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Abstract

A nucleus is a system of baryons which are composed of three valence quarks, and bound by the

strong interaction. We can understand the nuclear system and the origin of matter by studying

the strong interaction between baryons. The nucleon-nucleon (NN) interaction has been studied

with NN scattering data. However, the Λ-nucleon (ΛN) interaction has large uncertainty due

to difficulties of ΛN scattering experiments. Therefore, the ΛN interaction has been mainly

studied by spectroscopy of Λ hypernuclei. The recoil Λ which is produced in a nucleus is known

to interact with a nucleon in the nucleus (FSI), and the ΛN interaction can be studied by

treating it as the ΛN scattering problem. An nnΛ is a neutral nucleus with a Λ, and the

study of this structure provides the precious information of the Λn interaction. However, the

existence of the nnΛ is not established at all. In 2013, HypHI collaboration at GSI reported

a possible bound state of the nnΛ by measuring a final state of π− + t. However, the peak

significance of the invariant mass of π− + t was not enough to establish the bound state of

nnΛ. Theoretical calculations that reproduce the Λ binding energies of light hypernuclei do not

support the existence of the bound nnΛ state. On the other hand, a resonance state of nnΛ

may exist if the Λn interaction is strengthened by about 5% which is not contradict the existing

experimental data. Therefore, in order to search for the nnΛ state, the experiment (E12-17-003)

was performed in 2018 at JLab Hall A by using the (e, e′K+) reaction which enabled a high

resolution spectroscopy of Λ hypernuclei.

In this experiment, a 3H target with a thickness of 84.8 mg/cm2 was irradiated with an electron

beam at a beam current of 22.5 µA and with a beam energy of 4.3 GeV in order to measured

the missing mass of nnΛ in the 3H(e, e′K+)X reaction. A K+ with a central momentum of 1.8

GeV/c and a scattered electron with a central momentum of 2.2 GeV/c were measured by using

two HRS spectrometers which were set at angles of θeK = 13.2◦ and θee′ = 13.2◦.

In the missing mass spectrum on the 3H(e, e′K+)X reaction, any clear peak was not ob-

served. However, there was on enhancement near the nnΛ mass threshold (−BΛ ∼ 0 MeV), and

the differential cross section of it was evaluated by using an assumed nnΛ peak function with

(−BΛ,Γ) = (0.55, 4.7) MeV. It was obtained as 21.7± 6.7(stat.)± 5.2(syst.) nb/sr by fitting the

experimental data with this function, and the upper limit of the nnΛ (CL90%) was estimated

as 36.5 nb/sr.

Since the differential cross section of the Λ-QF distribution observed in this experiment in-
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cluded the enhancement due to the Λn FSI, it was necessary to take the Λn FSI into account

in the analysis. The differential cross section including FSI can be obtained as the product of

the differential cross section without FSI and the influence factor (I(krel)) which depends on Λn

relative momentum (krel). With the effective range approximation, the influence factor can be

written by using two Λn potential parameters, scattering length (a) and effective range (r). The

JLab standard simulation code, SIMC with the influence factor, calculated the distribution of

the differential cross section including the Λn FSI effect. As a result of fitting, the experimental

data with the SIMC spectrum including the nnΛ peak and the Λn FSI effect, the reduce chi-

square in the range of 0 ≤ −BΛ ≤ 60 MeV took the minimum value of 0.98 when the scattering

length (a) and the effective range (r) were at (a, r) = (−2.6, 5.0) fm. The effective range at

given a scattering length was constrained with this analysis. Assuming the scattering length is

-2.6 fm, the effective range was obtained as 5.0+1.3
−1.2 fm.
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Chapter 1 Introduction

“What is the fundamental principle to describe in the world ?” This is the ultimate question for

many scientists. Today, the standard model, which is established from quantum chromodynamics

(QCD) and electroweak theory, is most widely supported as a first principle theory. The standard

model predicts elementary particles, six quarks, six leptons, gauge bosons and higgs boson, all

of which are observed. A hadron which is a multi quark system is classified into a baryon

composed of three quarks (qqq) and a meson composed of a quark and an anti quark (qq̄). Each

of quark in the hadron was bound by a strong interaction. The strong interaction between

quarks and gluons is an effect by the medium of gluon with color charge and is described by

the established QCD theory. In a high energy region (Q ≫ ΛQCD), in which a perturbation

approach calculation can be used, strong interactions among quarks can be calculated by QCD

with asymptotic freedom. However, the baryon-baryon (BB) interaction in the low energy

region cannot be described by the perturbation calculation of QCD because of a large coupling

constant. Therefore, the phenomenological approach is necessary to understand BB interaction.

The scattering experiment is a major experimental method to derive BB interactions from, and

succeeded in deriving well nucleon-nucleon (NN) interaction.

On the other hand, a hyperon including an s-quark decays with a short lifetime (τ ∼ 10−10

sec), so the hyperon nucleon (YN) scattering data is limited, and especially there is no scattering

data of Λn. A hypernucleus which is a bound hyperon in a nucleus was used to deduce the YN

interaction. A nnΛ, a neutral system with a Λ, is a good tool to deduce the Λn interaction

on which no scattering data exist. This article studied the Λn interaction with 3H(e, e′K+)X

data measured at JLab. This section introduces the experimental method and the history for

studying Y N interactions, and the purpose of this study.

1.1 Hyperon

A baryon with an s quark with strangeness (S = −1) is classified as a hyperon. Since the bare

masses of u, d and s quarks are less than energy scale ΛQCD ∼ 250 MeV, these quarks are approx-

imately treated in the flavor SU(3) symmetry frame (SU(3)f). The irreducible representation

of baryons in SU(3)f is decomposed as :

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A, (1.1)
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Figure 1.1: Baryon octet is group of baryons
consisting of combinations of three u,d or s
quarks with a half of spin and a positive parity.
Iz and S are shows component of isospin and
strangeness, respectively.

Figure 1.2: Baryon decuplet is group of barons
combination consisting of combinations of three
u, d or s quarks with one and a half of spins and
a positive parity. Iz and S are shows component
of isospin and strangeness, respectively.

where subscripts of S, A and M show parts of symmetry, asymmetry and mixed, respectively.

A baryon requires asymmetry in a wave function by Pauli exclusion principle. Therefore, in the

SU(3)f , the octet and decuplet terms in Eq. 1.1 satisfy the principle. Figure 1.1 and 1.2 show the

baryon group classified as octet (spin parity, JP = 1/2+) and decuplet (JP = 3/2+) in SU(3)f

frame. Both of Λ and Σ0 in Fig. 1.1 are S = −1, Iz = 0, but they have different isospins, singlet

I = 0 and triplet I = 1, respectively. The hyperons have heavier masses (m > 1.1156 GeV/c2)

than the nucleon mass (∼ 0.94 GeV/c2) and decay into a nucleon in a short lifetime (τ ∼ 10−10

sec).

1.2 Historical study of Y N interaction

The irreducible representation of octets baryon-baryon (BB) interaction (8⊗ 8) is decomposed

as follows,

8⊗ 8 = 1⊕ 8S ⊕ 27⊕ 8A ⊕ 10⊕ 10∗. (1.2)

The first three terms in Eq. 1.2 are symmetric and the others are anti-symmetric under a flavor

exchange of two baryons. Combinations of NN , ΛN , ΣN systems in the isospin basis are

summarized in Table 1.1. The NN interactions belong to the (10∗) and (27) multiplets. On

the other hand, ΛN interactions are written in terms of (10∗), (27), 8s and 8a multiplets. The

8s,8a terms are not included in NN interactions, so information of ΛN interaction gives us more

expanded understanding the strong interaction.
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Table 1.1: The irreducible representation of the baryon-baryon potentials in the (8 ⊗ 8) basis for NN ,
ΛN and ΣN interactions

B-B Isospin (I) flavor symmetric flavor anti-symmetric
NN I = 0 - (10∗)
NN I = 1 (27) -
ΛN I = 1/2 1√

10
((8s) + 3(27)) 1√

2
(−(8a) + (10∗))

ΣN I =1/2 1√
10
(3(8s)− (27)) 1√

2
((8a) + (10∗))

ΣN I =3/2 (27) (10)

Table 1.2: The summary of existing data for Λp→ Λp scattering.

Reference Λ beam production pΛ [GeV/c] NΛp→Λp [Counts]
Crawford et al., [1] π0p→ ΛK0 0.5 - 1.0 4
Alexanderet al., (1961) [2] π0p→ ΛK0 0.4 - 1.0 14
Groves [3] K−N → Λπ 0.3 - 1.5 26
Beilliére et al., [4] K−N → Λπ 0.3 - 1.5 86
Piekenbrock et al., [5] K−A→ ΛX 0.15 - 0.4 11
Sechi-Zorn et al., [6] K−p→ ΛX 0.12 - 0.4 75

Vishnevksĭi et al., [7] nA→ ΛX 0.9 - 4.7 12
Bassano et al., [8] K−p→ ΛX 1.0 - 5.0 68
Alexander et al., (1968) [9] K−p→ ΛX 0.1 - 0.3 378
Sechi-Zorn et al., (1968) [10] K−p→ ΛX 0.1 - 0.3 224
Kadyk et al., [11] K−Pt → ΛX 0.3 - 1.5 175
Anderson et al., [12] pPt → ΛX 1.0 - 17.0 109
Mount et al., [13] pCu → ΛX 0.5 - 24.0 71

1.2.1 Elastic scattering

An elastic scattering reaction conserves the kinetic energy of particles in the center of mass

frame, and these experiments were performed to derive the strength of NN interactions from a

scattering cross section.

The mass of Λ, which is the lightest in hyperons, is easy to be produced. Thus, many Λp

scattering experiments were performed in the world as a first step to deduce the Y N interaction.

Fig. 1.3 shows the scattering cross section distribution depending on indicating center of energy

(
√
s). Blue points in Fig. 1.3 shows Λp elastic data which were summarized in Tab. 1.2. The

scattering data about the Λp is limited (about 1300 counts) because the Λ decays to a nucleon in

a short lifetime (τΛ ∼ 260 ps). Therefore, the Λp interaction has a huge uncertainty comparing

with the NN interaction.

1.2.2 ΛN interaction in Λ hypernuclei

The two-body scattering experiment is a major method to derive the BB interactions, but the

ΛN scattering data is limited. Hence, an attempt was made to derive the ΛN interactions

from a investigation of the Λ hypernuclei, in which a Λ is bound in a nuclear system. On the
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Figure 1.3: Cross sections of elastic scattering [14]. The horizontal and vertical axes indicate center of
energy(

√
s) and cross section (mb), respectively. The blue and red dot points shows Λp elastic data

and total data which are including elastic and inelastic for Λp → Λp. Each of points of elastic data for
Λp→ Λp has huge error because of limited data (∼ 2000 events).

assumption that the wave function of the Λ and that of the core nucleus in Λ hypernuclei can

be treated independent by the Hamiltonian of the Λ hypernuclus is described as

HHyp = Hcore + tHYP +
∑

veffΛN (1.3)

where Hcore, tHYP and
∑
veffΛN are a Hamiltonian of the core nucleus, the kinematic energy of

the hypernuclus and the effective ΛN potential, respectively. The effective ΛN potential takes

account of an effect of the interaction between the core nucleus and the Λ, and can be deduced

via the G-matrix method from ΛN interaction in the free space [15].

Table 1.3 shows results of the G-matrix calculations with each ΛN potential model in envi-

ronment of nuclear density. The ΛN interaction in the environment of free space is given by

one-boson exchange models such as Nijmen potential, extend soft core potential (ESC04 -08),

soft core potential (NSC97 e and f) models. By comparing experimental data with a cross sec-

tion or binding energy of Λ hypernuclei deduced from Eq. 1.3, the ΛN effective potential can

be tested.

1.2.3 Λp final state interaction

A Y N final state interaction (Y N FSI) represents the interaction that occurs during Y N scatter-

ing after the hyperon production. Especially, Λp FSI was derived from a Λp inelastic scattering

or Λ quasi free spectrum about 3
ΛH.
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Table 1.3: Partial wave contributions to UΛ(ρ0)

model 1S0
3S1

1P1
3P0

3P1
3P2 D sum

ESC08a -12.7 -22.2 3.0 0.1 1.4 -3.6 -1.6 -35.6
ESC08b -12.3 -19.7 2.7 -0.2 1.5 -4.2 -1.7 -34.0
ESC04a -13.7 -20.5 0.6 0.2 0.5 -4.5 -1.0 -38.5
ESC04d -13.6 -26.6 3.2 -0.2 0.9 -6.4 -1.4 -44.1
ESC06d -13.3 -30.7 3.5 -0.2 1.7 -4.3 -1.2 -44.5
ESC06d* -11.8 -26.9 3.8 0.0 2.1 -3.4 -1.1 -37.2
NSC97e -12.7 -25.5 2.1 0.5 3.2 -1.2 -1.1 -34.7
NSC97f -14.3 -22.4 2.4 0.5 4.0 -0.7 -1.2 -31.7

■ Λp final state interaction with inelastic scattering

Experiments for deducing the Λp final state interaction were performed with reactions of K−+

d → π− + (Λp) [16–18], π+d → K+ + (Λp) and p + p → K+ + (Λp) [19–27]. An inelastic

scattering reaction dose not conserve the kinematic energy of the incident particle. The lost

energy is converted into excitation energy of the target or used for pair production of ss̄ quarks

in a nucleon.

In the case of inelastic scattering by (pb+ptar → K++Λ+p) reaction, the Λp FSI can be derived

from a (Λp) missing mass spectrum which is obtained with momenta of the K+ and the injected

beam. Especially, the effect of the Λp FSI expects to produce an enhance structure around the

Λp mass threshold because this mass region corresponds to the small relative momentum region

in the center of mass frame in Λp (Fig. 1.4). This structure can be treated as the two-body

scattering problem.

By treating this enhance structure as a two-body scattering problem, it can be calculated as

the scattering differential cross section. The double differential cross section can be deduced

from the scattering amplitude and enhancement factor(I) as,

d2σ

dΩKdMΛp
=

Φ3

4

(
Is|Ms|2 + 3It|Mt|2

)
, (1.4)

where Φ3, |Ms| and |Mt| are phase space, and transition matrix elements in spin singlet and

triplet. On the effective range approximation, the enhancement factor was written by Jost

function with a scattering length (a) and effective range (r) parameters in a Λp potential. These

parameters can be determined by fitting experimental data (Fig. 1.4) with Eq. 1.4.

■ FSI study with Λ quasi free production

A nucleon in a nucleus has a momentum. In the Fermi gas model, the Fermi momentum

(kF ) in the nucleus is calculated as kF = (3π2ρN )1/3 with the nuclear density (ρN ) which is

obtained by a quasi-elastic scattering experiment. The Λ particles produced in the reaction with
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Figure 1.4: Double differential cross section of missing mass with the p + p → K+(Λp) reaction at
Tp = 1.953 GeV and ΘK = 0◦ [28]. The bottom and top horizontal axes show missing mass from
p + p → K+(Λp) and the c.m. momentum q of the Λp system. Solid lines shows fitting result with
six-parameters (Eq. 1.4). Dashed line is p+ p→ K+(Λp) phase space distribution.

nucleons having a momentum distribution are observed as a continuous energy states (Quasi-

free (QF) distribution). Fig. 1.5 shows the missing mass distribution in the 3He(e, e′K+)X

reaction. The peak around 2.99 GeV is a bound state of 3
ΛH, and the other events represent Λ-

QF production [29]. The black dot points shows the missing mass spectrum of the 3He(e, e′K+)X

reaction. The hatched magenta area shows the missing mass spectrum obtained by Monte Carlo

simulation (SIMC) which is JLab standard simulation code, and the hatched blue area shows the

missing mass spectrum including the FSI effects. The FSI effect was introduced in MC simulation

by solving two-body scattering problem (discussed in Sec. 1.2.3). The scattering amplitude of

FSI was obtained by fitting the missing mass spectrum obtained from MC simulation including

FSI.

1.3 Λ production reactions

Λ hypernuclei were produced from the reactions such as (K−, π−), (π+,K+) and (e, e′K+). The

schematic drawing of these reactions are shown in Fig. 1.6. In the (K−, π−) reaction process,
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Figure 1.5: A 3He(e, e′K+)3ΛH missing mass spectrum [29]. The horizontal axis is missing mass and
the vertical axis. The black dot point shows missing mass spectra of 3He(e, e′K+)X reaction. The red
hatched area shows 3

ΛH events.The blue and magenta hatched areas indicated calculation of Λ QF with
FSI and without FSI, respectively. Including FSI distribution success to reproduce enhancement in a
range between 2.99 and 3.03 GeV/c2.

Λ(uds) is produced by exchanging an s-quark in K−(sū) with a u-quark in a neutron in the

target (K−(sū)+n(udd) → π−(dū)+Λ(uds)). Hence, the cross section of Λ hypernuclei is mb/sr

order which is larger than the other reactions, because the strange exchange reaction such as

the (K−, π−) reaction can easily produced a Λ than ss̄ pair production process. Additionally,

the (K−, π−) reaction has characteristic of a low momentum transfer. In the case of K− beam

momentum at 500 MeV/c (Magic momentum), the reaction gives no momentum transfer. The

reactions of (π+,K+) and (e, e′K+) produce a Λ with the ss̄ pair production process. They

are endothermic reaction so beam energies need to be higher than an energy the threshold of Λ

production (900 MeV/c). These reactions give high momentum transfer to Λ (∼ 400 MeV/c)

so these reactions is suitable for the study of the excited state of heavy Λ hypernuclei or deep

bound states. The cross section for hypernuclear production by the (π+,K+) and (e, e′K+)

reactions are of the order of 10 µb/sr and 100 nb/sr, respectively.

1.3.1 Histrical background

In 1960’s, light Λ hypernuclei (A ≤ 16) were observed by using (K−, π−) reaction and

emulsion stack in CERN*1 and BNL*2. Λ hypernuclei in ground state were produced from

AZ(K−, π−)AΛ(Z− 1) reaction process, and were identified by measured vertex from the tracking

of week decayed particles in emulsion stack. The tracking was appeared by an energy deposit

of a charged particle in emulsion so the momentum of decayed particles were precisely deduced

*1 European organization for Nuclear Research
*2 Brookhaven National Laboratory
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Figure 1.6: The schematic figures of basic elementary reactions for Λ production.

from tracking lengths. Owing to emulsion experiment, the strength of ΛN potential is known

as two third of NN potential. However, emulsion experiment cannot study of excited state of Λ

hypernuclei. In 1970s, the experiments using counter with (K−, π−) reaction were established

at CERN or BNL, and this experimental method enabled to measure an excited state of Λ

hypernuclei. The p-shell state of Λ hypernuclei were able to be observed by counter experiments,

the Λ spin orbit splittings were known to be small comparing with nucleus [30]. The (K−, π−)

experiment brought about many achievements to hypernuclear physics, but the intensity and

quality of K− beam are low so the yield of Λ hypernuclei is small. Thereafter, KEK established

γ-ray spectroscopy method, and transition energies from excited state were able to be measured

with high resolution at a few MeV in FWHM [31].

In 1980s, the (π+,K+) reaction experiment was developed at BNL [32]. Additionally, High

energy accelerator research organization (KEK) were successful in a high resolution spectroscopy

owing to Superconducting Kaon Spectrometer(SKS) [33,34].

1.3.2 Λ hypernuclear experiment with the (e, e′K+) reaction

The (e, e′K+) reaction was thought was not suitable for Λ hypernuclei measurement because

the cross section about the (e, e′K+) reaction is 10−3 times smaller than other reactions and

much background derived from bremsstrahlung was expected to contaminate at forward angle

between incoming and scattered electrons (θee′ ∼ 0◦). However, in 2000, the first Λ hypernuclei

experiment with (e, e′K+) reaction was performed at JLab Hall C, and succeeded in achieved sub

MeV (FWHM) resolution (Fig. 1.8) because electron beam using the reaction can be accelerated

directory and controlled with small energy spread (∆E/E ∼ 10−4) and beam size (σ ∼ 0.1 mm).

Moreover, high current electron beam (85 µA) compensates for low cross section so thinner target

∼ 0.1 g/cm2 comparing with other experiment ( g/cm2) can be used. Hence, the systematical
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Figure 1.7: The Momentum transfer to Λ depending on beam momenta. There show nine lines combina-
tions of three reactions (red :(K−, π−), blue:(π+,K+) and black:(e, e′K+)) and three differential opening
angles(θ) between beam and recoil Λ(0◦:solid line, 10◦:dashed line and 20◦: dotted line). (π+,K+) and
(e, e′K+) reaction have Λ production threshold because of endothermic reactions. In the (K−, π−) re-
action, there are local minimum value. Especially, at the forward angle (0◦) between beam and Λ in
(K−, π−) reaction, the magic momentum which is beam momentum where the recoil Λ momentum is
zero, is exist (∼ 500MeV/c).

error coming from energy loss and straggling effects can be reduced.

