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Abstract

When fast ions penetrate matter, they primarily lose energy due to elastic and inelas-
tic collisions with the atoms of the stopping material. Furthermore, they change their
directions and may even vary their ionic charge states depending on their velocities
and element numbers. The description of the slowing-down process is characterized
by the stopping power which is defined by the mean energy-loss value per unit path
length of the penetrated matter. Experimental and theoretical studies of the stopping
power for both light and heavy ions have been performed since the discovery of ra-
dioactivity.

Although the fundamental forces of the ion-atom interaction are well known, the
complex many-body collisions are difficult to describe, especially for heavy ions at
low to intermediate velocities where charge-changing collisions occur frequently. An
example is the longstanding problem of the dependence of the stopping power on the
density of the medium. Such a gas-solid difference (the Bohr-Lindhard density effect) in
the slowing-down process is still neglected in most theories, and the number of exper-
imental data is still scarce.

We performed an experiment with (35, 50, 70, 100, and 280) MeV/u lead (208Pb)
ions slowing down in five gaseous and five solid materials, at GSI in Darmstadt, Ger-
many. The partially ionized projectiles were provided by the combined accelerators of
UNILAC and SIS-18. The measurements of energy-loss and charge-state distributions
were performed with the high-resolution magnetic spectrometer FRS.

We successfully measured the mean charge states and stopping powers within an
accuracy of 1%. The gas-solid differences in mean charge states and stopping powers
were clearly observed for all the applied gas-solid target materials. The effect system-
atically decreased with higher incident velocities and vanished at 280 MeV/u. The
mean charge states of lead ions emergent from solids were, at the velocity range of
(30-100) MeV/u, (3-5)% higher than for the gases with neighboring Z2 numbers. The
corresponding measured stopping powers in solids were (6-8)% higher than in gases
at the same velocity. The present experiment confirmed the Bohr-Lindhard prediction
on the density effect at the velocity range where the experimental data were scarce.
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Chapter 1

Introduction

When fast ions penetrate through matter, they primarily lose their energy due to elas-
tic and inelastic collisions with the atoms of the stopping material. Furthermore, they
change their directions and may even vary their ionic charge states depending on their
velocities and element numbers. The atomic collisions represent a statistical process
due to fluctuating impact parameters. Therefore, an incident beam of mono-energetic
ions with a fixed velocity and charge-state will emerge from the penetrated matter
with broadened distributions in energy, angle, and charge state. In principle, these
features have been known for many decades and used in numerous scientific applica-
tions, such as tumor therapy, material modification, and particle detectors.

The description of the slowing-down process is characterized by the stopping power,
which is defined by the mean energy-loss value per unit path length of the penetrated
matter [Boh15]. Experimental and theoretical studies of the stopping power for light
and heavy ions have been performed since the discovery of radioactivity. Alpha par-
ticles emitted from radioactive sources were one of the first light projectiles studied.
The first realistic model on the structure of atoms was one of the striking results from
these pioneering studies of the slowing-down and angular scattering of energetic ions
by J.J. Thomson, E. Rutherford, and N. Bohr. Afterwards, fission fragments were the
first heavy-ions studied. However, they were characterized by a large uncertainty due
to broad statistical distributions of energy and mass. With the advent of powerful
heavy-ion accelerators, both theoretical and experimental studies of heavy ions have
been extended over well-defined larger energy and mass ranges.

Although the fundamental forces of the ion-atom interaction are well known, the
complex many-body collisions are difficult to describe with the high accuracy needed
for many applications. The latter statement holds especially for heavy ions at low and
up to intermediate velocities, where charge-changing collisions occur frequently. An
example is the longstanding problem of the dependence of the stopping power on the
density of the medium. Such a gas-solid difference in the slowing-down process is still
neglected in most theories, although experimentally, the effect has been observed with
different experimental methods [Gei+82; Bim+89a; Bim+89b]. Heavy ions showed an
up to 20% lower stopping power in gases near the Bragg peak than in solids. An essen-
tial remaining question is: "How much does the density effect continue and contribute
over the velocity range until it vanishes?" Motivated by this question, we performed
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accurate measurements of stopping power and charge-state distribution in a new ve-
locity domain, where experimental data are scarce.

In the framework of the present doctoral thesis, the experiment was performed
with (35, 50, 70, 100, and 280) MeV/u lead (208Pb) ions, slowed down in five gaseous
and five solid materials at GSI in Darmstadt, Germany. The partially ionized projec-
tiles were provided by the combined accelerators of UNILAC and SIS-18. The charge-
state and energy-loss measurements were performed with the high-resolution mag-
netic spectrometer FRS [Gei+92]. The present doctoral thesis presents the experiment,
data analysis, and results compared with theoretical descriptions.

In Chapter 2, the theoretical descriptions of the slowing-down processes for heavy
ions are presented. Chapter 3 will explain the background and goals of the present
experiment. The experimental setup will be shown in Chapter 4, followed by the
description of the data analysis in Chapter 5. Our experimental results of mean charge
states, stopping powers, and gas-solid differences will be presented and discussed in
Chapter 6. Finally, Chapter 7 is devoted to the summary and outlook.
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Chapter 2

Theory of the Slowing Down of
Heavy Ions in Matter

2.1 Basics

In this chapter, we will briefly describe the theoretical framework of the energy-loss
and charge-changing processes of heavy ions passing through matter [Boh48; Sig14].
The energy loss of charged particles in matter is caused by the Coulomb interaction in
statistical atomic collisions. Different types of collisions with varying impact parame-
ters and collision frequencies in a given path length lead to a statistical distribution of
energy loss characterized by a mean value and a certain width. The latter is called
energy-loss straggling. The slowing-down process depends on the velocity, mass,
charge, and properties of the target atoms. The atomic interaction represents a compli-
cated many-body problem due to the many bound correlated electrons involved. The
projectiles primarily undergo elastic and inelastic collisions with the target atoms, i.e.,
both electron systems may be excited, or even a charge-changing process may happen.
Charge-changing collisions are essential and characteristic, especially for the slowing
down of heavy ions, which complicates an accurate theoretical description even more.

In the theoretical description, the differential collisional cross-section dσ/dT con-
tains all the information of the physical processes, where T and σ denote the energy
transferred in a single collision and its probability, respectively. With the differential
cross-section, the mean energy loss is defined by

〈∆E〉 = N∆x
∫

Tdσ = N∆x
∫

T
dσ

dT
dT, (2.1)

where N and ∆x denote the density of the target atoms and the path length in the
penetrated matter, respectively. The specific energy loss of the projectile ions are char-
acterized by the so-called stopping power defined by

dE
dx

= lim
∆x→0

〈∆E〉
∆x

. (2.2)

The most outstanding physicists such as Niels Bohr, Hans Bethe, and Jens Lindhard
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have contributed and pioneered the field of the stopping powers. Of course, the physi-
cal dimension is a force1. Practically, the unit is usually represented by MeV/(mg/cm2)

which corresponds to the definition of the mass stopping power. Throughout this the-
sis, we will refer to this definition.

The projectiles’ energy loss is caused primarily by elastic and inelastic collisions
with the target atoms. The projectile interacts with the whole target atom in the
screened Coulomb field in the elastic collisions. The result is an angular deflection
of the projectile and a displacement of the target atom. In the inelastic collisions, the
energy is transferred to the electron system of the target atoms, causing their exci-
tation and ionization. The total stopping power is the sum of both contributions as
dE
dx (total) = dE

dx (elastic) + dE
dx (inelastic). Figure 2.1 shows the calculated contributions

from the elastic and inelastic collisions for the case of uranium projectiles slowing
down in carbon. The stopping powers were calculated with the ATIMA program2

[Wei98a]. In the investigated energy domain of (30-300) MeV/u of our present exper-
iment, indicated by the green area on the graph, the inelastic collisions dominate the
total stopping power.
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FIGURE 2.1: Calculated contributions to the total stopping power from elastic and
inelastic collisions of uranium projectiles in carbon. The relevant energy range of
the present experimental study is indicated by the green area. In this domain, the
inelastic collisions dominate.

1The origin of the name Stopping Power is Bremsvermögen in German, in a sense of Capability of Stopping,
and it was directly translated in English.

2See Appendix E for the description of the ATIMA program.
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2.2 Bohr Theory

The present slowing-down experiment with lead projectiles in the energy domain of
(30-300) MeV/u, where the corresponding velocity domain is about β = 0.25-0.65 in
the unit of the speed of light in vacuum, is still in the regime of classical treatment
concerning the theoretical validity. Therefore, it is relevant to review the pioneering
Bohr theory, which was also the basis of the first realistic model of the atomic structure
of matter [Boh13; Boh15]. For the theoretical description, first, several approximations
are made for the calculations [Boh48; Ahl80]:

• The target medium is considered to be dilute.

• The velocity of the projectile is much greater than the orbital velocity of the target
electrons.

• The microscopic structure of the projectile is not included.

• The charge state of the projectile does not change during the collision.

2.2.1 Rutherford Scattering

To obtain Bohr’s classical framework, we first consider the Rutherford scattering.
Here, the collision is considered between two free point-particles with mass and charge
m1 and q1 for the projectile and m2 and q2 for the target, respectively, and with the rel-
ative velocity v. Under the pure Coulomb interaction

V(r) =
q1q2

r
, (2.3)

the movement of the two point-particles is well known as a hyperbolic trajectory in
the center of mass (c.m.) system. The deflection angle θ in the c.m. system can be
deduced from a straightforward calculation as a function of the impact parameter b as

tan
θ

2
=

m1 + m2

m1m2

1
v2

q1q2

b
=

bref

2b
, (2.4)

where bref = 2(m1 + m2)q1q2/m1m2v2 is the collision diameter, which corresponds to
the minimum distance in a repulsive head-on collision. The energy transfer T to the
target particle is given by

T =
1
2

m2v2
2

=
2m2

1m2

(m1 + m2)
2 v2 sin2 θ

2
= Tmax sin2 θ

2
,

(2.5)

where Tmax represents the maximum energy transfer, corresponding to θ = π which
is the backscattering phenomenon. With Eq.2.4 and Eq.2.5 the energy transfer is given
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as a function of impact parameter as

T =
2q2

1q2
2

m2v2
1
b2

1

1 +
(

bref
2b

)2 =
Tmax

1 +
(

2b
bref

)2 . (2.6)

As one can see from Eqs. 2.4-2.6, if the impact parameter b is much greater than bref

(when the collision occurs in distant) the deflection angle θ will be small, and accord-
ingly the energy transfer will also be small. Then, the collisional differential cross
section can simply be obtained from dσ = d(πb2) as

dσ = π

(
bref

2

)2 cos θ
2

sin3 θ
2

dθ = π

(
bref

2

)2

Tmax
dT
T2 . (2.7)

By inserting this differential cross section into Eq.2.1, the mean energy loss can be
obtained as

〈∆E〉 = N∆x
2πq2

1q2
2

m2v2

∫ Tmax

Tmin

dσ

dT
dT

= N∆x
2πq2

1q2
2

m2v2 ln
Tmax

Tmin
,

(2.8)

or, in the form which include the impact parameter explicitly as

〈∆E〉 = N∆x
2πq2

1q2
2

m2v2

∫ bmax

bmin

1
b2

2bdb

1 + ( bref
2b )

2
. (2.9)

Here, we shall consider the situation where the projectile particle penetrates through
a monoatomic target with the atomic number Z2, mass M2 and N atoms in a unit
volume according to Eq.2.8. There are two collision components for the target particle
here, namely atoms and electrons. Therefore, the notations become

• m2 = M2, q2 = Z2e, and N = N for atoms

• m2 = me, q2 = −e, and N = Z2N for electrons

Then, the ratio between the mean energy losses due to the target atoms and electrons
would be

〈∆E〉elastic
〈∆E〉inelastic

∼ Z2
me

M2
� 1 , (2.10)

This calculation suggests that the energy loss due to the collision with target electrons
is dominant, which is related to the comparison between the elastic and inelastic col-
lisions mentioned in Section 2.1 before.

2.2.2 Distant Collisions

Now that we concentrate on the collision between a bare heavy-projectile (q1 = Z1)
and a bound target electron. Niels Bohr, who was a student of Rutherford, extended
the consideration of the distant collision problem by taking into account the effect of
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the binding forces on the electrons. He treated the energy transfer as the excitation of
harmonic oscillators with a classical harmonic oscillator frequency ω. The resulting
energy transfer in the relativistic expression is given by [Ahl80]

Tdistant =
2Z2

1e4

mev2
1
b2

[
ξ2K2

1(ξ) + ξ2K2
0(ξ)/γ2] , (2.11)

where ξ = ωb/γv with the Lorentz factor γ, K0(ξ) and K1(ξ) are the modified Bessel
functions of the zeroth and first orders, respectively. For getting the stopping power
formula by integrating Eq.2.11, Bohr set a critical value for the impact parameter as
b0 to distinguish the region of the distant collisions from the close collisions, whose
concept will be explained in the next subsection. The integration according to Eq.2.9
is performed from b = b0 to b = ∞, resulting in(

dE
dx

)
distant

=
4πNZ2

1Z2e4

mev2

[
ξ0K1(ξ0)K0(ξ0)−

β2

2
ξ2

0(K
2
1(ξ0)− K2

0(ξ0))

]
, (2.12)

where ξ0 = ξ(b0), and N is the number of target atoms per unit volume [Ahl80].

2.2.3 Close Collisions

In contrast, when the impact parameter b satisfies b < b0, the energy transfer is consid-
ered more significant than the binding of electrons; thus, the influence of the latter is
neglected, resulting in that the collision problem being treated between two free par-
ticles under the pure Coulomb interactions as we have considered in the Rutherford
scattering problem. From the Eq.2.6, the energy transfer is given as

Tclose =
2Z2

1e4

mev2
1
b2

1

1 +
(

bref
2b

)2 , (2.13)

where bref now is reduced to 2Z1e2/mev2γ. As was done for the distant collisions, the
integration can be carried out from b = 0 to b = b0, and lead to [Ahl80]

(
dE
dx

)
close

=
2πNZ2

1Z2e4

mev2 ln

[
1 +

(
2b0

bref

)2
]

. (2.14)

Then, where can we find the critical impact parameter b0? In the present con-
sideration, we have assumed that the velocity of projectile is much greater than the
orbital velocity of the target electrons. This leads to the collision time roughly being
τ = 2b/γv. When compared with the oscillation period τosc. = 2π/ω, then, a signifi-
cant momentum (energy) transfer can be expected for τ � τosc.; otherwise the energy
transfer becomes adiabatic. Based on that, Bohr set a cutoff parameter as

aad =
γv
ω

, (2.15)
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which is the so-called Bohr’s adiabatic radius and beyond which the energy transfer
is inefficient [Boh48]. Therefore, the critical impact parameter should be b0 � aad.
Furthermore, for the collision being distant enough, it can be considered as b0 �
bref. Then, in the condition of bref � b0 � aad, the modified Bessel functions can
be expanded and one can obtain Bohr’s classical stopping-power formula as [Boh13;
Boh48; Ahl80](

dE
dx

)
Bohr
≈ 4πNZ2

1Z2e4

mev2

[
ln

1.123mev3

Z1e2ω
− ln(1− β2)− β2

2

]
. (2.16)

Besides, the critical impact parameter b0 can also be found from the crossovers be-
tween Tdistant and Tclose [Sig96].

2.2.4 Validity of the Bohr Theory

Bohr’s classical theory, in principle, follows the picture of the Rutherford scattering.
Therefore, for visualizing such classical orbital motion with a definite impact param-
eter, the de Broglie wave length (λ– = h̄/mev) must be smaller than the collision di-
ameter bref. Otherwise, the quantum effect must appear. The complete picture of
Rutherford and Bohr is obtained at the limit as

κ =
bref

λ–
=

2Z1e2

h̄v
� 1 , (2.17)

where κ is the so-called Bohr’s kappa, which is an important measure for considering
the validity of the Bohr theory [Boh48]: As κ decreases, the Bohr theory gradually lose
its validity, and when κ < 1 it is not valid anymore.

2.3 Bethe Theory

2.3.1 Derivation of the Bethe Formula

After the establishment of quantum mechanics in the mid-1920s, the first quantal cal-
culation of energy loss was performed by Hans Bethe in the manner of first-order Born
approximation. In Bohr’s classical theory, the impact parameter was responsible for
the energy loss. However, in the Bethe theory, it is considered in terms of the momen-
tum transfer. In 1930, the non-relativistic case was treated [Bet30], and his theory was
extended to the relativistic case in 1932 [Bet32]. The potential under consideration is
also the Coulomb potential; however, there is an additional interaction through the
transverse vector potential, which describes the coupling of the currents between the
projectile and a target electron by the virtual photon exchange. In the framework of
the Dirac equation, the latter is proportional to the velocity ~βt transverse to the mo-
mentum transfer ~q. The differential cross-section for the inelastic collision to excite a
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target atom to an energy level En is then expressed as [Fan63]

dσn

dQ
=

2πZ2
1e4

mec2β2

(
1 +

Q
mec2

)(
|Fn(~q)|2

Q2(1 + Q/(2mec2))
+

|~βt · ~Gn(~q)|2
Q2(1 + Q/(2mec2))− En/(2mec2)

)
, (2.18)

where, Q is the energy transferred to an unbound electron, which is defined for con-
venience, and the relation to the momentum transfer (q = |~q|) is given by Q(1 +

Q/2mec2) = q2/2me in the relativistic regime. Therefore, when Q is small (large), the
momentum transfer can also be considered small (large). The matrix elements Fn(~q)
and ~Gn(~q), respectively, correspond to the pure Coulomb (longitudinal) excitation and
the transverse excitation as

Fn(~q) = 〈n| exp(i~q ·~r/h̄)|0〉
~Gn(~q) = 〈n|~α exp(i~q ·~r/h̄)|0〉 ,

(2.19)

where the latter is proportional to the relativistic current operator ~α. In the non-
relativistic limit, the differential cross section Eq.2.18 is reduced to

dσn

dQ
=

2πZ2
1e4

mec2β2
|Fn(~q)|2

Q2 . (2.20)

For the evaluation of the matrix elements Fn and ~Gn, different regions are distin-
guished according to Q [Fan63]:

• For very small Q, i.e., for the case with small scattering angles in the distant
collisions, the exponential part exp(i~q ·~r/h̄) in Fn and ~Gn can be expanded up to
the first order in terms of q. This is the so-called dipole approximation.

• For very large Q, i.e., for the case with large scattering angles in the close colli-
sions, the target electrons are considered as unbound and En ≈ Q. The approxi-
mated Dirac wave functions are then used in the calculation.

• For the intermediate Q range, the transverse term is assumed to be neglected.
The upper limit of this Q range is considered to be much smaller than the elec-
tron mass.

Having the approximations described above, one can perform the individual calcu-
lations according to the Q range and then obtain the famous Bethe formula (or the
so-called Bethe-Bloch formula3) [Bet32; Fan63] as

−dE
dx

= N ∑
n

En

∫
dσn

=
4πNZ2

1Z2e4

mec2β2

[
ln(2mec2β2)−∑

n
fn ln(En)− ln(1− β2)− β2

]
.

(2.21)

3The reason why it is often called the Bethe-Bloch formula would be that, Bloch helped to approximate
the mean excitation potential as I = 10Z2 [eV] at that early time. However, one should simply quote as
the Bethe formula when different notation of the mean excitation potential is used.
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The summation in the square bracket is over the excitation energies En and the dipole
oscillator strength fn of each atomic shell level but is usually replaced by the mean
excitation potentials I. Furthermore, since the factors in front of the square bracket
are simply the requirements from the first-order Born approximation, the contents in
the square bracket become interesting. They are in total dimensionless and called the
stopping number L. Consequently, the stopping power can be expressed as

− dE
dx

=
4πNZ2

1Z2e4

mec2β2 · LBethe , (2.22)

where,

LBethe = ln
2mec2β2

I
− ln(1− β2)− β2 (2.23)

and,
ln I = ∑

n
fn ln(En) . (2.24)

2.3.2 Mean Excitation Potential

The mean excitation potential I in Eq.2.23 is one of the main characteristics of the Bethe
formula, which results from the calculation in the range of small-Q approximation.
The calculation of the oscillator strengths fn is needed for each atomic level, however,
it is complicated as the number of electrons increases. Therefore, the mean excitation
potential I is usually determined experimentally from the measurement of stopping-
powers such as protons, and there is a semi-empirical formula depending on target
atomic number Z2 as [Leo94]

I
Z2

= 12 +
7

Z2
[eV] for Z2 < 13

I
Z2

= 9.76 + 58.8Z−1.19
2 [eV] for Z2 ≥ 13 .

(2.25)

In the relativistic region, the mean excitation potential I is very small compared to
2mec2β2. Plus, since it appears only in the logarithmic term in the stopping number
L, the uncertainty in I is not critical for the stopping power calculation. However,
it is still advantageous to refer to the tabulated values in the NIST website [NISb].
Besides, Bragg’s additivity rule can be adopted for the calculation of stopping powers
for compounds of, e.g., carbon and hydrogen. In this case, it may be recommended
to take the optimized values depending on the material state of the compounds. For
example, Bär et al. [Bär+18] reported the values for several elements in compounds,
and their values for hydrogen and carbon are listed in Tab.2.1 together with the values
from the NIST table.

2.3.3 Validity of the Bethe Formula

One should notice that the stopping number LBethe does not depend on the projec-
tile’s atomic number Z1, which is resulted from the first-order Born approximation. In
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TABLE 2.1: The mean excitation potentials for hydrogen and carbon in compounds.
The second column corresponds to the values from NIST table [NISb]. The third and
fourth columns are the recommended values from Bär et al. [Bär+18] for different
material states of compounds.

Element NIST Solid (Bär) Gas (Bär)

(eV) (eV) (eV)

H 19.2 22.07± 1.32 21.54± 0.74

C 78.0 79.91± 3.61 66.75± 1.08

turn, the stopping number may be extended for the higher orders in terms of Z1 for
considering corrections to the Bethe formula. In addition, the quantum perturbation
treatment is allowed only in the adiabatic condition as

κ =
2Z1α

β
� 1 , (2.26)

where κ is the Bohr’s kappa as we have introduced in Eq.2.17, and α is the fine struc-
ture constant. Therefore, if κ is larger than unity, it is the range of validity of Bohr’s
classical treatment for the stopping power calculation. Furthermore, the adiabatic con-
dition is often violated for the heavy ions. For example, in our experimental energy
domain from 30 to 300 MeV/u, the adiabatic parameter is 1.83-4.83 for the lead pro-
jectiles. Therefore, the present slowing-down experiment with lead projectiles may be
within the classical treatment, as mentioned in Section 2.2. However, as described in
the following sections, the Bethe formula has been the basis of the theoretical devel-
opments for the description of stopping powers. The theoretical improvements were
performed either (1) by considering the higher orders in the Born approximation or
(2) by using the exact solutions for, e.g., the wave functions.

2.4 Corrections to the Bethe Formula

This section will explain the theoretical developments for the stopping power calcu-
lation based on the Bethe formula. The correction terms to Bethe’s stopping number
LBethe will be represented by ∆L. Then, the Lindhard and Sørensen (LS-) theory [LS96],
which includes such correction terms, will be compared to the experimental stopping-
power data of bare heavy projectiles.

2.4.1 Shell Correction

In the derivation of the Bethe formula, an assumption was used that the projectile ve-
locity was much greater than the orbital velocities of target electrons. This condition
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simplifies the calculation, especially at the intermediate Q range, where the contribu-
tions from the electrons in all atomic shell levels result in

∑
n

En|Fn(~q)|2 = Q (2.27)

with the help of the Thomas-Reiche-Kuhn sum rule [Bet30; Fan63]. This equation im-
plies that the target electrons receive the energy transfer Q equally no matter their
shell level is and as if they were unbound at rest [Fan63]. However, when the projec-
tile velocity becomes comparable with or lower than the orbital velocity of the target
electron, i.e., if the excitation energy for the inner shells of the atom increases com-
pared to the energy transferred, the energy loss for each individual atomic shell level
must be examined. The derivation of the stopping number L in Eq.2.21 must then be
extended and Eq.2.23 must be modified by a correction term as

∆LShell = L− LBethe = −
C
Z2

(2.28)

with
C = CK(v) + CL(v) + · · · .

The correction factors Ci for each individual atomic shell (i = K, L, M) depend on the
projectile velocity and disappear at the high-velocity domain. The individual contri-
butions from the K- and L-shells are considered, e.g., in Refs. [LB37; Wal52; Wal55;
Kha67]. Overall, they lead to a reduction of the stopping power since not all of the tar-
get electrons contribute to the slowing-down of projectiles. Lastly, a useful empirical
formula can be found in Ref. [BB64] as

C(I, η) =
(

0.422377η−2 + 0.0304043η−4 − 0.00038106η−6
)
× 10−6 I2

+ (3.850190η−2 − 0.1667989η−4 + 0.00157955η−6)× 10−9 I3 ,
(2.29)

which is valid for η = βγ ≥ 0.1.

2.4.2 Fermi Density Effect

Similar to the case of the shell correction described above, another assumption in the
Bethe formula would be violated easily; the collision of a projectile occurs only with
a single target atom without any interference from others. This is undoubtedly an in-
correct assumption for the case of dense media such as in a solid material. One must
take into account the interactions with target atoms located in distance. However,
with ever-increasing velocity, meaning that with ever-increasing impact parameters,
the stopping power might be summed infinitely. It was Enrico Fermi in 1940 who
considered the density effect in terms of the polarization of target atoms shielding the
projectile charge, resulting in the reduction of the electronic stopping power with large
impact parameters [Fer40]. Therefore, this effect works to reduce the Bethe stopping
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power, and it becomes significant only in the relativistic regime. The common repre-
sentation is −δ/2, where the half would stand for that the polarization is related only
with the distant collisions. It is also noteworthy to mention the work by Sternheimer
et al. [Ste84] who evaluated the density effect for a large number of substances since
1945. The formula proposed in 1952 is given as

δ(X) =

{
4.6052X + a (X1 − X)m + C for (X0 < X < X1)

4.6052X + C for (X > X1)
(2.30)

where X = log10(βγ) whose minimum limit X0 requires the density effect δ to be
zero under the value. The coefficients a and m are to be determined by the fit to the
experimental data, and C is given by

C = −2 ln(I/hνp)− 1 , (2.31)

where the I is the mean excitation potential, and hνp is the plasma energy of the elec-
trons given by

hνp = 28.816

√
ρ

Z2

A2
(2.32)

with the density ρ, atomic number Z2, and atomic mass A2 of the target.

2.4.3 Barkas Effect

The stopping number of the Bethe formula (Eq.2.23) does not include any dependence
on the projectile charge. The correction term, then, can naturally be considered by
including Z1 dependence, such as from the higher-order approximations, or, which
can semi-empirically be expressed as the expansion of the stopping number L in terms
of Z1 as L = L0 + Z1L1 + · · · . In this scheme, the next leading order should be the Z3

1

correction term.
When examining the range of slow charged-pions at β ∼ 0.1 in matter, Barkas et al.

observed a longer range for negatively charged pions compared to positively charged
ones [BDH63]. Such a difference may be explained as the displacement of the target
electrons during the collision (the polarization effect). The correction term to the Bethe
formula due to the projectile’s charge was, then, considered as follows:

In 1972, Ashley, Brandt, and Ritchie performed a classical calculation of the en-
ergy transfer from a heavy ion projectile to a target electron in the representation of
a classical harmonic oscillator to evaluate the contribution from the Z3

1 term [ABR72].
Following their work, Hill and Merzbacher carried out a calculation by the quantum
mechanics, taking into account the distorted electron distribution. They found that
their results were consistent with the classical calculation [HM74]. Using the similar
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method to Ref.[ABR72], Jackson and McCarthy considered the difference in the stop-
ping power formula, and their results were obtained in the form as [JM72]

∆LBarkas = L
Z1√
Z2

F(V) (2.33)

with
V =

βγ

α
√

Z2
. (2.34)

The F(V) is the dimensionless universal function, and the exact form is given in
Ref.[JM72]. Their calculation assumed that the polarization effect only led to the
change in the energy transfer in the distant collisions and was neglected for the close
collisions. However, Lindhard [Lin76] suggested that it consist of both contributions
from distant and close collisions equally. This meant that Eq.2.33 should become about
twice as large, which was considered from the comparison to the experimental data. In
addition, the differences in stopping-powers for protons and anti-protons were exam-
ined by Medenwaldt et al. in 1991 [Med+91], and it was found that the theoretical pre-
diction was much smaller than those observed; therefore, it would be recommended
to multiply Eq.2.33 by a factor of two.

2.4.4 Bloch Correction Term

When the velocity goes toward the classical treatment region (when κ in Eq.2.26 in-
creases), several assumptions in the Bethe formula are again violated. Moreover, one
may try to replace the Bethe formula with Bohr’s classical formula for the stopping-
power calculation. However, the transition is not smooth, especially at κ ≈ 1, and
both treatments of Bethe and Bohr are, in principle, incorrect in this region [Boh48]. It
was Felix Bloch in 1933 who pointed out the problem occurring in the close collisions
with a large momentum transfer, where the target electron is considered unbound.
He succeeded in building a bridge between the two theories, and his theory provided
the correction term ∆LBloch in the stopping number at non-relativistic regime, given as
[Blo33]

∆LBloch = ψ(1)− Reψ(1 + iZ1α/β) , (2.35)

where ψ is the logarithmic derivative of the complex gamma function. As a tip, one
should note that even though Eq.2.21 is often called the "Bethe-Bloch" formula, this
Bloch correction term is not included usually.

