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Chapter 1

Introduction

1.1 Background

1.1.1 SDN and OpenFlow

Software Defined Networking (SDN) is an emerging networking paradigm that sep-

arates data and control layers and gives an overall view of the network domain [1].

Instant access to the networking device and centralized control of the domain en-

ables flexible and dynamic approaches to manage the network. SDN brings novelty to

the networking field by using a standard protocol to manage all networking devices.

An SDN controller communicates with the SDN-enabled networking devices using a

Southbound Protocol while traditional networking devices are managed through a CLI.

However, the CLI syntax of traditional networking devices greatly vary according to

their brand and model. The flexibility granted by SDN also stems from being able to

control different devices with the same controller and protocol.

The centralized view and control of SDN makes the operation simpler within its

domain. Moreover, SDN allows networks to be more programmable. Cloud giants

such as Google and Amazon started implementing SDN in their cloud domain in 2017

[2]. Also, there is research about implementing SDN in a low-cost home network

environment, just using a Raspberry Pi as both an SDN switch and controller [3].

Therefore, networks with different sizes and purposes implement SDN in their domain

nowadays.

The communication from the controller to the devices is conducted through South-
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Figure 1.1: Representative SDN Topology

bound Interfaces (SBI), which can be driven by different protocols such as such Open-

Flow (OF) and NETCONF. Due to its widespread use, this research will only consider

OF as the representative SBI [4]. An OpenFlow switch embodies OpenFlow channels

that connect to the external controller(s) and the flow tables that handle the network

traffic.

Table 1.1: Components of a Flow Table

Match Fields Priority Counters Instructions Timeouts Cookie Flags

Table 1.1 shows the main components of a Flow Table, namely: Matching Fields

to specify the values of packet headers; and Instructions to define how to handle the

packets if a packet matches flow rule. Additionally, it also contains other features, such

as Timeouts which show the maximum amount of time or idle time before the flow is

expired; Cookies which makes grouping easier in the controller. Finally, Flags can be

set to implement some functionality or to change the way flow entries are processed.

For instance, the OFPFF SEND FLOW REM flag enables an asynchronous message

to be sent to the controller if the flow is deleted.

SDN switches handle the data plane based on the flow entries of the table, if a packet

matching happens then the device applies the necessary action. Figure 1.2 shows

the flowchart of a packet processing procedure from OpenFlow Switch Specification
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Figure 1.2: Packet Processing Flowchart [5]

v1.3.5 [5]. As observed, the switch conducts a table lookup when it receives a new

packet, which is conducted on the first table, and if the packet matches the header

fields then the necessary actions are implemented. If no match is found in the first

table, then it goes through the next table in the pipeline. However, if there is no match

in any of the tables, the table-miss action is applied; this action might be drop the

packet (i.e., default) or any other action based on the network policy.

A table-miss flow entry is a default flow entry with all of its matching fields are

“do not care” values. It is a must-have for the OpenFlow switches according to the

OpenFlow Switch Specification. Traditional networks have the same concept as a

default rule that drops packets with unknown origins. However, in some cases, the

device would want to request the controller for further instructions. In which case, the

packet is encapsulated in a packet-in message and send to the controller.

Packet matching is one of the most critical parts of SDN. The packet header is

dissected into fields for matching, along with the ingress port, metadata field, and

other pipeline fields. There are 40 matching fields in total on OpenFlow 1.3.5. Some of

these matching fields, such as Ethernet address and IP address, are open to masking.

However, the transport layer port addresses are not open to masking in any version of

OpenFlow yet. Traditional networking devices use subnetting Classless Inter-Domain

Routing (CIDR) masks to manage the traffic. However, OpenFlow allows the usage of

arbitrary bitmasking as well as CIDR masks. This feature of OpenFlow increases the

3



possibility to create new traffic management and security measures.