1.4 nnΛ state problem

The Λp interaction was determined from the Λp (elastic and inelastic) scattering data and

binding energies of Λ hypernuclei. On the other hand, the Λn interaction was evaluated with

Λp scattering data on the assumption of charge symmetries because there is no Λn scattering

data. Additionally, it is difficult to be derived from the effective Λn interaction obtained from

spectroscopy of a Λ hypernuclei which are complex systems with protons. The nnΛ system is

no charged and simple system so it is ideal to study the Λn interaction. However, nnΛ was

believed not to be bound and no one observed it before the publication about the nnΛ by the

HypHI collaboration at GSI. In the A=3 Λ hypernuclear system, only 3
ΛH (I = 0) was observed

and the binding energy of −BΛ = 0.13 ± 0.05 MeV was measured by emulsion experiment [36]

(see Fig. 1.9). Considering that a Λ of 3
ΛH is bound shallowing, the isospin triplet (I = 1) in

the A=3 hypernuclear system (3ΛH,
3
ΛHe,

3
Λn) are thought not to be bound.

In 1959, R.H. Dalitz calculated three-body Λ hypernuclei with the variational method [37].

The wave function in this model was described with a trial function with six free parameters.

As a result of calculation, this theoretical model suggested that the existence of bound states
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Figure 1.8: A 12C(e, e′K+)12Λ B missing mass spectrum with energy resolution of 0.9 MeV (FWHM) [35].

Figure 1.9: A level scheme of hypernuclear system in A=3

for T = 1 systems of the ΛNN is unrealistic. Afterwards, K. Miyagawa calculated the ΛNN

system with Faddeev equations [38]. This theoretical calculation used Nijmegen potential for

the ΛN interaction and the realistic NN interactions including the ΛΣ conversion effect which is

attractive force. This theoretical model with parameters, which were adjusted to reproduce the

Λ binding energy of 3
ΛH in the T = 0 system, suggests that T = 1 systems of ΛNN are unbound.

Based on such a historical background, the nnΛ system was thought not to be bound.

In 2013, HypHI collaboration at GSI published the paper that they measured t + π− from

nnΛ → t + π− channels [39]. However, theoretical calculations cannot reproduce the bound
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Figure 1.10: Invariant mass distribution of t + π−. The horizontal axis shows invariant mass of t + π−

observed by the HypHI collaboration at GSI [39]. The black filled circles shows the experimental data.
There is structure around nnΛ threshold (2.99 GeV) on background (open triangle), which was obtained
by the mixed events analysis. The hatched orange region represents one standard deviation of the fitted
model centered at the solid blue line of the total best fit.

state of nnΛ, and the result of the GSI experiment does not have enough peak significance to

establish the bound state of nnΛ. In this section, more detail of the experimental result at GSI

(Sec. 1.4.1) and theoretical discussion on nnΛ (Sec. 1.4.2) will be explained.

1.4.1 Search for evidence of nnΛ at GSI

GSI Helmholtzzentrum für Schwerionenforschung GmbH (GSI) is a heavy ion accelerator facility

in Germany. The HypHI collaboration performed HypHI Phase0 experiment, which measured

final state of π− + t and π− + d from 6Li beam on the 12C target.

In 2013, they reported that candidate of the nnΛ bound state was measured by lifetime

and invariant mass of a final state of the π− + t. Figure 1.10 shows that a t + π− invariant

mass spectrum measured at GSI. There are some events on the nnΛ mass threshold (m2n+Λ =

2.9948 GeV/c2) whose mean value was obtained by fitting at (m = 2994.3± 1.1± 2.2) MeV/c2.

Additionally, as the result of flight length measurement of the nucleus before t + π− decay,

these lifetime was obtained as τ = 190+47
−35 ± 36 which is comparable with a typical lifetime of Λ

hypernucleus (τ ∼ 200 ps). Hence, the result suggests that t+ π− events were originating from

the weak decay of the bound state of nnΛ.
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Figure 1.11: The binding energy calculation with Gaussian expansion method for 3
ΛH and nnΛ with (i)

3V T
NΛ−NΣ × 1.0 and (ii) 3V T

NΛ−NΣ × 1.2 [40]. The 3V T
NΛ−NΣ is tensor term of the Y N interaction which

is used for scattering phase shifts given by NSC97f with NΛ − ΣN coupling effect. In the case of (i)
3V T

NΛ−NΣ×1.0, calculation of Λ binding energy in the 3
ΛH system is comparable with experimental result

within experimental error. However, the nnΛ indicates unbound state. In the case of (i) 3V T
NΛ−NΣ × 1.2,

nnΛ is bound narrowly, but calculation of Λ binding energy in the 3
ΛH system indicates over bound

(−BΛ = −0.43 MeV) comparing with experimental results. This result implied bound state of nnΛ is
unrealistic.

1.4.2 Theoretical discussion

The HypHi collaboration observed a possible bound state of nnΛ. On the other hand, theoretical

calculations cannot reproduce the bound state of nnΛ.

■ Hiyama et al., (2014) [40]

The binding energy of three and four body hypernuclei, 3,4
Λ H and 4

ΛHe, were reproduced by

theoretical calculation with the Gaussian expansion method [40]. The theoretical model used

the NSC97f potential including the ΛN−ΣN effects and the AV8 potential for the ΛN and NN

interactions, respectively. Fig.1.11 shows results of Gaussian expansion calculation for binding

energies of 3
ΛH and nnΛ. The (3V T

NΛ−NΣ) is tensor term for the ΛN interaction. Figure 1.11

(i), which is optimized for binding energies of 3,4
Λ H and 4

ΛHe, reproduces the energy of the 1/2+

state of 3
ΛH. On the other hand, nnΛ was suggested to be unbound state. When the term of

(3V T
NΛ−NΣ) increases 20% (Fig. 1.11 (ii)), the nnΛ is bound shallowly, but 1/2+ state of 3

ΛH is

bound too deeply. Therefore, the theoretical calculation suggests that the bound state of nnΛ

system is hardly understood.
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■ I.R. Afnan et al., (2015) [41]

On the one hand, Faddeev calculation with the separable potential suggests that nnΛ could be

resonance state when a potential of Λn is 5% deeper than that of Λp [41]. Fig. 1.12 shows

the resonance pole trajectories on second Riemann sheets with four different Λn potentials,

Nijimeden model D (Mod D), Chiral (Λ = 600) (Chiral), Nijmegen NSC97f (NSC97f) and

Jülich one bosson exchange potential (Jülich04). The horizontal and vertical axes are real and

imaginary parts of binding energy for nnΛ, and the resonance poles are plotted with increasing

every 2.5% (∆s = 0.025) of strength for the Λn potential from the Λp potential (s = 1). In

case of increasing Λn interaction more than 5 % every potential models, resonance poles locate

in ℜ(E) > 0 which indicates that nnΛ is resonance state. Moreover, when the Λn interaction

is increased more than 25%, the nnΛ is expected to be bound state for all potential models.

Considering no Λn scattering data exists, the 5 % difference (∆s ∼ 5%) of the Λn potential from

strength of Λp potential is within the systematical error so this theoretical calculation suggests

that there is some possibility of the nnΛ resonance state.

■ V.B. Belyaev et al., (2008) [43]

Belyaev searched for a resonance state of nnΛ by calculating the zeros of a three-body Jost

function. As the NN potential, the Minnesota potential model was used, which accurately

Figure 1.12: Trajectory of the resonance poles in the nnΛ system as one varies the strength of the Λn
interaction [41]. There are four curves with different Λn potentials correspond to Yamaguchi fits: Mod D
for Nijmegen model D, Chiral for chiral (Λ = 600), NSC97f for Nijmegen NSC97f and Jülich04 for Jülich
one boson exchange potential. These models were used the same nn potential [42].
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reproduces the radii and binding energies of few-nucleon systems such as 2H, 3H, 3He and 4He.

The ΛN interaction was constructed produced by using the NN potential model (Minnesota

model), since the ΛN potential is considered to be similar to the NN potential due to the SUf(3)

symmetry. Nemura proposed three different Λn potentials (Set A, B and C) [44], and the S-wave

Λn potentials of these models were shown in Fig. 1.13. There potential parameters were obtained

by fitting the binding energies of 3,4-body Λ hypernuclei (3,4Λ H, 4
ΛHe) and of excited state of 4-

body Λ hypernuclei (J+ = 1+) such as 4
ΛH

∗, 4
ΛHe

∗. It has been experimentally suggested that a

charge symmetry of the ΛN interaction is broken (CSB) in the 4-body Λ hypernuclei [45], and set

A is the model that takes into account the CSB effect. The complex energies (E = Er − (i/2)Γ)

of nnΛ, which were calculated from the three different Λn potential models, were summarized

in Tab. 1.4. In the cases of set A and B, there were resonance states of a wide range width of

∼ 5 MeV, but in set C, there was not resonance state.

Figure 1.13: The three different Λn potentials, A, B and C are shown [44].

Table 1.4: Complex resonance energies (E0 = Er + (i/2)Γ MeV) for nnΛ system with three different
potentials, A, B, and C [43]

Λn potential Er (MeV) Γ (MeV)
A 0.551 4.698
B 0.456 4.885
C -0.149 5.783
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Figure 1.14: The differential cross section depending on K+ opening angle in the center of mass frame
for data of CLAS [46], SAPHIR [47] and an older one [48,49] and theoretical calculations [50].

1.5 Purpose of the present research

1.5.1 Elementary productions of p(e, e′K+)Λ/Σ0

Λ and Σ0 productions from a hydrogen target were used for energy calibration. This is a merit

of the (e, e′K+) reaction and it enables us to achieve high resolution. Moreover, E12-17-003

experiment measured Λ and Σ0 cross sections at forward angles (θγK ∼ 8◦) between a K+ and

virtual photon where there are only (Fig. 1.14) and sensitive to theoretical models. In the case

of forward angles (θγK ∼ 8◦), the virtual photons can be approximately treated as real photons.

Therefore, the measured the cross sections of Λ and Σ0 at forward angles by this experiment

can constrains theoretical models.

1.5.2 3H(e, e′K+)nnΛ

■　 nnΛ peak study

HypHI Collaboration at GSI observed events which indicates a bound state of nnΛ, but there

is not enough peak significance. The theoretical calculation with Faddev equation (see 1.4.2)

suggests that there is possibility to be resonance state of nnΛ within the systematical error. If

the nnΛ is bound or resonance state, a peak of nnΛ can be observed. By using high resolution

spectroscopy with a sensitivity to a bound and resonance states in the (e, e′K+) reaction, we

performed the experiment (E12-17-003) at JLab in order to search for a nnΛ peak. If the nnΛ
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peak is observed in the missing mass spectrum, the state of nnΛ can be identified by the sign

of the binding energy, (0 < −BΛ : resonance state, −BΛ < 0 : bound state). Additionally, the

mean and width of the nnΛ peak are corresponding to (ℜ[E]) and (ℑ[E]) parts of the binding

energy on the second Riemann sheet (Fig. 1.12). Hence, the resonance state is observed the

expected energy accuracy of σnnΛ ∼ 100 keV and total error of energy resolution ∆µnnΛ ∼ 100

keV of this experiment determine the Λn interaction with an accuracy of 5% by comparing with

the theoretical predictions in the second Riemann sheet (Fig. 1.12).

■　 Λn final state interaction study from Λ quasi free production

In this experiment, the Λ quasi free (Λ-QF) production events in 3H(e, e′K+)X reaction can be

obtained. The final state interaction effect in three body Λ hypernuleus (3ΛH) was confirmed to

be appeared in mass threshold of Λ hypernucleus. The Λn FSI effect is expected to be appeared

to the Λ-QF spectrum in the 3H(e, e′K+)X reaction, too. In this thesis (Sec. 5), the Λn FSI

will be studied from the cross section spectrum about Λ-QF production in the 3H(e, e′K+)X

reaction.
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Chapter 2 Experimental principle

The present experiment (JLab E12-17-003) was performed from October to November in 2018

at Jefferson Lab (JLab) Hall A. The experiment aims to an observation of a state of nnΛ with

the (e, e′K+) reaction. Momenta of kaons (K+) and scattered electrons (e′) were measured with

two High Resolution Spectrometers (HRSs) in the experiment which are permanently installed

at Hall A.

2.1 Principle and design

2.1.1 Kinematics of the (e, e′K+) reaction

The (e, e′K+) reaction, which produces a Λ hyperon from a proton by a virtual photon,

is one of the Λ hypernuclear production methods. By comparison with the other mesonic

reactions:(K−, π−) and (π+,K+), the (e, e′K+) reaction enables us to perform high resolu-

tion and high accuracy spectroscopy (sub MeV), because it is possible to use high quality and

high intensity beam and to calibrate the spectrometer optimization with elementally reaction

H(e, e′K+)Λ/Σ0. The kinematics of the (e, e′K+) reaction is shown in Fig.2.1. There are two

reaction planes: the scattering plane and reaction plane. In the scattering plane, four momentum

of the virtual photon q = (ω, q⃗) is described with four-momenta of a beam electron pe = (Ee, p⃗e)

and scattered electron pe′ = (Ee′ , p⃗e′) :

ω = Ee − Ee′ , (2.1)

q⃗ = p⃗e − p⃗e′ . (2.2)

Figure 2.1: The elementary reaction p(e, e′K+)Λ
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Kinematics of a K+ and Λ are calculated in the reaction plane as follow :

ω + Ep = EK + EΛ , (2.3)

q⃗ + p⃗p = p⃗K + p⃗Λ . (2.4)

In the case of hypernuclear spectroscopy by an electron beam with GeV scale, the momentum

of a proton by a molecular motion of hydrogen can be ignored (p⃗p ≪ q⃗) in Eq. 2.4. The four

momentum transfer (Q =
√−qµqµ) can be described as follows:

Q2 = 2(EeEe′ −m2
e − |p⃗e||p⃗e′ | cos θee′) (2.5)

where θee′ is the angle between electron beam and scattered electron. The differential cross

section in elementally reaction (p(e, e′K+)Λ) is defined as [51]:

d3σ

dEe′dΩe′dΩK
= Γ(

σT
dΩK

+ ϵL
dσL
dΩK

+ ϵ
dσLT

dΩK
cos 2ϕK +

√
2ϵL(1 + ϵ)

dσTT

dΩK
cosϕK), (2.6)

where the terms of σT , σL, σLT , and σTT are the transverse, longitudinal and interference cross

sections. The virtual photon flux (Γ) is described as :

Γ =
α

2π2Q2

Eγ

1− ϵ

Ee′

Ee
, (2.7)

where the fine structure constant (α ≃ 1/137) and Q2 = −q2 > 0.

The virtual photon transverse polarization (ϵ), longitudinal polarization (ϵL) and Eγ are rep-

resented by:

ϵ =

(
1 +

2|q⃗|2

Q2
tan θee′/2

)−1

, (2.8)

ϵL =
Q2

ω2
ϵ , (2.9)

Eγ = ω +
q2

2mp
. (2.10)

In the case of real photon, the polarized transverse terms (ϵ, ϵL) is zero since Q2 → 0.

2.2 Experimental design

In the (e, e′K+) reaction, Λ hypernuclei are produced by one virtual photon exchange model.

When optimizing an efficient experimental setup, spectrometers were set to measure the maxi-

mize yield of Λ hypernuclei, especially K+Λ and K+Σ0 photo-productions. Fig.2.2 and 2.3 show

cross sections of K+Λ and K+Σ0 photo-production by experimental result by CLAS [52]. The

experiment was designed to measure K+ and e′ with central momenta pK = 1.823 GeV/c and

pe′ = 2.218 GeV/c, and measure K+ at forward angles in center of mass coordinate (θC.M.
K ∼ 8◦).

Furthermore, the electron beam was used at 4.318 GeV corresponding to the energy of virtual

photon W = Ee − Ee′ of 2.14 GeV, which gave maximum cross section in K+Λ and K+Σ0

(dσΛ/dcos(θC.M.
K ) ∼ 2 µb and dσΣ/dcos(θC.M.

K ) ∼ 1.5 µb, respectively).
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Figure 2.2: Experimental results and the-
oretical calculation of the cross section of
K+Λ photo production at cos θC.M.

K = 0.9
[52]

.

Figure 2.3: Experimental results and the-
oretical calculation of the cross section of
K+Σ0 photo production at cos θC.M.

K =
0.9 [52].

2.2.1 Momentum matching in HRS-HRS

The experiment was designed to measure nnΛ in HRS acceptance range. Fig. 2.4 shows mo-

mentum correlations between scattered electrons (e′) and K+s. In the experimental setup for

nnΛ with central momentum of scattered electrons at 2.213 GeV/c, Λ and Σ0 were not observed

simultaneously because Σ0 missing mass was edge of HRS acceptance region which is insensitive.

Therefore, when energy calibration data with hydrogen was performed, the central momentum

of scattered electron was shift to 2.100 GeV/c for covering Λ and Σ0 missing mass region within

the sensitive region in HRSs.

2.3 Data taking

This experiment was performed from October 30th to November 25th, 2018. The quantity of

electronic charge of the irradiated beam was measured by the beam current monitor (BCM), and

the total charges irradiated to targets were summarized in Tab. 2.1. The error of the beam charge

in Tab 2.1 was evaluated based on the accuracy of the BCM (see Sec. 3.2.3). The experiment

used electron beam at 22.5 µA during experimental period (27 days). Since the total charge of

electrons measured by the BCM was 23.4 C, the efficiency of data acquisition was about 45%.

The 3H target was used for nnΛ productions by the 3H(e, e′K+)X reaction, and was irradiated

with the electron beams of 16.8±0.2 C. The 1H target was used to measure the hyperons such as

Λ and Σ0 for the momentum calibration (see Sec. 4.2.7). In this experiment, the 1H data were

taken in the two kinematics, (pe′ , pK) = (2.100, 1.823) GeV/c and (pe′ , pK) = (2.213, 1.823)

GeV/c. The total charges of electron beams at each momentum set were 4.75 ± 0.05 and
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Figure 2.4: The momentum correlations between scattered electrons(e′) and K+s. Three lines shows
the correlations for binding energies about Λ, Σ0 and nnΛ. The nnΛ data was taken with the central
momentum of scattered electron at 2.218 GeV/c. However, in Λ and Σ0 data, the central momentum of
scattered electrons were changed to 2.100 GeV/c since Λ and Σ0 need to be measured simultaneously for
the energy scale calibration.

Table 2.1: Summary of the data taking

Target production (pe′ , pK) (GeV/c) Beam charge (C)
3H nnΛ (2.2, 1.8) 16.8± 0.2
1H Λ/Σ0 (2.1, 1.8) 4.75± 0.05
1H Λ (2.2, 1.8) 1.31± 0.01
3H Λ-QF (2.2, 1.8) 0.558± 0.006

Optics (2.2, 1.8) 0.531± 0.005
Total 23.4± 0.4

1.31 ± 0.01 C, respectively. The 3He was contaminated in the 3H target due to β decay of 3H

(3H → 3He + e− + ν̄e), and reacted with the electron beam to produce Λ-QF productions as a

background (see Sec. 4.6.3). Therefore, 0.558± 0.006 C of electron beams was irradiated to 3He

target in order to estimate the Λ-QF distribution of the 3He(e, e′K+)X reaction. Additionally,

the experiment obtained optics data with solids targets (see. Sec. 4.2.4,4.2.5) with a total charge

of electron beams at 0.531± 0.005 C.
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Chapter 3 Experimental Apparatus

3.1 Continuous Electron Beam Accelerator Facility in JLab

Figure 3.1: A schematic drawing of CEBAF [53]. The CEBAF injector is designed to create and accelerate
electrons up to 123 MeV. The accelerated electrons by the injector are transported to the main rings.
They are further accelerated by the north and south linacs which give electrons energy of 1.1 GeV for
each pass. The CEBAF with five cycles to pass into north and south linacs can provide us electrons
energy up to 12 GeV.

Continuous Electron Beam Accelerator Facility (CEBAF) in JLab provides us an electron

beam with a high quality and intensity. Fig. 3.1 shows a schematics drawing of CEBAF in JLab.

Electrons are generated in the injector, and transported to a main ring with energies of 123 MeV.