2.4.5 Mott Correction Term

Contrarily, at the relativistic range, in the close collisions with large momentum trans-
fer, the scattering cross-section treated with the first-order Born approximation signif-
icantly differs from the exact calculation if the projectile has a large nuclear charge.
Therefore, in the framework of the Dirac equation, the exact Mott cross-section should
be treated instead, as demonstrated by Mott [Mot29; Mot32]. Ahlen [Ahl78; Ahl80]
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considered the scattering of a Dirac electron by a heavy point-projectile, and the cor-
rection term to the Bethe formula was given by

∆LMott =
1
2

[
κβ2

(
1.725 +

(
0.52− 2

√
ω0/ωm

)
π cos χ

)
+ κ2β2 (3.246− 0.451β2)
+ κ3β3 (1.522β + 0.987/β)

+ κ4β4 (4.569− 0.494β2 − 2.696/β2)
+ κ5β5 (1.254β + 0.222/β− 1.170/β3)] ,

(2.36)

where ωm = 2mev2γ2 and
√

ω0 = ∑n fn
√

h̄ωn. The definition of cos χ is given in Ref.
[DS56] as

cos χ = Re

[
Γ
( 1

2 − iκ
)

Γ (1 + iκ)
Γ
( 1

2 + iκ
)

Γ (1− iκ)

]
(2.37)

with the complex Gamma functions.

2.4.6 Lindhard-Sørensen Theory

Following these correction terms derived from the consideration of the close collisions,
such as by Bloch and Mott, a rigorous theory on the stopping power of fully-ionized
heavy ions was developed by Lindhard and Sørensen in 1996, nearly 60 years later, by
treating the phase shift of partial waves with different angular momenta ` [LS96]. The
calculation method they used was to find the deviation as

∆LLS = L−
(

LBethe + ∆LShell −
δ

2
+ ∆LBarkas + ∆Lscr.

)
. (2.38)

The last correction term ∆Lscr. in the righthand side of the equation corresponds to the
screening effect due to the captured electrons by the projectiles, which we will men-
tion in the following section; and it is omitted here since we are considering the bare
projectiles. Furthermore, the ∆LLS coincides with the Bloch correction term at the non-
relativistic range and the Mott correction term at the relativistic range in consideration
of a point charge projectile. Below, the summary of Ref.[LS96] is given.

Recall that we are interested in the scattering of an unbound target electron by
a projectile nucleus with a relative velocity v. When the deflection angle in the c.m.
system is θ, the stopping-power is simply expressed as

−
(

dE
dx

)
close

= NZ2
Tmax

2

∫
dσ(1− cos θ) , (2.39)

where Tmax = 2mev2γ2 is the maximum energy transferred. The integration part
results in the summation of the partial waves with angular momenta ` (see, e.g.,
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Ref.[Sch68; LL77] for the detailed calculation of the scattering theory) as∫
dσ(1− cos θ) =4πλ–2 ∑

`=0
(`+ 1)[

`+ 2
2`+ 3

sin2(δ−`−1 − δ−`−2) +
`

2`+ 1
sin2(δ`+1 − δ`)

+
1

(2`+ 1)(2`+ 3)
sin2(δ`+1 − δ−`−1)] ,

(2.40)

where λ– = h̄/(mevγ) is the de Broglie wave length, and we considered the phase
shift δ for the total angular momenta of spin-up and spin-down electrons j = `+ 1/2
and j = `− 1/2, respectively. Since it is more convenient to characterize the partial
waves with a total angular momentum, a new quantum number k = ±(j + 1/2) was
introduced as

` =

{
k = j + 1/2 for k > 0
−k− 1 = j− 1/2 for k < 0

(2.41)

Then, after renumbering by k, the general stopping number L for the close collisions
can be deduced by comparing Eq.2.39 and 2.40 to Eq.2.22 as

Lclose =
4
κ2 ∑

k
|k|
[

k− 1
2k− 1

sin2(δk − δk−1) +
1

2(4k2 − 1)
sin2(δk − δ−k)

]
. (2.42)

In the relativistic case, the phase shift is given by

δk = ζk − arg Γ(sk + 1 + iκ/2)− 1
2

πsk +
1
2

πl (2.43)

where,
sk =

√
k2 − (αZ1)2

and
e2iζk =

k− iκ/2γ

sk − iκ/2
.

The argument of the complex gamma function (arg Γ) can be determined numerically.
Applying the perturbation limit from Eq.2.17 (κ � 1) with which the Bethe formula
was derived, Eq.2.42 reduces to

Lpert
close = ∑

k≥1

1
k
− β2

2
. (2.44)

Therefore, the correction term for the close collisions is given by the difference be-
tween Eq.2.42 and Eq.2.44 as

∆LLS =
∞

∑
k=−∞,k 6=0

[
4|k|
κ2

k− 1
2k− 1

sin2(δk − δk−1)−
1

2|k|

]
+

1
γ2

∞

∑
k=1

k
4k2 − 1

1
k2 + (κ/2γ)2 +

β2

2
.

(2.45)

In the same reference, this phase shift method is extended to take into account the
influence of the finite nuclear size: When the heavy projectile is at highly relativistic,
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meaning that when the de Broglie wave length of the electrons approaches the pro-
jectile nuclear size, the collision is affected by the nuclear charge distributions. This
finite nuclear size correction was deduced from the difference as ∆LLS,fns ∝

∫
(1 −

cos θ)(dσf ns − dσpoint). Consequently, the correction term ∆LLS proposed by Lindhard
and Sørensen is referred to as the correction term for the close collisions, taking over
the Bloch and Mott corrections, plus the finite nuclear size correction.

2.4.7 Contributions of Correction Terms

Figure 2.2, which is taken from Ref.[Sch+98] and modified, shows the contributions
from each correction term discussed above, calculated for the case of a lead projectile
in an aluminum target as a function of projectile energy in terms of the Lorentz factor
γ− 1. Since the inner shell correction is a tiny effect, it is invisible on the graph. At the
low-velocity region, the Barkas (solid upper curve) and the Bloch (solid lower curve)
correction terms become significant, where one would also consider the slowing-down
process of heavy ions in the framework of classical treatment. The Mott correction
term (dashed curve) becomes significant as the velocity increases, whereas the Bloch
correction term decreases. The finite nuclear size correction term, derived from the
theory of Lindhard and Sørensen, is here given as ∆LLS,fns, and it becomes significant
at the highly relativistic region (γ >∼ 10). The Fermi density effect (long dashed-
dotted curve) is significant at the relativistic region to reduce the distant interactions.
When implemented in actual stopping-power calculations, the correction term should
be in the opposite sign. In the present slowing-down experiment with lead projectiles
in the energy domain of (30-300) MeV/u, the corresponding domain on the graph is
about γ − 1 = 0.03-0.3. As can be seen from the figure, the Barkas, inner shell, and
Fermi’s density corrections are already negligible.

Figure 2.3 [Gei+02] shows the calculation of the Lindhard-Sørensen (LS-) theory
which includes the correction terms as ∆L = ∆LBarkas + ∆LShell − δ

2 + ∆LLS, compared
to the experimental stopping-power data for different bare projectiles (oxygen, kryp-
ton, and gold) in beryllium and copper targets. The x-axis corresponds to the projectile
velocity β and y-axis to the stopping powers normalized by Bethe’s formula Eq.2.21.
The solid curves give the theoretical prediction by the LS-theory, and as one can see,
there are excellent agreements with the experimental data for all projectiles. These
results have manifested that the experimental stopping power of bare heavy-ions can
be reproduced by the LS-theory, which stands on the long history of the theoretical
developments.
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(Shell)

Barkas Mott

Fermi 
-density

Bloch Finite 
nuclear size

FIGURE 2.2: Correction terms to the Bethe stopping number LBethe for the slowing-
down of bare lead ions in aluminum as a function of γ− 1, where γ is the relativistic
Lorentz factor. This figure is taken from [Sch+98] and modified. The inner shell
correction is tiny (not visible) at relativistic energies, whereas the finite nuclear size
effect from the Lindhard-Sørensen theory becomes large at the highest velocities.
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FIGURE 2.3: Comparison of the Lindhard-Sørensen (LS-) theory to the experimental
stopping powers of bare oxygen, krypton, and gold projectiles in beryllium and cop-
per targets [Gei+02].

2.5 Energy Loss of Partially Ionized Heavy Ions

So far, we have considered the slowing-down of bare heavy-ions. What would be,
then, a difference in the stopping powers of the heavy projectiles if they carry elec-
trons?

The individual energy loss of a projectile in a given ionic charge-state is charac-
terized by the partial stopping-power. One may simply adopt the ionic charge into
the theoretical frameworks, which we have discussed above, instead of the projec-
tile’s nuclear charge Z1 for the calculation. However, strictly speaking, it is not a good
approximation: When the collision occurs in distant, the target electron may see the
projectile in the ionic charge-state, but when the collision occurs closer than, e.g., the
ionic radius of the projectile, the effective charge may be larger than the ionic charge.
Hence, a significant difference may arise in the energy loss.
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Such a screening effect is, in general, complicated to formulate. It was first consid-
ered by Bohr [Boh48] in terms of the modification of the Coulomb potential as

V(r) = −Z1e2

r
exp(− r

a
) , (2.46)

where a is called the screening radius. Sigmund [Sig97] extended the Bohr theory in
the non-relativistic regime by employing the following screened potential as

V(r) = −q1e2

r
− (Z1 − q1) e2

r
exp

(
− r

as

)
, (2.47)

where the screening radius as is given by

as =

(
1− q1

Z1

)
· 0.8853

a0

Z1/3
1

(2.48)

with q1 and a0 being the ionic charge state and the Bohr radius, respectively. The
choice of such potential shapes, as well as what Bohr did, made it possible to derive
the collisional differential cross sections simply and analytically. The extension of the
Born approximation including the screening effect was also considered by Sigmund
[Sig97], but before Brandt and Kitagawa [BK82], who originally proposed the shape of
the screened potential Eq.2.47, also considered with more complex screening radius.
The similar results were obtained between them.

When considering of heavy ions, then, the screening effect inevitably gives an in-
fluence on the other correction terms. Schinner [SS00], together with Sigmund, con-
sidered the polarization effect, or the Barkas effect, which is responsible for the Z3

1

correction term in the framework of the perturbation treatment. In this case, the cor-
rection term was found possible to become significant, of the order of 100%; therefore,
the perturbative approach cannot be so accurate. Moreover, for the close collisions,
the extension of the Lindhard-Sørensen theory would be desired. In 2001, Sørensen
[Sør02] calculated the stopping power for hydrogen- and helium-like heavy ions with
different potential shapes in the framework of the LS-theory. The difference in the
stopping power due to the screening effect was found for hydrogen-like projectiles of
the order of 1%.

2.6 Charge-Changing Processes

The understanding of the slowing-down process of heavy ions in matter requires the
basic knowledge of charge-changing collisions, i.e., electron capture and loss processes
simultaneously. Such phenomena of capture and loss have been known and studied
since about a hundred years ago, by the pioneering works with alpha-particles of, e.g.,
Henderson and Rutherford in the 1920s. The study with heavy ions could be possible
only after the discovery of nuclear fission in 1938. A comprehensive theoretical treat-
ment for the charge-changing and slowing-down processes of heavy ions was first
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performed by Bohr [Boh48], and following that, Bohr and Lindhard carried out the
refinement of the theory for the heavy ions [BL54]. There is a common statement that
the characteristics of the charge-changing processes of heavy ions are largely different
from the ones of protons or alpha particles at the same velocities because the heavy
ions may carry a large number of electrons along a long path length due to the con-
tinual competition between the capture and loss processes. Similar to the stopping-
power description, these processes depend on the velocity and nuclear charge of the
projectile and properties of the target atoms. Moreover, atomic shell configurations
must be taken into account; a very, or even more, complicated many-body problem.
Therefore, the theories had to rely on simple considerations and arbitrary assump-
tions, which ended up in the limitation of their application, e.g., only to the capture
and loss of a single electron [Bet72].

The charge-state fraction F(q, x) is characteristic of the charge-changing processes,
which is the probability of the projectile being in a certain ionic charge-state q after
passing through the target thickness x. The evolution is expressed by the differential
(rate) equation [Bet72] as

dF(q, x)
dx

= ∑
q′( 6=q)

[
σ(q′, q)F(q′, x)− σ(q, q′)F(q, x)

]
(2.49)

with

∑
q

F(q, x) = 1 , (2.50)

where σ is the (multiple) charge-changing cross-sections from q to q′, or vice versa.
Presently, there are various computer programs such as CHARGE [Sch+98], GLOBAL
[Sch+98], and ETACHA [Lam+15], which can predict the charge-state evolution within
matter by computing the rate equations. For instance, the GLOBAL program can take
into account up to 28 electrons attached to the projectile for the calculation. However,
such theoretical calculations need further improvements, and no computer programs
can still provide reliable predictions for heavy ions, especially with heavy target el-
ements, gaseous targets, and/or in the velocity range between, e.g., ∼ 30 and 100
MeV/u, where our experimental interest is focused on [Sch+98].

Below, we will briefly describe the important processes in our experimental energy
range.

2.6.1 Electron Loss

The electron loss (EL) process is considered as the ionization of projectile heavy ions
(P) by the target atoms (T), which is expressed by

Pq+ + T → P(q+m)+ + T + me− , m ≥ 1 . (2.51)
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The total EL cross-section can be given by the summation over m numbers as

σEL
total =

N

∑
m=1

σEL
m (v) , (2.52)

where N is the total number of projectile electrons, and v is the projectile velocity. The
approach for calculating the cross-sections is in principle the same as in the reverse
case of the ionization of the target atoms with which the stopping-power calculations
were performed.

Bohr [Boh48] first considered the ionization of light ions in light media concerning
the close collisions where the binding of the electrons was disregarded (free collision
condition). In the calculation, it was required that the ion velocity be much greater
than the Bohr velocity v0, or more specifically, Bohr’s kappa be κ � 1, which was con-
tradictory to the classical picture in the calculation of stopping power. Nevertheless,
the EL cross-section was obtained as

σEL =
4πa2

0

Z2
1

(Z2
2 + Z2)

(v0

v

)2
, (2.53)

where a0 is the Bohr radius. It is in a simple form, but the scaling with Z2
2 + Z2 still

gives a good approximation in general for light and heavy projectiles.
From the perspective of quantum mechanics, the electron loss is regarded as the

excitation of the bound electrons of the projectile into the continuum state by the col-
lision with the target atom. Therefore, when we consider the single ionization of the
K-shell electron from the projectile based on the non-relativistic plane-wave Born ap-
proximation (PWBA), the EL cross-section can be given by [Anh+85]

σ1s = 8π(
a0αZ2

β
)2
∫ ∞

0
dε
∫ ∞

q0

dq
q3 |F(~q)|

2 . (2.54)

where ε is the kinetic energy of the electron excited into the continuum state, and
q = |~q| is the momentum transfer. In the second integration, the lower limit q0 =

(EK + ε)/v is the minimum momentum transfer needed to ionize the electron, where
EK is the binding energy. The form factor F(~q) contains the transfer matrix from the
bound state |1s〉 to the continuum state |ε〉 as

F(~q) = 〈ε| exp(i~q ·~r/h̄)|1s〉 . (2.55)

In the scheme of the non-relativistic PWBA, Khandelwal et al. [KCM69] evaluated the
integral part, and the obtained cross-section is in a rather simple form as

σ1s = 8π(
a0αZ2

βZ1
)2 f (η) , (2.56)

where f (η) is a slowly varying function of η = (β/Z1α)2 whose maximum can be
found near β = Z1α, where the projectile velocity is equivalent to the one of the K-shell
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electron. The tabulated values can be found in Ref.[KCM69]. Of course, for high-Z1

projectiles, one should take more sophisticated considerations for the calculation, such
as the Dirac wave functions for the 1s and continuum states, the distortion effects due
to the strong binding of K-shell electrons, screening effects, and so on. These consid-
erations can be found, e.g., in Ref.[Anh+85] and the references therein. Nevertheless,
it is known that such calculations with PWBA overestimate the cross sections at low
and intermediate velocities [Lam+15].

Not only the single EL processes, but one must note that the contribution from
the multiple EL processes can be large at the low velocity region when considering
the total EL cross-section. Below 10 MeV/u, multiple EL process with m ≥ 2 may be
up to 70% of the total EL cross-section [Tol+18]. The theoretical calculation is quite
complicated because one must take into account many configurations; therefore, one
may take the classical approximation such as suggested by Bohr [Boh48; She+10].

At the velocity region where our experiment aims, namely from 30 to 300 MeV/u,
however, the single EL process is still the main contribution to the total cross-section.
The asymptotic form of the total cross-section may be given as [Tol+18]

σEL
total ∼ Z2

2
ln E
q2E

, (2.57)

where q and E are the charge state and the energy of the projectile, respectively.

2.6.2 Electron Capture

The electron capture (EC) process is the recombination of the target electrons into the
projectile ions. The single EC process is expressed by

Pq+ + T → P(q−1)+ + T+ . (2.58)

The EC process becomes significant basically as the projectile energy goes lower. It is
the competitive process to the EL process, resulting in the population of many differ-
ent charge states. For the theoretical treatment of the cross-sections, one must consider
a much more complicated situation than for the EL processes due to the involvement
of the target atom, i.e., at least three particles exchange their momentum in this EC
process. Moreover, there are difficulties such as that the particle states become dif-
ferent before and after the collision thus the interaction potential differs, and the or-
thogonality of the wave functions is not hold [Tol+18]. Therefore, we will just briefly
explain the asymptotic characteristics of the capture process, and for the readers who
are eager to learn, see [Eic85; Mey+85; ES07; Tol+18] and the references therein.

There are two essential types of electron capture processes. The first one is the
non-radiative capture (NRC) process, in which a bound target electron is transferred
to a bound state of the projectile. This is the dominant capture process in the low-
velocity domain. The description of the cross-section has been long discussed in
history, even with the classical mechanics taking into account the two-step collisions
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by L.H. Thomas in 1927. Based on the Born approximation, Brinkman and Kramers
[BK30] derived the approximated expression for the non-relativistic case by

σNRC ∼
q5Z5

2
E6 , (2.59)

where q and E are the charge state and the projectile’s energy, respectively. Their
calculation is called the Oppenheimer-Brinkman-Kramers (OBK) approximation, and
the relativistic modification was finally performed after almost 50 years in which the
rapid energy dependence of E−6 has been modified in the relativistic calculations to
be E−1 [MS80]. Nevertheless, even with the relativistic effect taken into account, the
prediction overestimated the cross-section by more than a factor of three than the ex-
perimental data even for the low-Z1 projectiles [Anh85]. Apart from the energy de-
pendence, one should note that the strong dependence on the target atomic number
Z2 is the characteristic of the NRC process.

The other capture process is radiative capture (REC). This may be regarded as the
reverse process of the photoelectric effect: A target electron capture is accompanied
by the radiation emission. Therefore, the expression Eq.2.58 becomes

Pq+ + T → P(q−1)+ + T+ + h̄ωREC . (2.60)

Contrary to the NRC process, the cross section weakly depends on the target atomic
number as

σREC ∼
q5Z2

E
(2.61)

but with the same energy dependence of E−1 as the relativistic calculation of the NRC
process [ES07]. The REC process becomes significant as the projectile energy increases
and gives the dominant contribution to the total EC cross-section at the relativistic
energy domain.

As a conclusion, the total capture cross section is given by the sum of both pro-
cesses as

σEC
total = σNRC + σREC . (2.62)

2.7 Effective Charge State of Projectiles

2.7.1 Effective Charge and Scaling of Stopping Powers

As we have explained, the population of different charge states occurs due to the com-
petition of electron-loss and electron-capture processes. Therefore, when considering
the slowing down of heavy ions, the total stopping power must be averaged over the
partial stopping powers of the individual charge states. However, it may be more con-
venient to take a single effective value of the charge-state distribution instead. In the
first principle, this is suggested because the exact charge-state distribution within a
material cannot be directly measured and is difficult to predict theoretically.
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There are two concepts for the description of the effective charge-state within mat-
ter. The first one is the effective charge Ze f f which is defined experimentally via the
ratio of stopping-powers between the heavy projectile of interest and the reference
particle as

Z2
e f f = (γZ1)

2 = Z2
0

dE/dx(v, Z1)

dE/dx(v, Z0)
, (2.63)

where γ is the effective charge parameter, Z0 and Z1 denote the nuclear charges of
the reference particle and the heavy projectile of interest, respectively. The most com-
mon reference particles would be protons and alpha particles, whose experimental
stopping-power data can be found numerously, such as in [NISa; Pau21]. Further-
more, this effective charge concept follows the proportionality of Z2

1 in stopping-powers
which is resulted from the perturbation treatment. Therefore, if the projectile does not
satisfy the condition Eq.2.26, the effective charge Ze f f is not a good parameter [Sig14].

However, using the semi-empirical formula of the effective charge reversely pro-
vides an effective prediction of stopping powers. Since the discovery of nuclear fis-
sion, this scaling law was the most helpful way to relate various heavy projectiles,
energies, and target materials [Zie77a]. The first attempt of the scaling was based on
Bohr’s criterion [Boh48] that projectiles are ionized when the velocity is greater than
the orbital velocity of the electrons. In the Thomas-Fermi model, the latter velocity is
proportional to v0Z2/3

1 with the Bohr velocity v0. Therefore, the effective charge was
assumed to be

Ze f f

Z1
≈ v

v0Z2/3
1

. (2.64)

The first attempt was done by Northcliffe [Nor60] who modified the Bohr’s expression
into the following exponential form

(
Ze f f

Z1

)2

= 1− a exp

(
−b

v
v0Z2/3

1

)
, (2.65)

where a and b are the fitting parameters. Similarly, Pierce and Blann [PB68] suggested
the effective charge as

Ze f f = Z1

[
1− exp

(
−0.95

v
v0Z2/3

1

)]
(2.66)

which was obtained from the fitting to the experimental stopping-powers of heavy
ions by using the ones of protons and alpha-particles as the reference. This so-called
P&B formula is in a very simple form but is still helpful in many applications. How-
ever, one should note that the target dependence such as Z2 and density ρ is com-
pletely omitted from the expression: We will come back to this point in the next chap-
ter. Moreover, Ziegler [Zie77a] suggested the following semi-empirical formula of
effective charge from the fitting to the experimental stopping-powers of heavy ions by
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using the ones of protons as the reference:

Ze f f (v)
Z1

= 1− exp (−v2) [1.034− 0.1777 exp (−0.08114Z1)] , (2.67)

where
v2 = v1 + 0.0378 sin

(
1
2

v1π

)
(2.68)

with
v1 = 0.886

v
v0Z2/3

1

. (2.69)

In addition, the following semi-empirical formula based on alpha particles as the ref-
erence was obtained as [Zie85]

Ze f f

2
= 1− exp

(
−

5

∑
i=0

ai lni E

)
(2.70)

where ai are the fitting parameters and E is the projectile energy in keV/u. Note that
the scaling law including the fitting to experimental stopping-powers has been the
basis of the famous calculation code SRIM [Zie+10].

2.7.2 Equilibrium Mean Charge State

The other concept is the equilibrium mean charge q̄ given by

q̄ = ∑
q

qF(q, ∞) (2.71)

where F(q, ∞) are the equilibrium charge-state fractions. Of course, theoretical pre-
dictions for F(q) and eventually q̄ is possible, based on cross sections and by com-
puting the differential equation Eq.2.49. However, it is very complicated because
one needs to know as many charge-changing cross-sections as the number of elec-
trons increases. Moreover, there is often a limitation of theory depending on velocity.
Therefore, in practice, this value can be determined experimentally from the mea-
sured charge-state distributions of heavy ions after the target, and there are various
semi-empirical formulae according to gaseous and solid target materials. For exam-
ple, Betz et al. [Bet+66] measured the charge-state distributions of (10-70) MeV heavy
projectiles (sulfur, arsenic, iodine, and uranium) after gaseous and solid targets. The
semi-empirical formula was obtained from the fitting to the experimental mean charge
states as

q̄
Z1

= 1− C exp
(
−Z−γ

1
v
v0

)
for v ≥ v0 , (2.72)

where C and γ are the fitting parameters whose values are different according to the
projectile and the target material, but it was found to be C ≈ 1 and γ ≈ 2/3, re-
spectively. The most recent work on the mean charge state may be by Schiwietz and
Grande [SG01] in which the more complicated empirical formulae were obtained for
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the projectiles ranging from protons to uranium after gaseous and solid targets based
on the fitting to a large set of experimental data. For gaseous targets, the expression is
given by

q̄gas = Z1
376x + x6

1428− 1206x1/2 + 690x + x6 , (2.73)

with

x =

(
v
v0

Z−0.52
1 Z0.03−0.017Z−0.52

1 v/v0
2

)1.0+0.4/Z1

. (2.74)

And,

q̄solid = Z1
12x + x4

0.07/x + 6 + 0.3x1/2 + 10.37x + x4 , (2.75)

with

x =

(
v
v0

Z−0.52
1 Z−0.019Z−0.52

1 v/v0
2

1
1.68

)1.0+1.8/Z1

(2.76)

for solid targets.

In the framework of the present experiment, it is interesting to investigate how the
influence of the projectile charge state appears in the description of stopping powers.
We will describe this point in more detail in the next chapter.
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Chapter 3

Motivation and Goals of the Present
Experiment

This chapter will briefly describe the experimental status of stopping-power measure-
ments with fast heavy ions. The lack of accurate experimental data and the inves-
tigation of the gas-solid difference of the charge-state population and the stopping
power remain essential because the theoretical prediction is still not accurate enough
for many applications.

3.1 Short History of Stopping-Power Measurements with Heavy
Ions

The slowing-down measurements of heavy ions started with the discovery and study
of nuclear fission in 1938. Fission fragments represent heavy ions with medium mass
and charge. A large emittance characterizes them, i.e., they are emitted from the ra-
dioactive source in all directions with large energy spread and many ionic charge-
states. Nevertheless, pioneering measurements have been performed by Lassen et
al. [Las51a; Las51b] to study the energy loss and charge-state distribution of fission
fragments in solid and gaseous targets. With the advent of powerful heavy-ion ac-
celerators, the kinematic properties of the projectiles became well defined, and thus
dedicated slowing-down measurements could be performed for a specific projectile
isotope at fixed incident energy.

New accelerator-based slowing-down experiments started to contribute to the ba-
sic knowledge of the ion interaction with matter. It enabled the development of new
applications, such as in material science. Moreover, accurate experimental stopping
power values were revealed to deviate strongly from the theoretical descriptions, es-
pecially for partially ionized heavy ions. On the other hand, for light ions, such as pro-
tons and alpha particles, the situation was better because they were fully ionized over
a broad energy range when they penetrated matter: The interaction could be theoret-
ically well described with the first-order Born approximation, applying the stopping-
power formula of Bethe. Below, we will briefly describe the history of experimental
and theoretical developments for the study on the slowing-down processes of heavy
ions.
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With the advent of powerful synchrotrons, the projectiles can reach relativistic ve-
locities (β ≈ 0.9), and even the heaviest ions can penetrate the targets while being
fully ionized. This valuable situation was achieved for the first time with the BE-
VALAC synchrotron at LBL in the 1970s, and the accurate range measurements with
bare uranium ions were performed [AT83]. The results yielded the evidence that the
higher-order correction terms to the Bethe theory were needed to explain the exper-
imental data [TS78; SAT81]. Unfortunately, there was no magnetic spectrometer at
LBL to extend the range measurements with direct stopping power measurements for
relativistic heavy ions. The latter could be achieved about ten years later by combin-
ing the heavy-ion synchrotron SIS-18 and the in-flight separator FRS at GSI. Accurate
stopping power measurements have manifested the failure of the Bethe theory for rela-
tivistic bare heavy ions [Sch+94] and initiated a new theoretical treatment by Lindhard
and Sørensen (LS-theory) [LS96] in the end of the 1990s. Excellent agreements were
found between the LS-theory and the experimental stopping-power data for fully ion-
ized projectiles as shown in the previous chapter [GS98; SG98]. At lower energies
down to 100 MeV/u, where only a few charge states are involved in the slowing-
down process, the validity of the LS-theory was again confirmed with gold, lead, and
bismuth projectiles. The experimental stopping-power data could be reproduced by
the LS-theory by taking into account the partial stopping-powers of individual charge
states in combination with the measured charge-state fractions [Wei+00].

Despite the successful theory at relativistic energies, further research is needed ex-
perimentally and theoretically at lower energy regions towards the maximum point
of the stopping-power, the Bragg peak. The theoretical predictions are complicated
due to the involvement of many ionic charge states. Moreover, there is still a lack
of accurate experimental data to challenge and guide the theoretical efforts. Figure
3.1 gives an overview of the stopping-power measurements performed in the past for
lead, bismuth, and uranium projectiles. Especially in the energy range from 10 to 100
MeV/u, one can see that the experimental data are scarce. Below 10 MeV/u, the the-
oretical predictions are also very complicated, but many experimental data exist, as
illustrated in the figure. These experimental data have significantly contributed to the
development of reliable theoretical and semi-empirical predictions of stopping pow-
ers and ranges, such as by using the scaling method of the effective charge (Eq.2.63)
[Zie85].
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FIGURE 3.1: Overview of previous and present stopping-power measurements of
uranium (Z1 = 92), bismuth (Z1 = 83), and lead (Z1 = 82) ions presented in the
energy-Z2 plane. Z2 is the atomic element number of the target material. The data
points are referred to Ref.[Pau21].

3.2 The Gas-Solid Difference in Stopping Powers

Here, we shall return to the time when nuclear fission was discovered and explain
another aspect of the study. In 1951, Lassen experimentally discovered that the mean
charge state of fission fragments after penetrating through amorphous solid targets
became larger compared to gaseous targets [Las51a; Las51b]. Soon after, Bohr and
Lindhard [BL54] explained this observation by the concept of a higher ionization rate
in solids than in gases due to the higher collision frequencies expected in the higher
material density: The electrons captured, or excited, in the excited states of projectile
ions are more easily stripped in solid materials due to the frequent collisions, and more
likely to be captured into the bound states in gaseous materials before the next colli-
sion. Consequently, due to the difference in the effective charge state within matter,
they predicted that the stopping powers, which may be proportional to the square of
the projectile charge, should become larger in solids than in gases (the Bohr-Lindhard
prediction).

