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Chapter 1

Introduction

In (usual) analysis, the fields R or C play a central role. For several reasons, peo-
ple started to consider the implications of replacing R or C by the p-adic field Qp,
or more generally, local fields. Because local fields are equipped with the “non-
archimedean” norm (i. e. the norm satisfies the “ultrametric triangle inequality”),
the analysis over local fields is known as non-archimedean (also known as ultra-
metric or p-adic) analysis.

Let K be a local field, i.e., the quotient field of a complete discrete valua-
tion ring R whose residue field κ has q elements. One equips K with the non-
archimedean norm | · | normalized so that |π| = q−1 for a uniformizer π of K.
We define a K-Banach space to be a complete normed K-vector space B whose
norm || · || satisfies the ultrametric triangle inequality ||v + w|| ≤ max{||v||, ||w||} for
any v,w ∈ B. In this doctoral thesis, we mainly consider Banach spaces over local
fields (especially, the Banach spaces of all continuous, continuously differentiable,
or locally analytic functions). This thesis is organized as follows.

1.1 Contents of Chapter 2
In Chapter 2, we consider a wavelet basis on a local field. A wavelet basis is a basis
for the K-Banach space C(R,K) of continuous functions from R to K. Note that
C(R,K) is equipped with the supremum norm | f |sup = supx∈R{| f (x)|}. We prove
a characterization of n-times continuously differentiable functions from R to K
by the coefficients with respect to the wavelet basis and give an orthonormal ba-
sis for the K-Banach space Cn(R,K) of n-times continuously differentiable func-
tions. Here, n-times continuously differentiable functions are non-archimedean
analogues of Cn-functions in the real analysis. (See Chapter 2 for the detailed
definition.) It is a joint work with Hiroki Ando [2].

We summarize previous works for n-times continuously differentiable func-
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tions. Let p be a prime. For n ≥ 0, we define locally constant functions en ∈
C(Zp,Qp) to be e0(x) = 1 and to be the characteristic function of the ball {x ∈ Zp |
|x − n| < n−1} if n ≥ 1. The functions {en | n ≥ 0} form an orthonormal base of
C(Zp,Qp) and are called the van der Put basis ([19, Theorem 62.2]). (A wavelet
basis, which is introduced in Chapter 2, is a generalization of the van der Put ba-
sis.) Moreover, if f ∈ C(Zp,Qp) has the representation f (x) =

∑∞
n=0 bn( f )en(x),

then we have b0( f ) = f (0) and bn( f ) = f (n) − f (n−) for n ≥ 1. Here, n− =∑m−1
i=0 ai pi if n has the p-adic expansion n =

∑m
i=0 ai pi, ai ∈ {0, 1, · · · p − 1} and

am , 0. Let

γn B

1 if n = 0
n − n− if n ∈ Z>0.

The following theorems give a characterization of C1-functions by the van der Put
coefficients and an orthonormal base of C1(Zp,Qp).

Theorem 1.1.1 ([19, Exercise 63.A]). Let f (x) =
∑∞

n=0 bn( f )en(x) ∈ C(Zp,Qp).
Then, f ∈ C1(Zp,Qp) if and only if the limit lim n→a

a,n∈Z>0
bn( f )γ−1

n exists for each
a ∈ Zp.

Theorem 1.1.2 ([19, Theorem 68.1, Corollary 68.2]). The set {γnen(x), (x−n)en(x) |
n ≥ 0} is an orthonormal base of C1(Zp,Qp). Moreover, if f ∈ C1(Zp,Qp) has the
expansion f (x) =

∑∞
n=0 cn( f )γnen(x) +

∑∞
n=0 dn( f )(x − n)en(x), then we have

cn( f ) =

 f (0) if n = 0
Φ1 f (n, n−) − f ′(n−) if n ∈ Z>0

and

dn( f ) =

 f ′(0) if n = 0
f ′(n) − f ′(n−) if n ∈ Z>0.

Here, Φ1 f and f ′ are defined in (2.1.4) and Remark 2.1.6, respectively.

In [9], De Smedt proved the following theorems.

Theorem 1.1.3 ([9, Theorem 6]). Let f (x) =
∑∞

n=0 cn( f )γnen(x) +
∑∞

n=0 dn( f )(x −
n)en(x) ∈ C1(Zp,Qp). Then, f ∈ C2(Zp,Qp) if and only if the limits lim n→a

a,n∈Z>0
cn( f )γ−1

n

and lim n→a
a,n∈Z>0

dn( f )γ−1
n exist for each a ∈ Zp and satisfy lim n→a

a,n∈Z>0
dn( f )γ−1

n =

2 lim n→a
a,n∈Z>0

cn( f )γ−1
n .

Theorem 1.1.4 ([9, Theorem 8]). The set {γ2
nen(x), γn(x − n)en(x), (x − n)2en(x) |

n ≥ 0} is an orthonormal base of C2(Zp,Qp).
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Our main results in Chapter 2 are Theorem 2.1.9 and Theorem 2.1.10, which
are generalizations of Theorem 1.1.1, Theorem 1.1.2, Theorem 1.1.3 and Theorem
1.1.4 to Cm-functions for m ≥ 3 and all local fields. Roughly speaking, we obtain
the following theorem by applying Theorem 2.1.9 and Theorem 2.1.10 to the case
Qp. (See Chapter 2 for precise details.)

Theorem 1.1.5. Let m ≥ 0.

1. The set {γm
n en(x), γm−1

n (x−n)en(x), · · · , (x−n)men(x) | n ≥ 0} is an orthonor-
mal basis for Cm(Zp,Qp).

2. If f ∈ Cm(Zp,Qp) has the representation

f (x) =
∑
n≥0

m∑
j=0

bm, j
n ( f )γm− j

n (x − n) jen ∈ Cm(Zp,Qp), (1.1.1)

then we have

bm, j
n ( f ) =

D j f (0) if n = 0
γnψm− jD j f (n, n−) if n ∈ Z>0

for each 0 ≤ j ≤ m. Here, D j and ψ j are defined in Definition 2.1.5 and
(2.1.11), respectively.

3. Suppose that f ∈ Cm(Zp,Qp) has the representation (1.1.1). Then f ∈
Cm+1(Zp,Qp) if and only if the limits lim n→a

a,n∈Z>0
bm, j

n ( f )γ−1
n exist for all a ∈ Zp

and 0 ≤ j ≤ m and satisfy

lim
n→a

a,n∈Z>0

bm, j
n ( f )γ−1

n =

(
m + 1

j

)
lim
n→a

a,n∈Z>0

bm,0
n ( f )γ−1

n .

Note that Theorem 1.1.5 for m = 0, 1 coincides with Theorem 1.1.1, Theorem
1.1.2, Theorem 1.1.3 and Theorem 1.1.4.

1.2 Contents of Chapter 3
In Chapter 3, we first overview a theory of p-adic distribution and recall the Amice
transform. As an application of the Amice transform, we prove Kummer-type
congruences for multi-poly-Bernoulli numbers, which are generalizations of the
Bernoulli numbers and introduced by Imatomi-Kaneko-Takeda.
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For a non-negative integer n, the (n-th) Bernoulli number Bn is defined by the
generating function

tet

et − 1
=

∞∑
n=0

Bn
tn

n!

as formal power series over Q. It is well known that the following congruence
holds (cf. [3, Theorem 11.6]). For positive integers m, n,N and an odd prime p, if
m ≡ n mod (p − 1)pN−1, then we have

(1 − pm−1)
Bm

m
≡ (1 − pn−1)

Bn

n
mod pN .

This congruence is called the Kummer congruence.
In [12] and [4], Arakawa and Kaneko introduced the poly-Bernoulli numbers

B(k)
n and C(k)

n , which are generalizations of the Bernoulli numbers, as follows. Let
k be an integer and n be a non-negative integer. The poly-Bernoulli numbers B(k)

n

and C(k)
n are defined by

Lik(1 − e−t)
1 − e−t =

∞∑
n=0

B(k)
n

tn

n!
,

Lik(1 − e−t)
et − 1

=

∞∑
n=0

C(k)
n

tn

n!

respectively, as formal power series over Q. Here,

Lik(t) =
∞∑

n=1

tn

nk

is the k-th polylogarithm. Note that Li1(t) = − log(1 − t) and B(1)
n = (−1)nC(1)

n =

Bn for n ≥ 0. Kitahara proved the following congruence for the poly-Bernoulli
numbers by using p-adic distributions.

Theorem 1.2.1 ([14, Theorem 12]). Let k be an integer, p be an odd prime, and m,
n and N be positive integers with m, n ≥ N and k < p−1. If m ≡ n mod (p−1)pN−1,
then we have

p2k′B(k)
m ≡ p2k′B(k)

n mod pN ,

where k′ = max{k, 0}.

Remark 1.2.2. Sakata gave an elementary proof of Theorem 1.2.1 in the case
k < 0 ([18, Theorem 6.1]).
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We will consider a further generalization of Theorem 1.2.1.

Definition 1.2.3 ([11, Section 1]). For k = (k1, · · · , kr) ∈ Zr, define the multiple
polylogarithm to be

Lik(t) =
∑

0<m1<···<mr

tmr

mk1
1 · · ·m

kr
r

.

The multi-poly-Bernoulli numbers B(k)
n and C(k)

n are defined to be the rational num-
bers satisfying

Lik(1 − e−t)
1 − e−t =

∞∑
n=0

B(k)
n

tn

n!
,

Lik(1 − e−t)
et − 1

=

∞∑
n=0

C(k)
n

tn

n!

respectively, as formal power series over Q. (Note that the order of the summation
indices of Lik(t) in [11] are reversed. Hence, B(k1,··· ,kr)

n in this thesis coincide with
B(kr ,··· ,k1)

n in [11].)

Remark 1.2.4. In [11], some relations between B(k)
n and C(k)

n were proved. For
example, we have relations

B(k)
n =

n∑
i=0

(
n
i

)
C(k)

i ,

C(k)
n =

n∑
i=0

(−1)n−i

(
n
i

)
B(k)

i ,

B(k)
n = C(k)

n +C(k1,k2,··· ,kr−1)
n−1

for any r ≥ 1, k = (k1, k2, · · · , kr) ∈ Zr and n ≥ 1 ([11, Section 2]).

Remark 1.2.5. The multiple polylogarithm was introduced in [4]. It is expected
to have relations with the multiple zeta values and the multiple zeta functions. It is
also known that the multi-poly-Bernoulli numbers C(k)

n are described as the finite
multiple zeta values ([11, Theorem 8]).

We call k = (k1, · · · , kr) ∈ Zr an index. For an index k, we define the weight
of k to be wt(k) = k1 + · · · + kr and write k′i = max{ki, 0} and k+ = (k′1, · · · , k′r).
The following theorem is one of our main results in Chapter 3.
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Theorem 1.2.6. Let k ∈ Zr be an index, p be an odd prime and m, n and N be
positive integers with m, n ≥ N and wt(k+) < p − 1. If m ≡ n mod (p − 1)pN−1,
then we have

p2 wt(k+)B(k)
m ≡ p2 wt(k+)B(k)

n mod pN ,

p2 wt(k+)C(k)
m ≡ p2 wt(k+)C(k)

n mod pN .

Note that wt(k+) = 1 for the case of ordinary Bernoulli numbers, and hence
the assumption of Theorem 1.2.6 holds automatically for any odd prime p.
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Chapter 2

A wavelet basis for Cn-functions on a
local field

In this chapter, let K be a local field and R the ring of integers of K whose residue
field κ is finite of cardinality q. One equips K with the non-Archimedean norm
| · | normalized so that |π| = q−1 for a uniformizer π of K. This chapter is based on
[2], which is a joint work with Hiroki Ando.

2.1 Preliminaries and main results

2.1.1 Banach spaces over local fields and a wavelet basis
Recall that a K-Banach space means a complete normed K-vector space B whose
norm || · || satisfies the ultrametric triangle inequality ||v + w|| ≤ max{||v||, ||w||} for
any v,w ∈ B. We employ the following definition for the orthonormal basis for a
K-Banach space as follows.

Definition 2.1.1 ([19, Section 50]). Let B be a K-Banach space whose norm is
|| · ||.

1. For x, y ∈ B, we write x ⊥ y if ||x|| ≤ ||x − λy|| for any λ ∈ K. The
orthogonality relation ⊥ is symmetric.

2. A subset {x1, x2, · · · } ⊂ B is called orthogonal if xi ⊥ y for any i ≥ 1
and any y ∈ ⊕ j,iKx j. In addition, we say that a subset {x1, x2, · · · } ⊂ B is
orthonormal if ||xi|| = 1 for each i ≥ 1.

3. A subset {x1, x2, · · · } ⊂ B whose elements are nonzero is called an orthog-
onal (resp. orthonormal) basis of B if {x1, x2, · · · } is orthogonal (resp. or-
thonormal) set in B and every element x ∈ B can be expressed as a conver-
gent sum x =

∑∞
n=1 cnxn for some sequence {cn}n≥1 in K.
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Remark 2.1.2. Let B be a K-Banach space whose norm is ||·|| and {x1, x2, · · · } ⊂ B.

1. If {x1, x2, · · · } is an orthonormal basis of B, then x ∈ B has a unique rep-
resentation as a convergent sum x =

∑∞
n=1 cnxn, where cn ∈ K and cn → 0

([19, Proposition 50.6]).

2. Suppose that ||xi|| = 1 for all i ≥ 1. Then {x1, x2, · · · } is orthonormal in B if
and only if ||∑∞n=1 cnxn|| = supn≥1{|cn|} for each sequence {cn}n≥1 in K with
cn → 0. This follows from [19, Proposition 50.4].