The transported electrons are accelerated by the south and north linacs with each pass providing

energy of 1.1 GeV, and they are transported to each experimental hole, Hall A, B, C and D. The

main specifications of CEBAF are summarized in Tab. 3.1. These unique specifications about

the electron beam at CEBAF satisfy the following experimental requirements:

Table 3.1: The main beam parameter of the CEBAF [53]

Maximum beam energy(Hall A, B, C) 11 GeV
Maximum beam energy(Hall D) 12 GeV
Maximum beam intensity(Hall A,C/B) 85 µA/5 µA
Beam emittance at max energy H/V 10/2 nm·rad
Energy spread at max energy (Hall A,B,C/D) 2.0 ×10−4

Polarization 80%
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Table 3.2: Hall A beam parameters [54]

Parameter Method Accuracy Comments
Energy Arc Absolute 2.0× 10−4 Invasive

5.0× 10−4 Non-invasive
Relative 1.0× 10−4 Non-invasive

eP Absolute 2.0× 10−4 Invasive
Energy width OTR ∆E/E ∼ 1.0× 10−5 (σ) Non-invasive
Current (≥ 1 µA) 2 RF Cavities Absolute ≤ 5× 10−3 Non-invasive
Position (at target) 2 BPM/Harp Absolute 140µm x,y on line
Direction (at target) 2 BPM/Harp Absolute 30 µrad θ, ϕ on line
Stability (at target) Fast Feedback ≤ 720 Hz motion

Position ≤ 20 µm(σ)
Energy ≤ 1× 10−5 (σ)

■ High quality (∆E/E ∼ 2.0× 10−4)

The electrons accelerated by CEBAF are characterized by a small energy dispersion of ∆E/E ∼

2× 10−4. The beam energy is measured in the Machine Control Center (MCC) (see Sec. 3.2.2)

with an accuracy of 10−4 (Tab. 3.2). The dispersion of electron beam is comparable level with

momentum resolution of spectrometers, and it helps to measure Λ hypernuclei with resolution

of ∼ MeV (FWHM).

■ Small beam size (σ ∼ 100 µm)

The momenta of e′ and K+ at vertex point are reconstructed from the positions and angles at

reference plane of spectrometers using an inverse transport matrix. When the beam spot size is

large, the accuracy of the reconstructed angle by the inverse transport matrix deteriorates.

Hoever, the size of the electron beam produced by CEBAF at ∼100 µm is small enough that

it dose not affect the momentum resolution.

■ High intensity (≤ 85 µA)

The cross section of the (e, e′K+) reaction is two to four orders of magnitude smaller the than

(π+,K+) and (K−, π−) reactions [55]. This disadvantage can be covered by using the high

intensity beam of CEBAF. Moreover, the high intensity beam makes it possible to use a thin

target (< 0.1g/cm) with enough yield of Λ hypernuclei, which is thinner than used targets

by other mesonic beam experiments (a few g/cm2). The thinner target helps to be better

momentum resolution since the effect on an energy loss and straggling in the target can be

reduced. It is possible to measure Λ hypernuclei with a high resolution and accuracy.
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Figure 3.2: A schematics drawing of the Hall A beamline [56]. On the Hall A beamline, the Compton and
Møller polarimeters, the raster, the EP energy measurement system, the beam current monitors (BCM)
and beam position monitors (BPM) upstream of target. In the end of beamline, beam dump and truck
access ramp located.

3.2 Hall A beamline

The accelerated electron beam at CEBAF is transported to Hall A beamline. Upstream of

the target, a Compton and a Møller polarimeters, and an EP energy measurement system,

beam current monitors (BCM) and beam position monitors (BPM) are installed in Hall A (See

Fig. 3.2). In addition, a beam dump and a truck access ramp are installed at the end of the

beamline.

3.2.1 Beam position and direction

The raster which is used not to heat up a cryogenic gas target, is controlled in a range of several

mm in both x and y directions at the target by a fast raster system (17-24 kHz) located 23 m

upstream of the target. A position shift by a raster enables to be calibrated with two Beam

Position Monitors (BPMs). BPMs consist of four antennas which are attached to feedthroughs

on the pipe wall at the right angle and located 7.524 m and 1.286 m upstream of the target.

These four antenas are marked as u+, u− and v+, v−, respectively whose signals are used to

determined u and v positions at target. When an electron beam passed through the BPMs, each

antenna detects an induced signal, and sends the signal to the Hall A DAQ system.

The absolute beam positions at target can be determined from BPMs with two super harps

which located 7.353 and 1.122 m upstream of the target, respectively. They consist of three

wires with a thickness of 50 µm which are arranged a fork frame, and can be moved by a step

motor. When the harp fork was moved into beamline, each wire received a signal, and this signal
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was recorded to the DAQ. By analyzing recorded signals, an accuracy of the beam position can

be achieved 140 µm.

3.2.2 Absolute energy measurements

The Machine Control Center (MCC) monitors the beam energy in the accelerator. In the Arc

method, the beam energy is controlled in the the arc section of the beamline by measurement of

a bend angle before providing for Hall A beamline. Fig. 3.3 shows arc section. The normal bend

angle in the arc section is 34.3◦. The beam momentum is depending on the bend angle θ and

field integral of the eight dipoles
∫
B⃗ · d⃗l/θ Tm which is always monitoring with field measuring

device located 9th dipole (see Fig. 3.3). Hence, by the measurement of the actual bend angle of

the arc with two super harps, the beam energy can be determined.

Figure 3.3: A schematics drawing of the arc section [57].

3.2.3 Current and charge calibrations

Beam current is determined by using the Beam Current Monitor (BCM) of Hall A which consists

of an Unser monitor, two RF cavities, electronics and data acquisition system. Fig. 3.4 shows

beam current instruments. The two RF cavities and Unser located 25 m upstream of the target

are sealed by a thermal isolation box for shielding magnetic field. These monitors translate

passed charge to frequency of the beam thus they are required of temperature stabilization to

reduce noise. In the case of the Unser which is self-calibrated, it cannot be used to continuous

monitor of beam current because it is not stable on time scale of several minute. On the other

hand, the RF cavity monitors are stable with in ±0.5% during a several months. By using two
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types of BCM, the charge in physics run can be determined with an accuracy of ≤ 0.5%.

Figure 3.4: A schematics drawing of the beam current instruments from [58].

3.3 E12-17-003 experiment setup

3.3.1 Overview

Fig. 3.5 show E12-17-003 experimental setup with two high resolution spectrometers (HRSs).

Angles between beam direction and each of HRS are flexible to change from 12.5 to 130 degree

in hadron arm and 12.5 to 165 degree in electron arm, respectively. The main specification of

experimental setup is summarized in Table 3.3.

Table 3.3: The experimental condition

Beam (e)
Energy 4.5 GeV
Energy spread 1.0×10−4

Beam current 25 µA
HRS-HRS

Configuration QQDQ
Central momentum (pK/pe′) 1.8 / 2.2 [GeV/c]
Momentum acceptance(∆p/p) ±4.5%
Momentum resolution 2.0× 10−4 (FWHM)
Flight path length 27.3 m
HRS acceptance ∼ 5 msr
HRS setting angle 13.2◦ / 13.2◦
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Figure 3.5: A schematics drawing of the standard Hall A setup. E12-17-003 experiment was used an
electron beam at 4.3 GeV, and used two HRSs for measurement of K+ and e′ with central momenta
pK = 1.8 GeV/c and pe′ = 2.2 GeV/c, respectively.

3.3.2 High Resolution Spectrometer(HRS)

This experiment was performed by using two high resolution spectrometers (HRSs) for measure-

ment momenta of e′ and K+. The HRS which consists of a detector package, superconducting

quadrupole magnets, Q1, Q2 and Q3, and one superconducting dipole magnet (D), is designed

to achieve high momentum resolution (∆p/p < 2.0× 10−4) (FWHM). Main HRS specifications

are listed in Table 3.3.

■ Superconducting Dipole Magnet (D)

The superconducting dipole magnet (D) is used for momentum dispersion and focusing. The

main specification of dipole magnet is summarized in Table 3.4. The maximum current for

operating dipole magnet is 2000 A. However, left and right HRSs should not be operated at a

current above 1800 A and 1200 A corresponding 4.4 GeV/c and 3.2 GeV/c respectively, due to

complications caused by an internal short. The dipole magnet is configured to achieve a 45◦

bending angle for 4 GeV/c momentum particles when the setting of dipole magnetic field is 1.6

T corresponding to 1500 A of an operating current.
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Table 3.4: The specification of HRS dipole magnet

specification value

Maximum current 2000 A (10 V)
Maximum magnet field 2 T

Effective length 6.6 m
Bend radius 8.4 m
Dending angle 45◦

■ Quadrupole Magnets (Q1, Q2, Q3)

The HRS consist of three quadrupole magnets (Q1, Q2 and Q3). The Q1 and Q2 locate before

the dipole magnet, and provide some of the focusing properties of the spectrometer and to a

large extent its acceptance. The front quadrupole, Q1, is convergent in the vertical plane and,

the Q2 and Q3 are used for transverse focusing. The main specification of three quadrupole

magnets is summarized in Table 3.5.

Table 3.5: The specification of HRS quadrupole magnet [56]

Q1 Q2/Q3
Clear bore 300 mm 600 mm

Magnetic length 948 mm 1800 mm
Field gradient 8.31 T/m 3.5 T/m

Gradient uniformity (integral) 10−3 10−3
Maximum current 3250 A 1850 A

3.3.3 Target system

The experiment used the cryogenic gas targets which were loaded with the gas species:

3H, 3He, 2H, 1H and empty (see Fig. 3.6), and solid targets on bottom for calibration targets.

■ Cryogenic gas target

The cryogenic gas targets were cooled down by helium supply at 15 K and a controlled heater.

The coolant flows through the pipe attached on the target ladder which is the heat sink made

of copper, and enables to keep target at 40 K.

Each gas target has 25-cm length, and sealed by aluminum frames which are especially designed

for safely handing with gaseous tritium in a range of beam current 0 to 22.5 µA. During beam

time, density of gas varies uniquely because heat energy from beam energy loss is expected to

make flow in the target. The effect is known depending on beam current and will be explained

in Sec. 4.5.1. The cell thickness were measured for each cell at eight locations, and summarized

in Table 3.7. The tritium gas was filled with 10 atmospheres and completely sealed at Safety
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Figure 3.6: A photo of the target system
into the vacuum chamber

Figure 3.7: A schematics drawing of the
target system.

Table 3.6: The main target specifications in this experiment [59]

State of target Target thickness [mg/cm2]

Gas 3H 84.8
2H 142.2
1H 70.8
3He 53.4

Solid Multi carbon foils 883

and Tritium Applications Research Facility (STAR) at Idaho National Lab (INL) in order to

ensure safety tritium operation.

■ Solid targets

Solid targets were located on the bottom of the gas target for taking calibration data (see

Fig. 3.7). Dummy cell and multi carbon foils were mounted under the gas cells. The other solid

targets were mounted on the target ladder. Fig. 3.8 shows multi carbon foils located under

the gas target cells. 10 carbon foils with 2-mm length were mounted with spacing of 25 mm

for z-vertex calibration. It is enough space among foils (25 mm) comparing with the typical

z-vertex resolution (σ ∼ 4mm) to be separated from each of peak. Therefore, by comparing

the reconstruct z-vertex distribution with reference z-vertex points, the reconstruct z-vertex was

optimized by tuning the spectrometer parameters.
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Table 3.7: Summary of the thickness of gas target cell.

Location
Empty cell 3H cell 1H cell 2H cell 3H cell
thickness thickness thickness thickness thickness

Entrance (mm) 0.254± 0.005 0.253±0.004 0.311±0.001 0.215±0.004 0.203±0.007
Exit (mm) 0.279±0.005 0.343±0.047 0.330±0.063 0.294±0.056 0.328±0.041
Exit left (mm) 0.406±0.005 0.379±0.007 0.240±0.019 0.422±0.003 0.438±0.001
Exit right (mm) 0.421±0.005 0.406±0.004 0.519±0.009 0.361±0.013 0.385±0.016
Mid left (mm) 0.457±0.005 0.435±0.001 0.374±0.004 0.447±0.009 0.487±0.006
Mid right (mm) 0.432±0.005 0.447±0.004 0.503±0.005 0.471±0.012 0.478±0.007
Entrance left (mm) 0.508±0.005 0.473±0.003 0.456±0.010 0.442±0.005 0.504±0.011
Entrance right (mm) 0.424±0.005 0.425±0.003 0.457±0.006 0.332±0.011 0.477±0.011

Table 3.8: A measurement points of the cells repre-
sented schematically

3.3.4 Sieve slit

Fig. 3.9 shows a design of sieve slit plate. It was made of tungsten with 2.54 cm thickness, and

attached to an entrance of Q1 magnet. There are 154 holes with 4 mm diameters and 2 holes

of 6 mm diameters. This plate has enough length to stop particles, so the only particles though

holes enable to detect. This pate is used for optics calibration of HRS in off-line analysis (see

Sec. 4.2.5).



Chapter 3 Experimental Apparatus 30

Figure 3.8: A picture of multi carbon foils

3.4 HRS detector package

The HRS detector package contains a Cherenkov detectors, two drift chambers (VDC1 and

VDC2) and two types of trigger counters (S0 and S2), and it was used for the particle identifi-

cation and measurement of particle path lengths. Figure 3.10 and 3.11 show detector packages

in LHRS and RHRS, respectively. The momentum of the charged particle is reconstructed by

an inverse transport matrix using information of positions and angles in the focal plane (see

Sec. 4.2.2). Hence, two drift chambers (VDC1 and VDC2) installed in each HRS were used to

measure the trajectory of charged particles and their positions in the focal plane. Two types of

scintillation trigger counters (S0 and S2) installed at each HRS were used for an off-line analysis

and a time-of-flight (TOF) measurement. In addition, two aerogel Cherenkov detectors (AC1

and AC2) were used to identify K+ from the background such as p and π+ detected in the

RHRS. On the other hand, a gas Cherenkov detector (GC) was installed at LHRS to remove

the π− background. The main specification of each detector will be explained bellow.
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Figure 3.9: A schematic drawing of the HRS sieve slit plate with inch units. It was made of tungsten
with 2.54 cm thickness, and attached on a front of Q1 magnet.

Figure 3.10: A schematic drawing of
LHRS detector package. LHRS has two
scintillation counters (S0, S2), two drift
chambers (VDC1,2), gas Cherenkov detec-
tor and π− rejector.

Figure 3.11: A schematic drawing of
RHRS detector package. RHRS has
two scintillation counters (S0, S2), two
drift chambers (VDC1,2), and two aeroel
Cherenkov detector (AC1, AC2).

3.4.1 Vertical drift chamber (VDC1,2)

Positions and incident angles of charged particles at focal plane were measured by using two

drift chambers (VDC1 and VDC2). The VDCs, which are covered by aluminum frames, consist

of two wire planes (U, V) with 368 sense wires on each plane. An active size of the VDC is

2188 mm × 288 mm, and the vertical distance between VDCs is 335　 mm. Basically, a drift

chamber use guide wires to make the electric field in the drift region more uniform. However,

the VDC installed in HRS is not used these wires. The VDC are designed with a sensitive wires

sandwiched between single-sided HV planes perpendicular to the direction of particle motion in
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Figure 3.12: VDC layout

order to generate a uniform electric field in the drift region. Figure 3.13 shows a cross point

of wire plane in the sense region. The VDC was designed to hit three cells when the particles

passed wire plane at 45◦ of trajectory angle. Therefore, the pre-track efficiency of VDCs are

close to 100% (Sec. 4.5.4).

■ Time resolution of VDCs

The VDCs is designed to hit multi wires per one track (see Fig. 3.13). In case of 5-wires hits,

a relative time of the VDC per plane is obtained with the combination of drift times for each

wire as follows:

∆T = |(t1 − t2)− (t5 − t4)|. (3.1)

The required ∆T resolution was 20 ns (FWHM), and time resolution of per plane (∆t) is given

by

∆t =
1√
5

(
20 ns√

4

)
= 4.5 ns. (3.2)

This value is corresponding with the position resolution of 225 µm (FWHM) per plane. For

Ebeam = 0.845 GeV and θe′ = 16◦, the out-of-pane angle θ and in-plane angle ϕ at the target,

are 6 mrad and 2.3 mrad, respectively [60]. By using these VDCs, it is possible to measure

momentum with a resolution of (∆p/p ∼ 2.5× 10−4).

3.4.2 Scintillation trigger counter (STC)

There were two types of scintillation trigger planes (S0 and S2) in each HRS, which were used

for timing measurement of charged particles and off-line trigger counters. S0 and S2 are arranged
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Figure 3.13: A track resulting in a 5-cell hits. The arrowed lines show paths of least time for ionization
electrons to travel. The dot-dashed lines mean projection distances. The ellipse area near the wires shows
electronic filed lines.

along the momentum dispersion (detector-x) direction.

■ S0 trigger counter

The 10 mm thick S0 counter, which is made of BICRON 408 plastic scintillator with an active

area of 1700 mm × 250 mm, is attached to two 3” PMTs (XP2312). The timing resolution was

σt ∼ 0.2 ns.

■ S2 trigger counter

The S2 detector, located behind S0, was used for a timing counter and an off-line trigger counter.

It composes of 16 segments of S2 trigger counters mounted on a steel frame (Fig. 3.14). Each

scintillation bar is made of plastic scintillator (EJ-230), which has an active area of 432 mm ×

140 mm and 50 mm thick. Time resolution (σT ) in the S2 plane is about 0.3 ns, and the time

resolution of TOF from target to S2 plane is 0.5 ns (σ).
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Figure 3.14: The layout on frame with S2 paddles [54]. There are sixteen S2 paddles on the frame. The
size of one S2 scintillation trigger counter is 432 mm × 140 mm in active area and 50 mm in thickness,
and total effective are of the S2 detector is 2235 mm × 432 mm.

3.4.3 Cherenkov detecoters

The experiment was detected K+ at RHRS and e′ at LHRS for identification of Λ productions.

However, much background were detected in each HRS. Basically, the charged particle is iden-

tified using Cherenkov detectors. When the charged particle passes through a material with

a refractive index of n with higher than the speed of light in a material (β > 1/n), it emits

Cherenkov light. Cherenkov photon yield in material with a refractive index of n is written as

followings:

d2N

dxdλ
=

2παz2

λ2

(
1− 1

β2n2(λ)

)
, (3.3)

α : Fine structure constant,

N : Number of photons,

x : Path length [m],

λ : Wavelength of the Cherenkov light [m],

z : Charge of the particle,

β : Velocity factor of the particle,

n(λ) : Refraction index of the medium.

In order to identify the charged particle such as e′ and K+, this experiment used two aerogel

Cherenkov detectors (AC1 and AC2) in RHRS, and a gas Cherekov detector in LHRS. The

performance of these Cherenkov detectors will be discussed in detail below.
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Table 3.9: Main characteristics of Cherenkov detectors

Arm Detector
material Refractive Tile size Radiator Size Number of PMT
type index (cm3) (cm3) PMTs Model

RHRS
AC1 Aerogel (SP15) 1.015 10× 10× 1 170× 32× 9 24 RCA 8854
AC2 Aerogel (SP50) 1.055 10× 10× 1 192× 30× 5 26 XP 4572B

LHRS GC CO2 1.00041 - 250× 80× 150 10 BURLE 8854

Figure 3.15: A schematics drawing of aerogel Cherenkov detector (AC1). There are 12 segments and 24
PMTs.

■ Aerogel Cherenkov detector : AC1

The main specifications of used Cherenkov detectors are summarized in Tab. 3.9.

The AC1 detector was used for distinguished π+ fromK+ and p in off-line analysis. Figure 3.15

shows a schematics drawing of the AC1. The AC1 contains aerogel tiles with refractive indices

at 1.015 (SP15) and a thickness of 9 cm, and there are 24 segments with PMTs (RCA 8854).

In addition, the millipore and the ESR seats were attached to the inside of the AC light box as

reflections.

■ Aerogel Cherenkov detector : AC2

The AC2 was used for K+ separation from π+ background. Figure 3.16 shows a schematics

drawing of the AC2. The AC2 has an aerogel with refractive index of 1.055 and 5 cm thickness.

There are 26 segments with PMTs (XP 4572B).
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Figure 3.16: A schematics drawing of aerogel Cherenkov detector (AC2) front view of AC2. There are
13 segments and 26 PMTs.

■ Gas Cherenkov detector (GC)

The gas Cherenkov (GC) detector is filled with CO2 gas with reflective index of 1.00041, at

1 atmosphere. It was used for electron identification, and mounted between S0 and S2. The

momentum thresholds for an electron and a π in the GC are 0.017 and 4.8 GeV/c, respectively.

Therefore, when charged particles below 4.8 GeV/c pass through the GC, the GC detects only

Cherenkov light of emitting by electrons. The geometrical layout of the GC is shown in Fig. 3.17.

The emitting Cherenkov light was reflected on 10 concave mirrors in the bottom of chamber,

and it guided by ten spherical mirrors to PMTs with 11-cm diameters (BURLE 8854).

■ Particle identification

The two aerogel Cherenkov detectors, the refractive indexes of which are 1.015 and 1.055, were

used to identify K+ in off-line analysis in RHRS. The Fig. 3.18 and 3.19 show the result of the

number of photon electron with Eq. 3.3. The wavelength was integrated between 300 to 650 nm

which is typical sensitive range of wavelength of the PMT, and reflective index (n(λ)) was fixed

at 1.015 and 1.055 for two aerogel (AC1, AC2), respectively. In this experiment, the acceptance

range of K+ momentum was from 1.72 to 1.88 GeV/c. The AC1 separates π+ from p and K+,

and AC2 distinguishes K+ from p in the acceptance range. K+ events can be distinguished with
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Figure 3.17: A schematics of gas Cherenkov detector [61].