However, it was not possible for a long time to confirm the relation between the
effective charge and stopping powers without an advent of powerful heavy-ion ac-
celerators. Such as, the so-called Z2-oscillations in stopping powers [CP69] masked
the comparison between neighboring gas and solid elements at the low-energy region
up to ∼1 MeV/u, where measurements were accessible at that time. Moreover, Betz
and Grodzins [BG70] proposed a totally different model from the one of Bohr and
Lindhard, regarding the observation of the gas-solid difference in charge states: They
explained the difference by the concept of the emission of Auger electrons after the
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projectile ions left the solid materials, as illustrated in Fig.3.2 below. Therefore, there
is not a big difference in the charge state between the insides of solid and gas, indicat-
ing that the stopping powers also do not differ much. However, such Auger electrons
could not be measured in any experiment.

A breakthrough finally happened with the newly developed accelerator UNILAC
of GSI in the 1980s. The measured stopping-power values in monoatomic targets were
systematically higher by about 20% in solids than for neighboring gaseous elements
in the energy range of (1.4-10) MeV/u, as shown in Fig.3.3 [Gei+82]. The discovery
by Geissel et al. confirmed the model of Bohr and Lindhard almost after 30 years it
was introduced. Following that, the gas-solid difference in stopping-powers has been
confirmed by a series of experiments at the ALICE accelerator in Orsay [Bim+89a;
Bim+89b] and has been extended at higher energies with the GANIL accelerators in
Caen [Her+91; Bim+96; Bim+00].

Here, respecting the successful discoveries, we shall propose to name the gas-solid
difference as the Bohr-Lindhard density effect. Then, to clarify the remaining prob-
lem related to the effect, we shall look into the details of the experimental results ob-
tained at the GANIL accelerator.

Mean Charge !𝑞

Target

!𝑞!"#$%

!𝑞&'(

Path length

Bohr-Lindhard (BL) model

Betz-Grodzins (BG) model

BL

BG

BL, BG

FIGURE 3.2: Illustration of the Bohr-Lindhard [BL54] (blue solid curve) and Betz-
Grodzins [BG70] (red solid curve) models, explaining the observation of the gas-solid
difference for charge states. Bohr-Lindard model: The difference originates from a
higher ionization rate in solids due to the higher collision frequencies. Betz-Grodzins
model: The difference mainly occurs due to the emission of Auger electrons after the
ions emerge from the solid material.
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FIGURE 3.3: Experimental discovery of the gas-solid difference of stopping powers
for uranium ions. The figure is taken from ref. [Gei+82].

Herault et al. [Her+91] measured the stopping powers in gaseous matter for the
heavy projectiles of oxygen (Z1 = 6) from 20 to 85 MeV/u, argon (Z1 = 18) from 25
to 60 MeV/u, krypton (Z1 = 36) from 20 to 40 MeV/u, and xenon (Z1 = 54) from 25
to 30 MeV/u. Figure 3.4 shows their experimental stopping-powers by the full circles
as a function of the target atomic number Z2 for the incident energy of 25 MeV/u. For
displaying the gas-solid difference, the stopping-power data of solid targets are shown
with the open squares, which were taken from Refs.[Bim+86; Gau+87; Gau+90]. The
γs in the graphs is the effective charge parameter in solid targets, which is defined in
the scaling expression of the stopping power as

dE
dx

=

(
dE
dx

)
He
· γ2

s ·
Z2

1

Z2
He

, (3.1)

where the stopping-power of heavy ions in solids is scaled by γ2
s from the one of He2+

ion at the same velocity, whose stopping-power values were taken from Ref.[Zie77b].
The solid curves correspond to the calculation with the assumption of fully ionized
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projectiles (γs = 1), and the dashed curves correspond to the fit result to the experi-
mental stopping-power data in solids by using Eq.3.1.

First, as can be seen in the figure, the deduced effective charge parameter γs con-
tinuously decreases (γs < 1) as the projectile becomes heavier. The fully ionized as-
sumption seems to be valid for oxygen projectiles. However, it starts deviating for
heavier projectiles, e.g., γs = 0.87 for xenon projectiles, demonstrating that heavier
projectiles still carry electrons even in solid targets at this velocity. Secondly, the gas-
solid difference becomes more significant for heavier projectiles. It vanishes for oxy-
gen projectiles, which are considered to be fully ionized, and strongly appears for
partially ionized xenon projectiles at the same velocity. Thirdly, the difference be-
comes more significant for heavier targets, as can especially be seen for the xenon
projectiles. These experimental observations indicate that the gas-solid difference in
stopping powers may vanish when the projectiles are fully ionized during their in-
teraction both in solid and gaseous targets. Such interpretation supports the Bohr-
Lindhard prediction [BL54], which assumes that the gas-solid difference is caused by
the different collision frequency in the stopping materials, creating different effective
charge states of projectiles in gases and solids.

Then, based on the observations of the Bohr-Lindhard density effect from low to in-
termediate energy domain, an open question would be, how much the Bohr-Lindhard
density effect will continue and contribute over the velocity range until it vanishes
for heavy projectiles? This question certainly requires a large set of measurements
of both charge-state distributions and stopping powers over a wide range of Z1 and
Z2 numbers, and a wide velocity domain should be covered experimentally. How-
ever, a rough estimation for the first point of the question can be done as follows. As
shown in Chapter 2, the K-shell ionization cross-section σEL in the framework of the
non-relativistic PWBA calculation can be expressed according to Eq.2.56 as

σEL = σ0 f
(

v
vK

)
,

where v and vK are the velocities of the projectile and its K-shell electron, respectively,
and σ0 = 4πa 2

0 Z 2
2 /Z 2

1 with the Bohr radius a0. Since the function f (v/vK) reaches
the maximum when the projectile velocity becomes around v = vK = Z1v0, projectiles
are likely to get fully ionized at this velocity. Therefore, the gas-solid difference may
vanish simultaneously. Figure 3.5 shows the experimental stopping-power data avail-
able in the literature for the case of krypton projectiles (Z1 = 36) in nitrogen gas (red
dots) and carbon (blue dots) as a function of projectile energy. The solid curves corre-
spond to the fit by the second-order polynomials, which are displayed for the purpose
to guide the eye. At the low velocity domain, the gas-solid difference is still obvi-
ous, but when the velocity increases, the two solid curves seem to converge around
30 MeV/u, indicating the vanishing of the difference. This velocity for the vanishing
is indeed close to the orbital velocity of the K-shell electrons of krypton projectiles
vK = Z1v0 ∼ 33 MeV/u, which may suggest that the projectiles be fully ionized in
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both gaseous and solid targets.
Based on this simple assumption, the velocity range for the vanishing of the Bohr-

Lindhard density effect for very heavy ions such as lead (Z1 = 82), bismuth (Z1 = 83),
and uranium (Z1 = 92) would be around 100-300 MeV/u. Then, the investigation
requires the measurement start from the lower velocity domain to quantify the second
question; how much does the gas-solid effect contribute over the velocity range until
it vanishes? By combining both points of the question, the investigation should be in
the velocity domain where the experimental data are scarce for the three projectiles,
as shown in Fig.3.1.

In 2006, Fettouhi et al. measured the charge-state distributions and stopping pow-
ers of uranium projectiles at 60.2 and 200 MeV/u [Fet+06]. Their result of the mean
charge states, at the interpolated velocity of 55.5 MeV/u, showed a clear gas-solid
difference, and it was found to be more significant up to nearly 5% as the target
atomic number Z2 increases. By simply considering the dependence of stopping pow-
ers on the square of the projectile charge q2, the gas-solid difference may be expected
for about 10% at this velocity. However, at the similar interpolated velocity of 57.8
MeV/u, they showed that the gas-solid difference in stopping powers appeared only
for the light target elements and vanished for heavier ones. Since these data are in-
cluded in the velocity domain in Fig.3.1, where experimental data are scarce, further
measurements are strongly required.

In addition, we would like to emphasize again that the theoretical treatment for the
stopping power and charge-changing process are very complicated for the heavy ions
around this velocity domain due to the involvement of many charge-states. Therefore,
an experimental investigation would be desired and interesting for understanding the
essential atomic interaction in gases and solids.
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FIGURE 3.4: The experimental stopping powers of (a) oxygen, (b) argon, (c) krypton
and (d) xenon projectiles at 25 MeV/u are plotted. The solid curves correspond to the
scaling from alpha particles with the assumption of fully ionized heavy projectiles
(γs = 1) and the dashed curves correspond to the fitted effective charge parameter γs
obtained in previous experiments for solids. The figure is taken from Ref.[Her+91].
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FIGURE 3.5: Experimental stopping-power data of krypton projectiles in carbon
[Bim+78; Bim+80; Gau+90; GS98] and nitrogen [Her+91; Bim+89b]. The gas-solid
difference seems to vanish around 30 MeV/u. The curves are drawn to guide the
eye.

3.3 Experimental Stopping Powers Compared with Theoreti-
cal Predictions

Figure 3.6 shows the comparison between the experimental stopping-power values
available to date [Pau21] and the calculations by several computer programs (ATIMA1.4
[Wei98a], SRIM [Zie+10], and DPASS [SS19]) for the uranium projectiles in titanium
(right panel) and argon gas (left panel) targets. The recent versions of SRIM and
DPASS reproduce very well the stopping-power data for the case of titanium target. A
deviation can be found for the ATIMA1.4 because it adopts scaling formula of Ziegler,
by using the stopping powers of protons with the old parameters from the 1990s for
the calculation below 10 MeV/u (See the Appendix E for the program description). In
contrast, none of the computer programs can reproduce the experimental stopping-
power data for the argon gas target, as can be seen in the left panel. Furthermore, the
calculations are close to the one for the titanium target, even though there is about
20% difference in the experimental stopping-power data. These facts imply that the
Bohr-Lindhard density effect in stopping-powers is neglected in the present theories.
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FIGURE 3.6: Measured low-energy stopping-power data of uranium projectiles in
argon gas (left) and solid titanium (right) [Pau21] are compared with theoretical pre-
dictions of ATIMA1.4 (solid curve), SRIM (dashed curve), and DPASS (long dashed
dotted curve).

3.4 Goals and Requirements of the Present Experiment

Based on the research backgrounds explained above, the main goals of the present
slowing-down experiment are:

• Measurements of the stopping powers and charge-state distributions for par-
tially ionized heavy-ions. Especially in the energy range of 10-100 MeV/u, where
experimental data are scarce for the heaviest ions such as lead, bismuth, and ura-
nium.

• Contributions to the knowledge of the gas-solid difference to test the present
slowing-down theory.

Therefore, we have proposed an experiment of the measurements of stopping-powers
and charge-state distributions of xenon, lead, and uranium projectiles in gases and
solids in the energy domain from 30 to 300 MeV/u to investigate the Bohr-Lindhard
density effect from the velocity domain where the effect may be obvious to the domain
where it may vanish. In this thesis, we will present and discuss the experimental
results obtained with the lead projectiles (208Pb). The experiment was performed in
2020 at the FRS facility of GSI Helmholtz Center for Heavy Ion Research, Germany. We
have prepared five gaseous and five solid materials as atomic collision targets for the
investigation of the gas-solid effect. The investigated target materials and projectile
energies are depicted by the red full-circles in Fig.3.1.

Our results will definitely contribute to the further developments of the slowing-
down theory and the valuable computer programs such as the ATIMA code, which is
developed at GSI. Furthermore, the knowledge will also be essential for many appli-
cations of atomic ion-matter interaction, such as hadron therapy, in-flight separation
of exotic nuclei, and performance of heavy-ion detectors, e.g., gas-filled chambers at
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the Low-Energy Branch of the future Super-FRS facility at GSI.

Finally, the required overall experimental accuracy of our planned stopping-power
results should be below 2% to properly investigate the Bohr-Lindhard density effect
for neighboring elements. For the achievement of the expected accuracy, the following
aspects are essential:

• High-resolution energy-loss and charge-state distribution measurements.

• Well-known properties of targets.

From the next chapter, we will describe our experimental setup, methods, data analy-
sis, and the experimental results in detail.
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Chapter 4

Present Experiment

The measurements of the energy-loss and charge-state distribution of lead ions (208Pb)
in gases and solids were performed at the FRS facility of GSI Helmholtz Center for
Heavy Ion Research in Darmstadt, Germany. This chapter will explain the accelerator
facilities and the experimental setup for our experiment.

4.1 GSI Facilities

The GSI facilities are schematically shown in Fig.4.1 [GSI21]. The combination of the
UNIversal Linear ACcelerator (UNILAC) and the Heavy-Ion Synchrotron (SIS-18) can
provide projectile beams up to uranium with a maximum magnetic rigidity of 18 Tm,
corresponding to the kinetic energy of about (1-2) GeV/u. The UNILAC accelerates
ions to an energy of 11.4 MeV/u before injecting the ions into the SIS-18. In the transfer
channel, the ions pass through a second stripper section. Inside the SIS-18, the energy
of the circulating ions can be measured via the Schottky frequency spectrometry and
multiple position measurements with an accuracy of better than 10−3. When the ions
are accelerated to the specific energy required in the experiment, the ion bunches are
extracted, usually over a period of several seconds (slow extraction), and are trans-
ported to the different experimental areas, including the entrance of the FRagment
Separator (FRS). For our experiment, the FRS facility was used as a high-resolution
magnetic spectrometer.



42 Chapter 4. Present Experiment

FRagment Separator
FRS (F0-F4)

Storage Ring
ESR

Storage Ring
CRYRING

Synchrotron
SIS-18

UNIversal Linear ACcelerator
UNILAC

FIGURE 4.1: Schematic drawing of the present GSI facilities. This figure was taken
from Ref.[GSI21] and modified. The linear accelerator UNILAC and the synchrotron
SIS-18 can provide projectile beams of all elements up to uranium for experimental
studies and applications over the energy range from the Coulomb barrier up to 2000
MeV/u, i.e., up to the maximum magnetic rigidity of 18 Tm. The UNILAC injects the
pre-accelerated beams into the SIS-18 at 11.4 MeV/u.

4.2 Primary Beams from the SIS-18

The advantage of a synchrotron, compared to a cyclotron, is that the beam energy can
be quickly changed even from one bunch to the next. For the present energy-loss and
charge-state distribution measurements, the lead (208Pb) ion beams with a selected
charge state of 67+ behind the second stripper section were accelerated by the SIS-18
and extracted at five different energies, namely 35.508, 50.396, 70.342, 100.289, and
280.365 MeV/u. In addition, the slow extraction mode with 10 seconds duration was
selected with a low beam intensity of the order of 103-104 ions per spill. These acceler-
ator conditions were chosen to avoid any significant radiation damage to the atomic
collision targets and effects on the particle detector performance. The momentum
spread and the transverse emittance of extracted beams are about 5× 10−4 and less
than 5π mm mrad, respectively.
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4.3 FRagment Separator FRS - High Resolution Magnetic Spec-
trometer

The accelerated beams from the SIS-18 are transported via a dedicated beamline to the
entrance of the fragment separator FRS [Gei+92]. The FRS consists of 4 independent
dispersive stages. The whole configuration is expressed by

(F0)-QQQSDSQQ-(F1)-QQSDSQQQ-(F2)-QQQSDSQQ-(F3)-QQSDSQQQ-(F4) .

Each dispersive stage consists of a dipole magnet (D) with a deflection angle of 30
degrees horizontal and a bending radius of 11.25 m. A dipole magnet is character-
ized by the bending radius ρ and the homogeneous magnetic field with a flux density
B, which is perpendicular to the direction of the ion trajectory. The deflection of a
charged particle in the dipole field is determined by the magnetic rigidity Bρ. Accord-
ing to the Lorentz force, the magnetic rigidity is simply the ratio of the momentum p
in the laboratory system and the ionic charge state q as

Bρ =
p
q

. (4.1)

The ion beams are focused/defocused by the quadrupole (Q) triplets or doublets in
front of and behind the dipole magnet. In addition, two sextupole magnets (S) are
also placed at the entrance and exit of the dipole magnet. For the present experiment,
the sextupole magnets were not used. An image of the beam spot is then generated
at each focal plane (F0-F4). Furthermore, experimental equipment such as position-
sensitive detectors is installed at the different focal planes to determine the individual
ions’ position and thereby its charge state and momentum. In our experiment, at the
focal plane F0, there is the thin vacuum window to populate an incident charge-state
distribution. With the mechanical slits placed at F1, only one charge state is selected
to impinge the atomic collision targets installed in the central focal plane F2. Then, the
subsequent FRS spectrometer stages are used to analyze the momentum and charge
states of the ions emergent from the targets, the position of which are measured with
the time projection chamber at F3. For these measurements, the ion-optical properties
of the magnetic spectrometer are essential and will be explained below.

A particle beam is represented by an ensemble in the 6-dimensional phase space
of the ion-optical coordinates [Wol87], which are defined as the deviations from the
coordinates of a reference particle that moves on the optical axis in z-direction. Per-
pendicular to the z-direction, the horizontal (x) and vertical (y) planes are defined,
as well as the associated angles which are defined by the corresponding ratio of the
traverse and the reference momenta, i.e., a = px/pre f and b = py/pre f for x and y di-
rections, respectively. In addition, the relative path length ` and momentum deviation
δ form all together with the 6-dimensional phase space.

The change of the movement of ions within the ion-optical elements can be ex-
pressed by the so-called transfer matrix, which results from the electromagnetic forces
in the optical elements and eventually describes the ion trajectories. Similar to the
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light optics, the projection of the coordinates from the object plane at the position zi to
the image plane with the final coordinates at the position z f is described. In principle,
the transfer matrix represents a non-linear function, but it can be approximated by
the Taylor expansions. The matrix elements in the first-order approximation can al-
ready explain the main imaging properties of a magnetic spectrometer. The first-order
matrix element is defined by

x
a
y
b
`

δ


f

=



(x, x) (x, a) (x, y) (x, b) (x, `) (x, δ)

(a, x) (a, a) (a, y) (a, b) (a, `) (a, δ)

(y, x) (y, a) (y, y) (y, b) (y, `) (y, δ)

(b, x) (b, a) (b, y) (b, b) (b, `) (b, δ)

(`, x) (`, a) (`, y) (`, b) (`, `) (`, δ)

(δ, x) (δ, a) (δ, y) (δ, b) (δ, `) (δ, δ)





x
a
y
b
`

δ


i

. (4.2)

The matrix coefficients (C f , Ci) are defined as ∂C f /∂Ci which describes the derivatives
of variables (C = x, y, a, b, `, δ) at the final ( f ) versus the initial (i) coordinates. Given
that the deflection due to the dipole magnet occurs only horizontally, the dispersion
coefficients are considered only with x and a components. For the present experiment,
only the x-coordinate is important for the energy-loss measurements.

The top panel of Fig.4.2 schematically shows the dispersive stages of the fragment
separator FRS which were used for our measurement. There were mainly two exper-
imental requirements in the settings for the ion-optical mode: The first requirement
was that the beam spot size at F2, where the atomic collision targets were installed,
must be as small as possible. A small beam spot was especially important for the
measurement with the gaseous target, where the beam had to pass through the gas
target cells, which were nearly 300 mm long and with 5 mm apertures for the entrance
and exit. Of course, a small beam spot also enables a high optical resolving power.
The second requirement was that the dispersion is small throughout the FRS to avoid
transmission losses. On the other hand, the resolution should not suffer from the low
dispersion, i.e., the magnification must be low as well. For the section from F2 to F3,
the dispersion was set to be only -20.0 mm/%, enabling an almost complete measure-
ment of the charge-state distribution with a single magnetic field setting.

Based on the requirements mentioned above, the ion optics for our experiment was
designed with the MIRKO [FR81] and GICOSY [Wei98b] programs. The calculated
first-order transfer matrix for the section from F0 to F2, where the incident beams
enter the FRS and then are focused on the atomic collision target, is given by

(x, x) (x, a) (x, y) (x, b) (x, δ)

(a, x) (a, a) (a, y) (a, b) (a, δ)

(y, x) (y, a) (y, y) (y, b) (y, δ)

(b, x) (b, a) (b, y) (b, b) (b, δ)


F0→F2

=


0.56 0.03 0.0 0.0 −37.3
−0.22 1.77 0.0 0.0 0.0

0.0 0.0 0.75 −0.36 0.0
0.0 0.0 0.03 1.31 0.0

 , (4.3)

where, the units are in millimeter for x and y, milliradian for a and b, and % for δ.
The small values of the magnification (x, x) and the (x, a) result from the requirement
that the beam spot on the atomic collision target be small. Then, the beam spot on the
target is dominantly affected by the δ at F0.
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The transfer matrix for the section from F2 to F3, where the measurements of the
energy-loss and charge-state distribution are performed, is given by

(x, x) (x, a) (x, y) (x, b) (x, δ)

(a, x) (a, a) (a, y) (a, b) (a, δ)

(y, x) (y, a) (y, y) (y, b) (y, δ)

(b, x) (b, a) (b, y) (b, b) (b, δ)


F2→F3

=


−1.09 0.08 0.0 0.0 −20.0
0.48 −0.95 0.0 0.0 −1.80
0.0 0.0 −3.83 −0.51 0.0
0.0 0.0 −0.12 −0.28 0.0

 .

(4.4)

Note that the designed ion optics give a low dispersion coefficient (x, δ) = −20.0
mm/%, which is aimed to measure the charge states as many as possible in a single
magnetic field setting. The resolving power R is determined by the magnification and
the dispersion coefficient as

R =

∣∣∣∣ (x, δ)

2(x, x)xi

∣∣∣∣ = 917 , (4.5)

when the beam spot at F2 is considered to be xi = 1 mm.
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FIGURE 4.2: The designed ion-optical mode used for our experiment. Panel a): Mag-
netic elements of the FRS up to the focal plane F3. Panel b) and c) presents results
of the calculation with the GICOSY program. The beam envelopes are calculated for
the horizontal (b) and vertical direction (c). The incident beam conditions for the cal-
culations are following: The horizontal positions and angles are distributed equally
both in 6 points within the range of −1 ≤ xF0 ≤ 1 mm and −3.33 ≤ aF0 ≤ 3.33 mrad.
The vertical positions and angles are distributed equally in 5 points within the range
of −2 ≤ yF0 ≤ 2 mm and −3.33 ≤ bF0 ≤ 3.33 mrad. The momentum deviation is
considered with 3 values of δ = −1, 0, 1%. Panel d) presents the dispersion line for
+1% momentum deviation.
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FIGURE 4.3: The designed optical mode of our experiment for the focal plane section
F2-F3. In the GICOSY calculations, the following incident coordinates are selected.
The horizontal (a) and vertical (b) positions are x, y = −3, 0,+3 mm and the cor-
responding angles a, b = −10,−5, 0,+5,+10 mrad, respectively. The momentum
deviation is included with 3 values of δ = −3, 0,+3%. Panel c) presents the disper-
sion line for +1% momentum deviation.

4.4 Experimental Equipment

4.4.1 FRS

Figure 4.4 shows the schematic view of the experimental setup used for our experi-
ment. The primary beams of lead ions from the SIS-18 firstly pass through the vac-
uum window, which separates the vacuum areas of the SIS-18 accelerator beam-line
from the FRS. Furthermore, the window material inevitably creates an ionic charge-
state distribution depending on the beam velocity. A thin transmission detector (SEE-
TRAM) was mounted on the movable ladder downstream of the vacuum window.
The material thickness of SEETRAM is about six times thicker than the vacuum win-
dow. Therefore, it was used as an additional stripper target for the measurements
with the highest incident beam energy in our experiment. The SEETRAM was moved



48 Chapter 4. Present Experiment

out for the other energies, and only the vacuum window created the desired incident
charge-state distribution. The selection of the incident charge state was performed
with the first dipole magnet and the mechanical slits located at the focal plane F1.
For this selection, the incident charge-state distributions were aligned by using the
MWPC (MW11) position-sensitive detector placed behind the mechanical slits. Af-
ter the MWPC is removed from the beam-line, the incident beam with the selected
charge state was transferred to the central focal plane F2. Two time-projection cham-
bers (TPC21 and TPC22) were installed with a plastic scintillator (SC21) in between,
which were used for checking the beam profiles and position. Then, the detectors at
the F2 were removed from the beam-line, and the optimized incident beam with only
one charge state was finally exposed to the atomic collision target. The dispersive sec-
tion after the F2 separates the trajectories of ions in different charge states according to
their magnetic rigidities Bρ. At the focal plane F3, the energy-loss and the charge-state
distributions of lead ions were measured with the time projection chamber (TPC31),
the main detector used for our experiment.

Beams from
SIS-18

SIS-FRS
vacuum window

FRS exit
vacuum window

SEETRAM

slit (x)

MW11

TPCs in pocket
(TPC21,22)

TPC in pocket
(TPC31)

energy-loss & CSD
measurements

atomic collision
targets

SC21 with PMTs

slit (x)

F0

F1
F2

F3

FIGURE 4.4: Schematic drawing of the experimental setup at the fragment separator
FRS. The components for this slowing-down experiment are indicated at each focal
plane. The atomic-collision targets were installed in the vacuum chamber at the cen-
tral focal plane F2. The targets and detectors were mounted on vacuum feedthroughs
and operated via remote control.

4.4.2 F0 Area

For the present experiment, there are mainly the material layers of the SIS window and
the SEETRAM detector used at the F0 area, see Fig.4.4. In this thesis, the two materials
are collectively called as a stripper target. The individual properties are explained in
this subsection.
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SIS-window

The primary beams from the SIS-18 are transported to the FRS, and the first object
to pass through is the permanently installed SIS-window. It is a thin titanium foil
that separates the SIS-18 and the FRS vacuum areas. The influence of the window
has to be taken into account, i.e., the energy loss of the primary beam and the pop-
ulation of a charge-state distribution. The determination of the energy loss requires
the thickness and material information of the window. We have measured the areal
density of the SIS-window by measuring its weight and area after the experiment.
The deduced areal density was 2.42± 0.12 mg/cm2. From the first to third columns
of Tab. 4.1 show the accelerated beam energy, the calculated energy loss values due
to the SIS-window, and the corresponding incident energy used for the atomic colli-
sion experiment, respectively. The energy loss was calculated by the ATIMA program
[Wei98a]. Furthermore, for convenience, we will refer to the incident energies as 35,
50, 70, 100, and 280 MeV/u throughout this thesis. The second inevitable influence
due to the SIS-window is the population of a charge-state distribution, which enables
the selection of the incident charge state impinging the atomic collision targets. The
incident charge state was carefully chosen so that the projectiles could reach quickly
to the expected equilibrium charge states in the atomic collision target. Then, the se-
lection was performed with the mechanical slits at the focal plane F1 in combination
with the check on the position spectra with the MWPC. In the last column of Tab.4.1,
the selected incident charge states are also listed.

TABLE 4.1: The list of the requested beam energy from the SIS-18, the calculated
energy loss at the SIS-window, and the corresponding incident energies for the atomic
collision experiment. The incident charge state is also listed.
* The energy loss was calculated including the additional stripping target SEETRAM
for this energy, which will be mentioned below.

Requested SIS-18 energy Energy loss Incident energy qin

[MeV/u] [MeV/u] [MeV/u]

281.365 1.390* 279.975 81+

100.289 0.353 99.936 79+

70.342 0.427 69.915 77+

50.396 0.505 49.891 75+, 76+, 77+

35.508 0.604 34.904 70+, 74+

SEETRAM

In the standard operation of the FRS, the SEcondary-Electron TRAnsmission Monitor
(SEETRAM) is used to survey and measure the beam intensity. It consists of three
titanium foils of 10 µm thickness and 130 mm diameter. It is mounted perpendicular to
the beam axis. When the projectiles pass through the middle foil, secondary electrons
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are emitted and collected as an electric current by the outer foils, which are connected
to a voltage of +80 V. The electric currents are converted into logic pulses, with which
one can obtain valuable information on the subjects such as the spill structure and the
extraction efficiency of the beams from the SIS-18.

In our experiment, it was used as an additional stripper target only in the measure-
ments with the incident beam energy of 280 MeV/u, in order to populate the incident
charge state of 81+ desired for the measurements. In addition, the energy loss of the
primary beams from the SIS-18 due to the SEETRAM is considered in the Tab.4.1.

Beam

Distance
[mm]

38
7649
5

69
5

28
07

31
75

11
20

SIS-window
SEETRAM

CG1

22
46

CG2 Y-slits X-slits

Magnet Magnet

FIGURE 4.5: Technical drawing of the experimental setup at the F0 area of the FRS.
During the experiment, a 5.4 µm titanium vacuum window (SIS-window) separated
the ultra-high vacuum of the accelerator from high vacuum of the FRS system. The
SEETRAM detector was used as an additional stripper target for the measurement
with the incident beam of 280 MeV/u. The current grids (CG1 and CG2) were used
to align the beam at the entrance of the FRS and removed during the measurements.

4.4.3 F2 Area

At the central focal plane F2, the atomic collision targets are installed. Five solids
and five gaseous materials were prepared for the measurements of energy loss and
charge-state distribution. The solid materials were carbon, polypropylene, titanium,
zirconium, and tin. The gaseous materials were nitrogen, propene, argon, krypton,
and xenon. In this section, only an explanation of the target systems used for our
measurement will be given; and the methods for the target thickness determination
will be presented in the separated section below. There are also two time projection
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chambers (TPC21 and 22) and a scintillator (SC21) installed in this area for the check
of the profiles and positions of incident beams. The details of the TPC will be given in
the next subsection where the experimental setup at the F3 area will be presented.

45
600

60
4

15
54

.5
17

82
.5

24
60

.5
25

36
.5

TPC21

25
02

.5

SC21

TPC22

Three Solid-Target Ladders

Gas Target

Distance
[mm]

10
13

12
28

auch nicht in anderer Weise missbraeuchlich verwendet werden.Zuwi-
zugaenglich gemacht werden;sie darf durch den Empfaenger oder Dritte
Zustimmung darf diese Zeichnung weder vervielfaelltigt noch Dritten
Fall der Patent- oder Gebrauchsmustererteilung.Ohne unsere vorherige
Fuer diese Zeichnung behalten wir uns alle Rechte vor,auch fuer den

derhandlungen verpflichten zu Schadenersatz und können strafrecht-
liche Folgen haben.