Fix a uniformizer π of K and let T be a set of representatives, containing
0 ∈ R, of κ in R. Set

Rm =


{0} if m = 0m−1∑

i=0

aiπ
i

∣∣∣∣∣∣∣ ai ∈ T
 if m ≥ 1,

R B ∪m≥0Rm and R+ B ∪m≥1Rm. For x ∈ R, we call the expansion x =
∑∞

i=0 ai pi

with ai ∈ T “the π-adic expansion of x” in this chapter. In [8], the following
orthonormal basis of C(R,K), which is called the wavelet basis, was introduced.

Definition 2.1.3 ([8, Section 2]). Define the length of r ∈ R by

l(r) = m (2.1.1)

where m is such that r ∈ Rm \ Rm−1. The wavelet basis is defined to be the
set of functions {χr | r ∈ R}, where χr is the characteristic function of the disk
Dr B

{
x ∈ R | |x − r| ≤ |π|l(r)

}
.

Remark 2.1.4. 1. For a sequence {cr}r∈R in K, the infinite sum
∑

r∈R crχr con-
verges (in C(R,K) with respect to the supremum norm on R) if and only if
for any ε > 0 there exists a finite set S ε ⊂ R+ such that |cr| < ε for any
r ∈ R+ \ S ε.

2. By the same argument as the proof of [19, Theorem 62.2], if f ∈ C(R,K)
has the expansion f =

∑
r∈R br( f )χr, we see that

br( f ) =

 f (0) if r = 0
f (r) − f (r−) if r ∈ R+.

Here,

r− =
m−1∑
i=0

aiπ
i (2.1.2)

if r has the π-adic expansion r =
∑m

i=0 aiπ
i with am , 0.
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2.1.2 Cn-functions and n-th Lipschitz functions
We employ the following definition for the Cn-functions (or n-times continuously
differentiable functions) as follows.

Definition 2.1.5 ([19, Definition 29.1]). For a positive integer n, set

▽nR B {(x1, · · · , xn) ∈ Rn | if i , j then xi , x j}. (2.1.3)

The n-th difference quotient Φn f : ▽n+1R → K of a function f : R → K is
inductively given by Φ0 f B f and by

Φn f (x1, · · · , xn, xn+1) =
Φn−1 f (x1, x3, · · · , xn+1) − Φn−1 f (x2, x3, · · · , xn+1)

x1 − x2
(2.1.4)

for n ∈ Z>0. For n ≥ 0, a function f : R → K is a Cn-function (or an n-times
continuously differentiable function) if Φn f can be extended to a continuous func-
tion from Rn+1 to K. We denote the set of all Cn-functions R → K by Cn(R,K)
for n ≥ 0. Note that C0(R,K) = C(R,K). We define a continuous function
Dn f : R→ K to be Dn f (x) = Φn f (x, · · · , x) for f ∈ Cn(R,K).

Remark 2.1.6. 1. The n-th difference quotient Φn f is a symmetric function of
its n + 1 variables for any f : R → K and we have Cn+1(R,K) ⊂ Cn(R,K)
for n ≥ 0 ([19, Lemma 29.2]).

2. Let n ≥ 1 and f ∈ C(R,K). Then, f ∈ Cn(R,K) if and only if the limit

lim
(x1,··· ,xn,xn+1)→(a,··· ,a)
(x1,··· ,xn,xn+1)∈▽n+1R

Φn f (x1, · · · , xn, xn+1)

exists for each a ∈ R.

3. For f ∈ C(R,K), we say that f is (1-times) differentiable and write f (1) =

f ′ : R→ K if the limit

f ′(a) B lim
x→a

f (x) − f (a)
x − a

exists for any a ∈ R. We define n-times differentiable functions inductively
as follows. For n ≥ 1 and an n-times differentiable function f : R→ K, we
say f is (n + 1)-times differentiable and write f (n+1) = ( f (n))′ : R→ K if the
limit

f (n+1)(a) B lim
x→a

f (n)(x) − f (n)(a)
x − a

exists for any a ∈ R.
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4. Let n ≥ 1. If f ∈ Cn(R,K), then f is n-times differentiable and

j!D j f = f ( j) (2.1.5)

for any 1 ≤ j ≤ n ([19, Theorem 29.5]).

5. Let n ≥ 1 and f ∈ Cn(R,K). For any 0 ≤ j ≤ n, we have Dn− j f ∈ C j(R,K)
and

D jDn− j f =
(
n
j

)
Dn f (2.1.6)

([19, Theorem 78.2]).

6. Contrary to the Archimedean case, an n-times differentiable function f :
R → K whose n-th derivative f (n) is continuous is not Cn in general. For
instance, see Example 2.3.16. See also [19, Example 26.6 and Section 29].

7. There is another notion of Cn-function (see e.g. [5], [7] and [17]), which we
will not discuss in the present paper.

It is known that Cn(R,K) is also a K-Banach space for each n ≥ 0, with respect
to the norm | · |Cn , where

| f |Cn = max
0≤ j≤n
{|Φ j f |sup} (2.1.7)

for f ∈ Cn(R,K) and |Φ j f |sup = supx∈R j+1{|Φ j f (x)|} for 0 ≤ j ≤ n ([19, Exercise
29.C]).

To prove our main results in this chapter, we introduce the n-th Lipschitz func-
tions as follows.

Definition 2.1.7. Let n ≥ 1. A function f ∈ C(R,K) is called an n-th Lipschitz
function if

sup{|Φn f (x1, · · · , xn+1)| | (x1, · · · , xn+1) ∈ ▽n+1R} < ∞. (2.1.8)

(See (2.1.3) for the definition of ▽n+1R.) We call the value of the left hand side of
(2.1.8) the Lipschitz constant of f and denote it by An( f ). We denote the subspace
of n-th Lipschitz functions by Lipn(R,K).

Remark 2.1.8. We define ∆n ⊂ Rn to be

∆n B {(x, · · · , x) ∈ Rn}. (2.1.9)
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Let n ≥ 1 and f ∈ Cn−1(R,K). Then Φn f can be extended to Rn+1\∆n+1 and

sup{|Φn f (x)| | x ∈ ▽n+1R} = sup{|Φn f (x)| | x ∈ Rn+1\∆n+1}.

In addition, if f ∈ Cn(R,K), Φn f can be extended to Rn+1 and

sup{|Φn f (x)| | x ∈ ▽n+1R} = sup{|Φn f (x)| | x ∈ Rn+1}.

These follow from the fact that Rn+1\∆n+1 and ▽n+1R are dense in Rn+1. In the
following, we denote the common value by |Φn f |sup.

2.1.3 Main results in Chapter 2
To describe our main results, we introduce some notation. Let

γr =

1 if r = 0
r − r− if r ∈ R+.

(2.1.10)

For f ∈ Cn(R,K) and j = 0, · · · , n, define the continuous function ψ j f : ▽2R→ K
inductively by ψ0 f (x, y) B Φ1 f (x, y) and

ψ j f (x, y) B
f (x) − f (y) −∑ j

l=1(x − y)lDl f (y)
(x − y) j+1 (2.1.11)

=
ψ j−1 f (x, y) − D j f (y)

x − y
(2.1.12)

for j ≥ 1. Note that ψn f (x, y) = Φn+1 f (x, y, · · · , y). Our main results in this chap-
ter are the following. Theorem 2.1.9 (1) and (2) have already proved under weaker
assumptions in [16, Theorem 3.8]. However their proofs are quite different.

Theorem 2.1.9. Let n ≥ 0. If char(K) = p > 0, we also assume that n ≤ p − 1.

1. The set {γn
rχr(x), γn−1

r (x−r)χr(x), · · · , (x−r)nχr(x) | r ∈ R} is an orthonormal
basis for Cn(R,K). Here, Cn(R,K) is equipped with the supremum norm on
R if n = 0 and the norm | · |n given by (2.1.13) if n ≥ 1 (in other words, the
norm | · |n is inductively defined by using the assertion (4) for n − 1).

2. If f ∈ Cn(R,K) has the representation f (x) =
∑

r∈R
∑n

j=0 bn, j
r ( f )γn− j

r (x −
r) jχr(x), then we have

bn, j
r ( f ) =

D j f (0) if r = 0
γrψn− jD j f (r, r−) if r , 0

for each 0 ≤ j ≤ n.
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3. Let f =
∑

r∈R
∑n

j=0 bn, j
r ( f )γn− j

r (x − r) jχr ∈ Cn(R,K). Then f ∈ Cn+1(R,K) if
and only if the limits lim r→a

a,r∈R+
bn, j

r ( f )γ−1
r exist for all a ∈ R and 0 ≤ j ≤ n

and satisfy

lim
r→a

a,r∈R+
bn, j

r ( f )γ−1
r =

(
n + 1

j

)
lim
r→a

a,r∈R+
bn,0

r ( f )γ−1
r .

4. Let f =
∑

r∈R
∑n

j=0 bn, j
r ( f )γn− j

r (x − r) jχr ∈ Cn+1(R,K). Then

| f |n+1 B sup
r∈R
{|bn,0

r ( f )γ−1
r |, · · · , |bn,n

r ( f )γ−1
r |} < ∞ (2.1.13)

is a norm on Cn+1(R,K). Moreover, Cn+1(R,K) is a Banach space over K
with respect to the norm | · |n+1.

Note that the assertions (1) and (2) for n = 0 already proved in [8, Section 2].

Theorem 2.1.10. Let n ≥ 1. If char(K) = p > 0, we also assume that n ≤ p − 1.
Then we have | f |n = | f |Cn for all f ∈ Cn(R,K). (See (2.1.7) and (2.1.13) for the
definition of | f |n and | f |Cn .)

Applying Theorem 2.1.9 and Theorem 2.1.10 to the case K = Qp, π = p and
T = {0, 1, · · · , p− 1} for a prime p, we obtain Theorem 1.1.5. In other words, our
main results in Chapter 2 include Theorem 1.1.1, Theorem 1.1.2, Theorem 1.1.3
and Theorem 1.1.4.

In fact, an n-th Lipschitz function is a Cn−1-function (see Lemma 2.4.1), hence
f has the representation

f =
∑
r∈R

n−1∑
j=0

bn−1, j
r ( f )γn−1− j

r (x − r) jχr (2.1.14)

by Theorem 2.1.9. The following theorem plays an important role in our proof of
Theorem 2.1.10. We note that [8, Corollary 3.2] and [19, Theorem 63.2] follow
as special cases from Theorem 2.1.11.

Theorem 2.1.11. Let n ≥ 1 and f ∈ C(R,K). The following conditions are
equivalent.

1. The function f is an n-th Lipschitz function.

2. The function f is a Cn−1 -function and has the expansion (2.1.14) with

sup
r∈R+

0≤ j≤n−1

{∣∣∣bn−1, j
r ( f )γ−1

r

∣∣∣} < ∞.
Moreover, if these conditions hold, then we have

An( f ) = sup
r∈R+

0≤ j≤n−1

{∣∣∣bn−1, j
r ( f )γ−1

r

∣∣∣} .
13



2.2 C1-functions and N1-functions

2.2.1 A preliminary lemma
Let x ∈ R and r ∈ R. We write

r ◁ x (2.2.1)

if |x − r| ≤ q−l(r). (See (2.1.1) for the definition of l(r).) For example, if x has
the π-adic expansion x =

∑∞
i=0 aiπ

i, we see that
∑m−1

i=0 aiπ
i ◁ x for any m ≥ 1. In

particular, note that r− ◁ r for r ∈ R+. (See (2.1.2) for the definition of r−.) To
prove the assertion (3) of Theorem 2.1.9 for n = 0, we first show the following
key lemma, which is a generalization of [19, Lemma 63.3].

Lemma 2.2.1. Let f ∈ C(R,K), let B and S be balls in R and K respectively. If
Φ1 f (r, r−) ∈ S for any r ∈ R+ with r, r− ∈ B, then we have Φ1 f (x, y) ∈ S for any
distinct x, y ∈ B.

Remark 2.2.2. Let c ∈ K and x1, · · · xn ∈ S = {x ∈ K | |x − c| < ε}. Then, for
λ1, · · · , λn ∈ K satisfying |λi| ≤ 1 for each 1 ≤ i ≤ n and

∑n
i=1 λi = 1, we have∑n

i=1 λixi ∈ S . Indeed, we find that∣∣∣∣∣∣∣
n∑

i=1

λixi − c

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

n∑
i=1

λixi −
 n∑

i=1

λi

 c

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∑

i=1

λi(xi − c)

∣∣∣∣∣∣∣
≤ max

1≤i≤n
{|λi||xi − c|} < ε.

Proof of Lemma 2.2.1. We may assume that x, y ∈ B ∩ R. Indeed, if we sup-
pose that the assertion holds for all pairs of distinct elements in B ∩ R, by tak-
ing sequences rx, ry ∈ R with rx → x and ry → y, we see that Φ1 f (x, y) =
lim(rx,ry)→(x,y)Φ1 f (rx, ry) ∈ S . Note that Φ1 f : R2 \ ∆2 → K is continuous (∆2

is defined in (2.1.9)) and S is closed in K.
Let B = {x ∈ R | |x − a| < δ}, S = {x ∈ K | |x − c| < ε} and z be the common

initial part in the π-adic expansions of x and y, i.e.

z =


∑n−1

i=0 aiπ
i if |x − y| = q−n < 1, x =

∑∞
i=0 aiπ

i

0 if |x − y| = 1.
(2.2.2)

By the definition of z, we see that z◁ x, z◁y and |x−y| = max{|z− x|, |z−y|}. Since

|x − y| ≤ max{|x − a|, |a − y|} < δ,

14



we obtain |x − z| < δ, |y − z| < δ and

|z − a| ≤ max{|z − x|, |x − a|} < δ,

that is, z ∈ B. Since

Φ1 f (x, y) =
x − z
x − y

Φ1 f (x, z) +
z − y
x − y

Φ1 f (z, y), (2.2.3)

|(x − z)/(x − y)| ≤ 1, |(z − y)/(x − y)| ≤ 1 and

x − z
x − y

+
z − y
x − y

= 1,

according to Remark 2.2.2, it suffices to show that Φ1 f (x, z) ∈ S and Φ1 f (z, y) ∈
S . Thus, we may assume that y ◁ x by replacing z with y. Then there exists a
unique sequence t1 = y ◁ t2 ◁ · · · ◁ tn = x in R such that (t j)− = t j−1 for each
2 ≤ j ≤ n and t j ∈ B for each 1 ≤ j ≤ n. By putting

λ j =
t j − t j−1

x − y

for 2 ≤ j ≤ n, we obtain

Φ1 f (x, y) =
n∑

j=2

λ jΦ1 f (t j, t j−1), (2.2.4)

∑n
j=2 λ j = 1 and |λ j| ≤ 1 for each 2 ≤ j ≤ n. Since Φ1 f (t j, t j−1) ∈ S for any

2 ≤ j ≤ n by the assumption, Remark 2.2.2 implies the assertion. □

2.2.2 Characterizations of C1-functions and N1-functions
Theorem 2.2.3. Let f ∈ C(R,K) be with the expansion f =

∑
r∈R br( f )χr. Then,

f ∈ C1(R,K) if and only if the limit lim r→a
a,r∈R+

br( f )γ−1
r exists for each a ∈ R.