Figure 3.18: This shows the π+, K+ and
p momenta dependence of Cherenkov pho-
ton yields with aerogel of n = 1.015 per
1 cm thickness. The π+ can be distin-
guished from p and K+ within a range of
RHRS acceptance in the off-line analysis.

Figure 3.19: This shows the π+, K+ and
p momenta dependence of Cherenkov pho-
ton yields with aerogel of n = 1.055 per 1
cm thickness. The p can be distinguished
from π+ and K+ within a range of RHRS
acceptance in off-line analysis. Applying
an appropriate ADC threshold cut, the
K+ particles can be separated from π+.

the combination of AC1 and AC2, as follows :

AC1⊗AC2. (3.4)

In the case of LHRS, the gas Cherekov detector with the refractive indexes of 1.00041 was used

for π− rejection. Fig.3.20 shows the result of the number of photon electron with Eq. 3.3. The

wavelength was integrated between 300 to 650 nm which is typical sensitive range of wavelength
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Figure 3.20: Number of photo-electrons (NPEs) with Gas Cherenkov as a function of momenta of e′ and
π−.

of the PMT, and reflective index (n(λ)) was fixed at 1.0041. Within a range of LHRS acceptance,

π− are not detected by GC. Hence, e′ events can be distinguished by selecting fired events in

GC.

3.5 Trigger systems

In the experiment, there are five trigger modes, TL1, TL2, TL3, TR and Tcoin. TL1, TL2 and TL3

are LHRS single triggers which consist of S0, S2 and gas Cherenkov triggers in LHRS. The LHRS

triggers will be also explained in Sec. 3.5.1. The RHRS trigger (TR) consists of coincidence of S0

and S2 triggers. These four triggers, which were generated to analyzed the single arm data, were

used for taking calibration data. In the (e, e′K+) experiment, the coincidence trigger (Tcoin),

which consists of coincidence of TL1 and TR triggers, is mainly used for e′K+ coincidence data

analysis, and described logical condition as the follow:

Tcoin = TR ⊗ TL1. (3.5)

These multi trigger signals (Fig. 3.21) were controlled with Trigger Supervisor(TS), which is

the designed at CEBAF [62]. Taking data by these triggers were pre-scaled by TS, and was

controlled to keep high efficiency of data acquisition (DAQ).

3.5.1 LHRS trigger system

As a LHRS single trigger, the experiment was used three triggers (TL1, TL2, TL3). These

trigger’s logical condition are shown in Fig. 3.22 and described as:

TL1 = (LS0⊗ LS2), (3.6)

TL2 = (LS0⊗ LS2)⊗GC, (3.7)

TL3 = (LS0⊕ LS2)⊗GC. (3.8)
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Figure 3.21: Main triggers of E12-17-003 experiment. The single triggers (TL1, TL2, TL3, TR) and
coincidence trigger (Tcoin) signals were controlled by the trigger supervisor.

Figure 3.22: LHRS trigger conditions

Data with TL1 trigger was took when S0 and S2 were fired simultaneously. The other LHRS

triggers (TL2 and TL3) were generated with the combination of S0, S2 and gas Cherenkov

detector triggers. The rate of main LHRS single trigger (TL1) was ∼ 11.5 kHz (pre-scaled 1/200

in TS) with beam current 25 µA with tritium target (thickness is 84.8 g/cm2).

3.5.2 RHRS trigger system

RHRS trigger was made by the following logical condition:

TR = (RS0⊗ RS2). (3.9)

The RHRS trigger (TR) was also generated with the combination of S0 and S2 in RHRS. RHRS

trigger rate was 20 kHz (pre-scaled 1/200 in TS) with beam current 25 µA with tritium target

(thickness is 84.8 g/cm2).

3.5.3 Data acquisition

In the experiment, data were taken by the CEBAF On-line Data Acquisition (CODA) system

[63]. The CODA data acquisition system was developed for rapid construction of DAQ systems,

and consists of three components which are the readout controller (ROC), the event builder

(EB) and the event recorder (ER). Additionally, TS and the event transfer (ET) system, which
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Table 3.10: Data summary of the E12-17-003 experiment.

Target Kinematics Thickness Beam current Total charge
[mg/cm2] [µA] [C]

H H kine 70.8 22.5 4.7
H T kine 70.8 22.5 1.3
3H T kine 84.8 22.5 14

is used instead of data distribution system (DD), were implemented.
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Chapter 4 Analysis

4.1 Particle identification

In the (e, e′K+) reaction experiment, e′ and K+ were observed to identify the Λ productions.

However, much background such as π−, π+ and p, contaminated in the spectrometers (HRSs).

These backgrounds were identified by an off-line analysis using the Cherenkov detectors (AC1,

AC2) and the time of flight (TOF) information from the target to the trigger scintillation counter

(S2).

4.1.1 Coincidence time

The accidental electrons (e′) in the LHRS cannot be removed by any Cherenkov detectors.

Therefore, the coincidence time analysis was used to remove the accidental electrons.

The coincidence time (Tcoin) was defined as a reaction time difference between the K+ and

scattered electrons,

Tcoin = TL − TR. (4.1)

Reaction times at the target (TL, TR) were determined by subtracting the TOF from detection

time at the S2 counters (TS2) as following,

TR = TRS2 −
lpath
cβR

, (4.2)

where βR and lpath were the velocity of particles and the path lengths from the vertex point to the

S2 trigger position in RHRS. The TL was also written in Eq. 4.2 with variables of βL and lpath.

Reaction times of K+ and e′ at target should be same so e′ is separable from accidental electrons

by selecting Tcoin ∼ 0 which means simultaneous production of e′ and K+. Additionally, π+

and p background events were also identified with coincidence time analysis. The velocity (β)

was calculated with momentum (p) which was reconstruct by backward matrices (Sec. 4.2.2).

Therefore, Eq. 4.2 was described with momentum and particle mass (m) as:

TR,L = TRS2,LS2 −
lpath
c

p√
p2 +m2

. (4.3)

Since coincidence time was depending on particle masses, the e′π+ and e′p coincidence times

were 3 and 7 ns difference from e′K+ coincidence time (see Table 4.1). Fig. 4.1 shows the

coincidence time distribution. The events around Tcoin ∼ 0 ns corresponding to e′K+ events,
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Table 4.1: Time of flight for each particle

Particles β at 1.8 GeV/c flight time (lpath = 27.3 m)
K+ 0.964 94.4 ns
π+ 0.997 91.2 ns
p 0.887 102.6 ns

Figure 4.1: [

Coincidence time distribution without any Cherenkov cut.]Coincidence time distribution without any
Cherenkov cut. The K+ events existed at Tcoin = 0 ns. In this analysis, −0.7 ≤ Tcoin ≤ 0.7 ns region

was used for K+ events selection.

and main two peaks around -8.0 ns and 3.5 ns were e′p and e′π+ coincidence events, respectively.

The 2-ns bunch structures originated from RCS (499 MHz). The number of e′K+ coincidence

events was obtained by subtracting the accidental background distribution which was estimated

from selecting side bunches of coincidence time (|Tcoin| > 20 ns). Coincidence events in a range

of |Tcoin| < 0.7 region were selected as a e′K+ coincidence events.

4.1.2 Electron identification

Negative charged particles such as π− and accidental electrons contaminated in the LHRS. The

gas Cherenkov detector (GC), which was filled with CO2 gas with refractive index of 1.00041,

was used for a selection of scattered electrons in the off-line analysis. Figure 4.2 shows ADC

distribution of the GC. The one of the peak at 500 ch was one photon electron and pedestal

events were removed with ADC cut. off-line cut of GC was applied to

ADCGC ≥ 1800 ch (4.4)
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Figure 4.2: Gas Cherenkov cut condition

4.1.3 K+ identification

Off-line K+ identification (KID) is necessary to remove a large background from mainly π+

and p particles. For the K+ identification, two aerogel Cherenkov detectors (AC1, AC2) were

installed in the RHRS detector package. Figure 4.3 and 4.4 show the detected number of photo-

electrons of AC1 and AC2 depending on coincidence time. For the K+ identification, the cut

conditions of AC1 and AC2 were determined as follows:

AC1 ≤ 3.0 [NPE] , (4.5)

1.0 [NPE] ≤ AC2 ≤ 23.0 [NPE] . (4.6)

4.2 Optics calibration

4.2.1 Missing mass

In the (e, e′K+) reaction, the missing mass of the Λ hypernucei was calculated from :

MHY P =
[
(Ee +Mtar − EK − Ee′)

2 − (p⃗e − p⃗K − p⃗e′)
2
]1/2

, (4.7)

=
[
(· · · )2 + p2e + p2e′ + p2K − 2pepe′ cos θee′ − 2pepK cos θeK + 2pe′pK cos θe′K

]
, (4.8)

where Ee and p⃗e are beam energy and momentum, andMtar is target mass. The θee′ , θeK and θee′

are particle angels at target. The beam momentum vector were precisely controlled in CEBAF

(see Table 3.1), and beam energy Ee was calculated from an equation of Ee =
√
M2

e + |p⃗e′ |2.

Therefore, the missing mass can be deduced from the information of momentum vectors about
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Figure 4.3: Correlation between coincidence time and AC1 NPEs. The Chereknov
cut of GC (Eq. 4.4) and AC2 (Eq. 4.6) were used.

Figure 4.4: Correlation between coincidence time and AC2 NPEs. The Chereknov
cut of GC (Eq. 4.4) and AC1 (Eq. 4.5) were used.

K+ and scattered electron at target. The angles and momentum at target were obtained by

using the backward transfer matrix from focal plane (xFP , yFP , x
′
FP , y

′
FP ). Therefore, the

optimization of backward transfer matrix improved the missing mass resolution.

4.2.2 Backward matrix

The reference plane (subscript RP) events at target (subscript tar) is transferred to with a 1st

order matrix (M0), is described as:
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
xRP

x′RP

yRP

y′RP

p

 =M0


xtar
x′tar
ytar
y′tar
p

 (4.9)

where x, y, x′(≡ px/pz), y
′(≡ py/pz) and p are positions (x, y), angles (x′, y′) and momentum

(p) of particles. Experimentally, the particles were detected at the reference plane, so the target

plane information is estimated with an inverse transfer matrix (M−1
0 ) by :

xtar
x′tar
ytar
y′tar
p

 =M−1
0


xRP

x′RP

yRP

y′RP

p

 . (4.10)

This is a ideal case. In reality, the magnetic field of HRS cannot be reproduced by first order

matrix. Therefore, the inverse matrix needs high order terms as:


xtar
x′tar
ytar
y′tar
p

 =M



xRP

x′RP

yRP

y′RP

x2RP

ztar
xRPx

′
RP

...


(4.11)

ztar =MZ



xRP

x′RP

yRP

y′RP

x2RP

xRPx
′
RP

...


(4.12)

where ztar is z-vertex (a beam direction) which can be written with Eq. 4.12. There is no mo-

mentum term (p) in the Eq. 4.11. Experimentally, the momentum cannot be measured directly

at the reference plane, so the momentum parameter at target was written with parameters of

the reference plane. The variable of angles (x′tar, y
′
tar), momentum (p) and z-vertex (ztar) were

written as follows:

ztar =
∑

i+j+k+l≤n

Cz(i, j, k, l)(xRP )
i(x′RP )

j(yRP )
k(y′RP )

l, (4.13)

x′tar =
∑

i+j+k+l+m≤n

Cx′(i, j, k, l,m)(xRP )
i(x′RP )

j(yRP )
k(y′RP )

l(ztar)
m , (4.14)

y′tar =
∑

i+j+k+l+m≤n

Cy′(i, j, k, l,m)(xRP )
i(x′RP )

j(yRP )
k(y′RP )

l(ztar)
m , (4.15)

p =
∑

i+j+k+l+m≤n

Cp(i, j, k, l,m)(xRP )
i(x′RP )

j(yRP )
k(y′RP )

l(ztar)
m , (4.16)
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Table 4.2: Number of parameters required each matrix order

order (n) 1 2 3 4 5 6
x′T , y

′
T 6 21 56 126 252 462

zT 5 15 35 70 126 210

where Cx′,y′,z(i, j, k, l,m) were components of M in Eq. 4.11 and 4.12. The numbers of param-

eters written in Eq. 4.13, 4.14, 4.15 and 4.16 are summarized in Tab. 4.2. Each co-efficient

variable of Cz,x′,y′,p in x′tar, y
′
tar, ztar and p was optimized by a minimization of chi square with

each calibration data.

4.2.3 Raster correction

The beam raster with 1.8×2.9 mm2 was used for the cryogenic to reduce an energy loss density.

In the Hall A, x and y coordinate were defined as a gravity and vertical directions, respectively.

Figure 4.5 shows the geometrical correlation between the raster position y and reconstruct z-

vertex.

When the Λ was produced at (y, z)=(∆y, zHit), reconstructed z-vertex point (zRec) was given

at the intersection point of particle tracking and x-axis. Therefore, the reconstructed z-vertex

point has offset derived from raster y (∆zras = zHit − zRec). This offset was geometrically

calculated as :

zras =
yras

tan(θHRS + y′tar)
, (4.17)

where θHRS and y′tar are HRS located at an angle of 13.2◦ and angle from the central axis of

the HRS. Figure 4.6 shows the distributions of z-vertex, the reconstructed z-vertex (blue line)

and corrected z-vertex (red line). Comparing these distributions with the reference positions

of multi-carbon foils (dot line in Fig. 4.6), the the z-distribution after the raster correction was

better agreement with the reference positions than before the correction.

4.2.4 z-vertex correction

While the past Λ hypernuclear experiments used thin targets of ≤ 1 mm, the experiment

used gas long (25 cm) gas targets. An energy resolution was worse for long targets because the

generation positions were dispersed. Therefore, in this experiment, the multi-foil target was used

to correct for the target thickness. Figure 4.7 shows the target thickness (z-vertex) distribution

when the multi-carbon foils target was used. The co-efficient variable of Cz in Eq. 4.13 was

optimized with a chi square minimization by comparing with known positions of multi-carbon
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Figure 4.5: A schematics drawing of raster correction

Figure 4.6: z-vertex distributions without (blue line) and with raster calibration (red line)

foils. The chi square (χ2
z) in each carbon foil was defined as :

χ2
zj =

N∑
i=0

(zrefj − zi)
2

σ2
zj

(4.18)

where j is label of carbon foils (j ≤ 10). The Nj was the number of events when selecting within

2.5 cm from the reference position (zref) of each carbon foil. The total chi-square of z-vertex
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(χ2
z) was represented by adding each chi-square (χ2

zj ) in Eq. 4.18 as :

χ2
z =

10∑
j=0

χ2
zj . (4.19)

Figure 4.7 and 4.8 are shown result of z-vertex calibration. The blue dashed and red lines show

reconstructed the z-vertex in LHRS before and after the z correction. The black dashed lines

show the positions of multi-foil target. The resolutions of foils which were gotten by fitting with

Gaussian functions, are shown Fig. 4.8. The resolutions of all carbon foils in both HRS arm are

given by fitting with Gaussian functions, and better resolution than NIM value (σz < 7.8 mm).

4.2.5 Angle calibration

The angles (x′tar, y
′
tar) at vertex were represented with the backward matrix with Eq. 4.14 and

4.15. The parameters of angles (x′tar, y
′
tar) are optimized with sieve slit data. Sieve slit plate,

which has 2.54-cm length with 153 holes of 4 mm diameters and 2 holes of 6 mm diameters, was

attached to entrance of Q1 magnet in HRS. Therefore, the charged particles, which only passed

through sieve slit holes, can be observed (Fig. 4.9).

The angles (X ′, Y ′) at vertex point enabled to be determined with sieve slit positions

(xSS , ySS) by :

ySS =
l′0Y

′

cos(θHRS − θ′HRS ∓ atan(Y ′))
(LHRS, RHRS), (4.20)

θ′HRS = tan−1

(
l0 sin θHRS

l0 cos θHRS − z

)
, (4.21)

xSS = X ′
√
(2y2SSl

′2
0 | sin(θHRS − θ′HRS)|, (4.22)

where θHRS = 13.2◦ is spectrometer angle, and parameters of (l0 and l
′
0) are lengths from central

position at sieve slit to vertex points (z = 0, z). The schematic explainable of parameters in

Eq. 4.20 was given as Fig. 4.10.

The matrix elements of angles (Cx′(y′)) were optimized by chi-square minimization. For events

around a hole with a sieve slit, the chi-square of each hole (χssj,k) when the carbon foil labeled

k was selected, was written as follows:

χ2
ssj ,k

=

N∑
i=0

(ssrefj − ssi)
2

σ2
j

(4.23)

where ssrefj is the central position about each sieve slit hole, j and k are labels of a sieve slit hole

and a multi-carbon foil. The total chi-square of sieve slits (χ2
ss) was written with the chi-square

of each hole (χ2
ssj ,k ) as

χ2
ss =

10∑
k=0

Nhole∑
j=0

χ2
ssj ,k

(4.24)

After the minimization of chi-square with Eq. 4.24, the sieve slit holes can be seen clearly.



Chapter 4 Analysis 49

Figure 4.7: z-distribution with (red line) and without (blue dot line) z-calibration.
The blue dashed and red lines show reconstructed the z-vertex in LHRS before and
after the z correction. The black dashed lines show the positions of multi-foil target.

Figure 4.8: A fitting result with each carbon multi-folis. The blue and red points
represents z-resolution obtained by fitting with Gaussian function in LHRS and
RHRS, respectively.

■ Angle resolution

The tracking angles at target x′tar and y′tar were geometrically obtained from Eq. 4.20 and 4.22.

However, a hole size of sieve slit was 2 mm or 4 mm in a diameter which was comparable to a

typical angle resolution (∆y′ × l0 ∼ a few mm), and had a thickness of 2.54 cm. The schematic
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(a) Sieve Slit Pattern at LHRS
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(b) Sieve Slit Pattern at RHRS

Figure 4.9: The distributions of sieve slit patterns after matrix tuning (a: LHRS, b: RHRS). The
horizontal and vertex axes are the y and x positions at sieve slit, respectively. The black full cross and
triangle up points shows the central point of sieve slit holes, whose diameters are 2 mm (full cross points)
and 4 mm (triangle points).

of explanation of the position at sieve slit is shown in Fig. 4.10.

The angular resolution that best reproduced the experimental data was determined by gen-

erating the position distribution at the sieve slit for each change in the angular resolution in

the Monte Carlo simulation. Figure 4.11 shows the position distributions in the sieve slit by

MC simulation. The left figure in Fig. 4.11 shows the (xss, yss) distribution generated by MC

simulation on assuming the angular resolution of zero. On the other hand, assuming a certain
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Figure 4.10: A diagram of the relationship between the sieve slit position (ySS) and target position (z).

Figure 4.11: The simulation result with Monte Carlo simulation The left figure shows the (xss, yss)
distribution obtained by the MC simulation in the sieve slit assuming the angular resolution of zero.
The right figure shows shows the (xss, yss) distribution obtained by the MC simulation in the sieve slit
assuming a certain resolution.

angular resolution in the MC simulation, the observed hole distribution was wider (right side of

Fig. 4.11).

Selecting the central hole at (xss = 0, yss = 0), both of distributions of xss and yss at the sieve

slit were shown in Fig. 4.12. The dot point is experimental data and the blue histogram is the

best fitting result in the central hole. The resolutions of angles, ∆x′ and ∆y′ at the target were

2.37× 10−3 and 1.52× 10−3, respectively.
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Figure 4.12: The reproduced position distributions with Monte Carlo simulation at sieve slit.

4.2.6 Energy loss correction

When charged particles passed through materials, the particles loss energy can be calculated

with the Bethe-Bloch equation [66]. The electron beam lost energy while the electron passed

though targets between the entrance window to the reaction point. On the other hands, the e′

and K+ lost energy in materials after the reactions occurred. Therefore, the particles energies

(E′
e, E

′
e′ , E

′
K) at the reaction are given as :

E′
e = Ee − δEe , (4.25)

E′
e′ = Ee′ + δEe′ , (4.26)

E′
K = EK + δEK (4.27)

where Ee, Ee′ , EK are particle energies, and δEe, δEe′ , δEK are energy losses. By the measure-

ment z-vertex point with Eq. 4.13, the energy loss of each charged particles can be estimated

with the energy loss distributions by Geant4 simulation (see Sec. 4.4.3).