Table 1.2: Matching with the Value and Mask

Value

0 1

0 no constraint error
Mask

1 must be 0 must be 1

Table 1.2 illustrates the relationship between a mask bit and the corresponding

value for the matching. For instance, in case we want to mask a bit (i.e, the bit can

be either 0 or 1) the corresponding bit of the mask is set to 0. However, the value to

match must be 0 in this case in order to prevent the OFPBMC BAD WILDCARDS

error. Mask bit is set to 1 when the value bit for matching is a specific value.

1.1.2 Network Function Virtualization

The significance of the internet in our daily life increases day by day; thus, the demand

for better and faster network environments increases too. Networks are getting more

complex and hard to manage as traditional networks combine diverse network functions

statically. Traditional networks consist of vendor-specific software and hardware.

Network Function Virtualization (NFV) [6] allows network functions to be imple-

mented by general computing resources such as commodity servers. The separation of

software and hardware allows each of them to be improved independently. Also, reas-

signing and sharing of the hardware resources give flexibility to network management.

With NFV, new functions or resources can be added to the network in a short period of

time, which grants a dynamic operational ability as well as the capability to implement

function automation. However, one of the biggest issues with NFV is its performance.

Since general-purpose servers are used in the implementation of the NFV, there are

latency and throughput concerns.

The European Telecommunications Standards Institute (ETSI) created an NFV

Architecture Framework document that summarizes a possible NFV system structure

[7]. ETSI envisions that NFV Infrastructures to replace physical devices providing
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network functions, replacing them with software-based solutions, ultimately preventing

vendor dependency. As shown in Figure 1.3, NFV consists of three main components:

• Virtualized Network Function (VNF): a network function that is implemented as

software on an NFVI.

• NFV Infrastructure (NFVI): physical devices that can support running VNFs.

• NFV Management and Orchestration (NFV MANO): administration of both

physical and software resources for virtualization.

Figure 1.3: Architectural Framework of NFV

1.2 Purpose of this Research

Nowadays, there is a massive number of devices connected to the networks in the whole

world. Internet is the web of all of these connected devices, and it is still growing

exponentially. The number of internet-connected devices also increases every day, with

the diffusion of smart devices such as home appliances. Devices with limited processing

power are an easy target for hacking activities since they cannot implement elaborate

malware protection. M. Antonakakis et al. [8] indicate that the Mirai botnet, a group
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of hacked devices and servers controlled from a remote control center, has reached a

population of 200,000-300,000 infections. Members of the Mirai botnet are used for

countless attacks, such as Distributed Denial of Service (DDoS) attacks. DDoS attacks

aim to overwhelm network resources by sending enormous network traffic. Legitimate

users cannot access the service/network in a DDoS attack; thus, it is called Denial of

Service.

In an SDN domain, OpenFlow switches handle the traffic by the flow entries in

their flow tables. The flow table structure is implemented in hardware using Ternary

Content Addressable Memory (TCAM). TCAM accesses its contents parallelly, which

grants quick flow matching to OpenFlow switches. However, TCAMs have nearly 100

times greater power consumption and they cost 100 times more, when compared to the

conventional Random Access Memory (RAM) [9]. Therefore, the size of a flow table is

limited to several thousand flow entries [10]; which is precisely the vulnerability that

a flow table overflow attack exploits.

Figure 1.4: Flow Table Overflow Attack

Figure 1.4 shows how a flow table overflow occurs in a network domain with an

OpenFlow switch. In normal traffic without any attack, the OpenFlow switch can

handle the client traffic with its flow table capacity. An enormous number of attack-
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ers also sends requests to the servers in the target domain, in case of a flow table

overflow attack. The number of flow entries generated from attacker packets rises so

high that the entire flow table is filled with attackers’ flow entries. Benign packets

(from legitimate clients) are dropped since their corresponding flow entries are not in-

stalled. Therefore, the client cannot access the server, and there is also a possibility

of an overwhelmed and unresponsive SDN switch and controller. Even without an

unresponsive controller, the overall performance of the network decreases [11]. If the

switch or controller becomes unresponsive, the whole network is down.