Proof. Suppose that f is a C1-function. Since Φ1 f is continuous on R2, the limit

lim
(x,y)→(a,a)

Φ1 f (x, y) = D1 f (a) ∈ K

exists for any a ∈ R. In other words, for a given ε > 0, there exists δ > 0 such that
|Φ1 f (x, y) − D1 f (a)| < ε for any x, y ∈ R with |x − a| < δ and |y − a| < δ.

If a =
∑∞

i=0 aiπ
i < R, we have al , 0 and q−l < δ for some l ∈ Z>0. For any

r ∈ R+ with |r−a| < q−l−1, there is m ≥ l such that r =
∑m

i=0 aiπ
i and am , 0. Since

|r − r−| = |amqm| = q−m ≤ q−l (see (2.1.2) for the definition of r−), we obtain

|r− − a| ≤ max{|r− − r|, |r − a|} ≤ q−l < δ.

15



Thus, if 0 < |r − a| < q−l, it follows that |r− − a| < δ.
If a =

∑l(a)−1
i=0 aiπ

i ∈ R, set l B min{i ≥ l(a) | q−i < δ}, where l(a) was defined
in (2.1.1). For any r ∈ R+ with 0 < |r − a| ≤ q−l, since there is m ≥ l such that
r − a =

∑m
i=l aiπ

i and am , 0, we obtain

|r− − a| = |r − amqm − a| ≤ max{q−m, q−l} ≤ q−l < δ.

Thus, if 0 < |r − a| < q−l+1, it follows that |r− − a| < δ.
We conclude that, in both cases, there exists δ0 > 0 such that

|Φ1 f (r, r−) − D1 f (a)| < ε (2.2.5)

for any r ∈ R+ with 0 < |r − a| < δ0. Hence, since we have

br( f )γ−1
r =

f (r) − f (r−)
r − r−

= Φ1 f (r, r−) (2.2.6)

for any r ∈ R+, the limit lim r→a
a,r∈R+

br( f )γ−1
r = D1 f (a) exists.

Conversely, we suppose that the limit lim r→a
a,r∈R+

br( f )γ−1
r C g(a) exists for

each a ∈ R. This means that for a given ε > 0, there exists δ > 0 such that
|Φ1 f (r, r−) − g(a)| < ε for any r ∈ R+ with 0 < |r − a| < δ. If a < R, Lemma 2.2.1
implies that

|Φ1 f (x, y) − g(a)| < ε (2.2.7)

for any (x, y) ∈ ▽2R with |x − a| < δ and |y − a| < δ. If a ∈ R, put δ0 B
min{δ, q−l(a)+1}. If r ∈ R+ satisfies |r − a| < δ0 and |r− − a| < δ0, we find that r , a
and |r − a| < δ0 ≤ δ. Hence, Lemma 2.2.1 implies that

|Φ1 f (x, y) − g(a)| < ε (2.2.8)

for any (x, y) ∈ ▽2R with |x−a| < δ0 and |y−a| < δ0. (See (2.1.3) for the definition
of ▽2R.) In either case, we have

lim
(x,y)→(a,a)
(x,y)∈▽2R

Φ1 f (x, y) = g(a).

It follows that f ∈ C1(R,K) from [19, Theorem 29.9]. □

If f ∈ C1(R,K) satisfies f ′ = 0, f is called an N1-function. We denote the set
of all N1-functions by N1(R,K). Lemma 2.2.1 also implies the following theorem.
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Theorem 2.2.4. Let f =
∑

r∈R br( f )χr ∈ C(R,K). Then, f ∈ N1(R,K) if and only
if limr∈R+ br( f )γ−1

r = 0. Here, for a sequence {xr}r∈R+ in K, we say

lim
r∈R+

xr = x (2.2.9)

if for any ε > 0 there exists a finite subset S ε ⊂ R+ such that |xr − x| < ε for any
r ∈ R+ \ S ε.

Proof. Suppose that f ∈ N1(R,K). Thus, there exists a continuous function Φ1 f :
R2 → K satisfying Φ1 f (x, x) = 0 for any x ∈ R. Then we see that for any ε > 0
there exists δ > 0 such that |Φ1 f (x, y)| < ε for all x, y ∈ R with |x − y| < δ. Indeed,
since Φ1 f (a, a) = 0 for a ∈ R, there is δa > 0 such that |Φ1 f (x, y)| < ε for any
x, y ∈ R with |x− a| < δa and |y− a| < δa. Since {Ua(δa)}a∈R is an open covering of
∆2 (see (2.1.9) for the definition of ∆2.), where

Ua(δa) = {(x, y) ∈ R2 | |x − a| < δa, |y − a| < δa}, (2.2.10)

and ∆2 is compact, there exist a1, . . . , ar ∈ R such that ∆2 ⊂ ∪1≤ j≤rUa j(δa j). Then
we find that |Φ1 f (x, y)| < ε if |x − y| < δ B min1≤ j≤r{δa j}. Put

S ε B {r ∈ R+ | l(r) ≤ 1 − logq δ}.

Since

|r − r−| = q−l(r)+1 < δ

for any r ∈ R+ \S ε, we obtain limr∈R+ br( f )γ−1
r = limr∈R+ Φ1 f (r, r−) = 0 by (2.2.6).

Suppose that for any ε > 0 there exists a finite subset S ε ⊂ R+ such that
|Φ1 f (r, r−)| = |br( f )γ−1

r | < ε for any r ∈ R+ \ S ε. (Here, we used (2.2.6).) We will
show that lim(x,y)→(a,a)Φ1 f (x, y) = 0 for all a ∈ R. If a < S ε, set δ B min{|r − a| |
r ∈ S ε}. If r ∈ R+ satisfies |r − a| < δ, then r < S ε and |Φ1 f (r, r−)| < ε. By
putting B = {x ∈ R | |x − a| < δ} and S = {x ∈ K | |x| < ε}, Lemma 2.2.1
implies that |Φ1 f (x, y)| < ε for all distinct x, y ∈ S . If a ∈ S ε, set δ B min{|r − a| |
r ∈ S ε \ {a} or r = a−}. If r ∈ R+ satisfies |r − a| < δ, then r < S ε or r = a.
Applying Lemma 2.2.1 to the same balls B and S as the other case, we obtain the
conclusion. □

2.2.3 C1(R,K) is a K-Banach space
To prove Theorem 2.1.9 (4) for n = 0, we use the following lemma, which is called
Moore-Osgood’s theorem. The proof of Lemma 2.2.5 is given by an elementary
topology and hence omitted.
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Lemma 2.2.5. Let (X, dX), (Y, dY) be metric spaces and suppose that (Y, dY) is
complete. Let S ⊂ X and c ∈ X be a limit point of S . Assume that a sequence
{ fn : S → Y}n≥1 is uniformly convergent on S and the limit limx→c fn(x) exists for
each n ≥ 1. Then the limits limx→c limn→∞ fn(x) and limn→∞ limx→c fn(x) exist and
satisfy

lim
x→c

lim
n→∞

fn(x) = lim
n→∞

lim
x→c

fn(x).

Corollary 2.2.6. The vector spaces C1(R,K) and N1(R,K) are K-Banach spaces
with respect to the norm | · |1.

Proof. We omit the proof for N1(R,K) because it can be checked by the similar
argument to the following proof for C1(R,K). Let f =

∑
r∈R br( f )χr ∈ C1(R,K).

Since Φ1 f : R2 → K is continuous, there exists M > 0 such that |Φ1 f |sup ≤ M. It
follows that

| f |1 = sup
r∈R
{|br( f )γ−1

r |} ≤ max{| f (0)|,M} < ∞

by (2.2.6). It is clear that | · |1 is a norm of C1(R,K).
We show that (C1(R,K), | · |1) is complete. Let { fm}m≥1 be a Cauchy sequence

in (C1(R,K), | · |1). That is, for any ε > 0 there exists N ∈ Z>0 such that | fl− fm| < ε
for l,m ≥ N. Then, since

|br( fl) − br( fm)| ≤ |br( fl) − br( fm)||γr|−1 ≤ | fl − fm|1 < ε

for any r ∈ R+, the sequence {br( fm)}m≥1 is Cauchy in K. Put br( f ) B limm→∞ br( fm)
and f B

∑
r∈R br( f )χr. It is enough to show that f ∈ C1(R,K) and limm→∞ | f −

fm|1 = 0. Let a ∈ R and S = R+ \ {a}. Define gm : S → K to be gm(r) =
br( fm)γ−1

r . We see that the sequence {gm}m≥1 is uniformly convergent on S . Since
fm ∈ C1(R,K) for any m ≥ 1, the limit lim r→a

a,r∈R+
gm(r) exits for each a ∈ R by

Theorem 2.2.3. Hence, Lemma 2.2.5 implies that the limit

lim
r→a

a,r∈R+
br( f )γ−1

r = lim
m→∞

lim
r→a

a,r∈R+
gm(r)

exists and it follows that f ∈ C1(R,K). Finally, since

| f − fm|1 = sup
r∈R
{|gm(r) − br( f )γ−1

r |} < ε

for sufficiently large m ∈ Z>0, we conclude the proof. □

18



2.3 Proof of Theorem 2.1.9
In the following, if char(K) = p > 0, we also assume that n ≤ p−1. To prove The-
orem 2.1.9 by induction on n, we suppose that the assertions hold for 0, · · · , n − 1
in this section. Hence, we have

(IH1) The K-vector spaces (C(R,K), | · |sup) and (C j(R,K), | · | j) (where | · | j is given
by (2.1.13)) are K-Banach spaces for 1 ≤ j ≤ n.

(IH2) For 0 ≤ j ≤ n − 1, the set {γ j−l
r (x − r)lχr(x) | r ∈ R, 0 ≤ l ≤ j} is an

orthonormal basis for C j(R,K).

(IH3) For any 0 ≤ j ≤ n − 1 and f ∈ C j(R,K), f has the representation f (x) =∑
r∈R

∑ j
l=0 b j,l

r ( f )γ j−l
r (x − r)lχr(x), where

b j,l
r ( f ) =

Dl f (0) if r = 0
γrψ j−lDl f (r, r−) if r , 0.

(IH4) For any 0 ≤ j ≤ n − 1 and f (x) =
∑

r∈R
∑ j

l=0 b j,l
r ( f )γ j−l

r (x − r)lχr(x) ∈
C j(R,K), then f ∈ C j+1(R,K) if and only if the limits lim r→a

a,r∈R+
b j,l

r ( f )γ−1
r

exist for all a ∈ R and 0 ≤ l ≤ j and satisfy

lim
r→a

a,r∈R+
b j,l

r ( f )γ−1
r =

(
j + 1

l

)
lim
r→a

a,r∈R+
b j,0

r ( f )γ−1
r .

2.3.1 Cn-antiderivation
To construct an orthonormal basis of Cn(R,K), we introduce a Cn-antiderivation
and prove some properties. For x =

∑∞
i=0 ciπ

i ∈ R, we write

xm =

0 if m = 0∑m−1
i=0 ciπ

i if m ≥ 1.

Definition 2.3.1. Let n ≥ 1. For f ∈ Cn−1(R,K), we define the Cn-antiderivation
Pn f : R→ K to be

Pn f (x) =
n−1∑
j=0

∞∑
m=0

f ( j)(xm)
( j + 1)!

(xm+1 − xm) j+1. (2.3.1)

It is known that

Pn : Cn−1(R,K)→ Cn(R,K) ; f 7→ Pn f

is K-linear and satisfies (Pn f )′ = f ([19, Theorem 81.3]).
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Lemma 2.3.2. Let n ≥ 1 and f ∈ Cn−1(R,K). We have

Pn f (r) − Pn f (r−) =
n∑

j=1

(r − r−) j

j!
f ( j−1)(r−)

for any r ∈ R+. (See (2.1.2) for the definition of r− and Remark 2.1.6(3).)

Proof. Let r =
∑l(r)−1

i=0 ciπ
i ∈ R+. Considering rm = r if m ≥ l(r) and

(r−)m =

rm if m ≤ l(r) − 1
r− if m ≥ l(r),

we obtain

Pn f (r) − Pn f (r−)

=

n−1∑
j=0

l(r)−1∑
m=0

f ( j)(rm)
( j + 1)!

(rm+1 − rm) j+1 −
n−1∑
j=0

l(r)−2∑
m=0

f ( j)((r−)m)
( j + 1)!

((r−)m+1 − (r−)m) j+1

=

n−1∑
j=0

f ( j)(rl(r)−1)
( j + 1)!

(rl(r) − rl(r)−1) j+1 =

n−1∑
j=0

f ( j)(r−)
( j + 1)!