4.2.7 Momentum calibration

The momenta of scattered electrons and K+ were calibrated with the missing masses of Λ and

Σ0 by using elementary reactions, p(e, e′K+)Λ/Σ0. The masses of Λ and Σ0 are known precisely

(mΛ = 1115.683(6), mΣ0 = 1192.64(2) MeV/c2 [67]) since the matrix elements (Cp) in Eq. 4.16

was optimized with chi-square minimization. The chi-square for the momentum calibration was

defined as:

χ2
Λ, Σ0 =

N∑
i=1

(mΛ,Σ0 −mi)
2

σ2
Λ,Σ0

, (4.28)

where mi is measured missing masses with the hydrogen target. This calibration method was

developed in the past hypernuclear experiment at JLab Hall C (E05-115) and achieved missing
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Figure 4.13: Comparison of the H(e, e′K+)Λ/Σ0 missing mass spectrum before and after calibration

mass resolution (0.78 MeV in FWHM). On the other hand, the experiment used he target with

the 25-cm target. Since the z-dependence of the energy loss was not negligible, the energy

resolution was known to be deteriorated. Therefore, the reconstruct momenta of K+ and e′

was calibrated by using Eq. 4.16, which included z-vertex parameters in order to take z-vertex

dependence in the momenta into account.

The peaks of Λ and Σ0 had radiative tails. The number of Λs and Σ0s were estimated by

fitting with the functions as following:

((f + h) · g)(x) = (f · g)(x) + (h · g)(x), (4.29)

f(x) : =
1

τ
exp

(
−x
τ

)
, x ∈ [0,∞], (4.30)

g(x) : =
1

2πσ2
exp

(
− (x− µ)2

2σ2

)
, (4.31)

h(x) : =
1

πc

∫ ∞

0

e−t cos

[
t
x− µ

c
+

2t

π
log

(
t

c

)]
dt (4.32)

where f, g and h are exponential, Gaussian and Landau functions, respectively. Figure 4.14

shows the p(e, e′K+)Λ/Σ0 missing mass spectra and convolution functions of Λ and Σ0. Fitting

results are summarized in Table 4.3. The energy resolutions of Λ and Σ0 peaks are 3.3 and 3.5

MeV (FWHM), respectively, and the difference of measurement masses (MPV) of Λ and Σ from

PDG values were -0.32 MeV/c2, respectively.
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Figure 4.14: H(e, e′K+)Λ/Σ0 missing mass spectra

Table 4.3: Fitting results of elementary reaction

Fitting parameters Λ Σ0

MX (MPV) - MPDG [MeV] −0.32 −0.32
width (FWHM) [MeV] 3.3 3.5

Number of events 1940± 180 440± 80

4.3 Resolutions

The mass resolution is deduced from missing mass equation (Eq. 4.7) with error propagation

method as :

∆M =

√(
∂M

∂pe
∆pe

)2

+

(
∂M

∂pe′
∆pe′

)2

+

(
∂M

∂pK
∆pK

)2

+

(
∂M

∂θee′
∆θee′

)2

+

(
∂M

∂θeK
∆θeK

)2

, (4.33)

and these differential coefficients are described as :

∂M

∂pe
=

1

M
{βe(Mtar + Ee − EK − Ee′)− pe + pe′ cos θee′ + pK cos θeK} , (4.34)

∂M

∂pe′
= − 1

M
{βe′(Mtar + Ee − Ee′ − EK) + pe′ + pe cos θee′ + pK cos θeK} , (4.35)

∂M

∂pK
= − 1

M
{βK(Mtar + Ee − Ee′ − EK) + pK − pe cos θeK + pe′ cos θeK} , (4.36)

∂M

∂θee′
= − 1

M
{pepe′ sin θee′ − pe′pK sin(θee′ + θeK)} , (4.37)

∂M

∂θeK
= − 1

M
{pepK sin θeK − pe′pK sin(θee′ + θeK)} . (4.38)



Chapter 4 Analysis 55

4.3.1 Angular resolutions at target

The x′tar and y
′
tar resolutions at target are evaluated in Sec. 4.2.5. In the calculation of missing

mass resolution, the θee′ and θeK were used. The x′tar and y′tar were used for representing the

momentum vector in the HRS coordinate system as:

p⃗HRS =

(
p√

1 + (x′tar)
2 + (y′tar)

2
x′tar,

p√
1 + (x′tar)

2 + (y′tar)
2
y′tar,

p√
1 + (x′tar)

2 + (y′tar)
2

)
. (4.39)

The θee′ θeK are particle angles in the HRS coordinate system. Hence, the p⃗HallA is deduced

from p⃗Hall with a rotate matrix Mrot at the y − z plane in the Hall A coordinate,

p⃗Hall =Mrot(Θ0) · p⃗HRS, (4.40)

=
p√

1 + (x′tar)
2 + (y′tar)

2
(x′, (y′ cosΘ0 + sinΘ0), (−y′ cosΘ0 + sinΘ0)), (4.41)

where Θ0 is HRS angles of +13.2◦ for the RHRS, −13.2◦ for the LHRS, respectively. Therefore,

the θee′ and θeK were calculated as :

θee′ = arccos

(
−y′tar sinΘ0 + cosΘ0√
1 + (x′tar)

2 + (y′tar)
2

)
(4.42)

The angle is mainly depending on horizontal vertex y′tar, therefore the resolutions of θee′ and

θeK were obtained as 1.52 mrad (σ).

4.3.2 Momentum resolutions

The momenta of e′ and K+ were calibrated by the missing masses of Λ and Σ0, and the exper-

iment did not take data to evaluate the momentum resolutions in each spectrometer directly.

Therefore, the momentum resolution was estimated by the Monte Carlo simulation (Geant4) sim-

ulation. The momentum resolution of the HRS was evaluated in the past experiment through an

elastic scattering reaction of electrons [56], and the Ref. [56] reported that the momentum res-

olution in a range of momentum acceptance (∆p/p ≤ 1.5%) was achieved to ∆p/p = 2.5× 10−4

(FWHM).

Under the same conditions of Ref. [56], the resolution of the momentum was evaluated with

Geant4 simulation, and the result was obtained as ∆p/p = 2.5× 10−4 (FWHM) which is agree-

ment with Ref. [56].

Fig 4.15 shows the simulation results about momentum resolutions in LHRS. The purple line

shows the momentum distribution withthe z-vertex distribution (|z| ≤ 12.5 cm) and without

material, and this resolution was ∆p/p = 4.3× 10−4 (FWHM). The red line shows the momen-

tum distributions including the z-vertex distribution and any materials, and had offsets due to

energy loss in the materials. After energy loss correction, the blue line in Fig. 4.15 was ob-

tained, and the momentum resolution was estimated to be ∆p/p = 1.1 × 10−3. The resolution
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Figure 4.15: As results of momentum resolutions when the material setting were changed.

Table 4.4: Contribution of each term of a missing mass to mass resolution

terms resolutions (FWHM)
∆pe/pe 2.0× 10−4

∆pe′/pe′ 1.1× 10−3

∆pK/pK 1.1× 10−3

θee′ 3.57 mrad
θeK 3.57 mrad

Λ(Σ0) missing Mass 3.4 (3.5) MeV

of ∆p/p = 1.1 × 10−3 was including effects of straggling and multi scattering. The intrinsic

resolution of momentum was obtained as p = 4.3×10−4×2218 MeV/c = 0.95 MeV/c (FWHM)

from the purple histogram in Fig. 4.15. Hence, The resolution due to the straggling and multi

scattering effects was estimated to be 2.3 MeV/c by subtracting the intrinsic resolution from

total momentum resolution (∆p/p = 1.1× 10−3).

The resolution of each term is summarized in Table 4.4

4.4 Monte Carlo simulation

A simulation code was used for accurately analysis to the Λ productions on tritium. A Monte

Calro Simulation Code (SIMC), which is JLab standard simulation code, is based on a code writ-

ten by N. Makins and T.G. O’Neill at SLAC. The code was modified for Hall A or C optics design:

spectrometers and detectors, and for including energy loss, multiple scattering, radiative corre-
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lations and kaon decay. The SIMC can handle electron scattering reactions (e, e′π+), (e, e′K+)

and (e, e′p). It was modified to including optics model of HRS and momentum distribution of

proton in the 3H [68,69].

4.4.1 Event generation

The SIMC generated terms of a scattered electron momentum (pe′), angles at target in both

arms (θtare′ , ϕ
tar
e′ , θ

tar
K , ϕtarK ), a momentum of a proton in tritium (pfer) and an excited energy

of a residual system (nn). The generation parameters except for the proton momentum and

the excited energy of the removal system were generated randomly with an uniform function

within a range of spectrometer acceptance. The other parameters, the proton momentum and

the excited energy of the removal system, were generated with probability functions (Fermi

momentum or spectral function).

4.4.2 Virtual photon approximation

The momentum of virtual photons can be determined by momenta of a beam electron and

scattered electron. The electron beam energy was controlled by the magnets at the Arc of the

accelerator with the accuracy of 10−4 order and with spread of ∆E/E ∼ 10−4 (FWHM). The

momentum of scattered electrons at reaction point were generated with randomly within a range

of HRS acceptance (∆pe′/pe′ ≤ 4.5%). Hence, energies of the incoming and scattered electrons

at vertex point (Ever
e(e′)) were written as:

Ever
e = Egen

e − EEloss
e = Ecent

e +∆Ee − EEloss
e , (4.43)

Ever
e′ = Egen

e′ = Ecent
e′ +∆Ee′ , (4.44)

(4.45)

where Egen is the randomly generated energy within beam spread or LHRS acceptance range,

and EEloss
e is the energy loss due to the radiation effect (see 4.4.3). In SIMC, the virtual

photon was treated based on one photon exchange (ignored two photon exchange). In the one

photon approximation, the virtual photon flux is following Eq. 2.7. Hence, the virtual photon

momentum is simply described as:

p⃗γ∗ = p⃗e
ver − p⃗e′

ver = p⃗e
gen −∆pEloss

e − p⃗e′
gen. (4.46)

4.4.3 Radiation corrections

SIMC takes including the radiative corrections into account for the incident and scattered

electrons. These corrections are considered about external Bremsstrahlung and internal contri-
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Table 4.5: HRS material parameters were used to calculate kaon absorption and multiple scattering

Material thickness (cm) radiation length (cm) Comment
Target

Chamber cell 0.084 8.897 Aluminum
Target (z) (12.5 + z)/0.234 0.02/0.031 Target (tritium/hydrogen)

Air 15 30420
Mylar 0.01 28.7

Hut
Material thickness (cm) Radiation length (cm) Note

Air ∼ 180 30420
Spectrometer exit window 0.02 3.56 Titanium

Aluminum Cage 0.0025 8.897 Aluminum around VDCs
Copper window (entrance/exit) 0.0125 1.436 each chamber

Mylar 0.0006 28.54
Gold plating 8.5× 10−4 0.9415

VDCs 5.25 15815
mylar 0.12 28.54 at straw chamber

Aluminum 0.012 8.897 at straw chamber
Chamber gas 5.7 15815

Cherenkov entrance 0.0125 8.897 Aluminum
Gas (GC) 137 19659 C02 at 1 atm

Mirrors of GC 1,4 254.5 1mm plexiglasss
+13 mm phenolic honeycomb

GC exit foil 0.0125 8.897
Al plate 1.3/1.9 8.907 before pre-shower/between the layer

butions. Eq. 4.43, 4.44 are rewrote with internal and external energy losses as:

Ever
e = Egen

e −∆Ein
e −∆Eout

e , (4.47)

Edet
e′,K = Ever

e′,K −∆Ein
e′,K −∆Eout

e′,K , (4.48)

where Edet
e′ and Edet

K are energies at detector plane, and ∆Eout
e and ∆Ein

e are energy loss by

the real photon emission when electron pass through materials (external radiation), and by

scattering by the electro-magnetic field from nuclei (internal radiation), respectively. Energy

loss of incoming and outgoing electrons and K+ are calculated by using HRS material maps and

tracking. The materials of HRS and target systems are summarized in Table 4.5.

■ Energy loss correction in the target system

The target cell was designed with a special shape. Cell thickness was not uniformed and

different from each target (see Table 3.7). The path length in the gas target and cell depended

on z-vertex point and angle ϕ (horizontal direction in Hall A coordinate). The e′ and K+ are

passed through two parts of the cell, an exit window (semicircle) or side (flat) cell (see Fig. 3.8).

When a particle passed through the side cell, the effective cell thickness was multiplied by a

factor of 1/sin(13.2◦) ∼ 4.4 to have the actual thickness. In this case, the energy loss was

evaluated about 1 MeV. In the case of exit window, the ϕ dependence is relatively small because

of the hemispherical design. Figure 4.16 shows the target thickness dependence of the energy
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Figure 4.16: [y′tar dependence of the energy loss in the target cell. The solid and dashed lines show y′tar
dependence of the energy when the particle passed though the side cell and exit cell, respectively.

Table 4.6: Fitting parameters of energy loss functions

particle function p0 p1 p2

K+ Eq. 4.49 (z < 8 cm) -1.32 -4.62 2.04
Eq. 4.50 (z ≥ 8 cm) 0.0316 0.406

e′
Eq. 4.49 (z < 8 cm) -1.36 -4.60 2.10
Eq. 4.50 (z ≥ 8 cm) 0.0623 0.403

loss which can be shown as y′tar = tan(ϕ). The solid line shows the events passed through the

side cell (z ≤ 8 cm) and the dot line shows the particles passed through the exit cell (z ≥ 8 cm).

The fitting functions in Fig. 4.16 were used as:

fELoss
K(e′) (ytar) = p0 sin(−p1(±y′tar − θHRS)) + p2 (z < 8 cm), (4.49)

fELoss
K(e′) (ytar) = p0(±y′tar − θHRS) + p1 (z ≥ 8 cm), (4.50)

where θHRS is the angle between the beam direction and central position of HRS (13.2◦). The

fitting parameters of the energy loss was summarized in Tab. 4.6

4.4.4 Proton Fermi momentum in 3H

A nucleon in the nucleus moves with Fermi momentum ((pfer)), and this momentum probability

is basically obtained by elastic scattering data. Figure 4.17 shows the Fermi momentum distri-

bution of a nucleon in 3H [69], and a proton momentum was generated in the SIMC with this

distribution.

A proton having Fermi momentum in nucleus is described by the off-mass-shell model. There-

fore, the energy conservation (ET = Ep +Enn) are broken. Hence, the tritium mass can not be
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Figure 4.17: Fermi momentum of a proton in 3H.

described with proton mass and removal mass,

MT ̸=
√
M2

p + p2fer +
√
M2

nn + p2fer. (4.51)

In this analysis, off-shell masses of proton (M∗
p ̸= Mp) is introduced. The tritium mass can

be described with off-shell mass of proton and removal nucleus as :

MT =
√
(M∗

p )
2 + p2fer +

√
(Mnn)2 + p2fer. (4.52)

Hence, the off-shell proton energy is deduced from a following equation,

Ep =MT −
√
(Mnn)2 + |p⃗fer|2. (4.53)

4.4.5 Spectral function of 3H

A spectral function gives probability of a bound nucleon momentum and excited energy of the

residual system (nn). This is able to describe the off-shell state of a nucleon and the Fermi

momentum was derived as:

f(k) =

∫ ∞

0

dEm SF (k,Em), (4.54)

where f(k) and SF (k,Em) are functions of the Fermi momentum and spectral function, andk

and Em are parameters of a nucleon momentum and excited energy for the residual system

(A-1), respectively. The removal energy Em was defined as :

Em = |EA| − |EA−1|+ E∗
A−1, (4.55)

where |EA| and |EA−1| are energy of target system and the residual system, and E∗
A−1 is an

excited energy of removal system. In the case of using SF, the mass of removal system MSF
nn are
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Figure 4.18: Spectral function about a proton in 3H

given as :

M ‘rmSF
nn =MT −Mp + Em (4.56)

Hence, the off-shell proton energy in case of using SF can be obtained from Eq. 4.53 by using

MSF
nn instead of Mnn.

4.4.6 Hyperon production calculation

The reaction between the virtual photon and the target (γ∗ + 3H → K+ + Y) can be approx-

imately treated as an elementary reaction γ∗ + p → K+ + Y because the energy of the virtual

photon energy (Eγ∗ ∼ 2.2 GeV) is high enough to apply the impulse approximation model. The

4-vector momentum of generated Λ can be obtained with the energy and momentum conserva-

tion lows,

(Etar
e − Etar

e′ ) + E∗
p = Etar

K + EΛ, (4.57)

(p⃗e
tar − p⃗e′

tar) + p⃗fer = p⃗K
tar + p⃗Λ, (4.58)
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Table 4.7: Λ cross section for all angels at Q2 = 0.5 GeV/c2 measured at JLab Hall A [74]

Q2 (GeV) W (GeV) t (GeV)2 θcm degree dσ/dΩ (µb/sr)
0.462 1.848 -0.205 8.171 0.517± 0.036
0.466 1.831 -0.221 11.479 0.435± 0.026
0.493 1.841 -0.238 10.806 0.590± 0.039
0.483 1.823 -0.235 13.110 0.435± 0.025
0.484 1.817 -0.246 15.447 0.428± 0.021
0.487 1.814 -0.247 17,770 0.410± 0.019
0.487 1.813 -0.266 20.221 0.420± 0.019
0.487 1.805 -0.279 22.309 0.435± 0.019
0.508 1.806 -0.286 20.342 0.462± 0.024
0.495 1.806 -0.286 23.483 0.423± 0.019
0.494 1.806 -0.299 25.998 0.412± 0.018
0.495 1.804 -0.314 28.535 0.388± 0.017
0.495 1.804 -0.330 31.293 0.406± 0.017
0.500 1.797 -0.350 33.902 0.396± 0.017
0.497 1.807 -0.340 33.039 0.352± 0.022
0.495 1.806 -0.358 35.732 0.352± 0.019
0.496 1.803 -0.377 38.270 0.350± 0.018
0.497 1.802 -0.398 41.034 0.336± 0.018
0.497 1.803 -0.420 43.892 0.349± 0.019
0.507 1.796 -0.444 46.289 0.415± 0.020

where electron energy and momentum are used after energy loss (see Eq. 4.47), and E∗
p is off-

shell proton energy. In the elemental reaction process, E∗
p and p⃗fer are treated to be zero. On

the other hand, the 4-vector momentum about Λ-QF production is calculated by Eq. 4.57, 4.58.

The Λ-QF spectrum is calculated with Fermi momentum, the information of elastic scattering

effects and spectrometers acceptance. The energy and angle dependence of the cross section

were considered with the factorized cross section model.

■ The differential cross section calculation

In the SIMC, the differential cross section is defined as :

dσ

dΩ
(Q2,W, t, ϕ) = f(Q2)g(W )h(t)i(ϕ), (4.59)

where f, g, h, iare independent functions of the indicated variables, and the other variables are

fixed. Each of independent function is described as following:

f(Q2) = Constant, (4.60)

g(W ) =
P1p

cm
k

(W 2 −M2
p )W

+
P2W

2

(P3W )2 + (W 2 − P 2
4 )

2
, (4.61)

h(tmin − t) = P1 expP2(tmin − t), (4.62)

i(ϕ) = P1 + P2 cos(θ) + P3 cos(2θ), (4.63)

where P1,2,3,4 are free parameters. As a result of fitting experimental data (see Table 4.7) with

each independent function, the parameters of these functions were summarized in Table 4.8.
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Table 4.8: The parameter values of independent functions

Functions P1 P2 P3 P4

f(Q2) 0.430± 0.005
g(W ) 4.470± 0.005 0.00089± 0.00086 0.0787± 0.02458 1.72

h(tmin − t) 0.4262± 0.0056 −2.144± 0.211
i(ϕ) 0.438± 0.006 −0.048± 0.009 0.008± 0.009

Table 4.9: Main kaon decay channels used in SIMC. Other channels with branching raito less than 1%
are ignored.

Decay mode Branching ratio (%)
µ+ + νµ 63.56± 0.11
π+ + π0 20.67± 0.08

π+ + π+ + π− 5.583± 0.024
π0 + e+ + νe 5.07± 0.04
π0 + µ+ + νµ 3.352± 0.033
π+ + π0 + π0 1.760± 0.023

The Λ and Σ0 production on tritium target were also calculated with these independent

functions.

4.4.7 K+ survival ratio

■ K+ decay factor

A K+ decays with the mean lifetime (τ = 1.2 × 10−8 sec), so some of K+s are decay in flight

before they reach the end of HRS detectors. Table 4.9 shows decay channels of the K+ taken

into account in SIMC. In the SIMC, the probability of K+ decay was calculated by :

P (l) = e−l/(cτγβ), (4.64)

where l, β and γ are path length, velocity, and Lorentz factors of K+, respectively. Figure 4.19

shows K+ survival ratio in HRS acceptance. Dots points and line are a simulation result of

survival ratio with Monte Carlo simulation (Geant4) and function with Eq. 4.64. In the range

within HRS acceptance, Eq. 4.64 is a good agreement with Geant4 simulation.