Flow table overflow may occur in a DDoS attack depending on the packet variety.

In addition, there are also some other situations in which a flow table overflow might

occur. For instance, T. A. Pascoal et al. [12] show an attack called Slow-TCAM (Slow

TCAM Exhaustion Attack) that is influenced by slow rate DDoS attacks. In Slow-

TCAM attack, attackers keep their connection with the server (on the target domain)

by sending packets at a slow rate which can be detected as benign traffic. However,

attackers send the traffic from bots that are slightly greater than the flow table capacity

in number. Also, the packets are sent at a rate within the idle timeout limits, which

can be inferred. This way, attackers ensure that the flow table will be kept full during

the attack.

Finally, we can say the flow table overflow attacks cause Denial of Service (DoS)

effect for the clients because of the service outages, as well as high response time [9].

Flow table overflow attacks can be prevented simply by having a big enough flow table.

However, the cost of an OpenFlow switch increases with the size of the TCAM. Besides,

the number of bots in a botnet increases exponentially; thus, we cannot be sure that

it is possible to have big enough flow table in the future.

In this work, we aim to mitigate the flow table overflow attacks, regardless the size

of the physical networking infrastructure devices in the network domain; which will

consequently fix the issues of communication interruption and high delay that stem

from high flow table usage. We summarize the following problems from the current

flow table overflow attack mechanisms:

(P1) High dependency on the size of the physical infrastructure: Number

and the capacity of physical network devices that reside in the domain greatly

7



affects mitigation method.

(P2) Coarse-grained flow entries block legitimate users: Traditional Access

Control List (ACL) compression methods use subnet masking based mechanisms,

which limits compression rate. However, more abstract masks are implemented

in order to decrease the rule size which results in blocking of legitimate packets.

(P3) Harsh eviction policies with high probability of dropping legitimate

traffic: Proactive firewall policies are not sufficient to implement fine-grained

blocking rules that only filter attackers.

To achieve the main goal of this research and solve the above-mentioned problems,

we propose an NFV-based mitigation mechanism for SDN-based environments. More

concretely, we propose:

(S1) Dynamic NFV infrastructure: A dynamic network topology created with

virtual OpenFlow switches takes the burden of physical switches.

(S2) Fine-grained flow entries distributed among the virtual infrastructure:

Increased overall flow table capacity allows a fine-grained filtering that only blocks

attackers.

1.3 Organization of this Thesis

The structure of this thesis is as follows. Chapter 1 (this chapter) gives a brief introduc-

tion to the scope of this research. Then, Chapter 2 presents related work, and Chapter

3 shows a detailed overview of the proposal, which is then evaluated in Chapter 4.

Finally, Chapter 5 concludes this thesis with some final thoughts and future work.
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Chapter 2

Related Work

2.1 Traditional Mechanisms for Table OverflowMit-

igation

Flow table overflow is a problem addressed since the early stages of the implementation

of SDN and OpenFlow. For instance, one of the early scenarios of table overflow (with-

out an attack) is a Local Area Network (LAN) environment with a significant number

of end devices. Flow entries that are originated from the communication between all

of the devices may trigger table overflow. Table overflow mitigation techniques can be

classified into three main categories [13].

Compression methods merge similar flow entries into a single flow entry. However,

to be compressed, flow entries need to have at least the same action, which may be

challenging in OpenFlow since flow entries might have a variety of actions. Matching

fields such as IP addresses can be masked using wildcard rules in the flow entries. For

example, two ternary strings, “00*10” and “01010” can be merged as “0**10”. Some

traditional methods [14] uses the IP field to create CIDR masks on Access Control

Lists (ACL). While others [15] uses binary tree to calculate optimized CIDR mask for

forwarding flows in LAN environments. However, both methods are time-consuming

because of their complexity and do not have enough compression rate for a server that

is open to the internet.

