ

[
1

sin θ
∂θYlm∂ϕYl′m′

]
− (lm↔ l′m′) (G.5.14)

hold. Expanded as follows

[J
(2)
lm , J

(2)
l′m′ ] =

∑
l′′′m′′′

αl
′′′m′′′

lml′m′J
(1)
l′′′m′′′ +

∑
l′′′m′′′

βl
′′′m′′′

lml′m′J
(2)
l′′′m′′′ , (G.5.15)
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since orthogonality and the relations

Cl
′′m′′

lml′m′ =

∫
εAB∂AYlm∂BYl′m′Y ∗

l′′m′′dθdφ. (G.5.16)

Dl′′m′′

lml′m′ =

∫
∂AYlm∂AYl′m′Y ∗

l′′m′′dΩ, (G.5.17)

we get

l′′(l′′ + 1)αl
′′m′′

lml′m′ =

∫
[· · · − (lm↔ l′m′)] · J (1)∗

l′′m′′dΩ +

∫
[· · · − (lm↔ l′m′)] · J (1)∗

l′′m′′dΩ, (G.5.18)

where∫
[· · · − (lm↔ l′m′)] · J (1)∗

l′′m′′dΩ =

∫ [
1

sin2 θ
∂ϕ(∂θYlm∂ϕYl′m′)

1

sin θ
∂ϕY

∗
l′′m′′ + ∂θ

(
1

sin θ
∂θYlm∂ϕYl′m′

)
∂θYl′′m′′

]
× sin θdθdφ− (lm↔ l′m′)

= −
∫
(∂θYlm∂ϕYl′m′)

(
1

sin2 θ
∂2ϕY

∗
l′′m′′ +

1

tan θ
∂θY

∗
l′′m′′ + ∂2θY

∗
l′′m′′

)
dθdφ

− (lm↔ l′m′)

= l′′(l′′ + 1)

∫
(∂θYlm∂ϕYl′m′)Y ∗

l′′m′′dθdφ− (lm↔ l′m′)

= l′′(l′′ + 1)Cl
′′m′′

lml′m′ , (G.5.19)

∫
[· · · − (lm↔ l′m′)] · J (1)∗

l′′m′′dΩ = l(l + 1)

∫
[−∂θYl′m′Ylm∂ϕY

∗
l′′m′′ + ∂ϕYl′m′Ylm∂θY

∗
l′′m′′ ] dθdφ− (lm↔ l′m′)

= l(l + 1)

∫
[∂ϕ(∂θYl′m′Ylm)Y ∗

l′′m′′ − ∂θ(∂ϕYl′m′Ylm)Y ∗
l′′m′′ ] dθdφ− (lm↔ l′m′)

= −l(l + 1)

∫
(∂θYlm∂ϕYl′m′ − ∂ϕYlm∂θYl′m′) dθdφ− (lm↔ l′m′)

= −l(l + 1)Cl
′′m′′

lml′m′ − (lm↔ l′m′)

= −Cl
′′m′′

lml′m′(l(l + 1) + l′(l′ + 1)). (G.5.20)

Thus we get

αl
′′m′′

lml′m′ = Cl
′′m′′

lml′m′
l′′(l′′ + 1)− l(l + 1)− l′(l′ + 1)

l′′(l′′ + 1)
(G.5.21)

Similarly,

l′′(l′′ + 1)βl
′′m′′

lml′m′ =

∫
[J

(2)
lm , J

(2)
l′m′ ] · J (2)∗

l′′m′′dΩ

=

∫
[· · · − (lm↔ l′m′)] · J (2)∗

l′′m′′dΩ

(
∵
∫

[· · · − (lm↔ l′m′)] · J (2)∗
l′′m′′dΩ = 0

)
=

∫ [
l(l + 1)∂θYl′m′Ylm(∂θYl′′′m′′′)∗ + l(l + 1)Ylm∂ϕYl′m′(∂ϕYl′′′m′′′)∗

]
dΩ− (lm↔ l′m′)

= l(l + 1)