(r − r−) j+1.

□

Lemma 2.3.3. Let 1 ≤ k ≤ n. For any f ∈ Ck(R,K), we have

|Dk f |sup ≤ sup
r∈R+
{|ψk−1 f (r, r−)|} ≤ | f |k.

(See (2.1.11) for the definition of ψk−1 f .)

Proof. Since f ∈ Ck(R,K), we have

lim
(x,y)→(a,a)

ψk−1 f (x, y) = lim
(x,y)→(a,a)

Φk f (x, y, · · · , y) = Dk f (a)

for each a ∈ R. If a ∈ R satisfies Dk f (a) = 0, we have 0 = |Dk f (a)| ≤ |ψk−1 f (r, r−)|
for each r ∈ R+. For a ∈ R with Dk f (a) , 0, there exists δ > 0 such that
|ψk−1 f (r, r−) − Dk f (a)| < |Dk f (a)| if |r − a| < δ and |r− − a| < δ. Then we have

|ψk−1 f (r, r−)| = max{|ψk−1 f (r, r−) − Dk f (a)|, |Dk f (a)|} = |Dk f (a)|.

Thus, we see that

|Dk f |sup ≤ sup
r∈R+
{|ψk−1 f (r, r−)|} = sup

r∈R+
{|bk−1,0

r ( f )γ−1
r |} ≤ | f |k.

□
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Proposition 2.3.4. 1. For any f ∈ Cn−1(R,K), we have |Pn f |n ≤ |(n!)−1 f |n−1.
(See (2.3.1) for the definition of Pn.)

2. The K-linear map

Pn : Cn−1(R,K)→ Cn(R,K) ; f 7→ Pn f

is continuous.

3. For any 0 ≤ k ≤ n − 1 and r ∈ R, we have

Pn(x − r)kχr(x) =
1

k + 1
(x − r)k+1χr(x).

Proof. 1. Let r ∈ R+. We see that

bn−1, j
r (Pn f )γ−1

r = ψn−1− jD jPn f (r, r−)

= ψn−1− j

(
j
1

)−1

D j−1D1Pn f (r, r−)

= j−1ψn−1− jD j−1 f (r, r−) = j−1bn−2, j−1
r ( f )γ−1

r

for 1 ≤ j ≤ n − 1, where we used (2.1.6) and the induction hypothesis (IH3), and
that

bn−1,0
r (Pn f )γ−1

r = ψn−1Pn f (r, r−)

=
Pn f (r) − Pn f (r−) −

∑n−1
l=1 γ

l
rDlPn f (r−)

γn
r

=
1
n!

f (n−1)(r−) =
1
n

Dn−1 f (r−)

by Lemma 2.3.2 and (2.1.5). We also find that bn−1, j
0 (Pn f ) = D jPn f (0) = j−1D j−1 f (0) =

j−1bn−2, j−1
0 ( f ) for 1 ≤ j ≤ n − 1, and that bn−1,0

0 (Pn f ) = Pn f (0) = 0. Hence, it fol-
lows that

|Pn f |n = sup
r∈R
{|bn−1,0

r (Pn f )γ−1
r |, · · · , |bn−1,n−1

r (Pn f )γ−1
r |}

= sup
r∈R

{∣∣∣∣∣1nDn−1 f (r−)
∣∣∣∣∣ , |bn−2,0

r ( f )γ−1
r |, · · · , |(n − 1)−1bn−2,n−2

r ( f )γ−1
r |

}
≤ max

{∣∣∣∣∣1nDn−1 f
∣∣∣∣∣
sup
,

∣∣∣∣∣ 1
(n − 1)!

f
∣∣∣∣∣
n−1

}
≤

∣∣∣∣∣ 1
n!

f
∣∣∣∣∣
n−1

.

Here, we used the induction hypothesis (IH1) Lemma 2.3.3 in the last inequality.
2. This follows from the assertion (1).
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3. Let 0 ≤ k ≤ n − 1 and r ∈ R. If r ⋪ x, we see that Pn(x − r)kχr(x) =
1

k+1 (x − r)k+1χr(x) = 0. (◁ is defined in (2.2.1).) Suppose that r ◁ x. Since

(
(x − r)kχr(x)

)( j)
=

 k!
(k− j)! (x − r)k− jχr(x) if 0 ≤ j ≤ k

0 if j ≥ k + 1

and χr(xm) = 0 for 0 ≤ m ≤ l(r) − 1, we obtain

Pn(x − r)kχr(x) =
k∑

j=0

∞∑
m=0

1
( j + 1)!

k!
(k − j)!

(xm − r)k− jχr(xm)(xm+1 − xm) j+1

=
1

k + 1
χr(x)

k∑
j=0

∞∑
m=l(r)

(
k + 1
j + 1

)
(xm − r)k− j(xm+1 − xm) j+1

=
1

k + 1
χr(x)

∞∑
m=l(r)

{
(xm+1 − r)k+1 − (xm − r)k+1

}
=

1
k + 1

(x − r)k+1χr(x).

□

Proposition 2.3.5. Let Tn B n!Pn ◦ · · · ◦ P1 : C(R,K)→ Cn(R,K). Then we have
|Tn f |n = | f |sup for any f ∈ C(R,K).

Proof. First, we show |Tnχr|n = 1 for any r ∈ R. Let r0 ∈ R. Since

Pk(x − r0)k−1χr0(x) = Pn(x − r0)k−1χr0(x) =
1
k

(x − r0)kχr0(x)

for 1 ≤ k ≤ n, we find that Tnχr0(x) = (x − r0)nχr0(x). To obtain |Tnχr0 |n, we
compute bn−1, j

r (Tnχr0) for r ∈ R and 0 ≤ j ≤ n − 1. Since

D jTnχr0 = ( j!)−1 (
(x − r0)nχr0(x)

)( j)

=
1
j!

n!
(n − j)!

(x − r0)n− jχr0(x) =
(
n
j

)
(x − r0)n− jχr0(x),

we see that bn−1, j
0 (Tnχr0) = D jTnχr0(0) = 0 for r = 0. If r , 0 and r0 ◁ r−, we
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obtain

bn−1, j
r (Tnχr0) = γrψn−1− jD jTnχr0(r, r−)

=
D jTnχr0(r) − D jTnχr0(r−) −

∑n−1− j
l=1 γl

rDlD jTnχr0(r−)

γ
n−1− j
r

=

(
n
j

) (r − r0)n− j − (r− − r0)n− j −∑n−1− j
l=1

(
n− j

l

)
(r − r−)l(r− − r0)n− j−l

γ
n−1− j
r

=

(
n
j

) (r − r0)n− j −
{
(r − r0)n− j − (r − r−)n− j

}
γ

n−1− j
r

=

(
n
j

)
γr.

By the same computation, it follows that bn−1, j
r (Tnχr0) = 0 if r0 ⋪ r−. Thus, we

find that

|Tnχr0 |n = sup
r∈R+

{
|bn−1,0

r (Tnχr0)γ
−1
r |, · · · , |bn−1,n−1

r (Tnχr0)γ
−1
r |

}
= max

0≤ j≤n−1

{∣∣∣∣∣∣
(
n
j

)∣∣∣∣∣∣
}
= 1.

We prove that |Tn f |n = | f |sup for f ∈ C(R,K). Let f =
∑

r∈R br( f )χr ∈ C(R,K).
Since Tn f =

∑
r∈R br( f )(x − r)nχr(x), it follows that

|Tn f |n =
∣∣∣∣∣∣∣∑r∈R br( f )(x − r)nχr(x)

∣∣∣∣∣∣∣
n

≤ sup
r∈R

{|br( f )(x − r)nχr(x)|n
}

= sup
r∈R
{|br( f )|} = | f |sup = |DnTn f |sup ≤ |Tn f |n.

Here, we used Lemma 2.3.3 in the last inequality. We are done. □

2.3.2 Proof of Theorem 2.1.9 (1) and (2)

Lemma 2.3.6. Let n ≥ 1 and f =
∑

r∈R br( f )χr ∈ C(R,K). If f ∈ Cn(R,K) and
f ′ = 0, then we have limr∈R+ br( f )γ−n

r = 0. (See (2.2.9) for the definition of this
limit.)

Proof. By [19, Theorem 29.12], the assumption is equivalent to the condition that

lim
(x,y)→(a,a)

f (x) − f (y)
(x − y)n = 0
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for each a ∈ R. The compactness of ∆2 (see (2.1.9)) implies that for any ε > 0
there exists δ > 0 such that |( f (x) − f (y))/(x − y)n| < ε for all x, y ∈ R with
|x − y| < δ. (Compare (2.2.10).) By setting S ε B {r ∈ R+ | l(r) ≤ 1 − logq δ}, we
see that |( f (r) − f (r−))/(r − r−)n| < ε for any r ∈ R+ \ S ε. This means that

lim
r∈R+

f (r) − f (r−)
(r − r−)n = lim

r∈R+

br( f )
γn

r
= 0.

□

Proof of Theorem 2.1.9 (1). Since {χr | r ∈ R} is an orthonormal basis for C(R,K)
and Tn is norm-preserving, {Tnχr = (x − r)nχr(x) | r ∈ R} is an orthonormal set
in Cn(R,K). Let c j,r ∈ K for each r ∈ R and 0 ≤ j ≤ n − 1 and put f =∑

r∈R
∑n−1

j=0 c j,rγ
n− j
r (x − r) jχr ∈ Cn(R,K) ⊂ Cn−1(R,K). Then we see that |γn− j

r (x −
r) jχr|n = 1 for each r ∈ R and 0 ≤ j ≤ n − 1 and that

| f |n = sup
r∈R
{|c0,rγrγ

−1
r |, · · · , |cn−1,rγrγ

−1
r |}

= sup
r∈R
{|c0,r|, · · · , |cn−1,r|}.

Hence, {γn
rχr, γ

n−1
r (x− r)χr, · · · , γr(x− r)n−1χr | r ∈ R} is orthonormal in Cn(R,K).

We prove {γn
rχr, γ

n−1
r (x−r)χr, · · · , γr(x−r)n−1χr, (x−r)nχr | r ∈ R} is orthonor-

mal in Cn(R,K). It suffices to show that

| f |n = sup
r∈R
{|c0,r|, · · · , |cn−1,r|, |cn,r|}

for f =
∑

r∈R
∑n

j=0 c j,rγ
n− j
r (x − r) jχr ∈ Cn(R,K). Set Nn

n (R,K) = { f ∈ Cn(R,K) |
f (n) = 0}. Since, for any f ∈ Nn

n (R,K), g ∈ C(R,K) and λ ∈ K,

|Tng − λ f |n ≥ |Dn(Tng − λ f )|sup

=

∣∣∣∣∣ 1
n!

(Tng − λ f )(n)
∣∣∣∣∣
sup
= |g|sup = |Tng|n,

we have Nn
n (R,K) ⊥ Im Tn in Cn(R,K). Since

∑
r∈R

∑n−1
j=0 c j,rγ

n− j
r (x − r) jχr ∈

Nn
n (R,K) and

∑
r∈R cn,r(x − r)nχr ∈ Im Tn, we obtain

| f |n ≥ max


∣∣∣∣∣∣∣∑r∈R

n−1∑
j=0

c j,rγ
n− j
r (x − r) jχr

∣∣∣∣∣∣∣
n

,

∣∣∣∣∣∣∣∑r∈R cn,r(x − r)nχr

∣∣∣∣∣∣∣
n


= max

{
sup
r∈R
{|c0,r|, · · · , |cn−1,r|}, sup

r∈R
{|cn,r|}

}
= sup

r∈R
{|c0,r|, · · · , |cn−1,r|, |cn,r|}.
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On the other hand, since

| f |n ≤ max
0≤ j≤n


∣∣∣∣∣∣∣∑r∈R c j,rγ

n− j
r (x − r) jχr

∣∣∣∣∣∣∣
n


= max

0≤ j≤n

{
sup
r∈R
{|c j,r|}

}
= sup

r∈R
{|c0,r|, · · · , |cn−1,r|, |cn,r|},

it follows that {γn
rχr, γ

n−1
r (x − r)χr, · · · , γr(x − r)n−1χr, (x − r)nχr | r ∈ R} is an

orthonormal set in Cn(R,K).
Finally, we check that {γn

rχr, γ
n−1
r (x−r)χr, · · · , γr(x−r)n−1χr, (x−r)nχr | r ∈ R}

is a basis for Cn(R,K). For a given f ∈ Cn(R,K), since f ′ ∈ Cn−1(R,K), f ′ has the
representation

f ′ =
∑
r∈R

n−1∑
j=0

bn−1, j
r ( f ′)γn−1− j

r (x − r) jχr

in Cn−1(R,K). Note that

bn−1, j
r ( f ′) =

D j f ′(0) if r = 0
γrψn−1− jD j f ′(r, r−) if r , 0

for 0 ≤ j ≤ n − 1, by the induction hypothesis (IH3). It follows from this repre-
sentation and Proposition 2.3.4 that

Pn f ′ =
∑
r∈R

n−1∑
j=0

1
j + 1

bn−1, j
r ( f ′)γn−1− j

r (x − r) j+1χr ∈ Cn(R,K).

Then, by putting g B f − Pn f ′, we see that g ∈ Cn(R,K) and g′ = 0. Thus, we
find that limr∈R+ br(g)γ−n

r = 0 by Lemma 2.3.6 and the infinite sum

g =
∑
r∈R

br(g)
γn

r
γn

rχr

converges in Cn(R,K) (with respect to the norm | · |n). Hence, we obtain

f = g + Pn f ′

=
∑
r∈R

br(g)
γn

r
γn

rχr +

n∑
j=1

1
j
bn−1, j−1

r ( f ′)γn− j
r (x − r) jχr

 .
□

25



Proof of Theorem 2.1.9 (2). Let f ∈ Cn(R,K). We keep the notations in the proof
of (1) and compute bn, j

r ( f ) for each 0 ≤ j ≤ n by using the above proof of Theorem
2.1.9 (1).