Eviction methods replace an existing flow entry with a new one when the flow table

is already full. Cache replacement algorithms such as First In First Out (FIFO) and

9



Least Recently Used (LRU) can be directly implemented to some OpenFlow switches.

However, implementing these procedures without a controller-based policy, would ren-

der the centralized management underused. In SDN, a controller can manage the

eviction too, by using the OFPFMFC ALL TABLES FULL message. The controller

sends a delete message to the switch, which points out which flow entry to delete. This

method is also impractical due to the significant signaling overhead resulting from

time-consuming processes such as statistic collection. Another option would be to use

the timeouts in the flow entries. Every flow entry has an idle and hard timeouts in

its structure. There are some related works that find the best-suited timeout values

for the current network state. Nevertheless, all eviction methods suffer from the same

drawback, namely they occur when the flow table is already overflowing.

Distribution methods split the workload of an SDN switch with an overloaded

flow table to the SDN switches with idle space in their flow tables. For instance,

B. Yuan et al. [16] propose a QoS aware mitigation mechanism called peer support

strategy. Switches help their peers in case of flow table resource outage by using their

idle space. The peer support strategy takes the following features into account when

choosing which peer to guide the traffic: table fullness, the distance between switches,

traffic rate, and connection count with other switches. However, there is no blocking

mechanism for attackers in this approach.

K. Bhushan et al. [2] also present a distribution-based mechanism. Their mecha-

nism distributes the flow entries by checking the distance between switches, flow table

fullness, and whether the corresponding switch resides on the alternate path. This

approach also contains a Blacklist collected by previous attacks. Flow entries with

wildcard rules are installed to the switches to block attacker packets. In addition,

underutilized flow entries in a flow table are removed in case of an attack.

The above-mentioned distribution methods request flow table status by polling in

a set period. The polling of the flow tables of every switch on the domain creates a

significant CPU load on the SDN Controller, and it takes time to process all those

information, which creates a signaling overload. Besides, they also assume that we

have enough SDN switches to distribute incoming flow entries generated from incoming

packets. Therefore, these mechanisms are not suited to mitigate an attack with great
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numbers that overwhelm the whole domain resources or the domains with limited

resources such as small or medium-sized private networks. Regardless, distribution

methods have a great potential for mitigating flow table overflow attacks.

2.2 SDN-based Flow Table Overflow Mitigation

This section presents related work of mitigation mechanisms that uses SDN. For in-

stance, P. T. Duy et al. [17] create a mechanism that replaces forwarding flows origi-

nated from the attackers with dropping flows. Also, they decrease the timeouts with

the increase of the flow entries. Finally, if heavy network traffic occurs in a short pe-

riod, table-miss flow entry is removed which results in no addition of new flow entries.

This work increases the controller load by decreasing the timeouts. However, it does

not ensure legitimate traffic will be handled under an attack.

STAR [9] uses eviction and alternate paths in order to maximize flow table uti-

lization and prevent flow table overflow. Firstly, a path-set database is pre-generated

between source-destination pairs. Also, an LRU eviction algorithm is implemented into

the switches. When a new flow entry enters the system, the flow entry is rejected if

there is a fully utilized switch on every possible path. The cost of the possible routes

is calculated according to flow table utilization and path length, and the flow entries

are installed to the path with the lowest cost. STAR aims to maximize the flow ta-

ble utilization by creating possible routes on the network. However, not blocking or

forwarding attacker packets may result in constant packet-in messages that consume

controller resources. In addition, during an attack, the flow tables would be filled with

attacker’s flow entries, which means incoming new legitimate packets are dropped and

resulting in DoS.