AE
ND

ER
UN

G 
(N

R.
)

DI
N 
IS
O 
13
02

ER
SE
TZ
T 
DU
RC
H:

ER
SA
TZ
 F
UE
R:

BL
AT
TA
NZ
AH
L

BL
AT
T-
NR

MA
SS
ST
AB

WE
RK
ST
OF
F

KG
 /
 S
TC
K

GE
WI
CH
T

TO
LE
RA
NZ
EN

FR
EI
MA
SS
-

FR
EI
G.

GE
PR
.

BE
AR
B.

NA
ME

NA
ME

TA
G

TA
G

GA
BE

RZ
(µ
M)

RA
(µ
M)

VE
RG
LE
IC
H 
DE
R 
OB
ER
FL
AE
CH
EN
GU
ET
EN

DA
RM
ST
AD
T

GS
I

DI
N 
31
41
 R
EI
HE
 2

RZ
 1

RZ
6,
3

RZ
25

RZ
10
0

N3
N6

N8
N1
0

0,
1

0.
8

3,
2

12
,5

AU
S-

VA
K

1 1

.

.
.

.
.

IS
O 
27
68

m

FO
RM
AT A0

.

.

.
.

.
..

.
.

..
.

.
.

.

BE
NE
NN
UN
G

ZE
IC
HN
.-
NR
.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

A B C D E F G H J K L M N P Q R
RQPNMLKJHGFEDCBA

20
18

27
.0
8.

T.
Bl
at
z

 1
:5

(1
:2
)

S2
 K
om
bi
ka
mm
er
 +

Ga
st
ar
ge
ta
nt
ri
eb

100

A A

C
C

A-
A

X

350

De
ta

il
 X

  
 1

:2

C-
C

Y

2
5
0 De
ta

il
 Y

  
 1

:2

100

Top View

Beam

auch nicht in anderer Weise missbraeuchlich verwendet werden.Zuwi-
zugaenglich gemacht werden;sie darf durch den Empfaenger oder Dritte
Zustimmung darf diese Zeichnung weder vervielfaelltigt noch Dritten
Fall der Patent- oder Gebrauchsmustererteilung.Ohne unsere vorherige
Fuer diese Zeichnung behalten wir uns alle Rechte vor,auch fuer den

derhandlungen verpflichten zu Schadenersatz und können strafrecht-
liche Folgen haben.

AENDERUNG (NR.)

DIN ISO 1302

ERSETZT DURCH: ERSATZ FUER:

BLATTANZAHL

BLATT-NR

MASSSTAB WERKSTOFF
KG / STCK
GEWICHT

TOLERANZEN
FREIMASS-

FREIG.

GEPR.

BEARB.

NAME

NAME

TAG

TAG GABE

RZ(µM)

RA(µM)

VERGLEICH DER OBERFLAECHENGUETEN

DARMSTADT
GSI

DIN 3141 REIHE 2
RZ 1 RZ6,3 RZ25 RZ100

N3 N6 N8 N10

0,1 0.8 3,2 12,5

AUS-

VAK1

1

.

....

ISO 2768
m

FORMAT

A0

.

.

. . . .

....

. . . .

.

BENENNUNG

ZEICHN.-NR.

123456789101112131415161718192021222324

123456789101112131415161718192021222324

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

RR

Q

P

N

M

L

K

J

H

G

F

E

D

C

B

A

2018
27.08.T.Blatz

 1:5
(1:2)

S2 Kombikammer +
Gastargetantrieb

1
0
0

A

A

C C

A-A

X

3
5
0

Detail X
   1:2

C-C

Y

250

Detail Y
   1:2

From upstream of beamline

Gas Chamber

22
03

.5

Magnet Magnet

Beam

y-slits
x-slits

FIGURE 4.6: Experimental setup at the F2 area of the FRS. The gaseous and solid
target systems are the major installations for the present slowing-down experiment.
Two position-sensitive detectors, TPC21 and TPC22, were used to align the beam
with respect to the target centers. The location of the installed devices are given from
the yoke of the last quadrupole magnet preceding the focal plane F2. The vacuum
chamber of the targets is separately shown from two directions.

Solid Target System

Each solid target was mounted with an aluminum aperture plate of 5 mm diameter
on the target ladder, whose mechanical position was controlled remotely by the step
motor during the measurements. There were three target-ladders, as can be seen in
Fig.4.7, which shows the photograph of the system taken from the upstream of the
beam-line. The spacing between the targets mounted on the first and second ladders
was 42 mm, and between the second and third ladders, it was 34 mm. The mechanical
alignment of the target positions on the beam-line was performed with a laser device.
The laser beam is shown as the red crossing lights in the figure. During the measure-
ments, only a single target was inserted on the beam-line for most cases. However,
when a thick target was planned in the measurements, two or three targets were com-
bined to obtain the desired thickness.
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FIGURE 4.7: Three ladders used for mounting the solid targets. The photograph
also shows the laser lights for mechanical alignment. The positioning was remotely
performed by step motors. The aperture in front of the target foils had a diameter of
5 mm.

Gas Target System

Figure 4.8 shows the schematic drawing of the gas target cell installed at the F2 vac-
uum area. For the measurements, two gas target cells were prepared with different
types of foils used as the entrance and exit windows. The first one was with 6 µm
thick polypropylene foils (PP windows), and the other was with 1 µm thick graphenic
carbon foils (GC windows). The beam entrance and exit were opened for 5 mm di-
ameter, and the distances between the windows were 312.7 mm and 317.5 mm for the
gas cells with PP windows and GC windows, respectively. The alignment was care-
fully performed with the laser device in the preparation of the experiment, and the
positions of gas cells were controlled remotely during the measurements.

In the preparation of the experiment, pressure tests were performed to ensure the
maximum pressure the gas-cell windows could withstand. It was shown that the cor-
responding maximum pressures were 6 bar and 1 bar over the atmospheric pressure
for PP and GC windows, respectively. However, the maximum pressures were con-
trolled under 2 bar and 1 bar in our experimental operation for the PP and GC win-
dows, respectively. Therefore, there was no danger of getting the windows burst dur-
ing the measurements. Here, the reason why we employed two gas cells are as follows:
For the accurate slowing-down measurement, the gas-cell windows are desired to be
as thin as possible and durable against the pressure. Therefore, the monoatomic foil
of graphenic carbon was chosen, which is low Z2. The PP windows were employed
for the measurement with high incident beam energy, where higher gas pressure than
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1 bar was required. In addition, the chemical composition is the same as the propene
gas, which enabled to apply the same Bragg’s additivity rule for a calculation.

Figure 4.9 shows the schematic drawing of the gas supply system connected to
the gas chambers described above. It was controlled remotely with combined hard-
ware and software of the National Instruments’ power supply and the LabVIEW ap-
plication for the following operations; opening/closing the solenoid valves (0-24 V
OFF/ON), monitoring/logging the gas pressures, and regulating the inlet gas flow
from the gas bottles. The pressure gauges and the flow controller were taken from the
MKS company (MKS-AA02 and MKS-627F for the gauge and MKS-640B for the con-
troller). The reported accuracy for the pressure readout is about 0.10%. The tempera-
ture measurement was separately performed with the Pt-100 thermocouple resistance.
For the readout, the temperature monitor from LakeShore company (model: 218L) was
used. The reported accuracy of the temperature readout is about 0.02%. The pipeline
was constructed with the VCR® metal gasket face seal fittings, purchased from the
Swagelok company.

In our experiment, the three vacuum pumps evacuated the gas volume after a
measurement series finished and before the chambers are filled with another gas. They
were the turbo pump from the Pfeiffer company, the scroll pump from the Edwards
company, and the membrane pump from Leybold company. Furthermore, before a
new measurement series started, the gas volume was flushed (filled and pumped)
with a new gas at least for four times, so that a gas mixture could be avoided.

Beam

Gas
inlet/outlet

window

Beam-in

window

PT100 
resistance 

sensor

FIGURE 4.8: Schematic drawing of the gas target installed at the F2 area. The gas-
filled volume was closed with two thin solid windows. Two different gas targets were
prepared to cover different pressure ranges. One chamber had 6 µm thick polypropy-
lene foils (PP windows) and the other one was sealed with 1 µm thick graphenic car-
bon foils (GC windows). The aperture of both windows was 5 mm diameter, and the
distances between the windows were 312.7 mm and 317.5 mm for the gas chambers
with PP windows and GC windows, respectively.



54 Chapter 4. Present Experiment

Kr, Xe

Gas target with PP windowGas target with GC window

PRV1 PRV2

V0 (Main)

Outside S2 area

𝑵𝟐, propene, Ar

PMR1

PMR2

MV1

P-Cont

MV2

V1

V2 FV

MV3

V3

V4 V5 V6

PM1-1 PM2-1 PM1-2

PM2-2

Pump1 Pump2

Pump3

TC1 TC2

• PMR* ー Pressure gauge 
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• MV* ー Manual valve
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• PRV* ー Pressure relief valve
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• TC* ー Thermocouple gauge

• Pump* 
(1: Turbo, 2: Scroll, 3: Membrane) 

FIGURE 4.9: Operating and control system of the gas targets. The gas flow and the
pressure were set, controlled, and recorded with a LabVIEW software application.
During one measurement, lasting typically a few minutes, the gas parameters were
kept constant and fixed. The monitoring and logging of the gas temperature was
separately performed with the Pt-100 sensor connected to the LakeShore tempera-
ture monitor (model: 218L). Three vacuum pumps evacuated the gas volume after
a measurement series before the chambers are filled with another gas. Before a new
measurement series started, the gas volume was flushed (filled and pumped) for four
times with a new gas.

4.4.4 F3 Area

At the third focal plane F3, the measurements of energy-loss and charge-state distri-
bution were performed with a time projection chamber (TPC). Figure 4.10 shows the
schematic drawing of the F3 area. In this subsection, the details of the TPC detector
will be presented.
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FIGURE 4.10: Technical drawing of the experimental setup at the focal plane F3 of the
FRS. The TPC31 is a major component of the present experiment. From the calibrated
position spectra of the TPC31, the charge-state distribution and also the energy-loss
distribution have been determined.

Time Projection Chamber

The time projection chamber (TPC) [MN78; Hli+98] is a gas-filled position sensitive
detector and is used to measure the particle tracks from the electron drift time and sig-
nal propagation times through delay lines. It has the vertical drift space with respect to
the beam direction, with the geometry of 240 mm wide, 70 mm long, and 80 mm high.
A static electric field is generated by the high voltage applied on the cathode plate
and the termination of the gating grids. The linear drop of the electric potential and
the resulting field homogeneity are obtained with the help of the mylar strips (each
3 mm wide and 20 µm thick with 0.5 µm aluminum coating), which are connected
to the high-resistance divider. The electric field applied during the measurement was
kept at 400 V/cm. The drift space is filled with the P10 gas (90% Ar and 10% CH4)
at the atmospheric pressure and the room temperature. When the charged particles
pass through the drift space, ionization of gas atoms is induced. Electron clouds along
the particle track drift towards the proportional region that is underneath the gating
grid, where an electron avalanche occurs along the four anode wires while its position
can be precisely measured via the charge induced to the cathodes, i.e., the so-called
C-pads [Jan+09; Jan+11] (see the Figure 4.11 and 4.12 for the schematic drawing of the
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TPC structure). A C-pad is made of the PCB with Cu traces and has the following spe-
cialized geometry; two C-shaped opening spaces, both with an opening angle of 80◦

and an inner diameter of 10 mm. Furthermore, each has a thickness of 2.4 mm and is
placed every 0.1 mm interval. There are two independent delay lines in a TPC system
which, by each, is formed with nine integrated passive delay-line-chips (Floeth Elec-
tronic GmbH), resulting in a total delay of 1350 ns. Each C-pad is connected to one
of the inputs of the chips, and the induced signals are transferred to the left and right
directions through the delay-line, which is horizontally perpendicular to the beam di-
rection. Then, from the difference in the propagation times of the transferred signals,
the x-position of the incident beam can be obtained as

x = cx
0 + cx

1 · (tl − tr) , (4.6)

where tl and tr are the arrival timings of signals from the left and right side of the
delay line, cx

0 and cx
1 are the constants. In addition, the electron drift time td can be

used for the determination of the y-position of the incident beam as

y = cy
0 + cy

1 · td , (4.7)

where, again, cy
0 and cy

1 are the constants. These x- and y-positions were originally
recorded via timing information with TDC modules. Therefore, the conversion to the
physical length, such as in millimeter, required a calibration by using the movable grid
with fiber scintillators embedded as shown in Fig.4.11. Perpendicular to the beam di-
rection, there are three gridlines horizontally and vertically. The distances between the
scintillator fibers are 10 mm for the horizontal coordinate and 6 mm for the vertical co-
ordinate. The calibration was performed with a defocused lead-ion beam. By plotting
the TPC position spectra only when the grid scintillators have events, the grid pattern
was observed as shown in the top panel of Fig.4.13. The single spectra in x and y were
fitted with multiple Gaussian functions as shown in the bottom panels. The deduced
calibration parameters for the x coordinate of the TPC installed at the third focal plane
F3 are summarized in the Tab.4.2 below.

In addition, a determination of the particle positions can be done precisely and
unambiguously by taking advantage of the precise delay lines of a TPC based on the
following relation

tCS = tl + tr − 2td . (4.8)

tCS is called the control-sum and corresponds to the total time of the delay line. A
check of the tCS distribution is essential to see the effects from noise and signals due to
the delta electrons. Figure 4.14 shows a typical spectrum of the control-sum distribu-
tion. During the measurements, the width of tCS distribution was checked to optimize
the anode voltages applied to TPC. In the offline data analysis, the tCS distributions
were fitted with a Gaussian function as shown by the red curve in the figure, and the
events within the 3σ windows were used to reconstruct the position spectra.
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FIGURE 4.11: Setup and dimensions of an FRS Time-Projection Chamber (TPC)
[Jan+11]. The drift volume, surrounded by a field cage, is filled with 90 % argon and
10% methane gas mixtures at atmospheric pressure and room temperature. When
the charged particles pass through the drift space, ionization of gas atoms is caused.
The electron clouds, generated along the particle track, drift towards the proportional
region underneath the shielding grid. An electron avalanche is produced along the
four anode wires and thus charge is induced in the cathodes, the so-called C-pads,
which are connected to delay lines. The time difference between the arrival of the
induced signals from the left and right sides of each delay line provides the position
information in the horizontal direction, the ion-optical dispersive plane. A movable
scintillation grid, coupled to a photomultiplier, was used for absolute calibration of
the TPC coordinates in both directions.

FIGURE 4.12: Photograph of the C-pads with integrated passive delay line. This
figure was taken from [Jan+07]. A C-pad is made of PCB with Cu traces and has
the following geometry; two C-shaped opening spaces both with an opening angle
of 80◦ and an inner diameter of 10 mm. And each has a thickness of 2.4 mm and
is placed every 0.1 mm interval. There are two independent delay-lines in a TPC
system which, by each, is formed with 9 integrated passive delay-line-chips (Floeth
Electronic GmbH), resulting in a total delay of 1350 ns. Each C-pad is connected
to one of the inputs of the chips, and the induced signals are transferred to the left
and right directions through the delay-line which is horizontally perpendicular to the
beam direction.
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FIGURE 4.13: Example of the TPC calibration by using the calibration grid with fiber
scintillators embedded. The events are plotted in coincidence when the grid scintilla-
tors are hit. In this way, the grid pattern is visible in the two-dimensional plot (upper
graph). The lower panel shows the projections and the fitted peaks to determine the
absolute position calibration.

TABLE 4.2: Calibration parameters for the x direction of the TPC installed at the third
focal plane F3.

direction type factor offset

[mm/channel] [mm]

x first delay-line 0.083 12.305

x second delay-line 0.082 5.924
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FIGURE 4.14: Typical measured spectrum of the TPC control-sum in x-direction. The
events within the 3σ window, determined by the Gaussian fit, are used in the offline
analysis.

Detector Electronics

The detector electronics and the trigger circuit are shown in Fig.4.15. In our measure-
ment, the trigger circuit was prepared as the self-triggering mode. Note that we will
describe only the signal transfer of the TPC which was the main detector used in our
experiment.

From each of the TPC detectors, there are 8 raw signals transferred to the electronic
circuit:

• 4 signals from the 4 anode wires: A11, A12, A21, A22

• 4 signals from the left and right sides of 2 delay lines: DL1, DR1, DL2, DR2

These raw signals from a TPC travel through the preamplifier located inside the de-
tector pocket. The amplified signals, except one of the anode signals (A11), which is
transferred to the trigger circuit, are optionally delayed and transferred to the main
amplifier. The logic output signals from the main amplifier are transferred to the con-
stant fraction discriminator (CFD) and are delayed by the logic delay module. The
threshold level of the CFD was kept at −50 mV, which was sufficiently larger than the
noise levels as it was checked with the oscilloscope during the measurements. The
ECL output signals from the delay module are finally transferred to the TDC (CAEN
V775) as the stop signals for the timing measurement. On the other hand, the ana-
log output signals from the main-amplifier are delayed and transferred to the ADC
(CAEN V785) for the amplitude measurement.

As explained above, one of the analog signals from a TPC is separately transferred
to a CFD, and the output signal is adopted for the trigger circuit. The coincidence
with the busy-end signals from the data acquisition system (DAQ) is checked, and
the accepted trigger signals are transferred to the logic FAN IN/OUT module. The
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divided signals are transferred to the gate generators, and then the output signals are
adopted as (1) the common start signal for the TDC and (2) the gate signal for the
ADC.

4 anodes 
2×2 delay-lines

TPC raw signals 
(8 channels in total)

PA

F2/F3/F4 area

AMP CFD TDC 
V775

ADC 
V785

analog out

anode (A11)

DAQ 
BUSY END

Gate 
Generator 

Gate 
Generator 

TDC 
common start 

ADC gate

start 

CFD

accepted trigger 

requested trigger 

Trigger circuit

FIGURE 4.15: Diagram of the detector electronics and the trigger circuit, where PA
is the preamplifier, AMP is the main amplifier, and CFD is the constant fraction dis-
criminator.

4.5 Properties of the Atomic Collision Target

The target thickness determination plays an essential role in stopping powers mea-
surements. This section will explain the applied methods for the determination of
areal density of targets.

4.5.1 Target Materials

Five solids and five gaseous target materials were prepared for the slowing-down and
charge-state distribution measurements. The solid materials are amorphous carbon
(Z2 = 6), titanium (Z2 = 22), zirconium (Z2 = 40), tin (Z2 = 50), and polypropylene
(C3H6)n. These solid targets with high purity were commercially manufactured, and
their material impurities were reported to be about 10−3 to 10−4. They were all cylin-
drical shapes prepared by either laser-cut and lapped or rolled. The gaseous materials
are nitrogen (Z2 = 7), argon (Z2 = 18), krypton (Z2 = 36), xenon (Z2 = 54), and
propene C3H6. The gas bottles were also purchased from companies.

These solid and gaseous materials were chosen to be pairs, which have close el-
ement numbers Z2. For example, the partner of carbon is nitrogen gas, or the one
of tin is xenon gas. With these combinations, measurements of the gas-solid differ-
ence in stopping powers and charge-state distributions were aimed for a wide range
of target Z2 number. The compound materials, namely polypropylene and propene,
were chosen for a direct comparison with the same chemical components but in dif-
ferent material states. In addition, various targets of the same material with different
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thicknesses were prepared in order to meet the following experimental requirements:
(1) Covering the charge-state distributions from the pre-equilibrium to equilibrium
regions, and (2) Investigating the energy loss in the range from 10% to 30% of the
incident energy.

4.5.2 Solid Targets

The areal density of the solid targets was determined by measuring the weight and
area. The sample weight was measured by the electronic precision balance, the accu-
racy of which was considered to be 1 µg. The area was determined from the pixel-
calculation of the sample photographs in which the sample shape emerges clearly by
shining the translucent light from behind, as shown in Fig.4.16. The accuracy of the
area determination was considered to be 0.50%. We have evaluated the areal density
twice in this way by changing the sample size as follows: The first examination was
performed before the experiment, with the original shape of 20 mm diameter disks as
manufactured. The deduced values were used for the planning of the measurement.
The second examination was after the experiment. Since the aperture of the solid tar-
gets was limited to 5 mm diameter during the measurement, the solid targets were cut
out into 4.5 mm diameter while they were mounted with the aperture by using the
laser-cutting machine. With this reduced size, we have determined the mean value of
the areal density of solid targets for the data analysis. However, the influence of the
deformation (bumps and dents) of the sample edge due to the laser-cutting process
was estimated to be significant. Figure 4.17 shows a part of the edge of a titanium
target, where one can see a bump. From the calculation of the deformed volume of the
edge, the uncertainty of the deduced areal density was estimated to be less than 1.5%
depending on the material.

We have performed another method to deduce the areal density as a cross check,
which was by measuring the thickness and then calculating with the material density
reported in the literature. The thickness measurement was performed with the chro-
matic sensor device (MicroProf® [Kin+20]) at the target laboratory of GSI, and the
values were mapped as shown in Fig.4.18. The thickness measurement should be ac-
curate better than 1 µm for the absolute values, and it should be better for the relative
variations. However, the chromatic sensors failed to scan the thickness in some cases,
as shown by the gray pixels in the right panel of Fig.4.18. This is because that the
sensor edges are either too close to or too far from the surface of samples, which often
happens with very thin and/or very soft materials such as tin. For such unscanned
pixels, the thickness was replaced by the average value of the surrounding pixels.
Then, the mean value and the standard deviation were evaluated for the 5× 5 mm2

area in the center of the sample, which is shown by the red square in Fig.4.18. This
reduced area was chosen by considering (1) the possible maximum beam spot dur-
ing the measurement, and (2) the manual uncertainty in the procedure when setting
and centering the target on the scanner. The deduced areal densities were basically
consistent within the errors, compared to the one deduced by the weight and area.
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As a result, the uncertainty of the deduced areal density was, in general, deter-
mined to be 0.5-1.5%. The summary of the deduced areal densities of solid targets are
given in Appendix A.

FIGURE 4.16: Measurement of the target area via translucent-light pictures. The pho-
tograph of the titanium target is shown. The automated program provided the size
of the orange colored area via counting the pixels.
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FIGURE 4.17: Scan of the target edge (titanium target) for evaluating the influence of
the deformation to the areal density.
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FIGURE 4.18: Mapping of the target thickness performed by a chromatic sensor de-
vice [Kin+20] at the target laboratory of GSI. Left panel: Measured thickness profile
of a 30.8 µm titanium target. Right panel: Measured thickness profile of a 2.6 µm tin
target.

4.5.3 Gaseous Targets

To determine the areal density of the gaseous targets, the density ρgas was first cal-
culated with the pressure P and the temperature T, which were recorded during the
measurements. The Van der Waals equation is given by

RT = (P + aρgas)

(
1

ρgas
− b
)

, (4.9)

where R = 8.31446 J/(mol ·K) is the gas constant1, a and b are the Van der Waals
constants whose values are listed in the Table 4.3 below. Having the density, the areal
density xgas can be calculated by multiplying the interaction (window-to-window)
length `, which are 312.7 mm and 317.5 mm for the gas cells with PP and GC windows,
respectively, as

xgas = ρgas · ` . (4.10)

The deduced areal densities are summarized in Appendix B. The uncertainty in the
areal density due to the pressure and temperature measurements was almost negli-
gible. The accuracy in the readout of temperature was reported to be 0.02%, and the
one of the pressure was reported to be 0.10%. The values were recorded during the
measurements, and their fluctuations were less than 10−4 level, which were also neg-
ligible. The main contribution to the uncertainty in areal density of gases comes from
the deformation of the windows due to the gas pressures. The window-bulging leads
to an uncertainty in the interaction length ` depending on the position. The effect was
evaluated by the method mentioned in the reference [Bim+89a]. The total uncertainty
in the areal density was determined to be 0.25% and 0.65% for the GC-windows and
PP-windows, respectively.

1To convert the unit to mbar · cm3/(mol ·K) which is convenient for the analysis, one just needs to
multiply 104.
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TABLE 4.3: List of the Van der Waals constants.

Material a [bar · L2/mol2] b [L/mol]

N2 1.370 0.0387

C3H6 8.438 0.0824

Ar 1.355 0.0320

Kr 2.325 0.0396

Xe 4.192 0.0516

4.6 Principles of Measurements with the FRS

In this section, the experimental procedure is presented to provide a framework for the
data analysis, which will be presented in the next chapter. An illustration of the pro-
cedure of the measurements of the energy-loss and charge-state distribution is given
in Fig.4.19.
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FIGURE 4.19: Principle of the magnetic rigidity (Bρ) measurement with scaling of
the magnet fields for the complete dispersive section from F2 to F3. Left panel (a):
Measurement scenario of the incident beam with the magnet field setting to Bρ0. The
trajectory of the expected charge-state distribution, when an atomic collision target is
inserted into the beam axis, would be out of the FRS acceptance due to an energy loss
of more than 2 %. Right panel (b): Measurement of the charge-state distribution after
scaling the FRS to the magnetic fields of Bρset. The scaling factor is given by the ratio
of the BLeff values which are a function of the magnet current I of the dipole magnet
in this dispersive section.

4.6.1 Incident Beam

The measurement of incident beams takes basically three steps as

1. Determination of the incident beam energy.

2. Centering the incident beam with the magnetic rigidity (Bρ)0.
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3. Measurement of the position profile of the aligned beam at F2 and F3 without a
target.

These steps 1-3 correspond to the left picture of Fig.4.19. As explained before, primary
beams from the SIS-18 initially pass through the stripper targets at F0. Therefore, for
the required beam energy in the experiment, the energy loss at the stripper targets
must be considered. The momentum spread at the SIS-18 can be determined in the
accuracy better than 5× 10−4. Having the incident energy E0 fixed after the stripper
target, one can calculate the magnetic rigidity (Bρ)0 for the field setting of the FRS
to transfer and center the incident beams at the following focal planes. For this, one
must define the charge state to be centered from the populated charge-state distribu-
tions after the stripper target. The selection of the central charge state is performed
at F1, by using the mechanical slits and an MWPC (MW11) for checking the charge
state distributions. This determination of the incident charge state for the experiment
can be unambiguously performed because (1) the energy loss in the stripper target is
tiny and can be calculated with sufficient accuracy, and (2) a possible mistake in the
identification of the incident charge state would cause a larger difference in the mag-
netic rigidity than the uncertainty caused by the energy loss at the stripper target. The
beam profile is checked at F2 with the two TPCs, and the centering of the incident
beams was performed by adding steering angles at each dispersive section. Finally, the
incident beam is measured at F3, as shown in the left picture of Fig.4.19.

4.6.2 Charge-State Distribution and Energy Loss

The measurements of charge-state distribution and energy-loss of outgoing ions after
penetrating an atomic collision target have basically four steps as

4. Insert an atomic collision target in the beam axis.

5. Scale the magnetic fields of the third dispersive stage of the FRS to center again
the outgoing ions back to almost the same position as the incident beam.

6. Record the charge-state distribution with the magnetic fields according to (Bρ)set.

7. Scale the magnetic fields again to cover the complete charge-state distribution.

Since the energy loss for our entire experiment was planned to be approximately from
10% to 30% of the incident energy, the corresponding change in the magnetic rigidity
was larger than the acceptance of the FRS. Therefore, the spectrum of the outgoing
ions after penetrating a target could not be measured at F3 with the same magnet set-
ting (Bρ)0 as shown in the left picture of 4.19, where the dashed curve and blurred
spectrum express the trajectory and the charge-state distribution of outgoing ions.
Therefore, the following two procedures were taken to measure the energy loss and
charge-state distribution at F3. First, the energy loss and the corresponding magnetic
rigidity of a specific charge state of the emerging ions were estimated by the ATIMA
program. The charge state was chosen to have a value close to the mean value of
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the charge state distribution after the target, which was predicted also by the ATIMA
program with the modified GLOBAL code2. Secondly, the field strength of the third
dipole magnet was scaled following the estimated magnetic rigidity so that their tra-
jectory could be brought back to the same one as the incident beam, as shown in the
right picture of Fig.4.19. Below, we will explain the principle of the scaling method.

The deflection angle Φ of the particle trajectory is in principle given by the ratio
between the magnetic rigidity Bρ and the magnetic field B(`) integrated along the
optical axis ` as

Φ =

∫
B(`) d`

Bρ
. (4.11)

In practice, the line integral is replaced by the product of the effective length Leff and
the mean flux density B determined in the middle of the dipole magnet as

BLeff =
∫

B(`) d` , (4.12)

and BLeff is given as a function of the electric current applied to the dipole magnet. By
letting the incident beams, the magnet setting of which is determined for the magnetic
rigidity (Bρ)0 with the magnet current I0 applied, be as the reference and by having
the deflection angle Φ including the steering angle, the magnet setting for centering
the outgoing ions with expected (Bρ)set can be determined from the scaling relation

(Bρ)set

(Bρ)0
=

BLeff(Iset)

BLeff(I0)
, (4.13)

where the scaling is performed while keeping the deflection angle at constant.
When the outgoing beam of the aimed ionic charge state is brought back to almost

the same trajectory of the incident beam, at least within the scale of a few millimeters,
the remaining spatial deviation ∆x results exclusively from the linear portion of the
dispersion of the ion-optics. Suppose that the incident beam hits the TPC on the po-
sition x0 in the magnetic setting of (Bρ)0, and the outgoing beam of a specific ionic
charge state qi hits on xi, in the scaled setting of (Bρ)set, the magnetic rigidity of the
ions in the specific charge qi can be obtained as

(Bρ)i − (Bρ)set

(Bρ)set
=

∆x
(x, δ)

, (4.14)

where ∆x = xi − x0 and (x, δ) is the first order dispersion coefficient. Furthermore,
with the help of Eq.4.13 and the relation Bρ = p/q, the momentum of outgoing ions
in a specific charge state qi can be given by

pi = p0
BLeff(Iset)

BLeff(I0)

qi

q0

(
1 +

∆x
(x, δ)

)
. (4.15)

2For the description of the ATIMA program, see Appendix E.
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Accordingly, one can evaluate the mean energy loss by adopting the energy spectrum
from the momentum: We will describe it in more detail in the following chapter.