∫
∂AYl′m′Ylm∂

AY ∗
l′′m′′dΩ− (lm↔ l′m′)

= −l(l + 1)

∫
∇A(∂

AYl′m′Ylm)Y ∗
l′′m′′dΩ− (lm↔ l′m′)

= −l(l + 1)

∫
(∂AYl′m′∂AYlmY

∗
l′′m′′ +∆Yl′m′YlmY

∗
l′′m′′)dΩ− (lm↔ l′m′)

= −l(l + 1)Dl′′m′′

lml′m′ + l(l + 1)l′(l′ + 1)Gl
′′m′′

lml′m′ − (lm↔ l′m′)

= −Dl′′m′′

lml′m′(l(l + 1)− l′(l′ + 1)). (G.5.22)
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Thus we get

βl
′′m′′

lml′m′ = −Dl′′m′′

lml′m′
l(l + 1)− l′(l′ + 1)

l′′(l′′ + 1)
. (G.5.23)

As a consequence, we have

[J
(2)
lm , J

(2)
l′m′ ] =

∑
l′′ ̸=0

[
Cl

′′m′′

lml′m′
l′′(l′′ + 1)− l(l + 1)− l′(l′ + 1)

l′′(l′′ + 1)

]
J
(1)
l′′m′′ −

∑
l′′ ̸=0

[
Dl′′m′′

lml′m′
l(l + 1)− l′(l′ + 1)

l′′(l′′ + 1)

]
J
(2)
l′′m′′ .

(G.5.24)

In the same way, expanded as follows

[J
(1)
lm , J

(2)
l′m′ ] =

∑
l′′′m′′′

γl
′′′m′′′

lml′m′J
(1)
l′′′m′′′ +

∑
l′′′m′′′

ζl
′′′m′′′

lml′m′J
(2)
l′′′m′′′ . (G.5.25)

[J
(1)
lm , J

(2)
l′m′ ] =

1

sin θ
(∂θYlm∂ϕ − ∂ϕYlm∂θ)

(
∂θYl′m′∂θ +

1

sin2 θ
∂ϕYl′m′∂ϕ

)
−
(
∂θYl′m′∂θ +

1

sin2 θ
∂ϕYl′m′∂ϕ

)
1

sin θ
(∂θYlm∂ϕ − ∂ϕYlm∂θ)

=
1

sin θ

[
∂ϕ

(
∂θYlm∂θYl′m′ +

1

sin2 θ
∂ϕYlm∂ϕYl′m′

)
+ l′(l′ + 1)∂ϕYlmYl′m′

]
∂θ

− 1

sin θ

[
l′(l′ + 1)∂θYlmYl′m′ + ∂θ

(
∂θYlm∂θYl′m′ +

1

sin2 θ
∂ϕYlm∂ϕYl′m′

)]
∂ϕ

=
1

sin θ

[∑
l′′m′′

Dl′′m′′

lml′m′∂ϕYl′′m′′ + l′(l′ + 1)∂ϕYlmYl′m′

]
∂θ

− 1

sin θ

[∑
l′′m′′

Dl′′m′′

lml′m′∂θYl′′m′′ + l′(l′ + 1)∂θYlmYl′m′

]
∂ϕ (G.5.26)

l′′(l′′ + 1)γl
′′m′′

lml′m′ = [J
(1)
lm , J

(2)
l′m′ ] · J (1)

l′′m′′

= −
∑
l′′′m′′′

Dl′′′m′′′

lml′m′

∫ (
1

sin2 θ
∂ϕYl′′′m′′′∂ϕY

∗
l′′m′′ + ∂θYl′′′m′′′∂θY

∗
l′′m′′

)
dΩ

− l′(l′ + 1)

∫ (
1

sin2 θ
∂ϕYlmYl′m′∂ϕY

∗
l′′m′′ + ∂θYlmYl′m′∂θY

∗
l′′m′′

)
dΩ

=
∑
l′′′m′′′

Dl′′′m′′′

lml′m′

∫
Yl′′′m′′′∆Y ∗

l′′m′′dΩ

+ l′(l′ + 1)