■ K+ absorption factor

SomeK+s were absorbed when they passed trough in materials. The factor of this effect (fabsorp)

was estimated with the Monte Carlo simulation (Geant4) by comparing with number of events

when inelastic processes are included and those when they were not included. As the results of

simulation, this effects was 93% and which of momentum dependence of it was negligible small.
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Figure 4.19: K+ survival ration distribution. Dot points shows the simulation result of K+ survival ratio
with Geant4 and red lines is calculation with Eq. 4.64. In a range within the HRS acceptance, simulation
results is comparable with calculation in Eq. 4.64.

4.4.8 Acceptance estimation

The momentum distribution of the HRS acceptance depends on momentum, and it was used for

deducing cross section. For the acceptance estimation, SIMC generated angle and momentum

with a spherical uniform function. The acceptance can be obtained by ratio of number of total

generates Ngen and accepts (Nacc) in each solid angle setting (∆Ω) as :

∆Ω =
Nacc

Ngen
∆Ωgen. (4.65)

For the study of systematical errors, the acceptance was estimated with Geant4 by changing

the magnetic field of the spectrometer.

■ Systematical error estimation with Geant4

The Gean4 is more flexible to handle realistic magnetic field than SIMC and thus, it is suitable

to study systematical error of the HRS acceptance. Figure 4.21 shows visualized HRS whose

geometry is obtained from SIMC. The magnetic field of the dipole magnet was calculated with

TOSCA [75] which is a software for 3-dimension magnetic field with the fine element method.

On the other hand, quadrupole magnet, Q1, Q2 and Q3, were calculated with Kato-formula [76].

The magnetic fields were optimized in order to be reproduced experimental data. The strengths
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Figure 4.20: HRS acceptance distributions. The blue and red point show the acceptance of LHRS and
RHRS, respectively. The vertical axis shows the momentum dispersion (∆p/p ≤ 4.5%)

of magnetic fields were tuned with keeping following ratio:

DL : Q1L : Q2L : Q3L = DR : Q1R : Q2R : Q3R, (4.66)

where D and Q are dipole and quadrupoles, and the subscript is described labeling of LHRS

or RHRS. The strength for the magnetic field of the dipole magnet was optimized so that the

momentum distribution would match the experimental data. The Q2 and Q3 were used same

model so the ratio of Q2 and Q3 can be fixed. Magnetic fields of Q1 and Q2 were optimized in

order to be reproduced the missing mass and momentum distribution from experimental data.

Figure 4.22 shows the Q1 and Q2 magnetic strength dependencies of residue. Each of axis

was scaled to match the best setting to be 1.

In a range of rad line in Fig. 4.22, the HRS acceptance systematical error was evaluated and

shown in Fig.4.23. The blue shaded area shows systematical error from Geant4 simulation and

red line is SIMC estimation. Over the 2.2 GeV/c region, the acceptance given from SIMC is

within a range of systematical error. On the other hands, below 2.2 GeV/c momentum region

shows the acceptance given SIMC is higher than one of Geant4. However, comparing average

systematical error of Geant4, the difference from SIMC was about 2% which was within a range

of evaluation of systematical error by Geant4.

The systematical error from virtual photon flux (∆Γ) andK+ efficiency (∆ΩK×εdecay×εabsorp)

can be evaluated with the acceptance error. The systematical error of virtual photon flux ∆Γ is

8.5% with Eq. 2.7 and systematical error of LHRS acceptance. Hence, the systematical error of

∆ΩK × εdecay × εabsorp is estimated to be 7.6% which is the average value of momentum region
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Figure 4.21: Visualization of HRS in Geant4 simulator

by Gean4 simulation.

Figure 4.22: The Q1 and Q2 magnetic strength dependency of residue
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Figure 4.23: The acceptance distributions obtained by SIMC and Geant4

Table 4.10: The efficiencies and relative errors for contribution factors

term efficiency (%) Relative error (%) reference
εtrack 99 0.2 Sec. 4.5.4
εdensity 90 0.3 Sec. 4.5.1
εTdecay 98.6 0.3 Sec. 4.6.3
εDAQ 96.5 0.1 Sec. 4.5.2
εctime 94.7 3.6 Sec. 4.5
εvertex 76.8 2.4 Sec. 4.5.5
εPID 87.0 2.0 Sec. 4.5
εsingle 98.7 1.3 Sec. 4.5.3
εdettot 53.6 5.0

1/(1− επ) 3.2 3.3 Sec. 4.5
1/(1− ε3

ΛH) 7.4 5.1 Sec. 4.6.3

1/(1− εΛ) 5.3 3.2 Sec. 4.6.3

4.5 Efficiencies

The detectors and any cut efficiencies were necessary in order to calculate the cross section

(Eq. 2.6).

■Coincidence time cut efficiency

Figure 4.24 shows the coincidence time distributions. The black and blue dot lines show the

coincidence time distributions with and without any Cherenkov cut. The Chernkov cuts of two

aerogel (Eq.4.5 and 4.6) and gas (ADC ≥ 1800 ch) were applied to coincidence time. The peaks

around ct = 0 ns and ct = 3 ns were represented K+ and π+, respectively. The π+ peak has
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Figure 4.24: The points with errors of black and blue show the coincidence time distributions without
and with any Cherekov cuts, respectively. The hatched regions of the red and green were fitting results
of K+ and π+ peaks, respectively.

tail component which contaminates K+ peak. In order to estimate π+ contamination and K+

events, the function for describing the π+ and K+ are

fct(t) = hK(t) + gπ(t) (4.67)

hK(t) =
1√
2πσ

exp

{
− (t− µ)2

2σ2

}
, (4.68)

gπ(t) =
1√
2πσ

exp

{
− (t− µ)2

2σ2

}
+ gtail(t), (4.69)

gtail(t) = p0 exp

{
(t− p1)

p2

}
· (1− θ(t− p3)), (4.70)

where hK(t) and gπ(t) are fitting function of K+ and π+, and gtail(t) is function to reproduce

π+ tail component. The θ(t − p3) is step function which is 1 in case of t − p3 ≥ 0. When the

coincidence time gate was applied to −0.7 ≤ t ≤ 0.7 ns from Fig. 4.24, the coincidence time

cut efficiency was estimated at 94.7 ± 3.4% from fitting result with K+ function (Eq. 4.68).

Moreover, the π+ contamination within a range of −0.7 ≤ t ≤ 0.7 ns was 3.2± 3.2%.

■ AC cut efficiency

Two aerogel and gas Cherekov detectors were used for particle identification. The two aerogel

Cherenkov cut efficiency were studied by fitting of K+ peak. Figure 4.25 and 4.26 show the

K+ efficiency depending on AC1 and AC2 cuts. In case of study of AC1 cut efficiency, the AC2

and gas Cherenkov cut was applied to coincidence time. The AC1 and AC2 cut efficiencies in

cut conditions (Eq. 4.5 and 4.6) were estimated at EffAC1 = 99.9+0.1
−2.0% and EffAC2 = 87.0+2.0

−2.0%,

respectively.
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Figure 4.25: AC1 cut efficiency Figure 4.26: AC2 cut efficiency

Table 4.11: Fitting parameters obtained for the density charge calculation Fig.4.27 [59]

target parameters value
1H a (1.70± 0.47)× 10−4

b (−9.0± 0.12)× 10−3

c 1.0± 0.006
Ibeam = 22.5 µA 0.884± 0.01

3H a (1.04± 0.25)× 10−4

b (−5.1± 0.64)× 10−3

c 1.0± 0.003
Ibeam = 22.5 µA 0.901± 0.04

4.5.1 Target density efficiency

The experiment used high density electron beam so the target absorbed the energy which is

beam loss (∼ 50 W). it is depends on the beam current. Figure 4.27 shows the yield about

target density depending on beam current in the hydrogen (left) and tritium target (right). The

yield was normalized at 1 when the beam current is zero. The blue point is data, and the solid

line is represented fitting function

f(Ibeam) = a · I2beam + b · Ibeam + c. (4.71)

where a, ‘b and c are free parameters given from fitting target density yield. The blue band and

gray hatched are show the 95% confidence level about statistical error and a total error including

systematical error, respectively. The fitting parameters are summarized in Table 4.11. In the

case of beam current at 22.5 µA, the correction factor of tritium and hydrogen are 90.1 ± 4%

and 88.3± 1%, respectively.
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Figure 4.27: Beam current dependence of the target density distributions: (left :1H target, right: 3H
target). the horizontal axis shows the beam current, and the vertical axis represents the normalized
yield.

Figure 4.28: DAQ run dependence

4.5.2 DAQ efficiency

The signals from detectors are transported to DAQ system in order to process them. During the

processing signals in DAQ, the coming signals were curtailed. Fig.4.28 shows the run dependence

of DAQ dead time. DAQ efficiency of less than 111300 runs was worse because excessive data

for a single trigger was taking in the period. After 111300 runs, the single trigger rate was

decreasing by optimized pre-scalers. The DAQ efficiency of 96.5 ± 0.1% was obtained by an

average value which was scaled by number of events in each run.
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Figure 4.29: Multi hits probability in single triggers.

4.5.3 Single track efficiency

The multi hits events were recorded in DAQ. In the analysis, the only single hit events in both

arm are used. Fig. 4.29 shows a ratio of the multi tracking. Multi events more than three hits

can be ignored because their detection ratio were less than 1% of single hit events. Therefore,

the single or two tracking events, (MR,ML) = (1, 2) or (2, 1), were considered in this study.

The left and right spectra in Fig. 4.30 show coincidence time in case of (MR,ML) = (1, 2) and

(2, 1), respectively. In the left spectrum in Fig. 4.30, clear K+ peak was not found because

most of these events consist of accidental coincidence events. The K+ events were evaluated by

upper limit of integration which was calculated with Gaussian and exponential functions. As

a result of fitting of coincidence time spectrum in left of Fig. 4.30, the systematical error was

0.86%. The coincidence trigger in the experiment was adjusted to LHRS S2 signals so the TLS2

timing was able to be treated as trigger timing in the case of single tracking. In the case of

(MR,ML) = (2, 1), the TOF of second track in LHRS cannot be known. The number of real

coincidence events in (MR,ML) = (2, 1) was estimated to be 0.42% by fitting with Gaussian and

exponential functions from the single tracking events because the probability of real coincidence

was expected to be same between (NR, NL) = (1, 1) and (1, 2). Hence, the total systematical

error about multi tracking was evaluated at 1.3%.
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Figure 4.30: Missing mass spectrum in the p(e, e′K+)Λ/Σ0 reactions in multi-hits events. The left figure
shows the missing mass spectrum when RHRS detected 2 hits evens, the right figure shows the missing
mass spectrum when LHRS detected 2 hits events.

Figure 4.31: An example of the tracking estimation.

4.5.4 Tracking efficiency

The particle tracking was obtained from two VDCs in each HRS. In the analyzer code, the

tracking in each VDC layer was required of consecutive hits more than three wires. Figure 4.31

is examples of wire detection patterns. In the case 2 in Fig. 4.31, this hits pattern is not effective

because there is not three consecutive hits. On the one hand case 3, both two hitting clusters

are effective and treated as two tracking detection. In order to study the tracking efficiency, the

Monte Calro simulation was used. The simulation generated events according to the probability

distribution of hits on each wire (see Fig. 4.32). Additionally, the generated events was made

ineffective following the wire efficiency which is shown in Fig. 4.33. As a result of the simulation,

the tracking efficiencies in each VDC layer was summarized in Table 4.12. The tracking efficiency

in each HRS can be obtained as 99% which is calculated by multiplied all of plane efficiencies.
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Figure 4.32: Wire hitting probability Figure 4.33: Wire efficiency

Table 4.12: VDC layer efficiency

layer LHRS efficiency [%] RHRS efficiency [%]
U1 99.72 99.78
V1 99.65 99.64
U2 99.8 99.78
V2 99.73 99,80

Tracking 98.90+0.12
−0.18 99.18+0.09

−0.19

4.5.5 z-vertex cut efficiency

After z-vertex calibration, each of reconstructed z-vertex resolution was achieved less than 5

mm (σ). In the production events, each of z reconstruction is expected to be same so the

accidental events can be removed from information of z difference between zR and zL, and z

average (zR + z + L)/2. Figure 4.34 shows the correlation between z average and z difference.

The two clusters composed productions from aluminum cells, and the events within a red square

were selected as a coincidence events. The other events composed accidental coincidence.

The z-vertex cut was applied to remove background events which were produced from the

aluminum cell at an entrance or exit windows or accidental coincidence. Figure 4.35 shows

measurement average z -vertex distribution.

It consists of two peaks come from the aluminum cells and gas spectrum. In order to be

estimated the z-vertex efficiency, the fitting functions of the aluminum cells fAl and gas fgas

were used as following function, respectively:

fAl(z) = g1(z) + g2(z), (4.72)

fgas(z) =

∫
{g1(z − x) + g2(z − x)}h(x) dx, (4.73)

g(x) : p0 exp

(
− (x− p1)

2

2p22

)
, (4.74)

h(x) : p0(x− p1)
2 + p2, (4.75)



Chapter 4 Analysis 74

Figure 4.34: Correlation between mean z and z-difference.

where g(x) and h(x) are Gaussian and quadratic functions, respectively. The gas function was

described as contribution function with Gaussian and two quadratic functions, and each of the

aluminum cell were described two Gaussian functions. The number of gas events were estimated

by the integral of the gas function within a selection cut. Figure 4.36 shows the efficiencies of the

gas and aluminum events depending on z average cut. When the z average cut was applied to

|z| ≤ 10 cm, the gas and the aluminum efficiencies were 0.80±0.08 and (1.3±1.4)−4, respectively.

The aluminum contamination can be ignored because it is evaluated less than 0.3%. The z-diff

(zR − zL) cut efficiency was evaluated with p(e, e′K+)Λ/Σ0 missing mass spectra and obtained

as 96%. Moreover, the efficiency of the mean vertex cut was estimated from Λ survival ratio

with z-mean and z-differential cut. As a result of analyzing, the efficiency of total z-vertex cut,

z-mean (|zmean| ≤ 10 cm) and z-difference (|zdiff | < 2.5 cm) cuts, is 76.8± 2.4%.

4.6 Background estimation

4.6.1 Accidental background

The distribution of e′K+ accidental background events, which were contaminated in missing

mass spectra, enabled us to be obtained by selecting the coincidence time cut. Figure 4.37

(a) shows the coincidence time distribution so that K+ peak exists on the offset of x-axis (0

ns). The e′K+ accidental events were selected eight accidental coincidence bunches in hatched

area in Fig. 4.37 (a). Figure 4.37 (b) shows a missing mass spectrum of the e′K+ accidental

background. The number of e′K+ accidental events below the K+ events selection was obtained
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Figure 4.35: z-vertex fit result. The two peaks around z = ±15 cm represented the Al cell, and green
hatched area was fitting result with gas events.

Figure 4.36: z-vertex cut efficiency. The red dot points shows the efficiency of the gas events obtained
by fitting (green hatched area) in Fig.4.35, and blue one represents the efficiency of the aluminum events
which was estimated by fitting with the aluminum cells (purple dot lines) in Fig.4.35.

by scaled with ratio of coincidence gates.

■ Mixed event analysis

To collect more e′K+ accidental events, the mixed event analysis was applied to the accidental

background analysis. In this method, the accidental e′K+ coincidence were randomly com-

bined in off-line analysis (see Fig. 4.38 (a)), and successful in 100 times more than accidental
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Figure 4.37: Accidental background event selection

(a) Accidental background event selection
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Figure 4.38: Mixed event analysis

coincidence obtained from accidental gate. This analysis method is effective to make small the

systematical error from accidental background subtraction from the original spectrum.

4.6.2 Contamination from p(e, e′K+)Λ production

A few percent of H was known to contaminate 3H target. Hence, Λs, which are produced from the

reaction with the H contamination in the 3H target, was included in the 3H(e, e′K+)X missing

mass spectrum. The contamination rate of Λ can be estimated from missing mass spectrum

on the p(e, e′K+)Λ reaction because the Λ productions from H contamination were expected to

make peaks around the Λ threshold. Fig. 4.39 shows the missing mass spectra with 3H target.

The black points with errors represent the missing mass spectrum on the p(e, e′K+)Λ reaction

given by experimental data. The blue line is the missing mass spectrum assuming the hydrogen
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Figure 4.39: The missing mass distribution of the 3H(e, e′K+)X reaction assuming H target mass. Λ
events produced by the reaction with 1H in 3H target made peak near −BΛ ∼ 0 MeV. The blue line
is the missing mass spectrum assuming the hydrogen mass obtained by the SIMC. The Λ productions
events in the p(e, e′K+)Λ reaction were evaluated by subtracting the Λ-QF productions obtained by the
SIMC from the experimental events.

mass obtained by the SIMC. This spectrum was scaled by fitting it with the experimental data in

Fig. 4.39. The Λ productions events in the p(e, e′K+)Λ reaction were evaluated by subtracting

the Λ-QF productions obtained by the SIMC from the experimental events. The statistical error

on the number of the Λ productions in the p(e, e′K+)Λ reaction were evaluated by the error

propagation of statistical errors between the experimental data and the SIMC. As a result of

estimation of Λ productions in the p(e, e′K+)Λ reaction was obtained at 190± 30 counts.

4.6.3 3He contamination

3H is radioisotope and decayed to 3He as a following process,

3H → 3He + e− + ν̄e. (4.76)

The number of decayed 3He can be described by an exponential function as

N3He(t) = N3H exp

(
− t

τ

)
, (4.77)

where τ is lifetime of 3H at τ = (12.32 ± 0.02)/ln(2) years. The experiment was performed

90±14 days after a gas filling so 3He contamination and loss of 3H can be deduced at 1.4±0.3%

from Eq. 4.77.

The contamination of 3He reacted with virtual photon, and produced the Λ-QF productions

through the 3He(e, e′K+)Λ(pn) reaction. These productions are expected to be included in the
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Λ-QF spectrum on 3H(e, e′K+)Λ(nn) reaction as a background. The production ration of Λ-QF

(RQF = σ
3He
Λ /σ

3H
Λ ) was estimated at 2.12 ± 0.03 with a reference to an averaged ratio of cross

section (R = σ3He/σ3H) from
3H Fermi momentum which is reported in Ref. [72]. Therefore, the

3
ΛH contamination was calculated by N3He ×R, and obtained at 3.0± 0.7%.
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Chapter 5 Results and discussion

In this chapter, the results of the H(e, e′K+)Λ/Σ0 and 3H(e, e′K+)X missing mass spectra will

be shown and discussed.

5.1 Cross section

The differential cross section is written as:

¯(
dσ

dΩK

)
=

1

NT

1

Nγ∗

1

εdet

Nhyp∑
i=0

1

εK(pi
e′ ,p

i
K)dΩK

, (5.1)

where εdet, εK and dΩK are the detector efficiency, the K+ efficiency (εK = εdecay×εabsorp) and

the momentum acceptance of the RHRS discussed in the previous section (Sec. 4). The number

of nucleons (NT ) in Eq. 5.1 is written by the follow equation:

NT =
xT
A
NA × f(Ibeam), (5.2)

where NA, xT and f(Ibeam) are the Avogadro’s constant, the target thickness (g/cm2) and the

scaling factor of the target density (see Sec. 4.5.1). Other parameters in Eq. 5.1, such as the

number of virtual photons (Nγ∗) and the Λ-QF productions (Nhyp) will discuss in Sec. 5.1.1 and

5.1.2.

5.1.1 Number of the virtual photons

The number of virtual photons is written by the follow equation:

Nγ =
Q

e

∫ ∫
ΓdΩe′dEe′ , (5.3)

where Γ and Q/e are the virtual photon flux calculated by Eq. 2.7 and the number of beam

electrons. The total charges of the beam electrons irradiated to the 1H and the 3H targets were

14 C and 4.7 C, respectively (see. Tab. 3.10). The integral regions in the momenta of scattered

electrons in the Λ, Σ0 and nnΛ productions will explain in Sec. 5.1.1 and 5.1.1.

■ Number of the virtual photons in Λ and Σ0 productions data

Fig. 5.1 shows a momentum correlation between momenta of the e′ and K+. The Λ and Σ0

production events were selected in the range of scattered electron momentum within 2.092 ≤

pe′ ≤ 2.160 GeV/c and 2.010 ≤ pe′ ≤ 2.108 GeV/c, respectively. The number of the virtual
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Figure 5.1: The momentum correlation between K+ and e′. There were two clusters, Λ (right-up) and
Σ0 (left-down) productions. The Λ and Σ0 productions were selected in the area enclosed by the red box
(2092 ≤ pe′ ≤ 2160 MeV/c) and yellow box (2010 ≤ pe′ ≤ 2108 MeV/c), respectively.

photons for Λ and Σ0 within these momentum regions were obtained to be NΛ
γ = 3.2× 1013 and

NΣ
γ = 4.75 × 1013 counts, respectively. The relative systematic error of the Nγ in the Λ and

Σ0 selections was 8.5%. This systematic error was mainly due to the systematic error of the

acceptance (see Sec. 4.4.8).