Here, we mention three things regarding the scaling method explained above. The
first point is the steering angle. The value is determined initially to center the incident
beam, and the value is kept at constant for the succeeding measurements of the out-
going ions with a target in. However, the steering angle in principle slightly changes
according to the magnet settings. Figure 4.20 shows the graph of the steering angle
applied at the third dipole magnet section as a function of the magnet setting Bρ. The
data point comes from the measurement of the oxygen beam performed in 2021. The
beam energies provided by the SIS-18 were at (50, 100, 200, 370, and 465) MeV/u to
cover the Bρ range of the present experiment. Oxygen beam is fully ionized at these
energies, plus, the magnetic rigidity can be precisely estimated including the energy
loss at the stripper targets at F0. As one can see, there is almost a linear trend in the
magnitude of the steering angle, which may cause an influence in the momentum cal-
culation with Eq.4.15. However, the slight difference in the two magnet settings is
negligible when the ratio of the deflection angles is taken. For example, suppose that
the energy loss is 30% of the incident energy with, e.g., (Bρ)0 = 4.0 Tm. In this case,
the difference in the steering angle is δΦsteering < 0.2 mrad in the two magnet settings,
which is totally negligible to be of the order of 10−4 or less compared to the total de-
flection angle about 30 degrees (∼ 523.6 mrad). Therefore, there is no need to include
a correction for the calculation in the scheme of our experiment.
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FIGURE 4.20: Measured steering angle. An important ion-optical goal during the
energy-loss measurement is to have the projectile beam centered on the magnetic
axis. The calculated matrix elements change for beams transported off axis. Such an
alignment is performed with the dipole magnets included in the FRS lattice. In the
x-direction, the nominal 30 degrees bending angle is slightly changed by steering an-
gles which are experimentally determined for each new incident energy. An example
of such determined steering angles is presented.

The second point is the determination of the BLeff in the offline analysis. As it was
explained, BLeff is given as a function of the magnet current. In our experiment, the
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electric current and additionally the corresponding voltage from the magnet power
supply were recorded in text files. However, the current data were recorded every 1
minute or 3 minutes, and sometimes the automated program failed to save the values
during the measurement time range. Meanwhile, the voltage values were recorded
every 1 second. Therefore, to determine the BLeff in the offline analysis, we had to
deduce the coefficients to convert the variables among the voltage, current, and BLeff

values. The lower graph of Fig.4.21 shows the relation between BLeff and the applied
current I for the third dipole magnet of the FRS, and the colored-area corresponds to
our measurement range. The red curve corresponds to the fit function of the third-
order polynomials, and the parameters obtained in the fit are as follows:

BLeff(I) = a0 + a1 I + a2 I2 + a3 I3 ,

where

a0 = 1.57× 10−2

a1 = 1.11× 10−2

a2 = 1.05× 10−6

a3 = −1.26× 10−9 .

The upper graph of Fig.4.21 represents the plot of the residuals of BLeff values com-
pared to the fit function. In the measurement range, approximately from 80 A to 310
A, the magnitude of residual stays of the order of 10−4 level. Then, the lower graph
of Fig.4.22 shows the relation between the voltage value and the current value, which
were measured during our experiment. The voltage data plotted on the graph are the
mean values of the ones recorded during the measurement in which the current values
were simultaneously recorded. The red line corresponds to the first-order polynomial
fitted to the data, and the parameters deduced are as follows:

I = b0 + b1V ,

where
b0 = 0.1016 and b1 = 89.8928 .

The upper graph of Fig.4.22 shows the residuals of current data compared to the fit
function. The magnitude of residual mostly stays within 10−4 level. As a result, in our
offline analysis, the BLeff values can be determined via the voltage with the accuracy
less than 10−3 level in total.
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FIGURE 4.21: The mapping data of the BLeff as a function of the magnet current for
the third dipole magnet of the FRS. The green area covers the magnetic rigidity range
of our experiment.
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FIGURE 4.22: Measured voltage and electric current from the power supply for the
third dipole magnet of the FRS. The fitted curve demonstrates the good linearity of
the relation. The upper panel shows the residuals from a linear relation.

Lastly, especially in the measurement with low incident energy, there were many
charge-states populated in the charge-state distribution, the spatial width of which
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was wider than the detector geometry. Therefore, to measure the complete distribu-
tion, the scaling method was again adopted to shift the distribution for ±(3-5)% of
the dispersion, resulting in the position shift of ±(60-100) mm on the TPC31. The
following analysis will be explained in the next chapter. Moreover, we shall mention
here that the hysteresis of the dipole magnet was treated by the ramping procedure
whenever the magnet setting was changed during our measurement.
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Chapter 5

Data Analysis

Based on the measurement principles described in Chapter 4, we have performed
measurements of energy loss and charge-state distributions of lead ions with the TPC
installed at the dispersive focal plane F3. Figure 5.1 shows examples of the charge-
state distributions without (left panel) and with (right panel) an atomic collision tar-
get inserted at the F2. The different charge states of the emerging ions after an atomic
collision target are dispersed in the measured position spectra due to the ion-optical
properties of the magnetic spectrometer FRS. The general analysis flow on such posi-
tion spectra is as follows:

1. Determination of the mean position and integral of each peak.

2. Charge-state assignment.

3. Determination of the mean charge state.

4. Determination of the dispersion coefficient.

5. Transformation of the position spectrum to the energy spectrum and determina-
tion of mean energy loss.

6. Stopping power determination.
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FIGURE 5.1: Measured charge-state distributions of lead ions at the dispersive focal
plane F3. Left panel: Measurement of the incident beams at 100 MeV/u without
an atomic collision target. Right panel: The charge-state distribution measured after
penetration of the 18.64 mg/cm2 thick titanium target.



72 Chapter 5. Data Analysis

5.1 Determination of Mean Position and Integral of Each Peak

The mean position and integral of each peak in the position spectra measured with the
TPC installed at the dispersive focal plane F3 were determined by the following steps.
First, the position spectra in the logarithmic scale were fitted with a function of mul-
tiple Gaussians plus an optional background function to obtain the Gaussian’s mean
position and width (σ) of each peak. The options for the background function were
either a single Gaussian, multiple Gaussians, or an exponential function depending
on the shape. However, such background functions were not needed for most of the
cases, except for the data taken with the gas target with PP windows. Secondly, after
subtracting the background from the position spectra, the 3σ windows were set for
each peak from the peak position, and the statistical mean position and integral were
evaluated within the windows. These statistical values were used for the following
analysis.

5.2 Charge-State Distribution and Mean Charge State

Our first goal is to deduce the mean charge state of lead ions from the charge state dis-
tribution after penetrating atomic collision targets. The mean charge state q̄ is defined
by

q̄ = ∑
i

qiF(qi) , (5.1)

where F(qi) are charge-state fractions which can be calculated with the integral values
Ai of each peak in a charge-state distribution as

F(qi) =
Ai

∑i Ai
. (5.2)

For this analysis, the knowledge of the detector response and efficiency are important.

5.2.1 Detector Efficiency

The detector efficiency of the TPC at the dispersive focal plane F3 was checked by
shifting the charge-state distributions for±3%,±3.5%, or±4% of dispersion as shown
in Fig.5.2. Suppose that the central and highest peak shown in the upper panel of
Fig.5.2 corresponds to the charge state q and its charge-state fraction is F(q). The
ratios of the charge-state fractions of neighboring charge states F(q + 1)/F(q) and
F(q− 1)/F(q) were evaluated in each spectrum. It was found that the ratio became
about 5% lower when the peaks of F(q + 1) and F(q− 1) were in the range of |x| > 80
mm in the shifted spectra compared to the central one. Therefore, the analysis on
every single spectrum was limited to the range of |x| ≤ 80 mm of the TPC, for which
the variation of ratio remained less than 0.5%. To evaluate the integrals of peaks out of
the range, the peaks of corresponding charge state were taken from the shifted spectra
after normalizing the integrals to the central one.



5.2. Charge-State Distribution and Mean Charge State 73

100− 80− 60− 40− 20− 0 20 40 60 80 100
TPC31 X-position [mm]

1

10

210

310

410

100− 80− 60− 40− 20− 0 20 40 60 80 100
TPC31 X-position [mm]

1

10

210

310

Yi
el

d

Run 297  TPC31

100− 80− 60− 40− 20− 0 20 40 60 80 100
TPC31 X-position [mm]

1

10

210

310

410

Yi
el

d

Run 298  TPC31

+3% shift -3% shift

F(q)
F(q-1)F(q+1)

FIGURE 5.2: Charge-state distributions measured at the incident energy of 100
MeV/u after penetrating the 60.28mg/cm2 zirconium target for two magnetic field
settings. Top panel: Measured charge-state distribution when the most abundant
peak was centered. Bottom left and right panels: Measured charge-state distribu-
tions where the most abundant peak was shifted by ±3%.

5.2.2 Charge-State Assignment

The charge-state fractions F(q) of a complete distribution were obtained from the inte-
gral values of each peak, as explained above. The next step is to assign the charge-state
q to them.

The equilibrium charge-state distribution follows the Gaussian trend within each
atomic shell. Therefore, a logarithmic plot of the ratio of neighboring charge-state frac-
tions F(q)/F(q − 1) shows linear trends modulated by the population of the atomic
shells, i.e., the binding energies determine the trends of charge-state distribution ob-
served. The top-left panel of Fig.5.3 shows the example of the charge-state fractions
F(q) obtained in the measurement with the incident energy at 100 MeV/u and with
the 56.72 mg/cm2 thick titanium target, and the top-right panel shows the one with
the incident energy at 50 MeV/u and with the 38.07 mg/cm2 thick titanium target.
The corresponding lower panels show the plots of the ratio F(q)/F(q− 1) as a func-
tion of charge-state q. Furthermore, one can see that there are differences in the linear
trends after the transition from an atomic shell to the next one, namely from q = 81+ in
the K-shell to q = 80+ in the L-shell for the left panel and from q = 73+ in the L-shell
to q = 72+ in the M-shell for the right panel. These differences in the charge-state
distributions are called the shell gaps, and this was used as an indication of charge
state assignment in the present analysis.
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FIGURE 5.3: The principle of the charge state verification according to the electron
shell gaps. Left panel: The L-K shell gap observed in the charge-state distribution
measurement after the 100 MeV/u lead ions had penetrated the 57.07 mg/cm2 tita-
nium target. Right panel: The M-L shell gap observed in the charge-state distribu-
tion measurement after the 50 MeV/u lead ions had penetrated the 38.36 mg/cm2

titanium target.

5.2.3 Window Corrections

Finally, with the charge-state fractions F(q) and the charge state q assigned, the mean
charge states q̄ of lead ions after penetrating each atomic collision target were deduced
according to Eq.5.1. For the gas target, however, the shift in the charge state due to the
exit window of the gas cell must be evaluated:

In our measurement, the charge-state distributions were measured with the empty
gas target cell. In addition, measurements were also performed, where a single foil
of the gas target window was used as a target. In Tab.5.1, the experimental charge-
state fractions of lead ions after penetrating one or two gas target windows are listed.
The first and third columns correspond to the incident energy Ein and incident charge-
state qin of lead ions. In the second column, the type of gas target windows, namely
polypropylene (PP) or graphenic carbon (GC), are given with the number of foils in-
serted, e.g., for a single GC foil, it is given as GC-1. From the fourth to the ninth
column, the measured charge-state fractions are given for the emerging charge-states
which are unchanged or changed by±1,±2, and +3 compared to the incident charge-
state qin. The last column, then, corresponds to the mean charge states q̄ of the distri-
butions. From this table of experimental results, the following characteristics can be
stated: In general, the shift value in mean charge (∆q = q̄ − qin) due to a gas tar-
get window is small. The charge-state population down to 50 MeV/u is basically
dominated by the unchanged charge state F(qin). The rest goes mainly to the singly
changed charge states F(qin ± 1), but more significant to the +1 changed charge state
because the electron loss process is still contributing more than the capture process at
this velocity. At 35 MeV/u, when the projectiles have electrons in the outer atomic
shells, such as in the M-shell, loosely bound electrons are easily stripped and the +1
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or +2 changed charge states start contributing to the overall population. However,
the shift value ∆q can still be estimated less than +1 if one considers only a single
window in the investigated velocity range. Therefore, to a good approximation, the
charge-changing process may be described by the single charge-changing collisions
for the present consideration of the effect due to the exit window of the gas target.

TABLE 5.1: List of the experimental charge state fractions F(q) of lead ions after pass-
ing through the gas-target windows. GC/PP-1 means the measurement with a single
window, and GC/PP-2 means the empty gas-cell with two windows.

Ein window qin F(qin − 2) F(qin − 1) F(qin) F(qin + 1) F(qin + 2) F(qin + 3) q̄
[MeV/u] type

280 GC-2 81+ 0.0000 0.0050 0.9913 0.0037 0.0000 0.0000 81.00

280 PP-2 81+ 0.0003 0.0355 0.9441 0.0201 0.0000 0.0000 80.98

100 GC-2 79+ 0.0000 0.0164 0.9319 0.0517 0.0000 0.0000 79.04

100 PP-2 79+ 0.0006 0.0405 0.8323 0.1265 0.0000 0.0000 79.08

70 GC-2 77+ 0.0023 0.0395 0.7860 0.1603 0.0119 0.0000 77.14

70 GC-1 77+ 0.0000 0.0144 0.9091 0.0739 0.0026 0.0000 77.06

70 PP-2 77+ 0.0021 0.0501 0.5889 0.3027 0.0522 0.0000 77.37

50 GC-2 77+ 0.0045 0.0879 0.7352 0.1592 0.0132 0.0000 77.09

50 PP-2 76+ 0.0120 0.0973 0.4529 0.3289 0.0945 0.0130 76.43

50 PP-2 77+ 0.0014 0.1249 0.5247 0.2818 0.0537 0.0000 77.23

35 GC-2 74+ 0.0301 0.1606 0.4803 0.2569 0.0602 0.0075 74.17

35 GC-2 70+ 0.0041 0.0286 0.1429 0.3128 0.3599 0.1519 71.45

35 GC-1 74+ 0.0079 0.1115 0.6836 0.1768 0.0197 0.0000 74.09

35 GC-1 70+ 0.0019 0.0398 0.3707 0.3651 0.1861 0.0365 70.80

Based on the statement, the numerical estimation of the shift values ∆q was per-
formed with the Monte-Carlo simulation program MOCADI [Iwa+97]. In the pro-
gram, the GLOBAL code [Sch+98] is implemented for the prediction of charge-state
evolutions of the projectile ions in matter. The single-electron transfer cross sections
for the loss and capture processes are respectively given by

σ(n, n− 1) = nKσ`
K + nLσ`

L + nMσ`
M , (5.3)

and
σ(n, n + 1) =

2− nK

2
σc

K +
8− nL

8
σc

L +
18− nM

18
σc

M + σc
H , (5.4)

where ni denotes the number of electrons occupying an atomic shell (i = K, L, M).
The σ`

i and σc
i are the single electron loss and capture cross-sections of the i = K, L, M

atomic shells, respectively. In the present consideration, we assume a picture that the
lead ions after penetrating the gaseous medium have a single charge state of the mean
charge q̄gas, which we would like to obtain in the end, and penetrate the exit window
of the gas target at an emerging energy determined right after the gaseous medium.
Then, the goal of the present simulation is to estimate the dependence of the shift value
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∆q on the emerging energy and mean charge state just after the gaseous medium. The
evaluation procedures are explained by two steps as follows:

The first step of the evaluation was to find the best factors fEL and fEC to be
multiplied to the single electron loss and capture cross sections implemented in the
GLOBAL program so that the experimental mean charge states, listed in the last col-
umn of Tab.5.1, after penetrating one or two gas target windows could be reproduced
by the Monte-Carlo simulation. For this, first, the same incident charge state qin was
taken from the third column of the table. Then, the charge-state fractions of un-
changed, F(qin), and singly changed charge-states, F(qin ± 1), predicted by the simu-
lation were compared to the experimental values according to the following deviation
parameter:

∆ =
√
(∆F(qin))2 + (∆F(qin + 1))2 + (∆F(qin − 1))2 , (5.5)

where ∆F(q) are the relative differences between the experimental charge-state frac-
tion Fexp.(q) and the one predicted by the Monte-Carlo simulation Fsim.(q) as

∆F(qin) = g(qin)×
(

Fsim.(qin)

Fexp.(qin)
− 1
)
× 100 ,

∆F(qin + 1) = g(qin + 1)×
(

Fsim.(qin + 1)
Fexp.(qin + 1)

− 1
)
× 100 ,

∆F(qin − 1) = g(qin − 1)×
(

Fsim.(qin − 1)
Fexp.(qin − 1)

− 1
)
× 100 ,

(5.6)

and g(q) are the weights for considering the degree of the contributions from the
charge state q to the experimental mean charge state as

g(q) =
q

q̄exp. × Fexp.(q) . (5.7)

For each of the fourteen cases listed in the Tab.5.1, the Monte-Carlo simulations were
performed. The conditions of the simulation are following: For each combination of
the incident energy Ein and charge-state qin listed in the table, both factors, fEL and fEC,
were changed from 0.1 to 10 at the interval of 0.1, for finding the minimum deviation
∆. The thicknesses of GC and PP windows were considered to be 1 µm and 6 µm,
respectively. The composition of a PP window was considered to have H-C-H layers.
Lastly, each simulation was performed with 105 events.

Figure 5.4 shows examples of the plot of the deviation parameter ∆ as a function of
the fEL and fEC factors. The left panel corresponds to the case of lead ions with qin =

77+ at Ein = 50 MeV/u penetrating two GC windows, and the right panel corresponds
to the case of the same projectile penetrating two PP windows. One can see that there
are locations where the deviation parameter ∆ becomes at the minimum. Then, the
fEL and fEC factors which minimize the deviation parameter ∆ are determined and
summarized in the Fig.5.5 for the GC window in the left panel and the PP window in
the right panel as a function of incident energy. In both types of gas target windows, it
was found that the fEC factor (full circles) increases as the energy goes lower while the
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fEL factor (triangles) decreases. Moreover, the both factors were very similar between
the two types of windows at each energy. Furthermore, in the case of Ein = 50 MeV/u
for PP windows, there were two different incident charge states, qin = 76+ and 77+,
used in the measurement. Both have electrons in the L-shell, and it was found that
the resulting factors were the same. Meanwhile, in the case of Ein = 35 MeV/u for
GC windows, there were also two incident charge-states, qin = 70+ and 74+, used in
the measurement. The former has electrons up to M-shell, and the latter has electrons
up to L-shell. There was a clear difference for the fEC factors being fEC = 11.0 and
fEC = 7.4, respectively, while the fEL factors were close fEL = 0.6 and fEL = 0.5,
respectively.
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FIGURE 5.4: Three dimensional mapping of the deviation parameter ∆ as a function
of the fEL and fEC factors. The left panel corresponds to the example of qin = 77+

and Ein = 50 MeV/u for the penetration through two GC windows. The right panel
corresponds to the same beam conditions but for the penetration through two PP
windows.
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the Monte-Carlo simulations for fourteen combinations of the incident energy and
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Having the factors of fEL and fEC, the experimental charge-state distributions after
the gas target windows can be reproduced by the Monte-Carlo simulation with the
MOCADI program within the scheme of the investigated energy and incident charge-
state. The next step of the evaluation was, then, to calculate ∆q from the simulations
after only a single gas-target window at each investigated energy (35, 50, 70, 100, and
280 MeV/u), by changing the incident charge-state from qin = 65+ to qin = 82+. The
left panel of Fig.5.6 shows the result of ∆q after penetrating a single GC window as a
function of incident charge-state qin for different incident energies, and the right panel
shows the plot as a function of incident energy Ein for different incident charge-states.
Then, the values of ∆q can be found as a function of Ein and qin + ∆q: The emerging
energy after the gaseous material in the experiment corresponds to the Ein defined
in the present simulation, and the measured mean charge state q̄ after the whole gas
target in the experiment corresponds to the qin + ∆q defined in the present simulation.
For the experimental values in between the data points of Fig.5.6 the interpolation was
taken with the linear function.
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FIGURE 5.6: Determined shifts ∆q as a function of the incident charge-state (left
panel) and energy (right panel)for the GC-window.

The statistical uncertainty in the deduced mean charge state is small since we have
accumulated a sufficiently large number of events for the peaks of charge-state distri-
butions. We have also considered the detector efficiency as described before. How-
ever, in the evaluation of the shift value ∆q of the mean charge state due to the exit
window of the gas target, which was discussed in the present subsection, a consid-
eration of the systematic uncertainty was needed. As can be seen in the right panel
of Fig.5.6, when the energy becomes lower than, e.g., 35 MeV/u down to 20 MeV/u
for the GC window, the trend of the shift value ∆q of each charge-state was rather a
guess. In the present analysis, the shift value ∆q was estimated by the extrapolation
of the linear trend, which corresponds to the energy range from 35 to 50 MeV/u. The
uncertainty of the estimated shift at such a low energy region can be for±1 maximum
since the charge states with electrons in the M-shell play important roles in the charge-
state distributions. This systematic uncertainty was included in the experimental re-
sult of the mean charge state. As a result, our experimental mean charge states were
determined within the accuracy less than about 1%. The results are summarized in
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Appendix D.

5.3 Mean Energy Loss and Stopping Power

Our second goal of the present analysis is to deduce the stopping powers, defined
as the mean energy loss per unit path length in matter. For the calculation of mean
energy loss, the momentum pi of the outgoing ions in charge state qi are first deduced
according to Eq.4.15:

pi = p0
(BLeff)set

(BLeff)0

qi

q0

(
1 +

∆x
(x, δ)

)
.

∆x is the difference in peak positions deduced from the measurements with and with-
out an atomic collision target. For its calculation, the mean positions, which were
determined by the methodology described in Section 5.1 were used. Then, for the fol-
lowing mean energy loss calculation, the momentum pi of the most centered peak on
the TPC was used. The reason is as follows: Since there was no additional position-
sensitive detector at the dispersive focal plane F3 in our measurement because of the
geometrical limitation, the angle a of outgoing lead ions at F3 was not measured. Due
to this situation, the ion optical correction for the dependence of horizontal position
x on the angle a at F3 could not be performed. In Tab.5.2, the mean positions and
the corresponding full-width-half-maxima (FWHM) are listed for the case of projec-
tile lead ions at 100 MeV/u penetrating through the titanium target with thickness of
56.72 mg/cm2. Compared to the central peak of q = 79+, the FWHM becomes wider
as the peaks are off from the center. The reason for this broadening may be considered
due to the angle of outgoing lead ions at F3. Furthermore, the distance between peak
positions of neighboring charge-states gets wider as the position x becomes positive.
This may imply that the focal plane at F3 is tilted or bent, which also requires the
ion-optical correction by performing the particle tracking with two position-sensitive
detectors. However, the analysis on the most centered peak can be considered to have
the least effect from such ion-optical properties given above. In addition, in our mea-
surement, the centered charge-state was always chosen as closely as possible to the
mean charge state of the charge-state distribution after an atomic collision target. This
situation helps our purpose to obtain the mean energy loss of the mean charge state of
the distribution.

5.3.1 Determination of Dispersion Coefficient

The dispersion coefficient (x, δ) was deduced using the mean positions of the peaks
and corresponding charge states q as follows: In the first-order expression of the ion
optics, the position x measured with the TPC installed at the dispersive focal plane F3
can be given by

xF3 = (x, x)xF2 + (x, a)aF2 + (x, δ)δ . (5.8)
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TABLE 5.2: List of the charge-state q, position x, and the FWHM obtained from each
peak of the charge-state distribution of lead ions at 100 MeV/u after penetrating
through the 57.07 mg/cm2 thick titanium target. The distance in peak positions be-
tween the neighboring charge-states becomes wider as the position x goes positive
direction. The FWHM becomes wider as the peak positions gets off-centered.

q 82+ 81+ 80+ 79+ 78+ 77+ 76+

x [mm] -75.41 -51.63 -27.43 -3.11 21.88 47.89 74.62

FWHM [mm] 3.04 2.42 1.76 1.38 1.73 2.24 2.75

Since the first two products on the right-hand side of the equation are the constants,
the first-order dispersion coefficient (x, δ) can be obtained from the slope of the rela-
tion between x position and dispersion δ. Here, the δ is defined as the relative differ-
ence of charge state qi compared to the one qx=0 which is deduced from the interpola-
tion to x = 0 in the x-qi plane:

δ =
qi

qx=0
− 1 . (5.9)

The left panel of Figure 5.7 shows an example of the plot of the mean positions as a
function of δ. The dispersion coefficient was determined for each measurement with
an atomic collision target. Generally, the values were within the range from −20.5
mm/% to −19.2 mm/%, which were almost consistent with the value of the designed
ion optics: -20.0 mm/%.
If the ion optics were considered with the first-order expression plus the second-order
of dispersion, the position x measured with the TPC at F3 could be rewritten as

xF3 = C + (x, δ)δ + Dδ2 , (5.10)

where C = (x, x)xF2 + (x, a)aF2. The coefficient D is ideally (x, δδ) of the ion optics
matrix if aF3 = 0, but here it is conventionally defined as the universal second-order
dispersion coefficient with the unit of mm/%2. After subtracting the linear portion
of (x, δ)δ which was obtained from Eq.5.8, the remaining shows a parabola shape as
shown in the right panel of Figure 5.7. By fitting with the second-order polynomial
function, the second order dispersion coefficient D was deduced. The values were
about 0.2 mm/%2. The remaining parameter C was in general very small to be about
−0.3 mm.

In the present analysis for the momentum determination, the difference in mean
positions deduced from the measurements with and without an atomic collision target
was used. The ion optical expression for the difference ∆x can be given as

∆x ≈ (x, δ)δ + Dδ2 . (5.11)

Solving for δ will give

δ = −

√
∆x
D

+

(
(x, δ)

2D

)2

− (x, δ)

2D
. (5.12)
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In the present analysis, this expression of δ was replaced with the ∆x/(x, δ) term in
Eq.4.15.
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FIGURE 5.7: Determination of the dispersion coefficients at F3. The position x was
fitted by a linear function of δ to get the first-order coefficient (x, δ) as shown by the
red line in the left panel. The residual was fitted by the second-order polynomial
function of δ to get the second order deviation D as shown by the red curve in the
right panel.

5.3.2 Energy Spectrum and Determination of Mean Energy Loss

Having the dispersion coefficients, the position spectra, the background of which was
subtracted, were converted to the momentum spectra by using Eq.4.15 where qi is the
centered charge state. Then, accordingly, the energy spectra were obtained by using
the energy-momentum relation as

Ei =
√
(pic)2 + (mic2)2 −mi , (5.13)

where mi is the ionic mass of the centered charge state qi. In this conversion process,
the change in the bin width of the different histograms was taken into account. Figure
5.8 shows the energy distribution of the incident beams of lead ions at 100 MeV/u for
the right peak, and the left peak shows the one after penetrating the 18.64 mg/cm2

thick titanium target. Both peaks are truncated by the 3σ windows each in the plot.
Then, the mean energies with and without an atomic collision target were determined
by the statistical mean value of the peaks within the 3σ windows. For the determi-
nation of the mean energy loss 〈∆E〉, as we have explained, the mean energy of the
centered charge-state, which was chosen as closely as possible to the mean charge
state of the distribution after an atomic collision target, was taken for the following
stopping-power determination.
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FIGURE 5.8: Energy spectra of lead ions deduced from the corresponding position
spectra of the TPC31 at the dispersive focal plane F3. Right peak: Measurement of the
incident beams at 100 MeV/u without an atomic collision target inserted. Left peak:
The energy spectrum of the centered charge-state when the 18.64 mg/cm2 titanium
target was penetrated.

5.3.3 Energy-loss Correction for the Gas Target Windows

In the case of the gas target, the energy loss in the gas-target windows must be sub-
tracted. In the present analysis, the mean energy loss in pure gaseous matters 〈∆E〉gas

was deduced by subtracting the mean energy loss measured with the empty gas target
cells 〈∆E〉window from the total mean energy loss in the gas target 〈∆E〉 as

〈∆E〉gas = 〈∆E〉 − 〈∆E〉window . (5.14)

Indeed, there is a slight difference between the mean energy losses in the entrance
and exit windows. The effect was evaluated by the ATIMA program with the effective
thickness of the windows. However, by considering that the projectile lead ions lose
30% of its incident energy in gaseous materials, it was found that such a difference
became of the order of 10−3 or less compared to the mean energy loss in gases 〈∆E〉gas

for both cases of the gas targets with GC and PP windows.

5.3.4 Uncertainty of the Mean Energy Loss

The statistical uncertainty in the determination of the mean energy loss is totally neg-
ligible. Below, we will mention of the systematic uncertainties associated with the
determination of the mean energy loss.

Incident Momentum
The primary beam energy, provided from the SIS-18 accelerator, has an energy
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spread of below 1.0 × 10−3. Since the primary beams pass through the strip-
per targets at the F0 area of the FRS, the energy loss in the stripper targets are
calculated by the ATIMA program. There, the uncertainties of the areal density
(5%) and the stopping power calculated in the ATIMA program (2%) should be
considered. The resulting uncertainty of the incident momentum p0 was, then,
determined to be (5-9)× 10−4 level.

The BLeff Determination
As explained in the last section of Chapter 4, the BLeff values are determined
from the magnet current by using third-order polynomials as shown in Fig.4.21.
The fluctuation in the readouts of the magnet current and voltage, i.e., the sta-
bility of the power supply during the measurements was found to be less than
10−5 level, which was negligible effect. The major uncertainty is in the determi-
nation of the absolute values of the magnet current and the BLeff values by using
the fitted polynomials. The maximum contribution to the systematic error was
determined to be BLeff ± 0.0010.

Reproducibility of the Magnetic Field Settings
In our measurement, we have checked the FRS reproducibility of the position
spectra of the incident beams several times at the dispersive focal plane F3. The
fluctuations of the measured mean positions were evaluated in the offline analy-
sis for the data taken in the same magnet setting. It was found to be within ±0.2
mm on average for all the energies. This value was included as the systematic
uncertainty in the determination of mean positions of the peaks.