First, we compute bn,0
r ( f ). If r = 0, we have

bn,0
0 ( f ) = b0(g) = f (0) − Pn f ′(0) = f (0) = D0 f (0).

For r , 0, since

br(g) = f (r) − f (r−) − Pn f ′(r) + Pn f ′(r−)

= f (r) − f (r−) −
n∑

j=1

(r − r−) j

j!
f ( j)(r−)

= f (r) − f (r−) −
n∑

j=1

γ j
r D j f (r−),

we obtain

bn,0
r ( f ) =

f (r) − f (r−) −
∑n

j=1 γ
j
r D j f (r−)

γn
r

= γrψn f (r, r−).

Finally, it follows that

bn, j
r ( f ) = j−1bn−1, j−1

r ( f ′)

=

 j−1(D j−1D1 f )(0) = D j f (0) if r = 0
j−1γrψn− jD j−1D1 f (r, r−) = γrψn− jD j f (r, r−) if r , 0

for each 1 ≤ j ≤ n. □

2.3.3 Generalizations of Lemma 2.2.1
We prepare several theorems to prove Theorem 2.1.9 (3) and (4). The following
theorem is a generalization of Lemma 2.2.1.

Theorem 2.3.7. Let n ≥ 0, f ∈ Cn(R,K), a ∈ R, c ∈ K, and δ, ε > 0. Suppose that∣∣∣∣∣∣ψn− jD j f (r, r−) −
(
n + 1

j

)
c

∣∣∣∣∣∣ < ε
for any 0 ≤ j ≤ n and r ∈ R+ with |r − a| < δ and |r− − a| < δ. Then we have

|ψn f (x, y) − c| < ε

for any distinct x, y ∈ R with |x − a| < δ and |y − a| < δ.
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Note that Theorem 2.3.7 for n = 0 coincides with Lemma 2.2.1. To prove
Theorem 2.3.7, we prepare two lemmas.

Lemma 2.3.8. Let n ≥ 0 and f ∈ Cn(R,K). For pairwise distinct elements x, y, z ∈
R, we have

ψn f (x, y) =
(

x − z
x − y

)n+1

ψn f (x, z) −
n∑

l=0

(
y − z
x − y

)n+1−l

ψn−lDl f (y, z).

Proof. We check the assertion by induction on n. We already proved for n = 0 in
(2.2.3). Let n ≥ 0 and suppose the assertion holds for n. Then we see that(

x − z
x − y

)n+2

ψn+1 f (x, z) −
n+1∑
l=0

(
y − z
x − y

)n+2−l

ψn+1−lDl f (y, z)

=

(
x − z
x − y

)n+2
ψn f (x, z) − Dn+1 f (z)

x − z
−

(
y − z
x − y

)
Dn+1 f (y) − Dn+1 f (z)

y − z

−
n∑

l=0

(
y − z
x − y

)n+2−l
ψn−lDl f (y, z) − Dn+1−lDl f (z)

y − z

=
1

x − y


(

x − z
x − y

)n+1

ψn f (x, z) −
n∑

l=0

(
y − z
x − y

)n+1−l

ψn−lDl f (y, z)

 − Dn+1 f (y)
x − y

− Dn+1 f (z)
(x − y)n+2

(x − z)n+1 −
n∑

l=0

(
n + 1

l

)
(x − y)l(y − z)n+1−l − (x − y)n+1


=
ψn f (x, y) − Dn+1 f (y)

x − y
− Dn+1 f (z)

(x − y)n+2

{
(x − z)n+1 − (x − z)n+1

}
=ψn+1 f (x, y).

Here, we used (2.1.12) in the first and fourth equalities, the induction hypothesis
in the second and the third equalities, and (2.1.6) in the second equality. Hence,
the assertion also holds for n + 1. □

Lemma 2.3.9. Let n ≥ 0, m ≥ 2 and f ∈ Cn(R,K). For pairwise distinct elements
t1, · · · , tm ∈ R, 2 ≤ j ≤ m and 1 ≤ l ≤ n, put

λ(n)
j =

(
t j − t j−1

tm − t1

)n+1

, µ(n)
l, j =

(t j − t j−1)l(t j−1 − t1)n+1−l

(tm − t1)n+1 .

Then we have

ψn f (tm, t1) =
m∑

j=2

λ(n)
j ψn f (t j, t j−1) +

n∑
l=1

m∑
j=3

µ(n)
l, jψn−lDl f (t j−1, t1) (2.3.2)
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and
m∑

j=2

λ(n)
j +

n∑
l=1

m∑
j=3

(
n + 1

l

)
µ(n)

l, j = 1. (2.3.3)

Here, the empty sum is understood to be 0.

Proof. We assume that m ≥ 3 since it is clear for m = 2. For (2.3.3), we see that

m∑
j=2

(
t j − t j−1

tm − t1

)n+1

+

n∑
l=1

m∑
j=3

(
n + 1

l

)
(t j − t j−1)l(t j−1 − t1)n+1−l

(tm − t1)n+1

=
1

(tm − t1)n+1

m∑
j=3

n+1∑
l=1

(
n + 1

l

)
(t j − t j−1)l(t j−1 − t1)n+1−l +

(
t2 − t1

tm − t1

)n+1

=
1

(tm − t1)n+1

m∑
j=3

{
(t j − t1)n+1 − (t j−1 − t1)n+1

}
+

(
t2 − t1

tm − t1

)n+1

=
1

(tm − t1)n+1

{
(tm − t1)n+1 − (t2 − t1)n+1

}
+

(
t2 − t1

tm − t1

)n+1

= 1.

We prove (2.3.2) by induction on n. We already shown for n = 0 in (2.2.4). Let
n ≥ 0 and suppose that (2.3.2) holds for n. Then we have

m∑
j=2

λ(n+1)
j ψn+1 f (t j, t j−1) +

n+1∑
l=1

m∑
j=3

µ(n+1)
l, j ψn+1−lDl f (t j−1, t1)

=

m∑
j=2

(
t j − t j−1

tm − t1

)n+2 ψn f (t j, t j−1) − Dn+1 f (t j−1)
t j − t j−1

+

n∑
l=1

m∑
j=3

(t j − t j−1)l(t j−1 − t1)n+2−l

(tm − t1)n+2 ·
ψn−lDl f (t j−1, t1) − Dn+1−lDl f (t1)

t j−1 − t1

+

m∑
j=3

(t j − t j−1)n+1(t j−1 − t1)
(tm − t1)n+2 ·

Dn+1 f (t j−1) − Dn+1 f (t1)
t j−1 − t1

=
1

tm − t1

 m∑
j=2

λ(n)
j ψn f (t j, t j−1) +

n∑
l=1

m∑
j=3

µ(n)
l, jψn−lDl f (t j−1, t1)


−

n∑
l=1

m∑
j=3

(
n + 1

l

)
(t j − t j−1)l(t j−1 − t1)n+1−l

(tm − t1)n+2 Dn+1 f (t1)

−
m∑

j=3

(t j − t j−1)n+1

(tm − t1)n+2 Dn+1 f (t1) − (t2 − t1)n+1

(tm − t1)n+2 Dn+1 f (t1)
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=
ψn f (x, y)

tm − t1
− 1

(tm − t1)n+2

m∑
j=3

Dn+1 f (t1)
n+1∑
l=1

(
n + 1

l

)
(t j − t j−1)l(t j−1 − t1)n+1−l

− (t2 − t1)n+1

(tm − t1)n+2 Dn+1 f (t1)

=
ψn f (x, y)

tm − t1
− 1

(tm − t1)n+2

m∑
j=3

{
(t j − t1)n+1 − (t j−1 − t1)n+1

}
Dn+1 f (t1)

− (t2 − t1)n+1

(tm − t1)n+2 Dn+1 f (t1)

=
ψn f (x, y)

tm − t1
− 1

(tm − t1)n+2

{
(tm − t1)n+1 − (t2 − t1)n+1

}
Dn+1 f (t1)

− (t2 − t1)n+1

(tm − t1)n+2 Dn+1 f (t1)

=
ψn f (tm, t1) − Dn+1 f (t1)

tm − t1
= ψn+1 f (tm, t1).

□

We prove Theorem 2.3.7 in a similar way to the proof of Lemma 2.2.1.

Proof of Theorem 2.3.7. We prove the assertion by induction on n. For n = 0, we
already proved Lemma 2.2.1. Let n > 0 and suppose that the assertions hold for
0, 1, · · · , n − 1.

For the same reason as the proof of Lemma 2.2.1, we may assume that x, y ∈
R+, |x − a| < δ and |y − a| < δ. Set z to be (2.2.2) (i.e. z is the common initial part
in the π-adic expansions of x and y). By the definition of z, we see that z◁ x, z◁ y,
|z − a| < δ and |x − y| = max{|z − x|, |z − y|}. Since

ψn f (x, y) =
(

x − z
x − y

)n+1

ψn f (x, z) −
n∑

l=0

(
y − z
x − y

)n+1−l

ψn−lDl f (y, z)

by Lemma 2.3.8 and(
x − z
x − y

)n+1

−
n∑

l=0

(
n + 1

l

) (
y − z
x − y

)n+1−l

= 1,
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it follows that

|ψn f (x, y) − c|

=

∣∣∣∣∣∣∣
(

x − z
x − y

)n+1

ψn f (x, z) −
n∑

l=0

(
y − z
x − y

)n+1−l

ψn−lDl f (y, z)

−

(

x − z
x − y

)n+1

−
n∑

l=0

(
n + 1

l

) (
y − z
x − y

)n+1−l
 c

∣∣∣∣∣∣∣
≤max

0≤l≤n

{∣∣∣∣∣ x − z
x − y

∣∣∣∣∣n+1

|ψn f (x, z) − c|,
∣∣∣∣∣ y − z
x − y

∣∣∣∣∣n+1−l
∣∣∣∣∣∣ψn−lDl f (y, z) −

(
n + 1

l

)
c

∣∣∣∣∣∣
}
.

Let 1 ≤ l ≤ n. For any 0 ≤ i ≤ n− l and any r ∈ R+ with |r−a| < δ and |r−−a| < δ,
we have ∣∣∣∣∣∣ψn−l−iDiDl f (r, r−) −

(
n + 1 − l

i

)(
n + 1

l

)
c

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
i + l

l

)
ψn−i−lDi+l f (r, r−) −

(
n + 1 − l

i

)(
n + 1

l

)
c

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
i + l

l

) {
ψn−i−lDi+l f (r, r−) −

(
n + 1
i + l

)
c
}∣∣∣∣∣∣ < ε

by the assumption. Hence, it follows from the induction hypothesis that∣∣∣∣∣∣ψn−lDl f (y, z) −
(
n + 1

l

)
c

∣∣∣∣∣∣ < ε (2.3.4)

for any distinct y, z ∈ R with |y − a| < δ and |z − a| < δ and it suffices to show
that |ψn f (x, z) − c| < ε and |ψn f (y, z) − c| < ε. Thus, we may assume that y ◁ x by
replacing z with y. Then there exists the unique sequence t1 = y ◁ t2 ◁ · · · ◁ tn = x
in R such that (t j)− = t j−1 for each 2 ≤ j ≤ n and |t j − a| < δ for each 1 ≤ j ≤ n.
Put

λ(n)
j =

(
t j − t j−1

x − y

)n+1

, µ(n)
l, j =

(t j − t j−1)l(t j−1 − y)n+1−l

(x − y)n+1

for each 2 ≤ j ≤ m and 1 ≤ l ≤ n. Then we see that |λ(n)
j | ≤ 1, |µ(n)

l, j | ≤ 1,

ψn f (x, y) =
m∑

j=2

λ(n)
j ψn f (t j, t j−1) +

n∑
l=1

m∑
j=3

µ(n)
l, jψn−lDl f (t j−1, y)

and
m∑

j=2

λ(n)
j +

n∑
l=1

m∑
j=3

(
n + 1

l

)
µ(n)

l, j = 1
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by Lemma 2.3.9. Hence, we obtain

|ψn f (x, y) − c|

=

∣∣∣∣∣∣∣
m∑

j=2

λ(n)
j ψn f (t j, t j−1) +

n∑
l=1

m∑
j=3

µ(n)
l, jψn−lDl f (t j−1, y)

−
 m∑

j=2

λ(n)
j +

n∑
l=1

m∑
j=3

(
n + 1

l

)
µ(n)

l, j

 c

∣∣∣∣∣∣∣
≤max

max
2≤ j≤m

{
|λ(n)

j ||ψn f (t j, t j−1) − c|
}
, max

1≤l≤n
3≤ j≤m

{
|µ(n)

l, j |
∣∣∣∣∣∣ψn−lDl f (t j−1, y) −

(
n + 1

l

)
c

∣∣∣∣∣∣
}

<ε

by using (2.3.4) and the induction hypothesis. □

Definition 2.3.10. Let f ∈ Cn(R,K) and 1 ≤ j ≤ n + 1. We define the continuous
function ψn, j f : ▽2R→ K to be

ψn, j f (x, y) B Φn+1 f (x, · · · , x︸   ︷︷   ︸
j

, y, · · · , y︸   ︷︷   ︸
n+2− j

).

Note that ψn,1 f (x, y) = ψn f (x, y). It is known that the following lemmas hold.

Lemma 2.3.11 ([19, Lemma 78.3]). Let n ≥ 1 and f ∈ Cn(R,K). For any 1 ≤ j ≤
n, we have

ψn− jD j f (x, y) =
j+1∑
i=1

(
n + 1 − i

n − j

)
ψn,i f (x, y).