■ Number of the virtual photons in nnΛ productions data

In the case of the analysis for the 3H(e, e′K+)X reaction, the integral range of the energy in

Eq. 5.3 was defined same as the full momentum range of the HRS acceptance (2.12 ≤ pe′ ≤

2.32 GeV/c). The number of the virtual photons in the 3H runs was obtained to be NΛ
γ =

3.9× 1014 counts. The relative systematic error in the Nγ of 3H run was also 8.5% same as one

of the Λ and Σ0.

5.1.2 Number of hyperon (Λ-QF)

The experiment took two types of productions data, the Λ and nnΛ productions. The Λ and

Σ0 missing mass spectra were shown in Fig. 4.13. The number of the Λ and Σ0 productions

were to 1940±180 and 440±80 counts. These values were obtained by fitting with the function

calculated by the convolution integral (see Sec. 4.2.7). On the other hand, the missing mass

spectrum of the 3H(e, e′K+)X reaction is shown in Fig. 5.2. There were any backgrounds such as
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the Λ productions from the p(e, e′K+)Λ reaction, the Λ-QF productions from the 3He(e, e′K+)X

reaction, the π+ background and the accidental background. The SIMC reproduced the missing

mass spectrum in the p(e, e′K+)Λ reaction and Λ-QF distribution in the 3
ΛH reaction. The

distribution of accidental background was given by mixed events analysis method (see Sec. 4.6.1).

The yields of these backgrounds were discussed and were summarized in Tab. 4.10.

The number of the Λ-QF productions in the 3H(e, e′K+)X reaction after removing any back-

grounds was obtained at 2400± 50(stat.)± 160(syst.) counts.

5.1.3 Differential cross sections

Main parameters for the calculation of the differential cross sections were summarized in

Tab. 5.1. The differential cross sections of the hyperons such as Λ and Σ0 in the γ∗K+ center-of-

mass frame, were obtained by Eq. 5.1 at 334±9(stat.)±53(syst.) nb/sr and 83±4(stat.)±13(syst.)

nb/sr, respectively. Moreover, the differential cross section of the Λ-QF productions in the

3H(e, e′K+)X reaction was obtained at 880± 20(stat.)± 160(syst.) nb/sr.
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)X reaction+-QF from ^3He(e,e'KΛ
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Figure 5.2: 3H(e, e′K+)X missing mass spectrum. The dot points with error bars show the experimental
data including any backgrounds. The three solid lines represent the spectra of the backgrounds (red: the
Λ productions from the p(e, e′K+)Λ reaction, black: the 3

ΛH productions, green: the π+e′ coincidence
events, blue: the accidental background).
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Table 5.1: Main parameters for cross section calculation

Term Target (hyperon) Value
Relative systematic

Remark
error [%]

NT
T 1.70× 1022 0.4 Sec. 4.6.3 and 4.5.1
H 4.2× 1022 0.2 Sec. 4.5.1

Nγ∗

T 3.90× 1014 8.5
Sec. 5.1.1H (Λ) 5.16× 1013 8.5

H (Σ0) 5.54× 1013 8.5

NHYP

H (Λ) 1940 9.2
Sec. 4.2.7

H (Σ0) 870 18.0
T 2370 6.8 Sec. 5.1.2

εdet H & T 0.536 5.0 Sec. 4.5
εdecay × εabsorp H & T

0.13 (pcentK )
7.6 Sec. 4.4.7

dΩK 5.5 mrad (pcentK )
¯(
dσ

dΩK

)
CM

[nb/sr]
H (Λ) 334± 9(stat.) 16

Sec 5.1.3
H (Σ0) 83± 4(stat.) 16

¯(
dσ

dΩK

)
Lab

[nb/sr] T 880± 20(stat.) 18 Sec. 5.1.3

Table 5.2: Main kinematics parameters of p(e, e′K+)Λ/Σ0 measurement in this experiment

variable central value range
W [GeV] 2.12 2.05− 2.21

Q2 [(GeV/c2)2] 0.46 0.31− 0.61
θCM
γ∗K [degree] 8.4 0− 16

ε 0.77 0.74− 0.80

5.2 Discussion about elementary production

The experiment measured the missing mass spectra in H(e, e′K+)Λ/Σ0 reactions, and these

differential cross sections were obtained (see Table 5.1). The main kinematics settings of this

experiment were summarized in Tab. 5.2. The parameters of W , Q2, θCM
γ∗K and ε were the total

energy in the photon-nucleon system, the invariant mass of γ∗, the angle between γ∗ and K+

in center-of-mass frame. In this section, the differential cross sections of Λ obtained in this

experiment will be compared with previous experimental data and theoretical calculations, and

will discuss the θCM
γK and Q2 dependence of the differential cross section of Λ.

5.2.1 Angular dependence

In this experiment, the Λ and Σ0 productions were observed at the angle between γ∗ and K+

in the center-of-mass frame in a range of 0◦ ≤ θcmγK ≤ 16◦. Fig. 5.3 shows the Λ differential

cross sections of experimental data and theoretical calculations which used real photon beam.

The red point at 8◦ was a result of the Λ differential cross section in this experiment. The solid

and dashed red lines show the statistical and systematic errors, respectively. Comparing with



Chapter 5 Results and discussion 83

Figure 5.3: The angle (θCM
γK ) dependence on the differential cross section in the H(e, e′K+)Λ reaction. The

result of the Λ differential cross section in this experiment was plotted with a red point at θCM
γK = 8◦. The

solid and dot boxes around the data point represent the statistical and systematic errors, respectively.
Other points were the results of other experiments with (γ,K+) reactions [79–82], and each line shows
the theoretical calculation of (γ,K+) reactions [85–88].

theoretical calculations on the real photon reaction, the Λ differential cross section measured

in this experiment was more agreement with RPR2011 and SLA than Kaon Maid and RPR3.

However, the experiment measured Λ by using the virtual photon reaction (γ∗ + p→ Λ+K+).

This reaction includes the longitudinally wave term so the result of this experiment was not

exactly comparable with other theoretical calculations. However, on the condition at forward

angle such as this experiment, the difference between virtual and real photons were small. Hence,

the behavior of the differential cross section of Λ at forward angle in the real photon reaction

was predicted from this experimental data.

5.2.2 Q2 dependence

In the experiment, the differential cross section of the Λ in the γ∗K+ reaction was measured in

the region of Q2 = 0.46± 0.15 (GeV/c)2.

Figure 5.4 shows the Q2 dependence of the Λ differential cross sections. Each point with error

in Fig. 5.4 represents the experimental results of the p(γ∗,K+)Λ reactions [84,89,90]. The three

solid lines in Fig. 5.4 show the theoretical calculations in the (γ,K+) reaction [86, 91, 92]. To

compare the experimental results with different W , the scaling factor (f(W )) was defined as
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Figure 5.4: The Q2 dependence on the differential cross section in the H(e, e′K+)Λ reaction. The result
of the Λ differential cross section in this experiment was plotted with a red point at θCM

γK = 8◦. The

other points shows the other experimental results which is scaled by using W correction factor (f(W ))
in Eq. 5.4 [84,89,90]. The solid lines represents theoretical calculations in (γ,K+) reaction [86,91,92].

following:

dσ

dΩ
≡ f(W )|M|2, (5.4)

f(W ) = C1
|p⃗CM

K |
(W 2 −m2

p)W
+ C2

A2B2

(W 2 −A2)2 +A2B2
, (5.5)

where M is the transition matrix element independent of W , and A, B, C1, C2 are the con-

stant values. These constant values were obtained by fitting the W dependence of the Λ dif-

ferential cross sections, as 　 A = 1.72 GeV, B = 0.10 GeV, C1 = 4023.9 (GeV)2 · nb/sr,

C2 = 180 (GeV)2 · nb/sr. Additionally, other experimental data were scaled to be W = 2.15

GeV [93].

This experimental result was in good agreement with the results of other experimental data

and any theoretical calculations within the range of the systematic error.
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5.3 3H(e, e′K+)X reaction

5.3.1 SIMC distribution in the 3H(e, e′K+)X reaction

The differential cross section of the Λ-QF productions is obtained from Eq. 5.1. The scaling

factor(fsimc) of the MC distribution was determined by fitting with the chi-square as,

χ2 =

N∑
i=a

(yiexp − fsimc × yisimc)
2

(σi)2
, (5.6)

where yiexp and yisim are the differential cross section in each bin obtained by this experiment

and the MC simulation. The value of σi in Eq. 5.6 is the statistical error in each bin. The fitting

range was chosen to the region above 60 MeV where the FSI effect is small (see Sec. 5.5). Fig. 5.5

shows the missing mass spectrum with the 3H(e, e′K+)X reaction subtracted any backgrounds.

A horizontal axis shows Λ binding energy, and a vertical axis shows the differential cross section

for the (γ∗,K+) reaction which was defined in Eq. 5.1. The error bars in Fig. 5.5 shows statistical

errors. The black line represents the the distribution of Λ-QF productions reproduced by the

SIMC. This distribution took into account the Fermi momentum distribution of a proton in 3H,

and was scaled by Eq. 5.6.

The SIMC distribution was successful to be reproduced the experimental data over the 40

MeV region. Fig. 5.6 represents the energy dependence of the yield ratio for the experimental

data to the SIMC calculation. This figure shows that the spectrum of SIMC did not reproduce

the region bellow 20 MeV.

5.4 nnΛ peak study

5.4.1 nnΛ peak function

Figure 5.5 shows the differential cross section spectrum of the 3H(e, e′K+)X reaction. The

structure which was not reproduced by the MC spectrum existed around −BΛ ∼ 0 MeV in

Fig. 5.5. However, the peak significance of this structure was not enough. The nnΛ observed in

this experiment was expected to be the large contribution of the radiation tail as seen in the Λ and

Σ0 peaks. Figure 5.7 shows the MC spectrum of nnΛ in (−BΛ,Γ) = (0.0, 0.0) MeV generated

by SIMC. Hence, the response function of nnΛ was obtained by fitting the MC spectrum in

Fig. 5.7 with the function defined in Eq.4.29. As a result of the fitting, the width of response

function was obtained to be 4.32 MeV in FWHM. The three-body Jost function calculation

predicts that nnΛ exist as a resonance state with (−BΛ,Γ) = (0.55, 4.7) MeV [43]. Hence, the

nnΛ peak was represented by the function, which was calculated by the convolution integration

of the Breit-Wigner assuming in (−BΛ,Γ) = (0.55, 4.7) MeV and the response function of nnΛ.
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Figure 5.5: The differential cross section of 3H(e, e′K+)X reaction as a function of Λ binding energy. The
points with bar represent the experimental result, and the solid line shows the Λ-QF production spectra
obtained by SIMC.

5.4.2 nnΛ peak fitting

The only scaling factor of the nnΛ function was set as a free parameter, while the parameters

of −BΛ and Γ were fixed at 0.55 and 4.7 MeV where the theoretical calculation predicted the

resonance state of nnΛ [43]. As result of fitting the enhancement around −BΛ ∼ 0 MeV,

the differential cross section of nnΛ was obtained to be 21.7 ± 6.7(stat.) ± 5.2syst. (Fig. 5.8).

However, the peak significance of this structure was small because of low statistics in this data.

Hence, the upper limit of differential cross section about the structure around −BΛ ∼ 0 MeV

was evaluated with a confidence level at 90% (90%CL).

The systematic error of 90%CL was estimated at the value where the ratio of the integral

values for the differential cross section of nnΛ above zero was 90% as a following:

C.L.90% :

∫ x

0
f(x)dx∫∞

0
f(x)dx

= 0.9, (5.7)

where f(x) represented a Gaussian function. The variance value of the Gaussian function

used the error which took into account of the systematic, the statistical and the fitting errors.

Moreover, the mean value of the Gaussian function used the differential cross section of nnΛ. As
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Figure 5.6: The energy dependence of the differential cross section ratio of the data and the SIMC
calculation: The points represent the differential cross sections ratio of the data and the SIMC calculation.

Figure 5.7: The blue solid line represents the nnΛ spectrum given by SIMC. The red line is a fitting
result with the convolution function defined in Eq. 4.29.

a result of the estimation for the upper limit of 90%CL with Eq. 5.7, the upper limit of 90%CL

was obtained at 36.5 nb/sr assuming the nnΛ peak at (−BΛ,Γ) = (0.55, 0.47) MeV.
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Figure 5.8: The fitting result of nnΛ functions. The black dot points with bar are the spectrum of
differential cross section after subtracting any backgrounds. The red hatched area represents the fitting
function of nnΛ defined in Eq.4.29 which was assuming (−BΛ,Γ) = (0.55, 4.7) MeV. The black solid line
represents the total differential cross sections added the nnΛ function and the Λ-QF spectrum given by
SIMC.

5.5 Λn final state interaction

As a result of comparison between the experimental distribution and the Λ-QF spectrum with

SIMC, There were two structures at −BΛ ∼ 0 MeV and −BΛ ∼ 20 MeV which cannot be

reproduced by the spectrum obtained by SIMC. The structure at −BΛ ∼ 0 MeV may be con-

sidered as the nnΛ state with (−BΛ,Γ) = (0.55, 4.7) MeV (Sec. 5.4). It is expected that the

other structure at −BΛ ∼ 20 MeV is made by Λn final state interaction (FSI). Therefore, by

comparing the structure in a range of 0 ≤ −BΛ ≤ 40 MeV with the MC spectrum of Λ-QF

including Λn FSI, the Λn FSI effect is investigated.

5.5.1 Formalism

The Λn FSI can be treated as a two body scattering. Figure 5.9 shows a schematic drawing of

the two body scattering in the γ∗+ t→ K++(Λnn) reaction. The matrix element(Mfi) for the

elementary reaction (γ∗ + t→ K+(nn) + Λ) is described as :

Mfi = ⟨K+nnΛ| tγK |γ∗t⟩ , (5.8)

where tγK is an transition operator. If there are no interactions between outgoing particles, the

wave function of the final state was described with four plane waves(⟨K+nnΛ|).
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Figure 5.9: A Schematic drawing of the two body scattering in tritium

In the previous FSI study, the Y N FSI in the three-body system is derived from a two-body

scattering model [29]. In this model, a nucleon which is not involved the scattering reaction, is

treated as independent of Y N . Hence, the Λnn wave function is treated as :

|Λn1n2⟩ → |Λn1⟩ |n2⟩ . (5.9)

The matrix element (M̃fi) including the Λn scattering is written as follows :

M̃fi = ⟨n2K+| ⟨Λ′n1| tΛN |Λn1⟩ |n2K+⟩ , (5.10)

= ⟨n2K+| ⟨Λ′n1| tΛNtγK |γ∗t⟩ , (5.11)

where tΛN is the transition matrix in the Λn scattering. Here, M̃fi is matrix parameters including

the Λn FSI, and ⟨Λn| |Λ′n⟩ is written by using Λn scattering wave function. The matrix elements

including scattering amplitude with Λn FSI is

M̃fi =
ψ(kr + δ)

ψ(kr)
Mfi, (5.12)

where ψ(kr+δ) and ψ are the wave function and phase shift parameters after the Λn scattering,

and ψ(kr) is the wave function without Λn FSI. Therefore, the correlation between differential

cross section with FSI and without FSI is described as :(
dσ

dΩ

)
FSI

= fP.S.|M̃fi|2 = |ψ(kr + δ)

ψ(kr)
|2
(
dσ

dΩ

)
, (5.13)

where fP.S. is a phase space factor. The influence (I) which is defined the ratio of the cross

sections with and without FSI, from the Λn FSI on the 3H(e, e′K+)Λnn is written as

I = |ψ(kr + δ)

ψ(kr)
|2. (5.14)
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5.5.2 Jost function

Basically, the Λn FSI can be described by the squared scattering amplitude I (see Fig. 5.14).

The scattering amplitude was obtained by Lippmann-Schwinger equation with a Λn potential.

In the effective range approximation (ERA) [100], the enhancement factor can be reproduced

as:

I =
1

|Jl(krel)|2
, (5.15)

where Jl is Jost function with the lth partial wave, and krel is the relative momentum between

Λ and a neutron. Λn FSI is dominant in a low energy region so the s-wave part (l = 0) is taken

into account. The s-wave Jost function is written as

Jl=0(krel) =
krel − iβ

krel − iα
, (5.16)

where α and β are described from scattering length (a) and effective range (re) of a Λn potential

as

1

2
re(α− β) = 1,

1

2
reαβ = −1

a
. (5.17)

From Eq. 5.15-5.17, The influence factor can be written with only two potential parameters (a

and re) which are summarized in Tab. 5.3. In the two baryon scattering, the total spin state

is composed of four states, a singlet ({↑↓ − ↓↑}/
√
2) and three triplet (↑↑, ↓↓, {↑↓ + ↓↑}/

√
2)

states. Figure 5.10 shows Influence factors (I) with NSC97f potential parameters (see Table 5.3

).

Λn has four spin states, one singlet state and three triplet states, so the Λn influence factor

is composed of (Is + 3It)/4 by weighting the four possible states equally. Figure 5.11 shows

Influence factor calculation for two different Λn potential models.

5.5.3 Relative momentum between Λ and a neutron

The differential cross section with FSI can be calculated with influence factor (I) as a function

of the relative momentum between Λ and a neutron in tritium.

■ Calculation of a Λ momentum

On an elementally reaction approximation, the momentum of the recoil Λ was obtained by the

conservation equation of the energy and momentum as :

p⃗Λ = p⃗p + p⃗γ∗ − p⃗K , (5.18)

EΛ = Ep + Eγ∗ − EK , (5.19)
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Figure 5.10: Influence factors: The dot, dot-dashed and solid lines represent the influence factors when
Λn spin states were singlet, triple and mixing, respectively.
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Figure 5.11: Influence factors(I = (Is + 3It)/4) for the seven different Λn potential models.

where momenta of p⃗γ∗ and p⃗K are measurement values in the HRSs and CEBAF.

The proton momentum value |p⃗p| is determined probablistically from the Fermi momentum

distribution. However, a direction of proton momentum should be given by hands. In the study,

the direction was assigned by randomly following the spherical uniform distribution in the Lab

frame in the event by event basis.
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Table 5.3: The main parameters of various Λn potentials [96–99].

Model state a (fm) r (fm) reference

Julich A
Singlet (1S0) -1.60 1.33

[96]
Triplet (3S1) -1.60 3.15

Julich B
Singlet (1S0) -0.57 7.65

[96]
Triplet (3S1) -1.94 2.42

NSC97f
Singlet (1S0) -2.68 3.07

[97]
Triplet (3S1) -1.67 3.34

NLO13(600)
Singlet (1S0) -3.291 2.71

[98,99]
Triplet (3S1) -1.487 2.72

NLO13(650)
Singlet (1S0) -3.271 2.61

[98,99]
Triplet (3S1) -1.452 2.64

NLO19(600)
Singlet (1S0) -3.227 2.74

[98,99]
Triplet (3S1) -1.362 2.51

NLO19(650)
Singlet (1S0) -3.225 2.62

[98,99]
Triplet (3S1) -1.365 2.56

■ Calculation of a neutron momentum in 3H system

Since the 3H target was stopped, the momenta of nucleons in a 3H nucleus were given by :

k⃗n1 + k⃗n2 + p⃗p = 0 . (5.20)

The relative momentum (k⃗rel) between neutrons in the 3H nucleus is defined as :

k⃗rel =
Mn2k⃗n1 −Mn1k⃗n2

Mn1 +Mn2
, (5.21)

=
k⃗n1 − k⃗n2

2
. (5.22)

Therefore, each of the neutron momentum (k⃗n1(n2)) in the 3H nucleus is written with Eq. 5.20

and 5.22 as :

k⃗n1(n2) = −1

2
p⃗p ± k⃗rel , (5.23)

|⃗kn1(n2)| =

√
k⃗2rel +

k⃗2p
4

± |⃗krel||⃗kp| cos θ , (5.24)

where the cos θ is the angle between k⃗rel and k⃗p.

■ Spectral function (SF)

The momentum of each neutron was obtained from Eq. 5.24. However, there are two free

parameters, the relative momentum and the angle θ between k⃗rel and k⃗p. The angle was given

by generating with the spherical uniform in the Lab coordinate. The relative momentum can be

obtained by introducing the spectral function (Sec. 4.4.5). In this study, a neutron momentum

was treated as the proton description in the 3H spectral function frame because of the relationship

about mirror nuclei between a neutron in 3H and a proton in 3He. The absolute value of the
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Figure 5.12: The top figure shows the momentum probabilities of one of a nucleon in 3H, 3He [69]. The
bottom figure shows the relative difference between momentum probabilities 3H and 3He.

relative momentum (|⃗krel|) can be calculated using the given value of Em as follows :

|⃗krel| = (2Mn)E
∗
nn = 2Mn

√
Em − |ET|+ |Enn|, (5.25)

where Enn and ET are binding energies of the residual system (Enn = 0 MeV) and the tritium

(ET = 8.48 MeV).