The resulting uncertainties in the energy loss were 1.2%, 0.6%, and 0.4% for the
cases when the energy loss values were 10%, 20%, and 30% of the incident energy,
respectively.

5.3.5 Stopping-Power Determination

The mean energy loss 〈∆E〉 was always determined with a certain target thickness x,
and several measurements were performed with different thicknesses. Therefore, it
can be represented as a function of the target thickness, such as shown in the lower
panel of Fig.5.9. Since the stopping power is defined as

dE
dx

= lim
∆x→0

〈∆E〉
∆x

. (5.15)

the mean energy loss depends linearly on the target thickness to a good approxima-
tion. Such a fit with a linear function, shown by the red line in the same graph, makes
it easy to convert the uncertainty of the target thickness into an additional uncertainty
of the energy loss. However, as shown in the upper graph where the residuals are
plotted, a clear dependence on target thickness appears in the mean energy losses.
This is reflected by the fact that the stopping power is energy-dependent. Therefore,
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a fit function must include the non-linear term which can treat such dependence. One
can try to approach by using the higher-order polynomials, but this is not an appropri-
ate method for us because (1) the number of free parameters increases, which expands
the uncertainty in the resulting stopping power, and (2) it is anyways not applicable
when the number of data point is less than the one of free parameter.

However, since the energy dependence of the stopping power is well known the-
oretically, the best method would be to include the energy loss values predicted by a
theoretical calculation as a constant contribution to the linear fit-function. In this way,
one does not need to include additional free parameters, and the uncertainty in target
thickness can be appropriately treated. This method can be expressed by

∆E(x) =
∫ x

0

(
dE
dx′

)
Theo.

dx′ + P(x) , (5.16)

where P(x) is the residuals after subtracting the theoretical energy loss from the ex-
perimental one as a function of target thickness. By performing the χ2 fit for P(x) as
shown in the lower panel of Fig.5.10, the experimental stopping power can be deduced
by adding the dP/dx term to the theoretical stopping power:(

dE
dx

)
Exp.

=

(
dE
dx

)
Theo.

+
dP
dx

. (5.17)

Here, the same data set is taken for the analysis in Fig.5.10 as the one used in Fig.5.9,
but it is clearly demonstrated that the χ2 fit is significantly improved in this method.
Then, in the present analysis, the theoretical energy loss and stopping power were
calculated with the ATIMA program which adapts the Lindhard-Sørensen theory. In
addition, to describe the energy dependence of the charge state in matter, the mean
charge formula of Pierce and Blann from Eq.2.66

q̄ = Z1

[
1− exp

(
−0.95

v
v0Z2/3

1

)]

was implemented in the calculation, instead of the usual routine (See Appendix E for
the description of the ATIMA program).

The deduced stopping powers are summarized in the Appendix B. The associated
energy for the stopping power calculation was determined as the average value of
the outgoing energies. In general, the stopping powers could be determined with the
accuracy of (0.4-1.0)% in our experiment. The systematic uncertainty in the stopping
power was found in the choice of the mean charge formula. We compared the result
with the calculation in which the mean charge formula, which will be obtained in the
next chapter, was used for the determination of the correction term dP/dx. The fit
result of the χ2 analysis was equivalently good. Therefore, from the difference the
upper limit of the systematic error in the stopping power was determined to be 0.1%.
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FIGURE 5.9: Lower panel: Measured mean energy loss values 〈∆E〉 of lead ions at
70 MeV/u after penetration of zirconium targets with different thicknesses. The red
line represents a linear fit through the data. In the upper panel the residual values are
plotted. It clearly demonstrates the non-linear velocity dependence of the stopping
power in the measured range. The statement is also quantified by the fit results listed
in the figure.
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Chapter 6

Results and Discussion

6.1 Mean Charge States

The left panels of Figs.6.1 - 6.5 show our experimental results of the mean charge states
of lead ions as a function of the outgoing energy. Each panel shows the comparison of
the results obtained from the measurements with the gaseous and solid materials with
neighboring Z2 numbers. The results with gaseous materials are represented by the
red full-circles, while the ones with solid materials are represented by the blue full-
circles. As we have mentioned in Chapter 5, the statistical uncertainty is very small
in general, and the error bars are under the symbol size. For the results with gaseous
materials, however, the systematic uncertainty becomes significant at the low velocity
domain of the present investigation, which is resulted from the estimation of the shift
value ∆q due to the exit window of the gas target. The solid curves correspond to
the fit result to obtain the semi-empirical expression of the experimental mean charge
states as a function of energy. The formula used here is as suggested in Ref.[Zie85]

q̄(E) = Z1 ·
[

1− exp

(
−

5

∑
i=0

ai (ln(E))i

)]
, (6.1)

where Z1 = 82, and ai are the fit parameters, whose values were determined by the χ2

fit and are summarized in Tab.6.1. In the ninth column of the table, the χ2/NDF values
are listed. The last column of the table corresponds to the velocity domain where the
fit was performed, i.e., the valid domain of the obtained parameters.

From our experimental results, first, it was found that the gas-solid difference in
the mean charge state of lead ions vanishes at the highest velocity domain (∼ 280
MeV/u) in the present investigation, except for the heaviest gas-solid target pair of
tin (Z2 = 50) and xenon (Z2 = 54). In general, at this relativistic velocity domain, the
electron loss process is dominant in the charge-changing collisions; thus, the projectile
ions are expected to be fully or almost fully ionized. Therefore, it is a satisfactory result
to observe that the mean charge states, as well as the two fit curves, converge toward
the same value (the vanishment of the gas-solid difference) at this velocity, as can be
seen in the titanium (Z2 = 22) and argon (Z2 = 18) pair or in the carbon (Z2 = 6) and
nitrogen (Z2 = 7) pair. Then, the contributions from the electron capture process may
explain the slight difference between tin and xenon. As we have explained in Chapter
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2, the cross-section of the NRC process strongly depends on the target atomic number
Z2 as [Tol+18]

σNRC ∝ q5Z5
2 , (6.2)

and the REC also start contributing at the relativistic velocity domain through

σREC ∝ q5Z2 . (6.3)

Since the atomic number of xenon is larger than tin, more significant contribution
from electron capture, especially from the NRC process, may be expected for xenon.
Therefore, slightly lower mean charge states could still be observed at this velocity.

Secondly, the mean charge states after passing through the gaseous materials be-
come systematically lower than after passing through the solid materials at the inter-
mediate velocity domain from 100 MeV/u down to 20 MeV/u for all the cases of the
gas-solid target pairs. The deviation generally expands as the velocity decreases. The
direct comparison between solid and gaseous states of the same compound material,
polypropylene and propene, shows a clear deviation of the mean charge states be-
low 100 MeV/u. This is a very positive result, which manifests the existence of the
gas-solid difference in the mean charge states from our experiment. Accordingly, it
strongly supports the Bohr-Lindhard model of the density effect [BL54]. Furthermore,
the target pairs of zirconium (Z2 = 40) and krypton (Z2 = 36), or titanium (Z2 = 22)
and argon (Z2 = 18) would support the model even more: If the collision frequency
is the same in these solids and gases, the mean charge states would be smaller for
solids than gases because of the strong dependence of the NRC cross-section on the
Z2 number. Another interesting characteristic is that the velocity domains where the
deviations start appearing are different depending on the target pairs. For example,
while the carbon-nitrogen pair seems to start deviating from about 100 MeV/u, the
titanium-argon pair seems to start deviating from the higher velocity. If the Bohr-
Lindhard model is correct, the same feature should be observed in the stopping power
results, which we will show in the next section.

As a conclusion, the existence of the gas-solid difference in the mean charge states
was confirmed in our experiment.

The right panels of the Figs.6.1-6.5 show the comparisons of the experimental mean
charge states with the theory. The symbol colors are analogous to the left panels. The
full circles correspond to the semi-empirical formula proposed by Pierce and Blann
(P&B formula) in 1968 [PB68] as given in Eq.2.66. At the highest velocity domain in
the present investigation, where the projectiles are fully or almost fully ionized, P&B
formula reproduces the experimental values well. In addition, even though this for-
mula does not depend on the target property at all, it was surprisingly found that it
reproduces well (less than 5%) the experimental values for the heavy gaseous mate-
rials, such as argon, krypton, and xenon, for overall velocity domain of the present
investigation. However, for nitrogen and propene, and for all the solid materials, it
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always underestimates the mean charge state. The triangles correspond to the calcula-
tion by the GLOBAL program [Sch+98]. Unlike the P&B formula, it computes the rate
equations based on the cross sections for charge-changing collisions. In the program,
all the ions are assumed in the ground states. To deal with the density effect, an extra
factor is introduced for the case of solid targets (the quasi ground state model). The
calculation reproduces well the experimental mean charge states at the highest veloc-
ity domain. In addition, the deviation stays within 5% for the solid targets even at the
lower velocity from 100 MeV/u down to 30 MeV/u; the latter velocity is the lower
limit where the GLOBAL program is applicable. However, the deviation expands for
the gaseous materials, where the calculation largely overestimates the mean charge
states. This clearly demonstrates the fact that the program does not take into account
properly the effect of the gas-solid difference, i.e., the effect of excited states.

TABLE 6.1: List of fit parameters obtained for the experimental mean charge formula
Eq.6.1. The first and second columns show the target materials and their atomic num-
ber. From third to eighth columns are the results of fit parameters. The ninth column
shows the χ2 value divided by the degrees of freedom (NDF). The last column in-
dicates the velocity domain, for which the experimental mean charge values were
fitted, i.e., for which the fit results are applicable.

Target Z2 a0 a1 a2 a3 a4 a5 χ2/NDF Fitted domain

C 6 0.0019 -1.2201 0.7299 0.0965 -0.0600 0.0055 1.17 (20-300) MeV/u

N2 (gas) 7 5.4484 0.0896 -3.1906 1.5710 -0.2654 0.0152 1.27 (20-300) MeV/u

Ar (gas) 18 0.7945 0.9601 -0.4331 0.0046 0.0294 -0.0032 0.97 (30-300) MeV/u

Ti 22 0.4288 0.1050 -0.0288 0.0800 -0.0156 0.0011 0.21 (30-300) MeV/u

Kr (gas) 36 0.7165 0.2042 -0.0100 0.0067 0.0010 0.0001 0.58 (20-300) MeV/u

Zr 40 0.9843 0.7341 -0.9115 0.4253 -0.0727 0.0045 0.03 (20-300) MeV/u

Sn 50 0.0554 -0.1093 0.2154 0.0133 -0.0082 0.0007 0.06 (30-300) MeV/u

Xe (gas) 54 0.6356 0.9582 -0.3790 -0.0044 0.0277 -0.0030 0.80 (30-300) MeV/u

(C3H6)n 4.9731 0.3999 -3.8503 2.1142 -0.4089 0.0270 1.08 (25-300) MeV/u

C3H6 (gas) 1.1042 -2.0345 0.5093 0.2817 -0.0914 0.0071 1.36 (25-300) MeV/u



90 Chapter 6. Results and Discussion

0 50 100 150 200 250 300
Outgoing Energy [MeV/u]

64

66

68

70

72

74

76

78

80

82
q

Sn Exp.

Sn Fit

Xe Exp.

Xe Fit

0 50 100 150 200 250 300
Outgoing Energy [MeV/u]

0.85

0.9

0.95

1

1.05

1.1

1.15

E
xp

.
q

 / 
T

he
o.

q

Sn (P&B)
Sn (GLOBAL)
Xe (P&B)
Xe (GLOBAL)

FIGURE 6.1: Measured mean charge-states of lead ions after penetrating tin (Z2 = 50)
and xenon (Z2 = 54) targets at different incident energies. The experimental error
bars are in most cases within the size of the symbols. Left panel: Measured mean
charge states of lead ions after tin (blue symbols) and xenon (red symbols) targets
as a function of the outgoing energy. Solid curves correspond to the fit applying
the formula of Eq.6.1. Right panel: Comparison of the experimental mean charge
states with the prediction of the computer program GLOBAL [Sch+98] and the semi-
empirical Pierce-Blann (P&B) formula [PB68].
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FIGURE 6.2: Measured mean charge states for lead ions in zirconium (solid) and
krypton (gas) targets, otherwise the explanations are analogous as presented in
Fig.6.1.
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FIGURE 6.3: Measured mean charge states for lead ions in titanium (solid) and argon
(gas) targets, otherwise the explanations are analogous as presented in Fig.6.1.
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FIGURE 6.5: Measured mean charge states for lead ions in polypropylene (solid)
and propene (gas) targets, otherwise the explanations are analogous as presented
in Fig.6.1.

6.2 Stopping Powers

Figures 6.6-6.10 show our experimental results of stopping powers of lead ions in
gases and solids with the full circle symbols as a function of energy. Similar to the
graphs of the mean charge states shown before, the red color represents the gaseous
materials while the blue color represents the solid materials. The error bars of the
experimental data are generally under the symbol size.

First, at the highest velocity domain of the present investigation, where the projec-
tiles are almost fully ionized, the stopping powers in gases and solids are almost the
same. A slight difference was found in the tin-xenon target pair, where the stopping
power in xenon gas became smaller than the one in tin, which may reflect the slight
difference in the mean charge state as observed in the previous section. Then, the most
important result is as follows: It has been systematically observed for all the target
pairs that the stopping powers in gases are smaller than the ones in solids. Further-
more, the deviation becomes more significant as the velocity decreases. This feature
can be explicitly seen in Fig.6.11, which shows the experimental stopping powers for
different target Z2 numbers at interpolated energies of 45 and 65 MeV/u. These direct
comparisons of the stopping powers between neighboring solids and gases is already
a good indication of the gas-solid difference. However, we will be more specific for
the representation in the next section on this subject.

Besides, in the same graphs of Figs.6.6-6.10, the theoretical calculations by the
ATIMA program [Wei98a], which takes into account the Lindhard-Sørensen (LS-) the-
ory [LS96], are also shown. The dashed curves correspond to the calculation, in which
the projectile’s atomic number Z1 is used for the charge-state description in matter.
The solid curves, then, correspond to the calculation, in which the mean charge-state
formula Eq.6.1 with the parameters obtained in the previous section is used instead.
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The latter calculation is limited in the velocity domain in between the masked area be-
cause of the applicable limits of the mean charge formula. Also, note that the carbon-
hydrogen compounds were calculated by adopting Bragg’s additivity rule. As one
can see, the calculation by the ATIMA program with the projectile’s nuclear charge
deviates completely from the experimental stopping powers in the domain, at least
lower than 100 MeV/u, where many charge states start populating. Moreover, the
predictions for gases and solids almost coincide. In contrast, when the realistic charge
state Eq.6.1 is implemented in the calculation, the experimental stopping powers are
reproduced very well. These calculations manifest the importance of describing the
effective charge state of projectiles inside matter.

Energy [MeV/u]
10

15

20

25

30

35

40

45

50

55

)]2
dE

/d
x 

[M
eV

/(m
g/

cm

208Pb → 50Sn
208Pb → 54Xe
ATIMA (q=qexp.)
ATIMA (q=Z1)

30           50                100              200     300

FIGURE 6.6: Experimental stopping powers of lead ions in tin (Z2 = 50) and xenon
(Z2 = 54) targets as a function of projectile energy. The experimental error bars are
within the size of the symbols, except for one tin value. The results for the solid target
is presented by blue symbols and lines and the corresponding results for the gas
target by red color. Solid curves correspond to the stopping powers calculated by the
ATIMA program, which takes into account the Lindhard-Sørensen theory, combined
with our experimental mean charge states q = q̄exp. from the previous section. The
dashed curves correspond to the stopping powers calculated by the same theory but
with the assumption of bare projectiles q = Z1.
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FIGURE 6.7: Measured stopping power values of lead ions in zirconium (Z2 = 40)
and krypton (Z2 = 36) targets compared with theoretical predictions. The experi-
mental error bars are within the size of the symbols. The explanations given in the
caption of Fig.6.6 are valid.
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FIGURE 6.8: Measured stopping power values of lead ions in titanium (Z2 = 22) and
argon (Z2 = 18) targets compared with theoretical predictions. The experimental
error bars are within the size of the symbols. The explanations given in the caption
of Fig.6.6 are valid.
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FIGURE 6.9: Measured stopping power values of lead ions in carbon (Z2 = 6) and
nitrogen (Z2 = 7) targets compared with theoretical predictions. The experimental
error bars are within the size of the symbols. The explanations given in the caption
of Fig.6.6 are valid.
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propene targets compared with theoretical predictions. The experimental error bars
are within the size of the symbols. The explanations given in the caption of Fig.6.6
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FIGURE 6.11: Experimental stopping powers of lead ions for different Z2 targets.
The target Z2 numbers for the polypropylene and propene are approximated to be 4
and 4.5. One can see that the difference in stopping powers between solid and gas
becomes more significant as the energy decreases.

Figures 6.12 - 6.16 show the comparisons of our experimental stopping powers
either with the theoretical calculations or with the famous computer programs, as a
function of the projectile energy. The left and right panels correspond to the com-
parisons of the stopping powers in solid and gaseous materials, respectively. The
comparison is given by

Ratio :=


(

dE
dx

)
theo.(

dE
dx

)
exp.

− 1

× 100 [%] . (6.4)

The theoretical calculations for the top two panels are performed by the SRIM [Zie+10]
(triangle) and the DPASS [SS19] (cross mark) programs. In the third panels, the cal-
culation by the ATIMA program (version 1.4) [Wei98a] is shown with the open cir-
cle symbols. The ATIMA program adopts the LS-theory [LS96] for the prediction of
stopping powers, and it includes the routine, which provides the predictions of the
projectile mean charge states in matter by the GLOBAL program [Sch+98] with some
corrections (see Appendix E for the description of the ATIMA program). Meanwhile,
in the same panels, the full circle symbols correspond to the calculation by the ATIMA
program, but the charge state prediction is fully replaced by the mean charge-state for-
mula Eq.6.1 with the parameters obtained in the previous section instead. In the fourth
panel for the solid materials, the comparison with the Hubert tabulation [HBG90] is
shown with the square symbols. The error bars on the ratio are generally invisible
because they are under the symbol size.

We first consider the results for the solid targets. In general, the computer pro-
grams can reproduce the stopping powers in solid nicely, especially in carbon within
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the accuracy of 10% for overall velocity domain of the present investigation. Large de-
viations (∼ 20%) are found with the predictions by the DPASS program for the heavier
solid targets. This is probably because that the present calculation by DPASS adopts
the equilibrium charge state, which is calculated with the simple Thomas-Fermi-type
formula [SS19]

q̄ = Z1

(
1− exp

(
− v

v0Z2/3

))
. (6.5)

In the formula, the target dependence is neglected, and the mean charge state is usu-
ally overestimated. An investigation of the DPASS program calculation by adopting a
more realistic effective charge state would be recommended. A surprising result was
found in the comparisons with the Hubert table, where the deviations are less than
10% for all the solid targets. The calculation uses the stopping powers of alpha parti-
cles in the scaling formula Eq.2.63 with the effective charge concept, and the stopping
powers of heavy ions were tabulated according to the deduced parametrization in
1990 [HBG90]. In principle, the stopping numbers L of alpha particles and heavy ions
differ significantly; while the former may be described well by the Bethe formula, the
latter requires non-linear correction terms which depend on both projectile and target
properties, as we have explained in Chapter 2. Thus, it is not easy to have a general
form of stopping power only with the effective charge parametrization. However, the
good predictions may have become possible due to the (almost) vanishment of the
correction terms in the velocity domain of the present investigation according to Fig.
2.2. In the case of the stopping of lead ions in aluminum, the significant correction
terms in the range of 0.03 ≤ γ− 1 ≤ 0.3, which corresponds to our experiment, would
be only the Mott and Bloch correction terms, the sum of which would show a smooth
curve. Especially since both correction terms depend mostly only on the projectile
property, it would be a preferable situation for the parametrization of stopping pow-
ers as Hubert et al. performed. Similarly, the SRIM program developed by Ziegler,
which also takes the parametrization method by scaling the proton’s stopping powers
to the numerous experimental stopping powers of heavy ions, shows fine agreements
to the experimental data. Then, the best agreements are found in the comparison with
the ATIMA program. The ATIMA 1.4 adopts the routine for predicting the projec-
tile’s mean charge state based on the GLOBAL program with some corrections. Since
the calculation results from the routine shows a great agreement with our experimen-
tal mean charge state for solids, where the maximum deviation was found to be about
2% for carbon in the present velocity domain, the resulting stopping-power prediction
also showed great agreements to the experimental values. Meanwhile, when adopting
the mean charge formula Eq.6.1 in the ATIMA program, the agreements are somewhat
improved.

Next, we consider the results for the gaseous materials. In general, all the computer
programs (SRIM, DPASS, and ATIMA) deviate largely from the experimental values.
Especially, the calculations by DPASS, which adopts the Thomas-Fermi type formula
Eq.6.5 for describing the equilibrium charge state, overestimate the stopping powers
about 20% on average. Also, even though there are coincidence points for the SRIM
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calculation with the experimental data, it should not be regarded as the reproducibil-
ity of the program. However, it is more likely just a crossing point between two curves
with largely different slopes. The ATIMA 1.4 program also overestimates the stopping
powers. This is due to, in the first place, the GLOBAL program does not take into ac-
count the gas-solid difference for the predictions of mean charge state, as one can see
in Figs. 6.1-6.4, where it always overestimates the mean charge state at the low velocity
region. Furthermore, since the correction terms to the GLOBAL program were deter-
mined from the fit to the experimental mean charge states of heavy ions after solid
targets, the routine, which is implemented in ATIMA 1.4, does not provide a good
estimation for gas. Then, the importance of the prediction of mean charge states in-
side matter becomes more explicit in the comparison with the ATIMA program when
it adopts the mean charge formula obtained from our experiment. The slight devia-
tion is stable for overall velocity domain (∼ 2% in average for all the gaseous target).
Therefore, theoretical developments for the charge-changing processes in matter are
required to achieve better accuracy in the predictions of stopping power.
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FIGURE 6.12: Comparison of theoretical and experimental stopping power values of
lead ions in tin (solid) and xenon (gas) targets at different energies. The results for the
solid target is indicated by the blue color in the left panels, and results for the gas tar-
get by red color in the right panels. The top three panels present the comparison with
SRIM [Zie+10] (triangle), DPASS [SS19] (cross mark), and ATIMA 1.4 [Wei98a] (open
circle). For solid targets, the comparison with the Hubert tabulation (filled square) is
shown in the fourth panel. The Hubert tables do not include gases. In addition in the
third panel, the comparison with the calculation by the ATIMA program, in which
our measured mean charge states implemented instead, is shown by the full circle
symbol. Note that, partially the symbols in the ATIMA comparison overlap.
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FIGURE 6.13: Comparison of theoretical and experimental stopping power values
of lead ions in zirconium (solid) and krypton (gas) targets at different energies. The
explanations of Fig.6.12 are applicable.
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FIGURE 6.14: Comparisons of theoretical and experimental stopping power values
of lead ions in in titanium (Z2 = 22) and argon (Z2 = 18) targets at different ener-
gies.The explanations of Fig.6.12 are applicable.
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FIGURE 6.15: Comparisons of theoretical and experimental stopping power values
of lead ions in carbon (solid) and nitrogen (gas) targets at different energies.The ex-
planations of Fig.6.12 are applicable.
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FIGURE 6.16: Comparison of theoretical and experimental stopping power values of
lead ions in polypropylene (solid) and propene (gas) at different energies. However,
the top two panels correspond to the comparison with the SRIM code (triangle) and
the ATIMA code (open circle), respectively. Same as Fig.6.12, in the second panels the
comparison was also performed with the calculation by the ATIMA program with the
mean charge formula which was obtained from this work.

6.3 The Gas-Solid Difference

This section will present the gas-solid difference in the stopping-powers for the last
discussion of our experimental results. The concept of this difference originates from
the prediction by Bohr and Lindhard in 1954, stating that the difference in the collision
frequency in gases and solids should result in the difference in the effective charge
state in matter and accordingly in the difference in the stopping powers [BL54].

For the quantification of the gas-solid difference between different target materials
with neighboring Z2 numbers, it is recommended to normalize the properties of tar-
get materials, such as the mass, charge, and mean excitation potentials, given in the
theoretical description of the stopping powers. Therefore, the experimental stopping
powers were normalized by the stopping powers calculated by the ATIMA program,
which adopts the projectile’s nuclear charge charge Z1 for the charge-state description
as (

dE
dx

)
norm.

=

(
dE
dx

)
Exp.(

dE
dx

)
ATIMA(q=Z1)

, (6.6)
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and the gas-solid difference is then defined by the relative difference as

Gas− Solid Difference :=


(

dE
dx

)solid

norm.(
dE
dx

)gas

norm.

− 1

× 100 % (6.7)

Figures 6.17-6.21 show the deduced gas-solid difference in the normalized stopping
powers as a function of energy. One can clearly see that the difference systematically
increases as the velocity decreases in all the gas-solid target pairs. At the highest ve-
locity (280 MeV/u), then, the difference vanishes. These observations are consistent
with the results of the experimental mean charge state. Therefore, the Bohr-Lindhard
prediction on the density effect is confirmed with our experiment. Especially, the di-
rect comparison between solid and gaseous states of the same compound material,
polypropylene and propene, shows analogous trend as the one of the mean charge
states; the gas-solid difference in stopping power appears below 100 MeV/u, where
the gas-solid difference in mean charge state started appearing, as shown before.

In conclusion, we have confirmed the existence of the Bohr-Lindhard density ef-
fect in stopping powers. In addition, we emphasize here that we have extended the
velocity domain where the experimental data of stopping powers were scarce, for a
wide variety of Z2 numbers.

Then, the interpretation of the magnitude of the gas-solid difference depending on
Z2 numbers can be considered as follows: Based on the comparisons of mean charge
state and stopping powers, as shown so far, the best representation of stopping power
can be given by

dE
dx

= C
Z2

A2

q̄2

β2 · L(q̄) , (6.8)

where C is a constant, Z2 and A2 are the atomic and mass numbers of target material, q̄
is the mean charge state of the projectile, and L is the stopping number with the mean
charge implemented in. In this representation, the contributions to the gas-solid dif-
ference in stopping powers are clearly either from the square of the mean charge state
q̄2 or the stopping number L. To demonstrate which is the major contribution, we em-
ploy the theoretical calculations for each component. The mean charge state formula
Eq.6.1 with the parameters obtained from our experiment is used for the evaluation
of the gas-solid difference in q̄2, and the calculation with the ATIMA program is used
for the evaluation of the one in stopping number L. For the details of the calcula-
tion of the stopping number L in the ATIMA program, see Appendix E. The solid
curves in the left panel of Fig.6.22 show the theoretical gas-solid difference for the q̄2

component. The full-circle symbols just indicate the points of energy at which the
experimental gas-solid difference in stopping powers was deduced, corresponding to
Figs.6.17-6.21. The solid curves are truncated by the limit of the validity of the mean
charge state formula. Then, the right panel of Fig.6.22 shows the gas-solid difference
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in the normalized stopping numbers defined as

Lnorm. =
L
(
q̄exp.

)
L (Z1)

, (6.9)

where the denominator is the stopping number calculated by the ATIMA program
with q̄→ Z1. The truncation of solid curves is analogous to the left panel. As one can
see, the q̄2 component is the major factor to the gas-solid difference in stopping pow-
ers. The difference in q̄2 becomes more significant for the carbon-nitrogen pair than
other heavy target pairs at the lowest velocity domain, while the situation is opposite
at the higher velocities. This would be an explanation to the observed gas-solid dif-
ference in stopping powers for carbon-nitrogen pair is more significant than, e.g., for
zirconium-krypton pair at the lowest velocity domain. More detailed interpretations
are very complicated because it requires precise knowledge of the individual charge-
changing processes for different materials. However, the following assumptions may
be stated here: The magnitude of the gas-solid difference can be affected strongly by
the electron capture processes. For example, since xenon has a larger Z2 number than
tin, more electron capture can occur from the perspective of, e.g., the NRC process
whose cross-section is strongly dependent on the target atomic number via Z5

2 . Thus,
the lower effective charge is expected in xenon. As a result, the gas-solid difference in
stopping powers may be enhanced for this target pair, as one can see in Fig.6.17. This
is a similar case for the carbon-nitrogen pair. Meanwhile, since krypton has a smaller
Z2 number than zirconium, the contribution of electron capture can be less. As a re-
sult, the gas-solid difference in mean charge states, and correspondingly in stopping
powers may be reduced for this target pair, as one can see in Fig.6.18, where the mag-
nitude of the difference is not so different from the lighter gas-solid target pair, e.g., of
carbon and nitrogen. Therefore, theoretical developments in the description of charge-
changing processes are desired to quantify the origin of the gas-solid difference in the
charge state to the stopping power predictions.
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FIGURE 6.17: Measured gas-solid difference of stopping powers in tin (Z2 = 50) and
xenon (Z2 = 54) targets at different energies.
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FIGURE 6.18: Measured gas-solid difference of stopping powers in zirconium (Z2 =
40) and krypton (Z2 = 36) targets at different energies.
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FIGURE 6.19: Measured gas-solid difference of stopping powers in titanium (Z2 =
22) and argon (Z2 = 18) targets at different energies.
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FIGURE 6.20: Measured gas-solid difference of stopping powers in carbon (Z2 = 6)
and nitrogen (Z2 = 7) targets at different energies.
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FIGURE 6.21: Measured gas-solid difference of stopping powers in polypropylene
and propene compound targets at different energies.
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FIGURE 6.22: The gas-solid difference of the squared mean charge states (left panel)
and the normalized stopping numbers Lnorm. = L(q̄exp.)/L(Z1) (right panel). The
solid curves correspond to the theoretical calculations, and they are truncated by the
limit of the validity of the formula Eq.6.1. The full-circle symbols indicate the energy
data from which the experimental gas-solid difference of stopping powers was de-
duced, corresponding to Figs.6.17-6.21. Left: Each calculation of q̄ was performed by
the formula Eq.6.1 with obtained parameters. Right: Each stopping number was cal-
culated by the ATIMA program with adopting either the mean charge state formula
Eq.6.1 with obtained parameters, or projectile’s nuclear charge Z1. One can see that
the charge-state difference is the major factor to the Bohr-Lindhard density effect of
heavy ion stopping powers.