Lemma 2.3.12 ([19, Lemma 81.2]). Let n ≥ 0, f ∈ Cn(R,K), a ∈ R, c ∈ K, and
δ, ε > 0. Suppose that ∣∣∣ψn, j f (x, y) − c

∣∣∣ < ε
for any 1 ≤ j ≤ n + 1 and any distinct x, y ∈ R with |x − a| < δ and |y − a| < δ.
Then we have

|Φn+1 f (x1, · · · , xn+2) − c| < ε

for any (x1, · · · , xn+2) ∈ Rn+2 \ ∆n+2 where |xi − a| < δ for each 1 ≤ i ≤ n + 2. (See
(2.1.9) for the definition of ∆n+2.)

We show the following theorem.
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Theorem 2.3.13. Let n ≥ 0, f ∈ Cn(R,K), a ∈ R, c ∈ K, and δ, ε > 0. Suppose
that ∣∣∣∣∣∣ψn− jD j f (r, r−) −

(
n + 1

j

)
c

∣∣∣∣∣∣ < ε
for any 0 ≤ j ≤ n and r ∈ R+ with |r − a| < δ and |r− − a| < δ. Then we have∣∣∣ψn, j f (x, y) − c

∣∣∣ < ε
for any 1 ≤ j ≤ n + 1 and any distinct x, y ∈ R with |x − a| < δ and |y − a| < δ.

Proof. We prove the assertion by induction on j. We already proved the assertion
for j = 1 in Theorem 2.3.7. Let 1 < j ≤ n+ 1 and suppose that the assertions hold
for 1, · · · , j − 1. Then we have∣∣∣ψn, j f (x, y) − c

∣∣∣
=

∣∣∣∣∣∣∣ψn+1− jD j−1 f (x, y) −
j−1∑
i=1

(
n + 1 − i
n + 1 − j

)
ψn,i f (x, y) −


(
n + 1
j − 1

)
−

j−1∑
i=1

(
n + 1 − i
n + 1 − j

) c

∣∣∣∣∣∣∣
≤ max

1≤i≤ j−1

{∣∣∣∣∣∣ψn+1− jD j−1 f (x, y) −
(
n + 1
j − 1

)
c

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
(
n + 1 − i
n + 1 − j

)∣∣∣∣∣∣ ∣∣∣ψn,i f (x, y) − c
∣∣∣}

for any distinct x, y ∈ R with |x − a| < δ and |y − a| < δ. Here, we used Lemma
2.3.11 and (

n + 1
j − 1

)
−

j−1∑
i=1

(
n + 1 − i
n + 1 − j

)
= 1

in the first equality. We obtain |ψn, j f (x, y) − c| < ε by using (2.3.4) and the induc-
tion hypothesis. □

It is clear that the following corollary follows form Lemma 2.3.12 and Theo-
rem 2.3.13.

Corollary 2.3.14. Let n ≥ 0, f ∈ Cn(R,K), a ∈ R, c ∈ K, and δ, ε > 0. Suppose
that ∣∣∣∣∣∣ψn− jD j f (r, r−) −

(
n + 1

j

)
c

∣∣∣∣∣∣ < ε
for any 0 ≤ j ≤ n and r ∈ R+ with |r − a| < δ and |r− − a| < δ. Then we have

|Φn+1 f (x1, · · · , xn+2) − c| < ε

for any (x1, · · · , xn+2) ∈ Rn+2 \ ∆n+2 where |xi − a| < δ for each 1 ≤ i ≤ n + 2.
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2.3.4 Proof of Theorem 2.1.9 (3) and (4)

We show Theorem 2.1.9 (3) and (4).

Proof of Theorem 2.1.9 (3). Suppose that f ∈ Cn+1(R,K). Since D j f ∈ Cn+1− j(R,K)
for each 0 ≤ j ≤ n, we have

D j f (x) = D j f (y) +
n− j∑
l=1

(x − y)lDlD j f (y) + (x − y)n+1− jΦn+1− jD j f (x, y, · · · , y)

for any x, y ∈ R by [19, Theorem 29.3]. Hence, by (2.1.11) and (2.1.6), we obtain

lim
(x,y)→(a,a)

ψn− jD j f (x, y) = lim
(x,y)→(a,a)

Φn+1− jD j f (x, y, · · · , y)

= Dn+1− jD j f (a) =
(
n + 1

j

)
Dn+1 f (a)

for any a ∈ R. We see that for any ε > 0 there exists δ0 > 0 such that∣∣∣∣∣∣ψn− jD j f (r, r−) −
(
n + 1

j

)
Dn+1 f (a)

∣∣∣∣∣∣ < ε
for any r ∈ R+ with 0 < |r − a| < δ0. (Compare (2.2.5).) Thus, the limits

lim
r→a

a,r∈R+
bn, j

r ( f )γ−1
r = lim

r→a
a,r∈R+

ψn− jD j f (x, y) =
(
n + 1

j

)
Dn+1 f (a)

exist. Since

lim
r→a

a,r∈R+
bn,0

r ( f )γ−1
r = Dn+1 f (a),

we find that

lim
r→a

a,r∈R+
bn, j

r ( f )γ−1
r =

(
n + 1

j

)
lim
r→a

a,r∈R+
bn,0

r ( f )γ−1
r

for each 0 ≤ j ≤ n.
Conversely, we suppose that the limits lim r→a

a,r∈R+
bn, j

r ( f )γ−1
r exist for any a ∈ R

and 0 ≤ j ≤ n and

lim
r→a

a,r∈R+
bn, j

r ( f )γ−1
r =

(
n + 1

j

)
lim
r→a

a,r∈R+
bn,0

r ( f )γ−1
r
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holds for each 0 ≤ j ≤ n. Put g(a) B lim r→a
a,r∈R+

bn,0
r ( f )γ−1

r . Then, we find that for
any ε > 0 there exists δ0 > 0 such that∣∣∣∣∣∣ψn− jD j f (r, r−) −

(
n + 1

j

)
g(a)

∣∣∣∣∣∣ < ε
for any 0 ≤ j ≤ n and any r ∈ R+ with |x − a| < δ0 and |y − a| < δ0. (Compare
(2.2.7) and (2.2.8).) Hence, Corollary 2.3.14 implies that

|Φn+1 f (x1, · · · , xn+2) − g(a)| < ε

for any (x1, · · · , xn+2) ∈ Rn+2 \ ∆n+2 with |xi − a| < δ0 for each 1 ≤ i ≤ n + 2. (We
defined ∆n+2 in (2.1.9).) In other words, it follows that

lim
(x1,··· ,xn+1,xn+2)→(a,··· ,a)
(x1,··· ,xn+1,xn+2)∈▽n+2R

Φn+2 f (x1, · · · , xn+1, xn+2) = g(a)

and f ∈ Cn+1(R,K). □

Proof of Theorem 2.1.9 (4). We give a proof by a similar argument to the proof of
Corollary 2.2.6. Let { fm}m≥1 be a Cauchy sequence in (Cn+1(R,K), | · |n+1) and put
bn, j

r ( f ) B limm→∞ bn, j
r ( fm) and f B

∑
r∈R

∑n
j=0 bn, j

r ( f )γn− j
r (x − r) jχr for 0 ≤ j ≤ n.

We show that f ∈ Cn+1(R,K) and limm→∞ | f − fm|n+1 = 0. Let a ∈ R and S =
R+ \ {a}. Define gn, j

m : S → K to be gn, j
m (r) = bn, j

r ( fm)γ−1
r for m ≥ 1 and 0 ≤ j ≤ n.

By the same reason in the proof of Corollary 2.2.6, we see that the limit

lim
r→a

a,r∈R+
bn, j

r ( f )γ−1
r = lim

m→∞
lim
r→a

a,r∈R+
gn, j

m (r)

exists for each 0 ≤ j ≤ n and satisfies(
n + 1

j

)
lim
r→a

a,r∈R+
bn,0

r ( f )γ−1
r = lim

m→∞

(
n + 1

j

)
lim
r→a

a,r∈R+
gn,0

m (r)

= lim
m→∞

lim
r→a

a,r∈R+
gn, j

m (r) = lim
r→a

a,r∈R+
bn, j

r ( f )γ−1
r .

Since

| f − fm|n+1 = sup
r∈R
{|gn,0

m (r) − bn,0
r ( f )γ−1

r |, · · · , |gn,n
m (r) − bn,n

r ( f )γ−1
r |} < ε

for sufficiently large m ∈ Z>0, we conclude the proof. □

Corollary 2.3.15. Let n ≥ 1 and f =
∑

r∈R br( f )χr ∈ C(R,K). The following
conditions are equivalent.
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1. f ∈ Cn(R,K) and f ′ = 0.

2. limr∈R+ br( f )γ−n
r = 0.

Proof. The condition (1) implies the condition (2) by Lemma 2.3.6. To prove the
converse, we suppose that limr∈R+ br( f )γ−n

r = 0. This means that for any ε > 0
there exists a finite subset S ε ⊂ R+ such that |br( f )γ−n

r | < ε for any r ∈ R+ \ S ε.
Since

|br( f )γ−1
r | = |br( f )γ−n

r · γn−1
r | < q−(n−1)(l(r)−1)ε ≤ ε

for any r ∈ R+ \ S ε, it follows from Theorem 2.2.4 that f ∈ C1(R,K) and f ′ = 0.
Let 1 ≤ k ≤ n − 1 and suppose that f ∈ Ck(R,K) and f ′ = 0. Since

|br( f )γ−k−1
r | = |br( f )γ−n

r · γn−k−1
r | < q−(n−k−1)(l(r)−1)ε ≤ ε

for any r ∈ R+ \ S ε, the infinite sum

f =
∑
r∈R

br( f )χr =
∑
r∈R

br( f )
γk+1

r
γk+1

r χr

converges in the K-Banach space (Ck+1(R,K), | · |k+1). Thus, we see that f ∈
Ck+1(R,K). □

Example 2.3.16. Let n ≥ 0 and assume that n ≤ p − 1 if char(K) = p > 0. In the
following, we construct a function which is Cn but not Cn+1. These are based on
[19, Example 26.6]. For each m ≥ 1, let Bm = {x ∈ R | |x − πm| < q−2m}. Then
x ∈ Bm implies |x| = q−m, hence the disks B1, B2, · · · are pairwise disjoint. Define
f : R→ K to be

f (x) =

x − π2m if x ∈ Bm for some m ≥ 1
x if x ∈ R \ ∪m≥1Bm.

We want to compute br( f ) = f (r) − f (r−) for r ∈ R+. Note that b0( f ) = f (0) = 0.

1. If r− < ∪l≥1Bl and there exists m ≥ 1 such that r ∈ Bm, we have r = πm and
br( f ) = f (πm) − f (0) = πm − π2m.

2. If r < ∪l≥1Bl and there exists m ≥ 1 such that r− ∈ Bm, we have r = πm + aπk

for some a ∈ T \ {0} and m+1 ≤ k ≤ 2m and br( f ) = f (πm+aπk)− f (πm) =
(πm + aπk) − (πm − π2m) = πk(a + π2m−k).

3. If r, r− ∈ ∪l≥1Bl, then there exists m ≥ 1 such that r, r− ∈ Bm. We have
r = πm + π2m+1s for some s ∈ R+ and br( f ) = f (πm + π2m+1s) − f (πm +

π2m+1s−) = π2m+1(s − s−).
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4. If r, r− < ∪l≥1Bl, then we have br( f ) = f (r) − f (r−) = r − r−.

We conclude that

br( f )γ−1
r =


1 − πm if r = πm,m ≥ 1
1 + a−1π2m−k if r = πm + aπk, a ∈ T \ {0},m + 1 ≤ k ≤ 2m
1 otherwise

and f ∈ C(R,K). However, since

lim
m→∞

bπm( f )γ−1
πm = 1 , 1 + a−1 = lim

m→∞
bπm+aπ2m( f )γ−1

πm+aπ2m ,

the limit limr→0 br( f )γ−1
r does not exist and f < C1(R,K) by Theorem 2.2.3. In

Proposition 2.3.5, we introduced the K-linear map Tn : C(R,K) → Cn(R,K).
By Proposition 2.3.4, since bn,n

r (Tn f ) = br( f ) for any r ∈ R, it follows that the
limit limr→0 bn,n

r (Tn f )γ−1
r does not exist. Hence, we see that Tn f ∈ Cn(R,K) \

Cn+1(R,K). Note that Tn f is (n+1)-times differentiable and (Tn f )(n+1) = n! f ′ = n!
is continuous.

Remark 2.3.17. The K-linear map Tn : C(R,K) → Cn(R,K) satisfies Dn ◦ Tn =

idC(R,K), thus Tn is injective. Now, Tn induces

C(R,K)/C1(R,K)→ Cn(R,K)/Cn+1(R,K)

and this is also injective.

2.4 Norms on Cn(R,K) and n-th Lipschitz functions
The main purpose of this section is to prove Theorem 2.1.10 and Theorem 2.1.11.
See Definition 2.1.7 for the n-th Lipschitz functions.

2.4.1 n-th Lipschitz functions
Lemma 2.4.1. Let n ≥ 1.

1. A Cn-function is an n-th Lipschitz function.

2. An n-th Lipschitz function is a Cn−1-function.

Proof. 1. If f is a Cn-function, then Φn f can be extended to a continuous function
on Rn+1. Then |Φn f | is bounded by the compactness of Rn+1. Thus, f is an n-th
Lipschitz function.