However, the theoretical calculation of the 3H SF was old [70] and difficult to confirm. On an

assumption of the charge symmetry, the neutron momentum in 3H can be treated as equivalent

to the proton momentum in 3H. The proton momentum in 3He was obtained from Eq. 5.25 with

E∗
pp = 0 MeV, and E3He = (M2H +Mp −M3He)c

2 = 4.99 MeV. The Em in 3He was estimated

from the 3He SF [71]. Figure 5.12 shows the momentum distributions of the a proton in 3He

and nucleon in 3H [69]. The relative difference of momentum probabilities between the proton

in 3He and neutron in 3H was less than 5% in each momentum point.

As a result of the calculation about the neutron momentum in 3H with 3He SF, the neutron

momentum probability in 3H was shown in Fig. 5.13.

The direction of relative momentum between neutrons
ˆ⃗
krel was randomly generated uniformly

on the sphere in the Lab frame, and the k⃗rel and each of a neutron momentum k⃗n1(n2) was



Chapter 5 Results and discussion 94

0 50 100 150 200 250 300 350 400 450 500
 [MeV]nP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 P

ro
ba

bi
lit

y/
1M

eV
 [%

]

Figure 5.13: Neutron momentum distribution in 3H

obtained from Eq. 5.22.

5.5.4 Scaling of the MC spectra with FSI

　 The differential cross section including FSI was obtained by multiplying the differential cross

section without FSI by the influence factor (I) (see Sec. 5.5.2). In this study, the influence

factor was calculated by using the Jost function with the effective range approximation (ERA)

(Eq. 5.15-5.17), and the variable of influence factor such as a Λn relative momentum was esti-

mated event by events with the neutron momentum (see Sec.5.5.3). The differential cross section

ratio with and without FSI is shown in Fig. 5.15.

The scattering cross section due to the FSI effect is large in the low region of the Λn relative

momentum , and the differential cross section ratio with and without FSI has a maximum value

at −BΛ ∼ 0 MeV (Fig. 5.11). In the high energy region −BΛ ≥ 100 MeV, the Λn relative

momentum becomes large and the influence factor is expected to be I → 1 (Fig.5.11). However,

for all potential models, the differential cross section ratios are always larger than 1 in high

energy region (−BΛ ≥ 100 MeV). This is because the influence factor calculated from Eq. 5.15

and 5.16 assumes ERA which is the low momentum approximation. Therefore, the scaling factor
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neutron in 3H was calculated by Eq. 5.25.

pf FSI fFSI was introduced, and the differential cross section with FSI was written by:(
dσ

dΩ

)
FSI

= I × fFSI ×
(
dσ

dΩ

)
w/oFSI

,　 (5.26)

= wFSI ×
(
dσ

dΩ

)
w/oFSI

. (5.27)

The FSI scaling factor was determined by the minimizing chi-square defined in Eq. 5.6 in each

potential model. By introducing a weighting factor defined as wFSI = I×fFSI, the Λn FSI effect

can be written as the wFSI instead of the influence factor. The weighting factor was determined

by the chi-square minimization defined as Eq. 5.6 in the range of (60 ≤ −BΛ MeV) where the

FSI effect was small.

Figure 5.16 shows the differential cross section of the 3H(e, e′K+)X reaction and the MC

spectra without and with FSI.

5.5.5 Potential dependence of FSI

　 Comparing the MC spectra without and with FSI, the MC spectra with FSI made enhance-

ments in the 0 ≤ −BΛ ≤ 60 MeV region for all of Λn potentials (Tab. 5.3). However, these

spectra did not reproduce experimental data within the range of 0 ≤ −BΛ ≤ 10 MeV. The

structure near −BΛ ∼ 0 MeV might be due to the nnΛ peak. Therefore, the study of the Λn

FSI was evaluate with two cases, ranges of 20 ≤ −BΛ ≤ 60 MeV without the nnΛ peak and
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Figure 5.15: Enhancement distributions in each FSI potentials. The enhancement distributions were
calculated by Eq. 5.14 and scaled by dividing differential cross section of without FSI. These spectra has
enhancement over 100 MeV energy region where the effect of FSI is negligible.

0 ≤ −BΛ ≤ 60 MeV with the nnΛ peak.

■ FSI spectrum without nnΛ function (20 ≤ −BΛ ≤ 60 MeV)

In the region of 20 ≤ −BΛ ≤ 60 MeV, the leakage of the nnΛ peak is small and negligible. To

compare the experimental data with the MC spectra with FSI, the chi-square was defined as

follows:

χ2 =

N∑
i=a

(yiexp − yiFSI)
2

σi
exp

2 , (5.28)

where yiexp, y
i
FSI 　 and σiexp were the experimental data, the differential cross section with the

FSI obtained by the SIMC, and the systematic error of the differential cross section for each bin

within a range of 20 ≤ −BΛ ≤ 60 MeV, respectively. Table 5.4 shows the reduced chi-square

values obtained by fitting the experimental data with the MC spectra including Λn each FSI

model. The Λn FSI with NSC97f potential has the value of chi-square at 0.85, which has the

smallest reduced chi-square among seven potential models and without FSI model. However, the

differences in the reduced chi-square among seven potential models and without FSI model were

small, and the statistics was not sufficient in this experiment to determine the Λn potentials.

■ FSI spectrum with nnΛ function (0 ≤ −BΛ ≤ 60 MeV)

The FSI made the enhancement within a range of 0 ≤ −BΛ ≤ 60 MeV. However, the structure

near the −BΛ ∼ 0 MeV might be due to the nnΛ state. Hence, the nnΛ peak function with
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Figure 5.16: The black dot points shows the differential cross section of Λ-QF production. The three
lines such as black, red and blue represents the MC spectra without FSI, with FSI (blue line: Jülich A,
red line: NSC97f).

Table 5.4: Reduced chi-square values (χ2/ndf) obtained by fitting the experimental data (20 ≤ −BΛ ≤ 60
MeV) with the MC spectra including each Λn FSI model

Λn Potential Reduced chi-square (χ2/ndf)
w/o FSI 0.86
Jülich A 1.06
Jülich B 0.90
NSC97f 0.85

NLO13(600) 0.91
NLO13(650) 0.93
NLO19(600) 0.96
NLO19(650) 0.96

(−BΛ,Γ) = (0.55, 4.7) MeV was introduced into the MC spectrum with FSI, and the scaling

factor of the nnΛ peak function (wnnΛ) was determined by minimizing the chi-square defined

as following:

χ2 =

N∑
i=a

(yiexp − yiFSI − wnnΛ × yinnL)
2

(σi
exp)

2
, (5.29)

where yiFSI is the differential cross section with the FSI obtained by the SIMC, which scaled

with wFSI (Eq. 5.27). The results of fitting were shown in Fig. 5.17. Moreover, Fig. 5.18 shows

the MC spectra with and without FSI considering the nnΛ peak when chi-squares in Eq. 5.29
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Table 5.5: Reduced chi-square values (χ2/ndf) obtained by fitting the experimental data (0 ≤ −BΛ ≤ 60
MeV) with the MC spectra including each Λn FSI model

Λn Potential Reduced chi-square (χ2/ndf) nnΛ peak [nb/sr]
w/o FSI (w/o nnL peak) 1.24 0.0

w/o FSI 1.09 23.0
Jülich A 1.40 1.1
Jülich B 1.15 5.5
NSC97f 1.05 8.0

NLO13(600) 1.16 5.1
NLO13(650) 1.17 4.7
NLO19(600) 1.22 4.0
NLO19(650) 1.22 4.0

take the minimum values. The results of reduced chi-square minimization defined in Eq. 5.29

are summarized in Tab. 5.5. In case of the MC spectrum with the NSC97f potential, the chi-

square took the the minimum value at 1.05 among other Λn potentials when the differential

cross section of the nnΛ peak was 8.0 nb/sr. However, since the difference in chi-square between

the Λn potentials listed in tab. 5.5 is small, the present experiment did not prefer any particular

Λn potential model from them.

5.5.6 Search for best Λn potential parameters

The differential cross section including the FSI was obtained by calculating the influence factor.

The influence factor was calculated by using potential parameters such as the scattering length

(a) and effective range (r) with Eq. 5.15 - 5.17. Therefore, the influence factor for each (a, r)

point was calculated in order to search for the best fit parameters and give a limit to each

potential parameter (a, r).

■ Chi-square of Λn FSI (20 ≤ −BΛ ≤ 60 MeV)

In Fig. 5.5, there were two structures, near the nnΛ threshold (−BΛ ∼ 0 MeV) and the region

of −BΛ ∼ 10 MeV. However, the Λn FSI made an smooth enhancement from 0 to 60 MeV,

and was not reproduced two structures less than 20 MeV. Hence, the (a, r) dependence of the

chi-square (Eq. 5.28) was studied within a range of 20 ≤ −BΛ ≤ 60 MeV. Figure 5.19 shows

the chi-square distribution within the range of 20 ≤ −BΛ ≤ 60 MeV. The magenta color point

shows (a, r) = (−0.67, 5.2) fm where chi-square is minimized (χ2 = 31.1, ndf = 40). The

black solid, dashed and dashed-dot lines show the contour lines of chi-squares at 32.1, 33.1 and

34.1, respectively. The black solid lines represent the fitting errors (σ) of (a, r). Therefore,

the 1σ upper and lower limits of the effective range can be obtained from the black solid lines

in Fig. 5.19. When the scattering length (a) is -0.67 fm, the effective range was obtained at

5.2+3.2
−1.3(stat.) fm. On the other hand, the chi-squares were almost constant with respect to the
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Figure 5.18: The nnΛ peak functions and MC spectra with three different Λn FSI after scaled
nnΛ peak function by chi-square minimization. The differential cross section of nnL in each
Λn potential was determined by the chi-square minimization (tab. 5.5).
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Figure 5.19: Chi-square distributions within a range of 20 ≤ −BΛ ≤ 60 MeV: The minimum chi-square
is obtained as 31.1 at (a, r) = (−0.67, 5.2) (magenta point). The black solid, dashed and dashed-dot lines
show the contour line of chi-square at 32.1, 33.1 and 34.1, respectively.

scattering length so the upper and lower limit of the scattering length could not obtained from

Fig. 5.19.

■ Chi-square of Λn FSI with nnΛ peak (0 ≤ −BΛ ≤ 60 MeV)

In addition, the (a, r) dependence of the chi-square within the range of 0 ≤ −BΛ ≤ 60 MeV was

studied. The distribution of chi-square defined in Eq. 5.28 and the differential cross section of

the nnΛ peak when (a, r) parameters were varied, are shown in Fig. 5.20 and Fig. 5.21, respec-

tively. The black solid, dashed and dashed-dot lines show the contour lines of the chi-squares at

60.0, 61.0 and 62.0, respectively. Additionally, when the scattering length and effective range

are at -2.6 and 5.0 fm, the chi-square has minimum value at 59.0, and weighting factor distribu-

tion with (a, r) = (−2.6, 5.0) fm is shown a red line in Fig. 5.22. The amplitude of the weighting

factor with (a, r) = (−2.6, 5.0) fm is smaller than one of theoretical models. The black solid

lines represent the fitting errors (σ) of (a, r). When the scattering length (a) was assumed as

-2.6 fm, the effective range was obtained as r = 5.0+1.3
−1.2(stat.) fm.
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Figure 5.20: Chi-square distributions within a range of 0 ≤ −BΛ ≤ 60 MeV. The z-vertex
shows the chi-square defined in Eq. 5.28. The magenta point is (a, r) = (−2.6, 5.0) where chi-
square was minimum at 59.0. The black solid, dashed and dashed-dot lines show the contour
line of chi-square at 60.0, 61.0 and 62.0, respectively.
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Figure 5.21: Differential cross section of nnΛ when chi-square in Eq. 5.28 was calculated.
The magenta point is (a, r) = (−2.6, 5.0) fm where chi-square in Fig. 5.20 was minimum, and
differential cross section at (a, r) = (−2.6, 5.0) fm is 15 nb/sr.
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Figure 5.22: Weight factor distributions in each potential model. The weighting factor was defined as
fFSI×I.The red lines represents the weighting factor distribution when scattering length (a) and effective
range (r) are -2.6 and 5.0 fm.

5.5.7 Discussion

The effective range (r) is constrained by this experimental data. However, the contour lines in

Fig.5.20 is parallel to scattering length directions so the scattering length (a) is not constrained

by this experimental data. Therefore, the dependence and trend of each potential parameters

are shown as following.

■　 effective range dependence

The effective range, which is one of the potential parameters for calculating the Jost function.

The effective range dependence of influence factor was shown in Fig. 5.24. As the effective range

parameter is increased, the amplitude of the influence factors became smaller and tended to

converge to I → 1 at r → ∞. The (1σ) contour lines in Fig. 5.19 and 5.20 give us to constrain

the effective range by the minimizing chi-squares.

■　 scattering length dependence

In Fig. 5.20, although there was a chi-square minimum at (a, r) = (−2.6, 5.0) fm, the contour

lines of the chi-squares were parallel to the horizontal axis. In order to investigate scattering

length dependence, the scattering lengths dependence of reduced chi-square in the range of
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Figure 5.23: Λ-QF distribution by SIMC including FSI at (a, r) = (−2.6, 5.0) fm (magenta line). The
differential cross section of nnΛ is assuming to be 15 nb/sr.

−200 ≤ a ≤ 0 fm are shown in Fig.5.25 when the effective range was fixed. The chi-square is

converged at a certain value for −a→ ∞ within the statistical error. Therefore, the experiment

could not limit the scattering length.

When effective range was fixed at r = 4 fm, the result of influence factor in the range of −10 ≤

a ≤ −1.0 fm was shown in Fig. 5.26. In the region above 100 MeV/c of Λn relative momentum,

the amplitude of influence factor was convergent and the amplitude changed significantly in the

region below 30 MeV/c. In case of a→ ∞, influence factor was obtained as:

lim
a→∞

I(krel) → 1 +
4

r2k2rel
. (5.30)

Equation 5.30 indicates that the influence factor at pΛn = 0 MeV is divergent. However, this

experiment was measured high recoil Λ momentum pΛ ∼ 400 MeV/c. Since the events below

the prel ≤ 10 MeV where the amplitude of the influence factor varies significantly could not be

obtained, the scattering length cannot be constrained from this experiment.
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Figure 5.24: Influence factor effective range dependence

5.6 Future plan

5.6.1 Statistical requirement

The Λ-QF distribution including Λn FSI was obtained by using Jost function. In this experiment,

the relative systematic error was 18%, which was sufficiently large compared to the relative

statistical error at 3%. However, the systematic error does not affect the Λ-QF distribution

because it was applied to all Λ-QF productions and only changed scaling of differential cross

section. Hence, I investigated the statistical requirement in order to determine the Λn potential

among three different potentials (Jülich A, B and NSC97f). Therefore, in order to investigate

the difference between the NSC97f potential spectrum and the differential cross section spectra

including the　 Jülich A and Jülich B potentials, the chi-square was defined as,

χ2
NSC97f(N) =

N∑
i=a

(yiNSC97f − yimodel)
2

(
√
w × σi

NSC97f)
2
, (5.31)

where yiNSC97f , y
i
model were differential cross sections in each bin, and σiNSC97f was systematic

error in each bin. w represented the statistical wight factor of Λ-QF productions, which was

normalized as 1 for the number of Λ-QF productions obtained in this experiment. Figure 5.27

shows the chi-square value when the statistical weight factor was varied. The 95% confidence

level in order to determine potential models between NSC97f and other potentials such as Jülich
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Figure 5.25: FSI scattering length dependence

A, Jülich B was satisfied when the statistical weight was 12. On the other hand, when the

statistical weight was 13, The 95% confidence level in order to separate Jülich A from Jülich B

was satisfied. Therefore, when Λ-QF production was measured fourteen times more than the

number of Λ-QF productions obtained in this experiment, the Λn potential can be determined

among three different Λn potentials such as Jülich A, Jülich B and NSC97f.

5.6.2 Experimental design

Study of Λn FSI effect by using Λ-QF shape that mentioned in the thesis would be a good

approach to investigate Λn interaction. Further studies are necessary to improve uncertainty.

An experiment with higher statistics with HKS spectrometer which has higher acceptance and

shorter arm may have a chance to measure Λn potential with a better precision [83]. Because

low Λn relative momentum condition is effective to perform Λn FSI studies, experiment with

lower momentum transfer reactions such as the in-flight 3H(K−, π−)pnΛ and 3H(K−, π0)nnΛ

around the magic-momentum are good candidate.
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Figure 5.26: Influence factor effective dependence
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Figure 5.27: Chi-square distribution within a range of 0 ≤ −BΛ ≤ 40 MeV. the chi-square was
defined in Eq.5.31.
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Chapter 6 Summary

In 2018, the E12-17-003 experiment was performed at JLab to investigate the nnΛ with the

(e, e′K+) reaction. A missing mass method in which are calculated with a scattered electron and

a kaon measured by the two high resolution spectrometers (HRSs). A gas hydrogen target for the

Λ and Σ0 productions was used to calibrate absolute missing mass. Since this experiment used

a 25-cm thick target, the energy calibration method was developed by including the correction

for the target thickness effect. As a result of the energy calibration, the Λ and Σ0 peaks were

obtained to be 1115.36±1.4 MeV/c and 1192.32±1.5 MeV/c. In the present thesis, experimental

results of the p(e, e′K+)Λ, nnΛ peak and Λ-QF productions in the 3H(e, e′K+)X reaction were

shown with discussions as follows:

■ p(e, e′K+)Λ

The differential cross section of p(e, e′K+)Λ reaction at θCM
γK = 8.4◦, Q2 = 0.46 (GeV/c)2 and

W = 2.12 GeV was obtained to be 334± 9(stat.)± 53(syst.) nb/sr in the center of mass frame

of γK+.

■ nnΛ peak

The Faddeev equation by Ref. [41] predicted that there are possibilities existing the nnΛ as a

resonance state if the Λn potential is 5% deeper than the Λp potential. If the nnΛ is a bound or

a resonance state, the nnΛ peak is expected to be observed. Although some event excess were

observed near the nnΛ mass threshold in the missing mass spectrum of the 3H(e, e′K+)X reac-

tion, significant peaks could not be observed. The differential cross section of the enhancement

near the nnΛ mass threshold was obtained to be 21.7 ± 6.7(stat.) ± 5.2(syst.) nb/sr by fitting

with the Breit-Wigner function of (−BΛ,Γ) = (0.55, 4.7) MeV.

■ Λ-QF production in 3H(e, e′K+)X reaction

The Λ quasi-free (Λ-QF) events were observed in the region of −BΛ ≥ 0 MeV in the

3H(e, e′K+)X reaction. The differential cross section of the Λ-QF production was obtained as

880 ± 20(stat.) ± 140(syst.) nb/sr. The Λ-QF shape was in good agreement with the result of

Monte Carlo simulation by SIMC. However, the SIMC results could not reproduce an event

excess around 0 ≤ −BΛ ≤ 40 MeV. The structure was expected to be produced by the Λn FSI
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effect. The Jost function was applied to estimate the FSI effect on the missing mass. In this

thesis, Λ-QF distribution was estimated with the Jost function under the seven Λn potentials,

(Jülich A, B, NSC97f, NLO13(600), NLO13(650), NLO19(600) and NLO19(650)). Quantitative

comparison between the experimental data and the simulation results was performed with the

chi-square method in two ranges (20 ≤ −BΛ ≤ 60 MeV and 0 ≤ −BΛ ≤ 60 MeV). In both

ranges, the NSC97f potential model was the best fit with the experimental data. The chi-square

map of the scattering length (a) and the effective length (r) were made in order to evaluate the

potential independent fitting for parameters (a, r). In the range of 20 ≤ −BΛ ≤ 60 MeV, the

chi-square had the minimum value when the scattering length (a) and effective range (r) had

the value of a = −0.67 fm and r = 5.2 fm. The error of the effective range was 5.2+3.2
−1.3(stat.)

fm at a = −0.67 fm. In the range of 0 ≤ −BΛ ≤ 60 MeV, the chi-square had the minimum

value when the scattering length (a) and effective range (r) had the value of a = −0.67 fm and

r = 5.2 fm. The error of the effective range was 5.0+1.3
−1.2(stat.) fm at a = −2.6 fm.

■ Future prospects

Study of the Λn FSI effect by using Λ-QF shape that mentioned in the thesis would be a good

approach to investigate the Λn interaction. Further studies are necessary to improve uncertainty.

If there are 14 times larger than statistics than the result in this thesis, it would be possible

to determine the Λn potential to be NSC97f model with CL95%. An experiment with higher

statistics with HKS which has higher acceptance and shorter arm may have a chance to measure

Λn potential with a better precision. Because low Λn relative momentum condition is effective

to perform Λn FSI studies, experiment with lower momentum transfer reactions such as the in-

flight 3H(K−, π−)pnΛ and 3H(K−, π0)nnΛ around the magic-momentum are good candidates.
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