6.4 Direct Conclusions

With our experimental results, we have manifested that the ionic charge state inside
matter is essential for the understanding of stopping powers of heavy ions in matter.
The knowledge of charge-changing cross sections for heavy projectiles in the ground
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and excited states is needed to understand the atomic ion-matter interaction, which
is a longstanding problem since the discovery of nuclear fission, almost 90 years ago.
The theories of multi-body charge-changing and energy dissipation processes have
not been accurately solved up to now. Therefore, semi-empirical scaling methods are
used to support applications of heavy ions penetrating matter. Our accurate results of
the charge-state fractions, mean charge states, and stopping powers can be used as a
benchmark for new theoretical developments.

In addition, since accurate ab-initio calculations are not on the horizon, I would pro-
pose, as an intermediate solution, to deduce a universal function of the mean charge
states for different projectile and target combinations, such as for a development of
fast and user-friendly programs for stopping power prediction. In the present the-
sis, we have demonstrated that even a simple form of mean charge state, e.g., Eq.6.1
can provide a significant improvement of the stopping power predictions. For deriv-
ing a better parametrization, the experimental data must be extended, especially for
gaseous materials. Considering the situation of scarce experimental data as shown
in Figure 3.1, the proposed measurements of the present research with other heavy
projectiles, such as xenon and uranium, should be conducted.

Concerning the stopping number L, our results can provide a guide to the theoret-
ical developments in the following way: Our experimental stopping powers could be
reproduced nicely by the ATIMA program when it employed the mean charge state
formula Eq.6.1 with the obtained experimental parameters. Therefore, the individ-
ual normalized stopping number Lnorm., given in Eq.6.9, can be a good reference for
considering the difference in stopping numbers between the bare and dressed projec-
tiles. Such a difference may include, e.g., the polarization effect due to the screening
of the projectiles. The left and right panels of Fig.6.23 show the deviation of the stop-
ping number for solid and gaseous materials, respectively. The truncation of the solid
curves is analogous to Fig.6.22. The deviation systematically becomes more signifi-
cant for larger Z2 target materials and for lower energies. Furthermore, the difference
is slightly more significant for gaseous materials than for the neighboring solid ma-
terials. The overall deviation may stay within only -6% in stopping numbers in the
velocity domain of the present investigation, thus the theoretical developments will
be very sensitive.
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FIGURE 6.23: Difference in stopping number L of solid (left panel) and gaseous (right
panel) materials between the bare and dressed projectile ions. The calculation was
performed with the ATIMA program. One can see that the difference becomes more
significant as the Z2 increases and as the energy decreases. Furthermore, the differ-
ence is slightly more significant for gases than the neighboring solid materials.
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Chapter 7

Summary and Outlook

We performed accurate measurements of charge-state distributions and stopping pow-
ers of 208Pb ions in gases and solids at (35, 50, 70, 100, and 280) MeV/u incident ener-
gies. Five different gaseous (nitrogen, argon, krypton, xenon, and propene) target ma-
terials and five different solid (carbon, titanium, zirconium, tin, and polypropylene)
target materials of different thicknesses were used in this experiment. The heavy-ion
synchrotron SIS-18 provided the incident lead projectiles at different energies with a
relative energy spread of less than 5 × 10−4. The beam intensity was reduced to a
few thousand particles provided in pulses of 10 seconds duration. With these low-
intensity beams, any significant radiation damage to the targets and effects on the
particle detector performance could thus be avoided. For the measurements of energy
loss and charge-state distributions, the FRS was used as a high-resolution magnetic
spectrometer. The atomic collision targets were placed at the central focal plane F2,
and the emerging ions were detected at the third dispersive focal plane F3 with a time
projection chamber.

We succeeded in measuring the energy loss and charge-state distributions at al-
most 800 field settings of the FRS. The measured stopping powers and mean charge
states could be determined with an accuracy of less than 1% for most of the cases. The
selected energy range provided partially ionized and almost bare projectiles to cover
the appearance and disappearance of the gas-solid difference in the emerging charge-
state distributions and stopping power values. Furthermore, this energy range has
extended the existing experimental data in a new region where the stopping-power
data for the heaviest ions were scarce. The key results of this experiment are:

• The gas-solid difference in mean charge states and stopping powers according to
the Bohr-Lindhard model was clearly observed with the present experiment in
the velocity range of (30-100) MeV/u. The effect systematically decreased with
higher incident velocities and vanished at 280 MeV/u. The mean charge states of
lead ions emergent from solids were, at the low energies, (3-5)% higher than for
the gases with neighboring Z2 numbers. The corresponding measured stopping
powers in solids were (6-8)% higher than in gases at the same velocity.

• The higher stopping power values in solids can be fully attributed to the corre-
sponding measured higher mean charge states of the projectiles.
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• The Bohr-Lindhard prediction on the density effect was experimentally con-
firmed for all the measured gas-solid target materials contrary to a previous
uranium measurement [Fet+06], where a small difference was only observed for
low Z2 targets and the difference disappeared at higher-Z2 materials.

• The comparisons with recent theoretical predictions have revealed significant
deviations, especially for the gaseous targets. The best agreement was found
with the ATIMA program, which adapts the Lindhard-Sørensen theory [LS96],
combined with the measured mean charge states. It was demonstrated that the
gas-solid difference has to be included in the theoretical descriptions and com-
puter codes.

• The present experimental results have demonstrated clearly the key role of the
ionic charge states during the collisions. The present results will have a signif-
icant contribution to the basic understanding of the atomic interaction of ener-
getic ions in matter.

• With the present experimental results, the accuracy of the slowing-down the-
ory in computer codes, e.g., the ATIMA program can be significantly improved,
which will be beneficial for many accelerator based experiments and applica-
tions.

In the future, the following aspects are desired for improvements:

♣ Measurements with other heavy ions, such as uranium (Z1 = 92). This will
provide, in the first place, an extension of the experimental data in the broader
domain of velocity and Z1-Z2 combination, for the basic understanding of the
atomic interaction of heavy ions in matter. Simultaneously, the gas-solid differ-
ence will be investigated more. Especially, an uranium measurement will revise
the conclusions and results from Ref.[Fet+06].

♣ Improved theoretical developments for both charge-changing processes and stop-
ping power predictions can be done with our present new and accurate data.
The effect due to the screened projectiles must be included into theories as well.
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Appendix A

Solid Target

This appendix shows the weight w, area A, and areal density x deduced for the in-
dividual solid targets. For the details of the determination, see Section 4.5.2. When
a thick target was needed in the measurements, two or three targets were stacked to
obtain the desired thickness.

TABLE A.1: List of solid targets.

Material
Weight Area Areal density

w (mg) A (cm2) x (mg/cm2)

C 1.273± 0.001 0.157± 0.001 8.10± 0.04

C 2.131± 0.001 0.158± 0.001 13.47± 0.07

C 3.605± 0.001 0.158± 0.001 22.89± 0.11

C 4.628± 0.001 0.159± 0.001 29.12± 0.15

C 6.693± 0.001 0.159± 0.001 42.18± 0.21

C 11.312± 0.011 0.156± 0.001 72.42± 0.36

C 21.742± 0.001 0.162± 0.001 134.10± 0.67

(C3H6)n 12.352± 0.042 2.001± 0.010 6.18± 0.03

(C3H6)n 19.363± 0.052 2.001± 0.010 9.68± 0.04

(C3H6)n 26.543± 0.060 1.980± 0.010 13.36± 0.05

(C3H6)n 52.057± 0.042 1.957± 0.010 25.99± 0.12

(C3H6)n 127.631± 0.052 1.991± 0.010 64.06± 0.19

(C3H6)n 238.066± 0.067 1.990± 0.010 119.51± 0.31

(C3H6)n 33.660± 0.030 2.012± 0.010 16.73± 0.08

(C3H6)n 92.021± 0.030 2.004± 0.010 45.92± 0.23

(C3H6)n 7.950± 0.030 3.029± 0.015 2.62± 0.02

Ti 37.891± 0.001 0.159± 0.001 238.76± 1.19

Ti 1.304± 0.001 0.156± 0.001 8.36± 0.04
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TABLE A.1: List of solid targets.

Ti 2.207± 0.001 0.162± 0.001 13.65± 0.07

Ti 2.957± 0.001 0.159± 0.001 18.64± 0.09

Ti 6.060± 0.001 0.159± 0.001 38.07± 0.19

Ti 16.301± 0.001 0.159± 0.001 102.34± 0.51

Ti 16.308± 0.001 0.159± 0.001 102.82± 0.51

Zr 1.610± 0.001 0.159± 0.001 10.14± 0.05

Zr 2.693± 0.001 0.158± 0.001 17.00± 0.09

Zr 3.713± 0.001 0.159± 0.001 23.40± 0.12

Zr 7.281± 0.001 0.159± 0.001 45.84± 0.23

Zr 9.557± 0.001 0.159± 0.001 60.28± 0.30

Zr 36.810± 0.001 0.142± 0.001 259.12± 1.30

Zr 41.670± 0.001 0.159± 0.001 261.85± 1.31

Sn 42.783± 0.001 0.158± 0.001 270.80± 1.35

Sn 0.335± 0.001 0.157± 0.001 2.14± 0.01

Sn 0.584± 0.001 0.152± 0.001 3.84± 0.02

Sn 3.151± 0.001 0.158± 0.001 19.93± 0.10

Sn 3.591± 0.001 0.157± 0.001 22.83± 0.11

Sn 11.384± 0.001 0.158± 0.001 71.88± 0.36

Sn 7.195± 0.001 0.158± 0.001 45.41± 0.23

Sn 29.205± 0.001 0.158± 0.001 184.54± 0.92
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Appendix B

Stopping Powers

This appendix presents additional information related to the stopping-power mea-
surements for lead ions in matter. The columns are, by starting on the left-hand side,
the incident energy (E0), the selected incident charge-state (q0), the target thickness (x),
the mean energy loss (〈∆E〉), the ion-optically centered charge-state at F3 (qscaled), the
mean energy (EM) corresponding to the listed stopping-power value dE/dx. The as-
sociated correction term dP/dx was deduced with the mean charge formula of Pierce
and Blann, as explained in Chapter 5. For gaseous targets, the mean energy loss after
correction of the gas-target windows is given by 〈∆E〉gas.
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TABLE B.1: Experimental stopping powers for lead ions in carbon, and related infor-
mation.

208Pb→6C

E0 q0 x 〈∆E〉 qscaled EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

279.98 81+ 42.18± 0.28 4.56± 0.09 81+ 272.94± 0.09 0.49± 0.14 22.90± 0.14

279.98 81+ 72.42± 0.41 7.94± 0.09 81+

279.98 81+ 134.10± 0.70 14.73± 0.09 81+

279.98 81+ 206.52± 0.81 22.88± 0.09 81+

99.94 79+ 13.47± 0.20 2.51± 0.13 80+ 91.07± 0.13 3.64± 0.42 42.74± 0.42

99.94 79+ 42.18± 0.28 8.33± 0.13 79+

99.94 79+ 72.42± 0.41 14.72± 0.12 79+

99.94 79+ 134.10± 0.70 28.51± 0.11 79+

69.91 77+ 13.47± 0.20 3.20± 0.11 79+ 61.40± 0.11 7.57± 0.22 54.89± 0.22

69.91 77+ 42.18± 0.28 10.57± 0.10 78+

69.91 77+ 72.42± 0.41 19.21± 0.09 78+

69.91 77+ 95.31± 0.47 25.47± 0.09 77+

49.89 77+ 13.47± 0.20 3.99± 0.09 77+ 44.71± 0.09 12.43± 0.48 66.82± 0.48

49.89 77+ 42.18± 0.28 13.59± 0.08 76+

34.90 74+ 8.10± 0.20 2.83± 0.07 75+ 31.62± 0.07 15.40± 1.26 77.52± 1.26

34.90 74+ 13.47± 0.20 4.99± 0.07 75+
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TABLE B.2: Experimental stopping powers for lead ions in nitrogen gas, and related
information.

208Pb→7N

E0 q0 x 〈∆E〉gas qscaled EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

279.98 81+ 25.75± 0.16 2.78± 0.13 81+ 272.94± 0.13 0.28± 0.47 22.69± 0.47

279.98 81+ 51.43± 0.33 5.57± 0.13 81+

279.98 81+ 70.01± 0.45 7.60± 0.13 81+

99.94 79+ 23.68± 0.06 4.55± 0.18 79+ 91.07± 0.18 2.52± 0.56 41.49± 0.56

99.94 79+ 46.18± 0.30 8.99± 0.18 79+

99.94 79+ 69.14± 0.44 13.65± 0.18 78+

69.91 77+ 15.89± 0.04 3.72± 0.15 77+ 61.40± 0.15 5.54± 0.41 52.68± 0.41

69.91 77+ 35.36± 0.08 8.53± 0.15 77+

69.91 77+ 52.52± 0.34 13.06± 0.15 77+

69.91 77+ 70.12± 0.45 17.80± 0.14 75+

49.89 77+ 5.87± 0.01 1.68± 0.13 76+ 44.71± 0.13 8.29± 0.47 62.46± 0.47

49.89 77+ 19.31± 0.05 5.58± 0.13 75+

49.89 77+ 35.03± 0.08 10.38± 0.13 74+

49.89 77+ 51.93± 0.33 15.95± 0.12 72+

34.90 74+ 10.56± 0.03 3.55± 0.10 72+ 31.62± 0.10 10.56± 0.65 72.47± 0.65

34.90 74+ 22.95± 0.06 7.94± 0.10 70+

34.90 74+ 35.01± 0.08 12.51± 0.10 69+
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TABLE B.3: Experimental stopping powers for lead ions in titanium, and related in-
formation.

208Pb→22Ti

E0 q0 x 〈∆E〉 qscaled EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

279.98 81+ 32.29± 0.29 2.90± 0.09 81+ 274.40± 0.09 0.25± 0.10 18.39± 0.10

279.98 81+ 38.07± 0.27 3.41± 0.09 81+

279.98 81+ 102.82± 0.55 9.14± 0.09 81+

279.98 81+ 205.15± 0.77 18.34± 0.09 81+

279.98 81+ 238.76± 1.21 21.31± 0.09 81+

99.94 79+ 18.64± 0.21 2.76± 0.13 79+ 91.03± 0.13 1.72± 0.10 32.69± 0.10

99.94 79+ 56.72± 0.34 8.58± 0.13 79+

99.94 79+ 102.82± 0.55 15.97± 0.12 78+

99.94 79+ 140.89± 0.61 22.22± 0.11 78+

99.94 79+ 205.15± 0.77 33.63± 0.11 77+

99.94 79+ 238.76± 1.21 39.42± 0.10 76+

69.91 77+ 18.64± 0.21 3.40± 0.11 77+ 61.30± 0.10 3.41± 0.15 40.60± 0.15

69.91 77+ 56.72± 0.34 10.60± 0.10 76+

69.91 77+ 102.34± 0.55 19.93± 0.09 75+

69.91 77+ 140.89± 0.61 28.39± 0.08 74+

49.89 75+ 8.36± 0.20 1.80± 0.09 75+ 44.88± 0.09 5.01± 0.24 47.42± 0.24

49.89 75+ 18.64± 0.21 4.02± 0.09 75+

49.89 75+ 38.07± 0.27 8.46± 0.08 74+

49.89 75+ 51.73± 0.33 11.75± 0.08 73+

49.89 75+ 70.37± 0.39 16.38± 0.07 72+
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TABLE B.4: Experimental stopping powers for lead ions in argon gas, and related
information.

208Pb→18Ar

E0 q0 x 〈∆E〉 qscaled EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

279.98 81+ 31.83± 0.08 2.82± 0.13 81+ 274.40± 0.13 0.32± 0.34 18.64± 0.34

279.98 81+ 62.73± 0.40 5.60± 0.13 81+

279.98 81+ 100.00± 0.64 8.94± 0.13 81+

99.94 79+ 34.71± 0.08 5.21± 0.18 78+ 91.03± 0.18 1.06± 0.38 32.44± 0.38

99.94 79+ 67.72± 0.43 10.36± 0.18 78+

99.94 79+ 99.99± 0.64 15.51± 0.18 78+

69.91 77+ 23.73± 0.06 4.24± 0.15 76+ 61.30± 0.15 1.08± 0.29 38.82± 0.29

69.91 77+ 23.41± 0.15 4.18± 0.16 76+

69.91 77+ 50.16± 0.32 9.11± 0.16 73+

69.91 77+ 50.86± 0.12 9.21± 0.15 73+

69.91 77+ 76.73± 0.49 14.18± 0.15 75+

69.91 77+ 99.98± 0.64 18.81± 0.15 74+

49.89 75+ 9.79± 0.02 2.03± 0.13 71+ 44.88± 0.13 1.39± 0.34 44.49± 0.34

49.89 75+ 28.88± 0.07 6.05± 0.13 70+

49.89 75+ 50.47± 0.12 10.79± 0.13 69+

49.89 75+ 71.61± 0.46 15.79± 0.12 70+
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TABLE B.5: Experimental stopping powers for lead ions in zirconium, and related
information.

208Pb→40Zr

E0 q0 x 〈∆E〉 qscaled EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

279.98 81+ 106.12± 0.46 8.26± 0.09 81+ 262.17± 0.09 0.20± 0.06 16.75± 0.06

279.98 81+ 261.85± 1.32 20.83± 0.09 81+

279.98 81+ 520.98± 1.86 42.12± 0.09 81+

99.94 79+ 23.40± 0.22 3.01± 0.13 78+ 90.07± 0.13 0.62± 0.24 28.09± 0.24

99.94 79+ 60.28± 0.36 7.92± 0.13 78+

99.94 79+ 129.52± 0.51 17.36± 0.12 78+

99.94 79+ 259.12± 1.31 37.20± 0.10 76+

99.94 79+ 261.85± 1.32 38.08± 0.10 76+

69.91 77+ 23.40± 0.22 3.62± 0.11 77+ 62.00± 0.10 1.45± 0.16 33.99± 0.16

69.91 77+ 45.84± 0.30 7.24± 0.10 76+

69.91 77+ 60.28± 0.36 9.51± 0.10 76+

69.91 77+ 106.12± 0.46 17.34± 0.09 75+

69.91 77+ 129.52± 0.51 21.56± 0.09 74+

49.89 76+ 17.00± 0.21 3.12± 0.09 74+ 43.69± 0.08 2.56± 0.21 40.21± 0.21

49.89 76+ 45.84± 0.30 8.66± 0.08 73+

49.89 76+ 60.28± 0.36 11.53± 0.08 72+

49.89 76+ 83.68± 0.42 16.42± 0.07 71+

34.90 70+ 10.14± 0.20 2.15± 0.07 71+ 30.87± 0.07 3.55± 0.24 46.41± 0.24

34.90 70+ 23.40± 0.22 5.07± 0.07 71+

34.90 70+ 40.40± 0.30 9.00± 0.06 69+

34.90 70+ 60.28± 0.36 13.81± 0.06 68+
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TABLE B.6: Experimental stopping powers for lead ions in krypton gas, and related
information.

208Pb→36Kr

E0 q0 x 〈∆E〉 qscaled EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

99.94 79+ 39.12± 0.25 4.92± 0.18 78+ 90.07± 0.18 0.02± 0.18 27.42± 0.18

99.94 79+ 77.17± 0.49 9.86± 0.18 77+

99.94 79+ 148.67± 0.95 19.62± 0.18 77+

99.94 79+ 209.24± 1.34 28.29± 0.17 76+

69.91 77+ 36.32± 0.09 5.45± 0.15 75+ 62.00± 0.15 −0.07± 0.20 32.43± 0.20

69.91 77+ 71.25± 0.17 10.89± 0.15 75+

69.91 77+ 105.81± 0.25 16.51± 0.15 74+

69.91 77+ 144.94± 0.35 23.36± 0.15 72+

49.89 76+ 8.52± 0.02 1.47± 0.13 73+ 43.69± 0.13 0.08± 0.30 37.70± 0.30

49.89 76+ 30.78± 0.07 5.38± 0.13 72+

49.89 76+ 57.20± 0.14 10.26± 0.13 72+

49.89 76+ 82.70± 0.20 15.23± 0.13 70+

34.90 70+ 6.85± 0.02 1.35± 0.10 69+ 30.87± 0.10 −0.06± 0.34 42.78± 0.34

34.90 70+ 23.70± 0.06 4.80± 0.10 68+

34.90 70+ 45.70± 0.11 9.52± 0.09 67+

34.90 70+ 60.21± 0.14 12.78± 0.09 67+
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TABLE B.7: Experimental stopping powers for lead ions in tin, and related informa-
tion.

208Pb→50Sn

E0 q0 x 〈∆E〉 qcent. EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

279.98 81+ 71.88± 0.41 5.16± 0.09 81+ 265.77± 0.09 0.01± 0.06 15.36± 0.06

279.98 81+ 184.54± 0.94 13.46± 0.09 81+

279.98 81+ 270.80± 1.37 19.85± 0.09 81+

279.98 81+ 455.34± 1.66 33.75± 0.09 81+

99.94 79+ 22.83± 0.22 2.61± 0.13 78+ 89.65± 0.13 0.74± 0.17 26.27± 0.17

99.94 79+ 71.88± 0.41 8.85± 0.13 78+

99.94 79+ 184.54± 0.94 23.41± 0.12 77+

69.91 77+ 22.83± 0.22 3.42± 0.11 76+ 68.35± 0.11 2.31± 1.18 31.17± 1.18

34.90 74+ 2.14± 0.19 0.43± 0.08 71+ 34.33± 0.07 1.94± 2.86 40.07± 2.86

34.90 74+ 3.84± 0.20 0.74± 0.07 71+

34.90 74+ 5.97± 0.28 1.15± 0.07 70+
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TABLE B.8: Experimental stopping powers for lead ions in xenon gas, and related
information.

208Pb→54Xe

E0 q0 x 〈∆E〉 qcent. EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

279.98 81+ 111.67± 0.71 7.96± 0.11 81+ 265.77± 0.11 0.04± 0.11 15.09± 0.11

279.98 81+ 221.76± 1.42 15.89± 0.11 81+

279.98 81+ 304.36± 1.95 21.94± 0.11 81+

279.98 81+ 327.11± 2.09 23.64± 0.11 81+

99.94 79+ 28.18± 0.18 3.20± 0.18 78+ 89.65± 0.18 −0.27± 0.11 24.82± 0.11

99.94 79+ 28.58± 0.07 3.24± 0.18 78+

99.94 79+ 84.29± 0.20 9.73± 0.18 77+

99.94 79+ 83.14± 0.53 9.62± 0.18 77+

99.94 79+ 162.23± 1.04 19.33± 0.18 77+

99.94 79+ 164.50± 0.39 19.54± 0.17 77+

99.94 79+ 237.13± 1.52 29.04± 0.17 76+

99.94 79+ 307.36± 1.97 38.75± 0.17 75+

69.91 77+ 20.27± 0.05 2.71± 0.15 75+ 68.35± 0.15 −0.81± 0.19 27.61± 0.19

69.91 77+ 68.83± 0.17 9.38± 0.15 74+

69.91 77+ 112.97± 0.27 15.73± 0.15 73+

69.91 77+ 154.12± 0.37 21.96± 0.14 73+

49.89 76+ 9.28± 0.06 1.42± 0.13 73+ 43.84± 0.13 −1.29± 0.20 33.05± 0.20

49.89 76+ 30.64± 0.20 4.72± 0.13 72+

49.89 76+ 59.83± 0.38 9.44± 0.13 72+

49.89 76+ 87.69± 0.56 14.16± 0.13 70+

49.89 76+ 113.93± 0.73 18.83± 0.12 68+
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TABLE B.9: Experimental stopping powers for lead ions in polypropylene, and re-
lated information.

208Pb→(C3H6)n

E0 q0 x 〈∆E〉 qcent. EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

279.98 81+ 25.99± 0.12 3.35± 0.09 81+ 271.94± 0.09 0.48± 0.14 26.98± 0.14

279.98 81+ 45.92± 0.23 5.90± 0.09 81+

279.98 81+ 64.06± 0.19 8.27± 0.09 81+

279.98 81+ 71.91± 0.26 9.30± 0.09 81+

279.98 81+ 119.51± 0.31 15.49± 0.09 81+

279.98 81+ 183.57± 0.36 23.98± 0.09 81+

99.94 79+ 16.73± 0.09 3.80± 0.13 80+ 88.54± 0.12 5.00± 0.21 52.10± 0.21

99.94 79+ 42.72± 0.15 10.08± 0.13 79+

99.94 79+ 64.06± 0.19 15.40± 0.12 79+

99.94 79+ 109.98± 0.30 27.59± 0.11 79+

99.94 79+ 119.51± 0.31 30.31± 0.11 79+

69.91 77+ 13.36± 0.03 3.85± 0.11 79+ 60.75± 0.10 9.73± 0.28 66.33± 0.28

69.91 77+ 25.99± 0.12 7.71± 0.10 79+

69.91 77+ 45.92± 0.23 13.97± 0.10 78+

69.91 77+ 64.06± 0.19 20.27± 0.09 78+

69.91 77+ 71.91± 0.26 23.10± 0.09 77+

69.91 77+ 90.05± 0.23 30.33± 0.08 76+

49.89 77+ 6.18± 0.02 2.18± 0.09 78+ 42.79± 0.09 15.95± 0.46 82.00± 0.46

49.89 77+ 13.36± 0.03 4.81± 0.09 77+

49.89 77+ 25.99± 0.12 9.81± 0.08 77+

49.89 77+ 39.35± 0.12 15.45± 0.08 76+

34.90 74+ 6.18± 0.02 2.68± 0.07 76+ 30.79± 0.07 20.94± 1.02 95.87± 1.02

34.90 74+ 16.73± 0.09 7.64± 0.07 75+
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TABLE B.10: Experimental stopping powers for lead ions in propene gas, and related
information.

208Pb→propene

E0 q0 x 〈∆E〉 qcent. EM dP/dx dE/dx

(MeV/u) (mg cm−2) (MeV/u) (MeV/u) (MeV/mg cm−2) (MeV/mg cm−2)

279.98 81+ 35.28± 0.08 4.58± 0.13 81+ 271.94± 0.13 0.66± 0.40 27.57± 0.40

279.98 81+ 34.78± 0.22 4.55± 0.13 81+

279.98 81+ 72.08± 0.46 9.48± 0.13 81+

279.98 81+ 107.3± 0.69 14.17± 0.13 81+

99.94 79+ 13.85± 0.09 3.16± 0.18 80+ 88.54± 0.18 4.42± 0.35 52.41± 0.35

99.94 79+ 36.63± 0.23 8.59± 0.18 80+

99.94 79+ 71.22± 0.46 17.47± 0.18 79+

99.94 79+ 107.1± 0.69 27.28± 0.17 78+

49.89 77+ 8.12± 0.02 2.90± 0.14 78+ 42.79± 0.13 11.61± 0.53 79.17± 0.53

49.89 77+ 7.96± 0.05 2.87± 0.13 78+

49.89 77+ 23.87± 0.06 8.81± 0.13 77+

49.89 77+ 23.53± 0.15 8.76± 0.12 77+

49.89 77+ 38.86± 0.09 14.78± 0.13 76+

49.89 77+ 38.32± 0.25 14.66± 0.12 76+

34.90 74+ 4.95± 0.01 2.03± 0.10 72+ 30.79± 0.10 15.14± 0.73 91.96± 0.73

34.90 74+ 14.44± 0.03 6.18± 0.10 71+

34.90 74+ 23.45± 0.06 10.40± 0.10 71+
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Appendix C

Evolution of Charge-State Fractions

This appendix presents the evolution of the charge-state fractions F(q) as a function
of projectile outgoing energy. The different atomic (K, L, and M) shells are separately
displayed. The charge-state fractions for the gas targets include the window effect.
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FIGURE C.1: Charge-state fractions F(q) of lead ions in carbon as a function of projec-
tile energy. The top, middle, and bottom panels are for K-, L-, and M-shell electrons,
respectively.
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FIGURE C.2: The same figure as Fig.C.1 but for nitrogen gas plus gas target windows.
The left and right panels correspond to the results obtained with the GC and PP
windows, respectively.
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FIGURE C.3: The same figure as Fig.C.1 but for polypropylene.
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FIGURE C.4: The same figure as Fig.C.2 but for propene gas.
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FIGURE C.5: The same figure as Fig.C.1 but for titanium.
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FIGURE C.6: The same figure as Fig.C.2 but for argon gas.
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FIGURE C.7: The same figure as Fig.C.1 but for zirconium.
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FIGURE C.8: The same figure as Fig.C.2 but for krypton gas.
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FIGURE C.9: The same figure as Fig.C.1 but for tin.
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FIGURE C.10: The same figure as Fig.C.2 but for xenon gas.
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Appendix D

Mean Charge States

This appendix presents the information related to the experimental mean charge states
of lead ions after penetrating atomic collision targets. The columns are, from the left-
hand side, the incident energy (E0), incident charge-state (q0), target thickness (x),
energy of the centered charge state emerging from gaseous and solid targets (Eout),
ion-optically centered charge state at F3 (qscaled), standard deviation of charge-state
distribution (σCSD) for solid targets, and experimental mean charge state q̄.

TABLE D.1: Experimental mean charge-states for lead ions after traversing carbon
targets, and related information.