36



2. If f is an n-th Lipschitz function and x1, x2, · · · , x2n are pairwise distinct,
then

|Φn−1 f (x1, · · · , xn) − Φn−1 f (xn+1, · · · , x2n)|

=

∣∣∣∣∣∣∣
n∑

j=1

(
Φn−1 f (xn+1, · · · xn+ j−1, x j, · · · , xn) − Φn−1(xn+1, · · · , xn+ j, x j+1, · · · , xn)

)∣∣∣∣∣∣∣
≤max

1≤ j≤n

{∣∣∣Φn−1 f (xn+1, · · · xn+ j−1, x j, · · · , xn) − Φn−1(xn+1, · · · , xn+ j, x j+1, · · · , xn)
∣∣∣}

=max
1≤ j≤n

{∣∣∣Φn f (xn+1, · · · , xn+ j, x j, · · · , xn)
∣∣∣ · ∣∣∣x j − xn+ j

∣∣∣}
≤An( f ) max

1≤ j≤n

{∣∣∣x j − xn+ j

∣∣∣} .
Here we used (2.1.4) in the second equality and the definition of A f (see Defini-
tion 2.1.7) in the second inequality. Therefore Φn−1 f is uniformly continuous on
▽nR (see (2.1.3) for the definition of ▽nR) and f can be extended to a continuous
function on Rn. Hence, f is a Cn−1-function. □

By Lemma 2.4.1, we can expand f like (2.1.14) as a Cn−1-function. In the
following, we give a proof of Theorem 2.1.11 and show that Lipn(R,K) is a K-
Banach space.

Proof of Theorem 2.1.11. Assume that f is an n-th Lipschitz function. Note that
bn−1, j

r ( f )γ−1
r = ψn−1− jD j f (r, r−) for all r ∈ R+, 0 ≤ j ≤ n − 1 by Theorem 2.1.9.

Therefore, we have∣∣∣bn−1,0
r ( f )γ−1

r

∣∣∣ = |ψn−1D0 f (r, r−)| = |Φn f (r, r−, · · · , r−)| ≤ An( f )

and, for 1 ≤ j ≤ n − 1,∣∣∣bn−1, j
r ( f )γ−1

r

∣∣∣ = ∣∣∣ψn−1− jD j f (r, r−)
∣∣∣ ≤ max

1≤i≤ j+1

{∣∣∣ψn−1,i f (r, r−)
∣∣∣} ≤ An( f )

by Lemma 2.3.11. It follows that

sup
r∈R+

0≤ j≤n−1

{∣∣∣bn−1, j
r ( f )γ−1

r

∣∣∣} < ∞.
To show the converse, we apply Corollary 2.3.14 with ε = sup r∈R+

0≤ j≤n−1
{|bn−1, j

r ( f )γ−1
r |},

δ > 1 and a = c = 0. □

Remark 2.4.2. Let f be an n-th Lipschitz function. For expansion (2.1.14)

| f |Lipn
= sup

r∈R
0≤ j≤n−1

{∣∣∣bn−1, j
r ( f )γ−1

r

∣∣∣}
is a norm of Lipn(R,K). We also denote it by | f |n. (See (2.1.13).)
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The following proof is adopted from [8, Corollary 3.2].

Proposition 2.4.3. Let n ≥ 1. Lipn(R,K) is a K-Banach space with respect to the
norm | · |n.

Proof. Theorem 2.1.11 shows that the correspondence

Lipn(R,K)→ (l∞(R))n ;
∑
r∈R

n−1∑
j=0

bn−1, j
r ( f )γn−1− j

r (x − r) jχr 7→
[
(bn−1, j

r ( f )γ−1
r )r

]
0≤ j≤n−1

is a norm-preserving isomorphism of Lipn(R,K) with the Banach space (l∞(R))n

of direct product of all bounded functions on R. Thus, Lipn(R,K) is complete. □

2.4.2 Proof of Theorem 2.1.10
Lemma 2.4.4. Let n ≥ 1 and f ∈ Cn(R,K). We expand

f =
∑
r∈R

n−1∑
j=0

bn−1, j
r ( f )γn−1− j

r (x − r) jχr ∈ Cn−1(R,K)

and

f =
∑
r∈R

n∑
j=0

bn, j
r ( f )γn− j

r (x − r) jχr ∈ Cn(R,K)

as elements of Cn−1(R,K) and Cn(R,K) respectively. Then for all r ∈ R+ and
0 ≤ j ≤ n − 1, we have

bn−1, j
r ( f )γ−1

r = bn, j
r ( f ) +

(
n
j

) ∑
r′∈R
r′◁ r−

bn,n
r′ ( f ),

where ◁ is defined in (2.2.1).

Proof. Noting that D1χr = 0 and Dn(xn) = 1, we have

Dn f (x) =
∑
r∈R

bn,n
r ( f )χr(x).

The definition (2.1.12) of ψn f shows

ψn−1 f (x, y) = (x − y)ψn f (x, y) + Dn f (y).
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Hence, we have

bn−1, j
r ( f )γ−1

r = ψn−1− jD j f (r, r−)
= γrψn− jD j f (r, r−) + Dn− jD j f (r−)

= bn, j
r ( f ) +

(
n
j

)
Dn f (r−)

= bn, j
r ( f ) +

(
n
j

) ∑
r′∈R
r′◁ r−

bn,n
r′ ( f ).

□

Corollary 2.4.5. Let n ≥ 1 and f ∈ Cn+1(R,K). Then | f |n ≤ | f |n+1 holds.

Proof. We have that

| f |n = sup
r∈R

0≤ j≤n−1

{∣∣∣bn−1, j
r ( f )γ−1

r

∣∣∣}

= sup
r∈R+

0≤ j≤n−1


∣∣∣D j f (0)

∣∣∣ ,
∣∣∣∣∣∣∣∣∣∣bn, j

r ( f ) +
(
n
j

) ∑
r′∈R
r′◁ r−

bn,n
r′ ( f )

∣∣∣∣∣∣∣∣∣∣


≤ sup
r∈R+,r′∈R
0≤ j≤n−1

{∣∣∣D j f (0)
∣∣∣ , ∣∣∣bn, j

r ( f )
∣∣∣ , ∣∣∣bn,n

r′ ( f )
∣∣∣}

= sup
r∈R+

0≤ j≤n

{∣∣∣D j f (0)
∣∣∣ , ∣∣∣bn, j

r ( f )
∣∣∣}

≤ sup
r∈R+

0≤ j≤n

{∣∣∣D j f (0)
∣∣∣ , ∣∣∣bn, j

r ( f )γ−1
r

∣∣∣}
= | f |n+1.

Here, the first equality follows from the definition (2.1.13) of | f |n and second and
third equalities follow from Theorem 2.1.9. □

Proof of Theorem 2.1.10. We will prove by induction on n. First, if we expand
f =

∑
r∈R br( f )χr ∈ C1(R,K), then

| f |C1 = max
{
| f |sup , |Φ1 f |sup

}
= max

{
sup
r∈R
{|br( f )|} , sup

r∈R+

{∣∣∣br( f )γ−1
r

∣∣∣}}
= sup

r∈R

{∣∣∣br( f )γ−1
r

∣∣∣}
= | f |1
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by Theorem 2.1.11. Next, assume | f |Cn−1 = | f |n−1 for all f ∈ Cn−1(R,K). If we
expand f =

∑
r∈R

∑n
j=0 bn, j

r ( f )γn− j
r (x − r) jχr ∈ Cn(R,K), then

| f |Cn = max
0≤k≤n

{
|Φk f |sup

}
= max

| f |n−1 , sup
r∈R+

0≤ j≤n−1

∣∣∣bn−1, j
r ( f )γ−1

r

∣∣∣
 . (2.4.1)

Now, Corollary 2.4.5 and the definition of | f |n imply (2.4.1) ≤ | f |n. On the other
hand, if f ∈ Ck(R,K), we have |Dk−1 f |sup ≤ | f |k−1by Lemma 2.3.3, so

| f |n = sup
r∈R+

0≤ j≤n−1

{∣∣∣D j f (0)
∣∣∣ , ∣∣∣bn−1, j

r ( f )γ−1
r

∣∣∣} ≤ (2.4.1).

As a result, we obtain | f |Cn = | f |n for all n ≥ 1. □
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Chapter 3

p-adic distributions and
Kummer-type congruences

In this chapter, let p be a prime. The p-adic number field Qp is quipped with the
p-adic norm | · |p normalized so that |p|p = p−1. For x ∈ Q×p , we denote the p-adic
valuation by ordp(x). For a real number x, ⌊x⌋ means the greatest integer less than
or equal to x.

3.1 p-adic distributions
In this section, we will recall a theory of p-adic distributions.

Definition 3.1.1. Define(
x
0

)
= 1,

(
x
n

)
=

x(x − 1) · · · (x − n + 1)
n!

∈ Q[x]

for n ≥ 1. We can view these polynomials as elements of C(Zp,Qp). We call the
set of these functions the (classical) Mahler basis.

It is known that the Mahler basis is an orthonormal basis; that is, we have the
following theorem.

Theorem 3.1.2 ([15, Lemma 1], [19, Theorem 51.1]). Let f : Zp → Qp. Then
f ∈ C(Zp,Qp) if and only if there exist an ∈ Qp such that

f (x) =
∞∑

n=0

an

(
x
n

)
(3.1.1)

and an → 0 as n→ ∞. Moreover, if f ∈ C(Zp,Qp) has the expansion (3.1.1), then
we have | f |sup = supn≥0{|an|p}.
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Definition 3.1.3. Let h be a non-negative integer. Define LAh(Zp,Qp) to be the
set of functions f : Zp → Qp which is locally analytic at each point with radius of
convergence ≥ p−h. For f ∈ LAh(Zp,Qp), the norm of f is given by

|| f ||h = supn≥0, a∈Zp
{|pnhan|p}

for the expansion f (x) =
∑∞

n=0 an(x−a)n on a+ phZp. The set LAh(Zp,Qp) is a Qp-
vector space equipped with the topology induced by the norm. Since there exist
natural inclusions LAh(Zp,Qp) → LAh+1(Zp,Qp) for all h ≥ 0, we may define
LA(Zp,Qp) = ∪h≥0 LAh(Zp,Qp) equipped with the inductive limit topology. A
continuous Qp-linear map µ : LA(Zp,Qp) → Qp is called a p-adic distribution
and we write ∫

Zp

f (x)dµ(x) B µ( f )

for f ∈ LA(Zp,Qp). We denote by D(Zp) the set of p-adic distributions.

It is known that the following theorems hold.

Theorem 3.1.4 ([1, Théorème 3]). Let h be a non-negative integer. For f : Zp →
Qp, f ∈ LAh(Zp,Qp) if and only if there exist an ∈ Qp such that

f (x) =
∞∑

n=0

an

⌊
n
ph

⌋
!
(
x
n

)
and an → 0 as n → ∞. Moreover, || f ||h ≤ 1 holds if and only if an ∈ Zp for all
n ≥ 0.

Theorem 3.1.5 ([20, Theorem 2.3]). Let R be the set of formal power series f (T )
over Qp which converges on the open unit disk. Then the map D(Zp) → R given
by

µ 7→
∫
Zp

(1 + T )xdµ(x) B
∞∑

n=0

∫
Zp

(
x
n

)
dµ(x)T n

is bijective. The inverse map sends
∑∞

n=0 cnT n ∈ R to the element of D(Zp) given
by

LA(Zp,Qp)→ Qp; f (x) =
∞∑

n=0

an

(
x
n

)
7→

∞∑
n=0

ancn. (3.1.2)

Remark 3.1.6. Since f ∈ LA(Zp,Qp) is continuous on Zp, it follows from The-
orem 3.1.2 that f has the expansion as (3.1.2) and the infinite sum in (3.1.2) is
convergent.
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Remark 3.1.7. 1. The bijection in Theorem 3.1.5 is, in fact, an isomorphism
between Qp-algebras and called the Amice transform. Here, D(Zp) has a
natural addition and a product given by the convolution product.

2. In [20], Schneider and Teitelbaum extended the Amice transform to the
case of a finite extension K of Qp. Let Cp be the p-adic completion of the
algebraic closure of Qp and Rrig the set of formal power series f (T ) over
Cp which converges on the open unit disk. Define LA(OK ,Cp) to be the
Cp-Banach space of locally analytic functions f : OK → Cp and D(OK ,Cp)
to be the continuous dual space of the Cp-Banach space LA(OK ,Cp). They
proved that there exists an isomorphism D(OK ,Cp) ≃ Rrig of topological
Cp-algebras (satisfying some properties). Note that Bannai and Kobayashi
gave an explicit construction of this isomorphism in [6].

Note that, if a formal power series f (T ) ∈ R corresponds to a p-adic distribu-
tion µ, we have(

(1 + T )
d

dT

)
f (T ) =

∫
Zp

x(1 + T )xdµ(x) =
∞∑

n=0

∫
Zp

x
(
x
n

)
dµ(x)T n

and (
(1 + T )

d
dT

)n

f (T )

∣∣∣∣∣∣
T=0

=

∫
Zp

xndµ(x) (3.1.3)

for n ≥ 0. Indeed, we can check these by using the property

x
(
x
n

)
= (n + 1)

(
x

n + 1

)
+ n

(
x
n

)
.

3.2 Proof of Theorem 1.2.6
In the rest of this chapter, we will show the Kummer-type congruences for multi-
poly-Bernoulli numbers as an application of the theory of p-adic distributions.
Our proof is inspired by the proof of [14, Theorem 12]. The following results are
based on [13].

In the following, let p be an odd prime. For positive integers m, n and N, by
applying Theorem 3.1.4 to the case h = 1 and p−N(xm − xn) ∈ LA1(Zp,Qp), we
obtain a j ∈ Qp satisfying

xm − xn

pN =

∞∑
j=0

a j

⌊
j
p

⌋
!
(
x
j

)
and |a j|p → 0 as j→ ∞.
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Lemma 3.2.1. If m, n ≥ N and m ≡ n mod (p − 1)pN−1, then we have a j ∈ Zp for
any j ≥ 0.

Proof. Put P(x) = p−N(xm − xn). According to Theorem 3.1.4, we must prove
||P(x)||1 ≤ 1 and it suffices to show that Q(y) B P(c + py) ∈ Zp[y] for any c =
0, 1, · · · , p − 1. If c = 0, it is clear.