∫ [
∆YlmYl′m′Y ∗

l′′m′′ +
∑
l′′′m′′′

Dl′′′m′′′

lml′m′Yl′′′m′′′Y ∗
l′′m′′

]
dΩ

= −l′′(l′′ + 1)Dl′′m′′

lml′m′ − l(l + 1)l′(l′ + 1)Gl
′′m′′

lml′m′ + l′(l′ + 1)Dl′′m′′

lml′m′ . (G.5.27)

We get

γl
′′m′′

lml′m′ =
l′(l′ + 1)− l′′(l′′ + 1)

l′′(l′′ + 1)
Dl′′m′′

lml′m′ −
l(l + 1)l′(l′ + 1)

l′′(l′′ + 1)
Gl

′′m′′

lml′m′ . (G.5.28)
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Similarly,

l′′(l′′ + 1)ζl
′′m′′

lml′m′ = [J
(1)
lm , J

(2)
l′m′ ] · J (2)

l′′m′′

=
∑
l′′′m′′′

Dl′′′m′′′

lml′m′

∫
(∂ϕYl′′′m′′′∂θY

∗
l′′m′′ − ∂θYl′′′m′′′∂ϕY

∗
l′′m′′)dθdφ

+ l′(l′ + 1)

∫
(∂ϕYlmYl′m′∂θY

∗
l′′m′′ − ∂θYlmYl′m′∂ϕY

∗
l′′m′′)dθdφ

= l′(l′ + 1)

∫
(∂θYlm∂ϕYl′m′ − ∂ϕYlm∂θYl′m′)Y ∗

l′′m′′dθdφ

= l′(l′ + 1)
∑
l′′′m′′′

Cl
′′′m′′′

lml′m′

∫
Yl′′′m′′′Y ∗

l′′m′′dΩ

= l′(l′ + 1)Cl
′′m′′

lml′m′ . (G.5.29)

We get

ζl
′′m′′

lml′m′ =
l′(l′ + 1)

l′′(l′′ + 1)
Cl

′′m′′

lml′m′ . (G.5.30)

Finally we have

[J
(1)
lm , J

(2)
l′m′ ] =

∑
l′′ ̸=0

[
Dl′′m′′

lml′m′
l′(l′ + 1)− l′′(l′′ + 1)

l′′(l′′ + 1)
−Gl

′′m′′

lml′m′
l(l + 1)l′(l′ + 1)

l′′(l′′ + 1)

]
J
(1)
l′′m′′

+
∑
l′′ ̸=0

Cl
′′m′′

lml′m′
l′(l′ + 1)

l′′(l′′ + 1)
J
(2)
l′′m′′ (G.5.31)

Summarized:

[J
(1)
lm , J

(1)
l′m′ ] =

∑
Cl

′′m′′

lml′m′J
(1)
l′′m′′ , (G.5.32)

[J
(2)
lm , J

(2)
l′m′ ] =

∑
l′′ ̸=0

[
Cl

′′m′′

lml′m′
l′′(l′′ + 1)− l(l + 1)− l′(l′ + 1)

l′′(l′′ + 1)

]
J
(1)
l′′m′′ −

∑
l′′ ̸=0

[
Dl′′m′′

lml′m′
l(l + 1)− l′(l′ + 1)

l′′(l′′ + 1)

]
J
(2)
l′′m′′

(G.5.33)

[J
(1)
lm , J

(2)
l′m′ ] =

∑
l′′ ̸=0

[
Dl′′m′′

lml′m′
l′(l′ + 1)− l′′(l′′ + 1)

l′′(l′′ + 1)
−Gl

′′m′′

lml′m′
l(l + 1)l′(l′ + 1)

l′′(l′′ + 1)

]
J
(1)
l′′m′′

+
∑
l′′ ̸=0

Cl
′′m′′

lml′m′
l′(l′ + 1)

l′′(l′′ + 1)
J
(2)
l′′m′′ (G.5.34)
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