208Pb→6C

E0 q0 x Eout qscaled σCSD q̄

(MeV/u) (mg cm−2) (MeV/u)

279.98 81+ 42.18± 0.30 275.42± 0.06 81+ 0.6805 80.90± 0.09

279.98 81+ 72.42± 0.52 272.04± 0.06 81+ 0.7345 80.87± 0.10

279.98 81+ 134.10± 0.96 265.25± 0.06 81+ 0.7565 80.84± 0.11

279.98 81+ 206.52± 1.09 257.09± 0.06 81+ 0.7575 80.80± 0.12

99.94 79+ 13.47± 0.10 97.42± 0.03 80+ 0.6774 79.69± 0.10

99.94 79+ 42.18± 0.30 91.61± 0.03 79+ 0.7015 79.79± 0.14

99.94 79+ 72.42± 0.52 85.22± 0.03 79+ 0.7132 79.74± 0.13

99.94 79+ 134.10± 0.96 71.43± 0.02 79+ 0.7735 79.55± 0.11

69.91 77+ 13.47± 0.10 66.71± 0.03 79+ 0.8684 79.23± 0.19

69.91 77+ 42.18± 0.30 59.34± 0.03 78+ 0.8939 79.21± 0.20

69.91 77+ 72.42± 0.52 50.71± 0.02 78+ 1.0451 78.79± 0.21

69.91 77+ 95.31± 0.54 44.44± 0.02 77+ 1.1698 78.29± 0.23

49.89 77+ 13.47± 0.10 45.91± 0.03 77+ 1.1762 78.34± 0.18

49.89 77+ 42.18± 0.30 36.30± 0.02 76+ 1.4106 77.13± 0.17

34.90 74+ 8.10± 0.06 32.08± 0.03 75+ 1.5374 76.01± 0.16

34.90 74+ 13.47± 0.10 29.92± 0.03 75+ 1.5759 75.64± 0.10
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TABLE D.2: Experimental mean charge-states for lead ions after traversing nitrogen
gas targets, and related information.

208Pb→7N

E0 q0 x Eout qscaled q̄

(MeV/u) (mg cm−2) (MeV/u)

279.98 81+ 25.75± 0.16 277.16± 0.09 81+ 80.94± 0.17

279.98 81+ 51.43± 0.33 274.37± 0.09 81+ 80.91± 0.19

279.98 81+ 70.01± 0.45 272.34± 0.09 81+ 80.90± 0.17

99.94 79+ 23.68± 0.06 95.35± 0.05 79+ 79.60± 0.18

99.94 79+ 46.18± 0.30 90.83± 0.05 79+ 79.57± 0.14

99.94 79+ 69.14± 0.44 86.18± 0.05 78+ 79.51± 0.18

69.91 77+ 15.89± 0.04 66.14± 0.05 77+ 78.67± 0.23

69.91 77+ 35.36± 0.08 61.33± 0.05 77+ 78.45± 0.23

69.91 77+ 52.52± 0.34 56.70± 0.05 77+ 78.04± 0.24

69.91 77+ 70.12± 0.45 51.96± 0.04 75+ 77.43± 0.24

49.89 77+ 5.87± 0.01 48.15± 0.05 76+ 76.59± 0.23

49.89 77+ 19.31± 0.05 44.25± 0.05 75+ 75.52± 0.23

49.89 77+ 35.03± 0.08 39.45± 0.05 74+ 74.41± 0.22

49.89 77+ 51.93± 0.33 33.76± 0.04 72+ 72.44± 0.53

34.90 74+ 10.56± 0.03 31.26± 0.05 72+ 71.67± 0.53

34.90 74+ 22.95± 0.06 26.87± 0.05 70+ 70.16± 0.82

34.90 74+ 35.01± 0.08 22.30± 0.05 69+ 67.89± 0.83
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TABLE D.3: Experimental mean charge-states for lead ions after traversing titanium
targets, and related information.

208Pb→22Ti

E0 q0 x Eout qscaled σCSD q̄

(MeV/u) (mg cm−2) (MeV/u)

279.98 81+ 32.29± 0.54 277.08± 0.06 81+ 0.7167 81.20± 0.09

279.98 81+ 38.07± 0.57 276.56± 0.06 81+ 0.7205 81.21± 0.07

279.98 81+ 102.82± 1.54 270.84± 0.06 81+ 0.7275 81.24± 0.09

279.98 81+ 205.15± 2.18 261.64± 0.06 81+ 0.7409 81.19± 0.08

279.98 81+ 238.76± 3.58 258.66± 0.06 81+ 0.7450 81.17± 0.08

99.94 79+ 18.64± 0.28 97.18± 0.03 79+ 1.0360 78.86± 0.12

99.94 79+ 56.72± 0.64 91.35± 0.03 79+ 1.0768 78.64± 0.12

99.94 79+ 102.82± 1.54 83.96± 0.03 78+ 1.2027 78.27± 0.10

99.94 79+ 140.89± 1.64 77.71± 0.03 78+ 1.2786 77.90± 0.11

99.94 79+ 205.15± 2.18 66.31± 0.02 77+ 1.4212 77.04± 0.12

99.94 79+ 238.76± 3.58 60.51± 0.02 76+ 1.4719 76.55± 0.13

69.91 77+ 18.64± 0.28 66.52± 0.03 77+ 1.4138 77.07± 0.17

69.91 77+ 56.72± 0.64 59.32± 0.03 76+ 1.5000 76.36± 0.21

69.91 77+ 102.34± 1.54 49.99± 0.02 75+ 1.6065 75.19± 0.24

69.91 77+ 140.89± 1.64 41.52± 0.02 74+ 1.6696 73.81± 0.23

49.89 75+ 8.36± 0.46 48.09± 0.03 75+ 1.6314 74.91± 0.16

49.89 75+ 18.64± 0.28 45.87± 0.03 75+ 1.6442 74.56± 0.21

49.89 75+ 38.07± 0.57 41.43± 0.02 74+ 1.6854 73.80± 0.19

49.89 75+ 51.73± 0.73 38.14± 0.02 73+ 1.7120 73.17± 0.16

49.89 75+ 70.37± 0.79 33.51± 0.02 72+ 1.7520 72.15± 0.22
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TABLE D.4: Experimental mean charge-states for lead ions after traversing argon gas
targets, and related information.

208Pb→18Ar

E0 q0 x Eout qscaled q̄

(MeV/u) (mg cm−2) (MeV/u)

279.98 81+ 31.83± 0.08 277.15± 0.09 81+ 81.12± 0.21

279.98 81+ 62.73± 0.40 274.33± 0.09 81+ 81.17± 0.17

279.98 81+ 100.00± 0.64 270.99± 0.09 81+ 81.17± 0.18

99.94 79+ 34.71± 0.08 94.68± 0.05 78+ 78.01± 0.15

99.94 79+ 67.72± 0.43 89.46± 0.05 78+ 77.66± 0.18

99.94 79+ 99.99± 0.64 84.32± 0.05 78+ 77.25± 0.19

69.91 77+ 23.73± 0.06 65.62± 0.05 76+ 74.89± 0.20

69.91 77+ 23.41± 0.15 65.58± 0.05 76+ 74.93± 0.21

69.91 77+ 50.16± 0.32 60.66± 0.05 73+ 74.21± 0.24

69.91 77+ 50.86± 0.12 60.65± 0.05 73+ 74.17± 0.21

69.91 77+ 76.73± 0.49 55.58± 0.05 75+ 73.41± 0.15

69.91 77+ 99.98± 0.64 50.95± 0.04 74+ 72.66± 0.18

49.89 75+ 9.79± 0.02 47.80± 0.05 71+ 72.08± 0.22

49.89 75+ 28.88± 0.07 43.78± 0.05 70+ 71.48± 0.21

49.89 75+ 50.47± 0.12 39.04± 0.05 69+ 70.67± 0.20

49.89 75+ 71.61± 0.46 33.92± 0.04 70+ 69.49± 0.82
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TABLE D.5: Experimental mean charge-states for lead ions after traversing zirconium
targets, and related information.

208Pb→40Zr

E0 q0 x Eout qscaled σCSD q̄

(MeV/u) (mg cm−2) (MeV/u)

279.98 81+ 106.12± 1.14 271.71± 0.06 81+ 0.7950 80.91± 0.09

279.98 81+ 261.85± 5.38 259.15± 0.06 81+ 0.8040 80.81± 0.08

279.98 81+ 520.98± 7.52 237.86± 0.05 81+ 0.8170 80.63± 0.08

99.94 79+ 23.40± 0.49 96.93± 0.03 78+ 1.1682 78.27± 0.14

99.94 79+ 60.28± 0.90 92.02± 0.03 78+ 1.2263 78.06± 0.19

99.94 79+ 129.52± 1.24 82.57± 0.03 78+ 1.3004 77.60± 0.16

99.94 79+ 259.12± 5.25 62.74± 0.02 76+ 1.3847 76.21± 0.19

99.94 79+ 261.85± 5.38 61.86± 0.02 76+ 1.3876 76.14± 0.12

69.91 77+ 23.40± 0.49 66.29± 0.03 77+ 1.4378 76.51± 0.13

69.91 77+ 45.84± 0.69 62.68± 0.03 76+ 1.4734 76.20± 0.11

69.91 77+ 60.28± 0.90 60.40± 0.03 76+ 1.4935 75.99± 0.18

69.91 77+ 106.12± 1.14 52.57± 0.02 75+ 1.5639 75.14± 0.20

69.91 77+ 129.52± 1.24 48.36± 0.02 74+ 1.5949 74.56± 0.15

49.89 76+ 17.00± 0.37 46.77± 0.03 74+ 1.5990 74.30± 0.21

49.89 76+ 45.84± 0.69 41.23± 0.03 73+ 1.6561 73.33± 0.22

49.89 76+ 60.28± 0.90 38.36± 0.02 72+ 1.6855 72.78± 0.21

49.89 76+ 83.68± 1.03 33.48± 0.02 71+ 1.7626 71.61± 0.22

34.90 70+ 10.14± 0.70 32.75± 0.03 71+ 1.7751 71.42± 0.13

34.90 70+ 23.40± 0.49 29.83± 0.03 71+ 1.8535 70.55± 0.13

34.90 70+ 40.40± 0.61 25.90± 0.02 69+ 1.9541 69.21± 0.20

34.90 70+ 60.28± 0.90 21.10± 0.02 68+ 2.0526 66.95± 0.18
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TABLE D.6: Experimental mean charge-states for lead ions after traversing krypton
gas targets, and related information.

208Pb→36Kr

E0 q0 x Eout qscaled q̄

(MeV/u) (mg cm−2) (MeV/u)

99.94 79+ 39.12± 0.25 94.98± 0.05 78+ 76.60± 0.18

99.94 79+ 77.17± 0.49 90.04± 0.05 77+ 76.26± 0.18

99.94 79+ 148.67± 0.95 80.21± 0.05 77+ 75.56± 0.20

99.94 79+ 209.24± 1.34 71.53± 0.04 76+ 74.79± 0.20

69.91 77+ 36.32± 0.09 64.41± 0.05 75+ 73.74± 0.27

69.91 77+ 71.25± 0.17 58.97± 0.05 75+ 73.15± 0.26

69.91 77+ 105.81± 0.25 53.36± 0.05 74+ 72.46± 0.19

69.91 77+ 144.94± 0.35 46.40± 0.04 72+ 71.62± 0.15

49.89 76+ 8.52± 0.02 48.36± 0.05 73+ 71.45± 0.20

49.89 76+ 30.78± 0.07 44.45± 0.05 72+ 70.90± 0.18

49.89 76+ 57.20± 0.14 39.56± 0.05 72+ 70.02± 0.21

49.89 76+ 82.70± 0.20 34.60± 0.04 70+ 68.95± 0.19

34.90 70+ 6.85± 0.02 33.48± 0.05 69+ 68.22± 0.53

34.90 70+ 23.70± 0.06 30.04± 0.05 68+ 67.36± 0.56

34.90 70+ 45.70± 0.11 25.31± 0.05 67+ 66.05± 0.83

34.90 70+ 60.21± 0.14 22.05± 0.05 67+ 65.20± 0.82
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TABLE D.7: Experimental mean charge-states for lead ions after traversing tin targets,
and related information.

208Pb→50Sn

E0 q0 x Eout qscaled σCSD q̄

(MeV/u) (mg cm−2) (MeV/u)

279.98 81+ 71.88± 3.16 274.82± 0.06 81+ 0.8022 80.80± 0.25

279.98 81+ 184.54± 2.77 266.52± 0.06 81+ 0.8030 80.74± 0.07

279.98 81+ 270.80± 4.06 260.13± 0.06 81+ 0.8034 80.70± 0.08

279.98 81+ 455.34± 4.92 246.23± 0.06 81+ 0.8108 80.58± 0.08

99.94 79+ 22.83± 2.29 97.33± 0.03 78+ 1.1772 78.28± 0.08

99.94 79+ 71.88± 3.16 91.08± 0.03 78+ 1.2261 78.03± 0.09

99.94 79+ 184.54± 2.77 76.53± 0.03 77+ 1.3487 77.24± 0.13

69.91 77+ 22.83± 2.29 66.49± 0.03 76+ 1.4230 76.55± 0.16

34.90 74+ 2.14± 1.03 34.48± 0.03 71+ 1.7967 71.34± 0.26

34.90 74+ 3.84± 1.95 34.17± 0.03 71+ 1.8165 71.27± 0.26

34.90 74+ 5.97± 2.20 33.75± 0.03 70+ 1.7692 71.12± 0.35
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TABLE D.8: Experimental mean charge-states for lead ions after traversing xenon gas
targets, and related information.

208Pb→54Xe

E0 q0 x Eout qscaled q̄

(MeV/u) (mg cm−2) (MeV/u)

279.98 81+ 111.67± 0.71 271.97± 0.09 81+ 80.43± 0.10

279.98 81+ 221.76± 1.42 264.03± 0.09 81+ 80.37± 0.22

279.98 81+ 304.36± 1.95 257.99± 0.09 81+ 80.32± 0.22

279.98 81+ 327.11± 2.09 256.28± 0.09 81+ 80.30± 0.08

99.94 79+ 28.18± 0.18 96.62± 0.05 78+ 76.68± 0.13

99.94 79+ 28.58± 0.07 96.65± 0.05 78+ 76.67± 0.12

99.94 79+ 84.29± 0.20 90.17± 0.05 77+ 76.24± 0.17

99.94 79+ 83.14± 0.53 90.20± 0.05 77+ 76.28± 0.17

99.94 79+ 162.23± 1.04 80.49± 0.05 77+ 75.48± 0.15

99.94 79+ 164.50± 0.39 80.36± 0.05 77+ 75.42± 0.12

99.94 79+ 237.13± 1.52 70.78± 0.04 76+ 74.50± 0.15

99.94 79+ 307.36± 1.97 61.07± 0.04 75+ 73.32± 0.12

69.91 77+ 20.27± 0.05 67.15± 0.05 75+ 73.68± 0.20

69.91 77+ 68.83± 0.17 60.48± 0.05 74+ 72.87± 0.22

69.91 77+ 112.97± 0.27 54.13± 0.04 73+ 72.01± 0.20

69.91 77+ 154.12± 0.37 47.90± 0.04 73+ 71.06± 0.22

49.89 76+ 9.28± 0.06 48.41± 0.05 73+ 70.78± 0.12

49.89 76+ 30.64± 0.20 45.11± 0.05 72+ 70.29± 0.18

49.89 76+ 59.83± 0.38 40.39± 0.05 72+ 69.42± 0.23

49.89 76+ 87.69± 0.56 35.67± 0.04 70+ 68.46± 0.54

49.89 76+ 113.93± 0.73 31.00± 0.04 68+ 67.35± 0.53
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TABLE D.9: Experimental mean charge-states for lead ions after traversing
polypropylene targets, and related information.

208Pb→(C3H6)n

E0 q0 x Eout qscaled σCSD q̄

(MeV/u) (mg cm−2) (MeV/u)

279.98 81+ 25.99± 0.12 276.63± 0.06 81+ 0.6160 80.87± 0.09

279.98 81+ 45.92± 0.23 274.08± 0.06 81+ 0.7013 80.81± 0.10

279.98 81+ 64.06± 0.19 271.70± 0.06 81+ 0.7350 80.78± 0.09

279.98 81+ 71.91± 0.26 270.68± 0.06 81+ 0.7413 80.77± 0.10

279.98 81+ 119.51± 0.31 264.49± 0.06 81+ 0.7551 80.72± 0.09

279.98 81+ 183.57± 0.36 255.99± 0.06 81+ 0.7537 80.67± 0.09

99.94 79+ 16.73± 0.09 96.13± 0.03 80+ 0.7127 79.64± 0.10

99.94 79+ 42.72± 0.15 89.86± 0.03 79+ 0.7356 79.67± 0.11

99.94 79+ 64.06± 0.19 84.53± 0.03 79+ 0.7387 79.64± 0.10

99.94 79+ 109.98± 0.30 72.35± 0.02 79+ 0.7930 79.46± 0.11

99.94 79+ 119.51± 0.31 69.62± 0.02 79+ 0.8113 79.40± 0.08

69.91 77+ 13.36± 0.03 66.07± 0.03 79+ 0.9262 79.07± 0.18

69.91 77+ 25.99± 0.12 62.21± 0.03 79+ 0.9008 79.18± 0.16

69.91 77+ 45.92± 0.23 55.94± 0.03 78+ 0.9868 78.96± 0.21

69.91 77+ 64.06± 0.19 49.65± 0.02 78+ 1.1045 78.57± 0.18

69.91 77+ 71.91± 0.26 46.82± 0.02 77+ 1.1513 78.36± 0.09

69.91 77+ 90.05± 0.23 39.58± 0.02 76+ 1.3510 77.48± 0.19

49.89 77+ 6.18± 0.02 47.71± 0.03 78+ 1.1967 78.00± 0.10

49.89 77+ 13.36± 0.03 45.08± 0.03 77+ 1.2278 78.08± 0.18

49.89 77+ 25.99± 0.12 40.08± 0.02 77+ 1.3533 77.54± 0.19

49.89 77+ 39.35± 0.12 34.44± 0.02 76+ 1.4927 76.50± 0.24

34.90 74+ 6.18± 0.02 32.23± 0.03 76+ 1.4621 75.77± 0.25

34.90 74+ 16.73± 0.09 27.27± 0.03 75+ 1.6017 74.42± 0.22
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TABLE D.10: Experimental mean charge-states for lead ions after traversing propene
gas targets, and related information.

208Pb→propene

E0 q0 x Eout qscaled q̄

(MeV/u) (mg cm−2) (MeV/u)

279.98 81+ 35.28± 0.08 275.38± 0.09 81+ 80.82± 0.15

279.98 81+ 34.78± 0.22 275.39± 0.09 81+ 80.82± 0.13

279.98 81+ 72.08± 0.46 270.46± 0.09 81+ 80.73± 0.14

279.98 81+ 107.3± 0.69 265.76± 0.09 81+ 80.69± 0.15

99.94 79+ 13.85± 0.09 96.74± 0.05 80+ 79.44± 0.12

99.94 79+ 36.63± 0.23 91.31± 0.05 80+ 79.51± 0.14

99.94 79+ 71.22± 0.46 82.36± 0.05 79+ 79.44± 0.15

99.94 79+ 107.1± 0.69 72.55± 0.04 78+ 79.24± 0.19

49.89 77+ 8.12± 0.02 46.93± 0.05 78+ 77.13± 0.22

49.89 77+ 7.96± 0.05 46.84± 0.05 78+ 77.09± 0.25

49.89 77+ 23.87± 0.06 41.02± 0.05 77+ 76.06± 0.18

49.89 77+ 23.53± 0.15 40.96± 0.05 77+ 75.92± 0.25

49.89 77+ 38.86± 0.09 35.05± 0.04 76+ 74.19± 0.20

49.89 77+ 38.32± 0.25 35.05± 0.04 76+ 73.99± 0.22

34.90 74+ 4.95± 0.01 32.78± 0.06 72+ 73.11± 0.64

34.90 74+ 14.44± 0.03 28.63± 0.05 71+ 71.71± 0.54

34.90 74+ 23.45± 0.06 24.41± 0.05 71+ 70.10± 0.82
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Appendix E

ATIMA Program

The ATIMA (ATomic Interaction with MAtter) computer program [Wei98a] has been
developed at GSI, Darmstadt in Germany since 1985. It provides predictions for the
stopping power, energy-loss straggling, and angular scattering of any projectile ions
from protons (Z1 = 1) up to uranium (Z1 = 92) and for target materials from hydro-
gen to uranium1. Since there has been no publication of this computer program, this
appendix describes a main part of the program; specifically, how the stopping power
calculation is performed.

The basic input parameters are the incident energy E, mass M1, atomic number
Z1 of the projectile, and the mass M2, atomic number Z2, density ρ, mean excitation
potential I of the target. The program adapts, then, mainly two routines for the calcu-
lation, namely the stopping power part and the mean charge prediction part. We will
describe the individual parts briefly below:

E.1 Stopping Power Prediction

E.1.1 Elastic Collisions

The calculation of the stopping power consists of two contributions. One is the nuclear
stopping power, which is attributed to the elastic collisions, as shortly described in
Chapter 2. The formula implemented in ATIMA program comes from Lindhard et al.
[LSS63; LNS68] as

(
dE
dx

)
n
(ε) =


ln(1+1.1383ε)

2[ε+0.01321ε0.212226+0.19593ε0.5]
(ε ≤ 30)

ln(ε)
2ε (ε > 30)

(E.1)

where n denotes the nuclear stopping. The ε is the reduced energy defined as

ε =
32.53 M2E

Z1Z2 (M1 + M2)
(
Z0.23

1 + Z0.23
2

) (E.2)

1The projectile and target can optionally be chosen up to Z1 = 120 and Z2 = 99, respectively.
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where the energy E is given in the unit of keV/u. In the present experiment, the
contribution from the elastic collisions is negligible, as we have shown in Chapter 2.

E.1.2 Inelastic Collisions

The other contribution is from the electronic stopping power, which is attributed to the
inelastic collisions with the target electrons. In the ATIMA program, the calculation is
divided into three energy domains:

• For E ≤ 10 MeV/u, the electronic stopping power is calculated according to the
scaling formula of Ziegler [ZBL85] with the old parametrization from the 1990s
as (

dE
dx

)
e
=

(
dE
dx

)Ziegler

e
. (E.3)

The principles of this scaling procedure can be found in Ref.[ZBL85].

• For 10 < E ≤ 30 MeV/u, the electronic stopping power is averaged with weight
between the Ziegler formula and the ATIMA stopping power, which will be
shown below, as(

dE
dx

)
e
= (1.0− F) ·

(
dE
dx

)Ziegler

e
+

(
dE
dx

)ATIMA

e
(E.4)

where
F = 0.05 · (E− 10.0) (E.5)

• Above 30 MeV/u, the electronic stopping power is calculated by the original
ATIMA code as (

dE
dx

)
e
=

(
dE
dx

)ATIMA

e
. (E.6)

Here, we will explain the general equation of (dE/dx)ATIMA
e implemented in the

ATIMA program. It adapts the Lindhard-Sørensen theory [LS96] as well as the correc-
tion terms considered in the reference as

−
(

dE
dx

)ATIMA

e
=

4πNAe4

mec2β2
Z2

M2
q2

1 ·
[(

LBethe −
C
Z2

)
· B− δ

2
+ ∆LLS

]
, (E.7)

where NA is the Avogadro’s number and q1 is the mean charge state of projectiles: We
will give a description on the latter parameter in the next section. The explanation of
the terms in the square bracket are as follows:

First, LBethe is the term from the relativistic Bethe formula, which is based on the
first-order Born approximation, given by

LBethe = LBethe(β, I)

= ln
2mec2β2

I
− ln(1− β2)− β2 .

(E.8)
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The input parameters are the velocity of projectiles and the mean excitation potential
I, the values of which is taken from the NIST table [NISb]. The term C is the inner
Shell correction derived in Ref. [BB64] as

C = C(I, η)

=
(

0.422377η−2 + 0.0304043η−4 − 0.00038106η−6
)
× 10−6 I2

+ (3.850190η−2 − 0.1667989η−4 + 0.00157955η−6)× 10−9 I3 ,

(E.9)

where η = γβ. This equation is included in the calculation only when η ≥ 0.13.
Next, the factor B is responsible for the Barkas term, or the Z3

1 correction due to the
polarization effect. The formula is taken from Jackson and McCarthy [JM72], but a
factor two is multiplied to the formula as suggested by Lindhard [Lin76]:

B = B(q1, Z2, η)

= 1 + 2
Z1√
Z2

F(V) ,
(E.10)

where
V =

βγ

α
√

Z2
. (E.11)

The F(V) is a dimensionless universal function, and the exact form is given in Ref.[JM72].
Note that this is the ONLY correction term affected by the charge state of projectile in
the ATIMA program, and the explanation will be given in the next section. Therefore,
the variable of the formula is explicitly given with the mean charge state q1. Then, δ is
the Fermi density effect, the formula of which is given by Sternheimer [Ste84]

δ = δ(β, Z2, M2, I, ρ)

=


0 (X < X0, δ0 = 0)
δ0 · 102(X−X0) (X < X0, δ0 6= 0)
4.6052X + a (X1 − X)m + C (X0 ≤ X ≤ X1)

4.6052X + C (X > X1)

(E.12)

with X = log10(βγ). The coefficients δ0, X0, X1, a, and m have Z2 dependence. And, C
is given by

C = −2 ln(I/hνp)− 1 , (E.13)

where the I corresponds to the mean excitation potential. Lastly, the ∆LLS is the cor-
rection term derived in the Lindhard-Sørensen theory [LS96]

∆LLS = ∆LLS(Z1, v) . (E.14)

This term consists of the correction terms of Bloch, Mott, and the finite nuclear size
effect for the bare projectiles. The input parameters are Z1, M1, and velocity β.

With the described formulas and models for the stopping powers of heavy ions,
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the ATIMA program can accurately predict the experimental stopping powers for
bare and few-electron projectiles as shown in Fig.E.1[Wei+00; Gei+02]. This statement
holds even for relatively thick energy degraders (d) because the absolute energy-loss
calculation is still based on the atomic range difference (d = R(Ein)− R(Eout)), i.e. the
critical energy domain for stopping powers is excluded.

FIGURE E.1: Experimental stopping powers for different heavy-ion projectiles in
beryllium target at β = 0.84. This picture was taken from Ref.[Gei+02].

E.2 Mean Charge State Prediction

The ATIMA program adopts the mean charge state of the projectiles in matters for the
charge state description in the calculation of Eq.E.7. The effect enters in the q2 term
in front of the square brackets and in the term B within the stopping number. Other
terms are calculated with the projectile’s nuclear charge.

The latest version of the ATIMA program, which is the version 1.4, has a special
routine for the prediction of mean charge state as follows: Figure E.2 (taken from
[Wei98a]) shows the overview of the calculation method. The routine divides the cal-
culation domain depending on the energy E and atomic number Z1 (= Zp of the y-
axis in the picture) of the projectile ions. First, at the high relativistic domain E ≥ 1.5
GeV/u, the mean charge state is predicted by the fit formula to the calculation results
of the CHARGE program [Sch+98] given by

qCHARGE = Z1

(
1.0− exp

(
−180 βγ0.18Z−0.82

1 Z0.1
2

))
. (E.15)
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for any projectiles. For heavy projectiles with Z1 > 28, at the energy domain in
70 ≤ E ≤ 1000 MeV/u, the mean charge state is predicted by the subroutine of the
GLOBAL program with some corrections. The correction term was determined from the
comparison of the GLOBAL calculation qGLOBAL with the experimental mean charge
data, and the deviation was compensated by adding the semi-emperical formula of
Pierce and Blann

qP&B = Z1

[
1− exp

(
−0.95

v
v0Z2/3

1

)]
(E.16)

with being put some weights. Three fit parameters (c1, c2, c3) were determined, and
the resulting formula for the energy domain 70 ≤ E ≤ 1000 MeV/u is defined by

qGL/c =
c1 (qGLOBAL − qP&B)

(Z2 + 1)c2
(1.0− exp (−c3E)) + qP&B , (E.17)

where c1 = 1.4, c2 = 0.28, and c3 = 0.04, respectively. The transition from qCHARGE to
qGL/c at the interval between 1000 and 1500 MeV/u, the two functions are connected
simply by linear. In addition, at the lower energy interval between 30 and 70 MeV/u,
the formula qGL/c is linearly connected to the function of Winger: For the light projec-
tiles with Z1 ≤ 28 at the energy domain in 30 ≤ E ≤ 1000 MeV/u, the mean charge
state is predicted by the fit formula obtained by Winger et al. [Win+92] as

qWinger = Z1

(
1.0− exp

(
a0 + a1x + a2x2 + a3x3 + a4x4

))
(E.18)

where
x =

β

0.012Z0.45
1

(E.19)

and

a0 = −c0

a1 = −c1 exp
(

c2 ln (Z1)− c3 ln2 (Z1) + c4 ln3 (Z1)− c5 ln (Z2) + c6 ln2 (Z2)
)

a2 = c7 exp (c8 ln (Z1)− c9 ln (Z2))

a3 = −c10 exp
(

c11 ln (Z1)− c12 ln3 (Z1)
)

a4 = −c13

(E.20)

with c0 = 0.4662, c1 = 0.5491, c2 = 0.7028, c3 = 0.1089, c4 = 0.001644, c5 = 0.5155,
c6 = 0.05633, c7 = 0.005447, c8 = 0.8795, c9 = 1.091, c10 = 0.0008261, c11 = 2.848,
c12 = 0.2442, and c13 = 0.00009293.
Then, at the interval between 10 and 30 MeV/u, the mean charge state is calculated by
the Winger formula, but since the stopping power Eq.E.7 is averaged with weight to
the Ziegler formula as described in Eq.E.4, the mean charge state is accordingly modi-
fied by the transition. Finally, below 10 MeV/u, the ATIMA program fully adopts the
calculation by the Ziegler formula.
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With the described routines, the ATIMA program can reproduce our experimental
stopping powers of solids very well. However, detailed investigation on the gas-solid
difference is required to improve the program; as it was clearly shown that the ATIMA
1.4 cannot accurately reproduce the stopping powers of the gaseous materials.

FIGURE E.2: Overview of the mean charge prediction implemented in the ATIMA
1.4. This picture was taken from Ref.[Wei98a].
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