Suppose that c , 0. We put m − n = (p − 1)pN−1d with d ∈ Z>0 and

Q(y) = p−N(c + py)n{(c + py)(p−1)pN−1d − 1}.

We will check that (c + py)(p−1)pN−1d ≡ 1 mod pNZp[y] by induction on N. When
N = 1, we see that (c+ py)(p−1)d ≡ c(p−1)d ≡ 1 mod pZp[y]. Let N > 0 and suppose
that the assertion holds for N. Then there exists a polynomial RN(y) ∈ Zp[y] such
that (c + py)(p−1)pN−1d = 1 + pNRN(y) and we have

(c + py)(p−1)pNd = (1 + pNRN(y))p

=

p∑
i=0

(
p
i

)
pNiRN(y)i ≡ 1 mod pN+1Zp[y].

This completes the proof. □

Proof of Theorem 1.2.6. We omit the proof for C(k)
n because it can be checked by

the same argument as the following proof for B(k)
n . Put

f (x) =
Lik(1 − ex)

1 − ex

and g(T ) = f (log(1 + T )). In other words, we set

f (x) =
∑

0<m1<···<mr

(1 − ex)mr−1

mk1
1 · · ·m

kr
r

=

∞∑
n=0

(−1)nB(k)
n

xn

n!
,

g(T ) =
∑

0<m1<···<mr

(−1)mr−1

mk1
1 · · ·m

kr
r

T mr−1.

We can check that g(T ) converges on the open unit disk. Indeed, since we have∣∣∣∣∣∣∣ ∑
0<m1<···<mr

(−1)mr−1

mk1
1 · · ·m

kr
r

∣∣∣∣∣∣∣
p

≤ mwt(k+)
r ,

it follows that

lim sup
mr→∞

∣∣∣∣∣∣∣ ∑
0<m1<···<mr

(−1)mr−1

mk1
1 · · ·m

kr
r

∣∣∣∣∣∣∣
1

mr

p

≤ 1.
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Using Theorem 3.1.5, we get a p-adic distribution µ corresponding to g. The
p-adic distribution µ : LA(Zp,Qp)→ Qp is given by

φ 7→
∞∑

j=r−1

(−1) ja j

∑
0<m1<···<mr−1< j+1

1

mk1
1 · · ·m

kr−1
r−1 ( j + 1)kr

,

where φ has the expansion φ(x) =
∑∞

j=0 a j

(
x
j

)
. According to (3.1.3), we obtain that∫

Zp

xndµ(x) =
(
(1 + T )

d
dT

)n

g(T )

∣∣∣∣∣∣
T=0

=

(
d
dx

)n

f (x)

∣∣∣∣∣∣
x=0

= (−1)nB(k)
n

for n ≥ 0.
For positive integers m, n and N with m ≡ n mod (p − 1)pN−1, Theorem 3.1.4

implies that there exist a j ∈ Qp such that

xm − xn

pN =

∞∑
j=0

a j

⌊
j
p

⌋
!
(
x
j

)
and |a j|p → 0 as j → ∞. Then we have a j ∈ Zp for any j ≥ 0 by Lemma 3.2.1.
We see that∫

Zp

xm − xn

pN dµ(x) =
∞∑
j=0

a j

⌊
j
p

⌋
!
∫
Zp

(
x
j

)
dµ(x)

=

∞∑
j=0

(−1) ja j

⌊
j
p

⌋
!

∑
0<m1<···<mr−1< j+1

1

mk1
1 · · ·m

kr−1
r−1 ( j + 1)kr

.

Put

h( j) =
⌊

j
p

⌋
!

∑
0<m1<···<mr−1< j+1

1

mk1
1 · · ·m

kr−1
r−1 ( j + 1)kr

(3.2.1)

for j ≥ r − 1. Note that the summation in the R.H.S. of (3.2.1) is empty for
0 ≤ j ≤ r − 2 and understood to be 0. We will prove the following lemma soon
later.

Lemma 3.2.2. If wt(k+) < p − 1, then we have

min
j≥r−1
{ordp(h( j))} ≥ −2 wt(k+).
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It follows from the above lemma that

p2 wt(k+)
∫
Zp

xm − xn

pN dµ(x) = p2 wt(k+)−N
{
(−1)mB(k)

m − (−1)nB(k)
n

}
∈ Zp.

It is equivalent to the congruence

p2 wt(k+)B(k)
m ≡ p2 wt(k+)B(k)

n mod pN .

□

We will show Lemma 3.2.2.

Proof of Lemma 3.2.2. Let k = (k1, · · · , kr). For j ≤ p−1, we see that ordp(h( j)) ≥
−kr. Set j = ap + i (≥ p) with a ≥ 1 and 0 ≤ i ≤ p − 1. Then we have

min
0≤i≤p−1

{
ordp(h(ap + i))

}
= min

0≤i≤p−1

ordp(a!) − kr ordp(ap + i + 1) + ordp

 ∑
0<m1<···<mr−1<ap+i+1

1

mk1
1 · · ·m

kr−1
r−1




≥ min
0≤i≤p−1

ordp(a!) − k′r ordp(ap + i + 1) + min
0<m1<···<mr−1<ap+i+1

− r−1∑
s=1

k′s ordp(ms)




= ordp(a!) − k′r ordp(a + 1) − max
0<m1<···<mr−1<(a+1)p

 r−1∑
s=1

k′s ordp(ms)

 − k′r

≥ ordp(a!) − k′r ordp(a + 1) − max
0<b1<···<br−1≤a

 r−1∑
s=1

k′s ordp(bs)

 − wt(k+) C F(a).

It is enough to prove that mina≥1{F(a)} ≥ −2 wt(k+). For t ≥ 0 and 0 ≤ u ≤ p − 1,
since we see that

ordp((tp + u)!) = ordp((tp + p − 1)!)

and

max
0<b1<···<br−1≤tp+u

 r−1∑
s=1

k′s ordp(bs)

 ≤ max
0<b1<···<br−1≤tp+p−1

 r−1∑
s=1

k′s ordp(bs)

 ,
it suffices to check the case a ≡ p−1 mod p. Putting a = qpl−1 with l ≥ 1, q ≥ 1
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and p ∤ q, we have

F(qpl − 1)

= ordp

(
(qpl)!
qpl

)
− k′r ordp(qpl) − max

0<b1<···<br−1≤qpl−1

 r−1∑
s=1

k′s ordp(bs)

 − wt(k+)

= ordp((qpl)!) − (k′r + 1) ordp(qpl) − max
0<b1<···<br−1≤qpl−1

 r−1∑
s=1

k′s ordp(bs)

 − wt(k+)

=q
pl − 1
p − 1

+ ordp(q!) − (k′r + 1)l − max
0<b1<···<br−1≤qpl−1

 r−1∑
s=1

k′s ordp(bs)

 − wt(k+).

If 1 ≤ q ≤ p− 1, since bs ≤ (p− 1)pl − 1 < pl+1 and ordp(bs) ≤ l for 1 ≤ s ≤ r− 1,
we find that

F(qpl − 1) = q
pl − 1
p − 1

− (k′r + 1)l − max
0<b1<···<br−1≤qpl−1

 r−1∑
s=1

k′s ordp(bs)

 − wt(k+)

≥ q
pl − 1
p − 1

− (k′r + 1)l −
 r−1∑

s=1

k′s

 l − wt(k+)

≥ pl − 1
p − 1

− (wt(k+) + 1)l − wt(k+)= −2 wt(k+) if l = 1
≥ p + 1 − 2(wt(k+) + 1) − (p − 2) if l ≥ 2

≥ −2 wt(k+).

Note that we used the assumption wt(k+) < p − 1 in the case l ≥ 2.
If q ≥ p + 1, set q =

∑d
i=0 ci pi with 0 ≤ ci ≤ p − 1, c0cd , 0 and d ≥ 1. Then it

follows that

F(qpl − 1)

≥ pl − 1
p − 1

d∑
i=0

ci pi +
1

p − 1

d∑
i=1

ci(pi − 1) − (k′r + 1)l −
 r−1∑

s=1

k′s

 (d + l) − wt(k+)

≥ pl − 1
p − 1

(pd + 1) +
pd − 1
p − 1

− (wt(k+) + 1)l −
 r−1∑

s=1

k′s

 d − wt(k+)

=
pl+d + pl − 2

p − 1
− (wt(k+) + 1)l −

 r−1∑
s=1

k′s

 d − wt(k+)

≥ pd+1 + p − 2
p − 1

−
 r−1∑

s=1

k′s

 d − 2 wt(k+) − 1
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=

(
1 +

1
p − 1

)
pd −

 r−1∑
s=1

k′s

 d − 2 wt(k+) − 1
p − 1

≥
(
1 +

1
p − 1

)
p −

r−1∑
s=1

k′s − 2 wt(k+) − 1
p − 1

=

p −
r−1∑
s=1

k′s

 + 1 − 2 wt(k+) > −2 wt(k+).

This completes the proof. □

Remark 3.2.3. We obtain the explicit formula of B(k)
n by using the p-adic distri-

bution µ in the proof of Theorem 1.2.6 as follows. For n ≥ 0, it is known that we
have

xn =

n∑
j=0

{
n
j

}
j!
(
x
j

)
,

where, for any integers a and b,
{

a
b

}
are called the Stirling numbers of the second

kind and defined by the recurrence formula{
a + 1

b

}
=

{
a

b − 1

}
+ b

{
a
b

}
with the conditions

{
0
0

}
= 1 and

{
a
b

}
= 0 for a < b ([3, Definition 2.2, Proposition

2.6]). Then we find that

B(k)
n = (−1)n

∫
Zp

xndµ(x) = (−1)n
n∑

j=0

{
n
j

}
j!

∫
Zp

(
x
j

)
dµ(x)

= (−1)n
n∑

j=0

{
n
j

}
j!

∑
0<m1<···<mr−1< j+1

(−1) j

mk1
1 · · ·m

kr−1
r−1 ( j + 1)kr

= (−1)n
∑

0<m1<···<mr−1<mr≤n+1

(−1)mr−1(mr − 1)!
{

n
mr−1

}
mk1

1 · · ·m
kr−1
r−1 mkr

r

.

By exactly the same way, we get

C(k)
n = (−1)n

∑
0<m1<···<mr−1<mr≤n+1

(−1)mr−1(mr − 1)!
{

n+1
mr

}
mk1

1 · · ·m
kr−1
r−1 mkr

r

.

These formulas were proved in [11, Theorem 3] by using the generating functions.
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Example 3.2.4. We see that B(−1,2)
4 = 31

60 ∈ 5−1Z5 and B(−1,2)
504 = A/44375269362060 ∈

5−1Z5, where A is a 757-digit integer, by computer calculation. Hence, it follows
that 54B(−1,2)

4 ≡ 54B(−1,2)
504 mod 53.

Remark 3.2.5. It was claimed in [14, Theorem 13] that, given an odd prime p and
positive integers m, n, k,N with p ≥ max{k+2, (N+k)/2} and m ≡ n mod (p−1)pN ,
one has pkB(k)

m ≡ pkB(k)
n mod pN . However, there are counterexamples: pB(1)

1 =

p/2 . 0 = pB(1)
m mod pN for N ≥ 2 and m = (p−1)pN +1. (Its proof breaks down

at [14, Proposition 11], for which j = p2 + p − 1 yields a counterexample.)

3.3 Multi-poly-Bernoulli-star numbers
At the end of this chapter, we will give Kummer-type congruences for other
Bernoulli numbers.

Definition 3.3.1 ([10, Section 1]). For k = (k1, · · · , kr) ∈ Zr, define the non-strict
multiple polylogarithm to be

Li⋆k (t) =
∑

0<m1≤···≤mr

tmr

mk1
1 · · ·m

kr
r

.

The multi-poly-Bernoulli-star numbers B(k)
n,⋆ and C(k)

n,⋆ are defined to be the rational
numbers satisfying

Li⋆k (1 − e−t)
1 − e−t =

∞∑
n=0

B(k)
n,⋆

tn

n!
,

Li⋆k (1 − e−t)
et − 1

=

∞∑
n=0

C(k)
n,⋆

tn

n!

respectively, as formal power series over Q.

Remark 3.3.2. Similar relations to Remark 1.2.4 were proved in [10, Proposi-
tions 2.3, 2.4]. Furthermore, the multi-poly-Bernoulli-star numbers B(k)

n,⋆ and C(k)
n,⋆

satisfy a duality relation for k = (k1, · · · , kr) ∈ Zr
>0 ([10, Theorem 3.2]).

Remark 3.3.3. It is known that the multi-poly-Bernoulli-star numbers C(k)
n,⋆ are

described as finite multiple zeta-star values ([10, Section 4]).

The following theorem can be shown by exactly the same argument as Theo-
rem 1.2.6 and hence is omitted.
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Theorem 3.3.4. Let k ∈ Zr be an index, p be an odd prime and m, n and N be
positive integers with m, n ≥ N and wt(k+) < p − 1. If m ≡ n mod (p − 1)pN−1,
then we have

p2 wt(k+)B(k)
m,⋆ ≡ p2 wt(k+)B(k)

n,⋆ mod pN ,

p2 wt(k+)C(k)
m,⋆ ≡ p2 wt(k+)C(k)

n,⋆ mod pN .

Remark 3.3.5. We can check the following formulas

B(k)
n,⋆ = (−1)n

∑
0<m1≤···≤mr−1≤mr≤n+1

(−1)mr−1(mr − 1)!
{

n
mr−1

}
mk1

1 · · ·m
kr−1
r−1 mkr

r

,

C(k)
n,⋆ = (−1)n

∑
0<m1≤···≤mr−1≤mr≤n+1

(−1)mr−1(mr − 1)!
{

n+1
mr

}
mk1

1 · · ·m
kr−1
r−1 mkr

r

by the same computation as Remark 3.2.3. These were obtained in [10, Proposi-
tion 2.2] by using the generating functions.
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