2.3 NFV-based Attack Mitigation Mechanisms

NFV realizes network functions on commodity hardware which allows network devices

to be virtualized too. In that regard, there are some interesting related work on using

this approach. For instance, VGuard [18] uses NFV to create virtual switches on an

11



NFV Infrastructure to create two virtual tunnels. The Source IP of every incoming

packet is assigned a priority value, which shows the likelihood of being a legitimate

packet given by an external source. A relatively small number of packets with higher

priority use the High Priority Tunnel, which has ensured QoS. Packets with a higher

probability of originating from an attacker have to compete for the Low Priority Tunnel

resources.

Furthermore, VFence [19] proposes NFV based defense mechanism against SYN

attacks. VFence uses NFV for creating every network device on the domain and they

assign a commodity server per network device. They first create a dispatcher, which

is connected to the outside of the domain; thus, the Internet. This dispatcher also

performs load balancing on agents placed in parallel. These agents check whether the

incoming packets are spoofed, if not, then add the source IP of non-spoofed packets to

a whitelist. Whitelisted packets pass directly to the domain; hence, the SYN attack

that aims to cripple the servers fails. Nonetheless, the structure of VFence is not open

to apply dynamic features of NFV, such as adding more agents or change the placement

of agents.
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Chapter 3

NFVGuard: An NFV-based Table

Overflow Mitigation for Software

Defined Networks

3.1 Overview of the Proposal

This chapter describes our proposed mechanism to mitigate flow table overflow attacks

in SDN, called NFVGuard. The overall structure is shown in Figure 3.1. As observed,

legitimate users and attacker can access the servers through an Edge Switch located

on the access gateway to the target domain.

NFVGuard is composed by two elements, a Controller (NFV Controller) and a

Virtual Honeypot, which are responsible for protecting SDN switches in the target

domain against flow table overflow attacks using the following process. In case a

packed coming from the outside of the target domain does not match any of the flow

entries of the Edge Switch, the packet is sent to the NFVGuard Controller through a

packet-in message. The controller processes these messages and installs corresponding

flow entries to the switches. In order to filter the attacker traffic, all of the incoming

traffic from outside of the target domain is directed to a Virtual Honeypot. These main

components are discussed in detail in the following subsections.
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Figure 3.1: Proposed NFVGuard Deployment

3.2 Virtual Honeypot

Current flow table overflow mitigation mechanisms cannot cope with the attacks be-

cause of their reliance on the limited physical infrastructure. Thus, we use the Virtual

Honeypot to mitigate the attack by adjusting the Virtual topology. Using these virtual

devices arranged in a specific manner increases the capacity of the Virtual Honeypot;

allowing fine-grained flow entries, which are installed to block attackers as precisely

as possible. The name Virtual Honeypot comes from the fact that this infrastructure

lures attackers and blocking them accordingly. It can be implemented on a Network

Function Virtualization Infrastructure (NFVI). For instance, in the current implemen-

tation, we use OpenVSwitch (OVS) as it can be easily implemented on any commodity

hardware. However, the Virtual Honeypot could be implemented in any other form

of NFV such as the container-based Docker. As mentioned in Chapter 2, distribution

Figure 3.2: Worst-case Scenario for Mitigation

approaches use existing physical switches in the domain to install fine-grained flow en-
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tries. However, these devices initiate slower than virtual switches; even if the devices

start booting as soon as the attack is detected, the rule installation and other processes

will take a long time. Duration is the essence of a flow table overflow attack; if we are

too late, the attack might be successful.

Figure 3.3: An Advantageous Virtual Honeypot Topology for Mitigation

Another handicap of distribution approaches is the static topology of the domain.

We cannot change the switch locations, and adding additional switches into the domain

is costly. However, there are some topologies that will handle the table overflow attacks

more easily. For example, consider a physical topology as in Figure 3.2, in this serially-

connected topology, there is not many possibilities to mitigate a table overflow attack,

as all the traffic need to traverse the switches. We could even say that this is worst-case

scenario for flow table overflow mitigation topology. Each switch has to carry guiding

flow entries (g) of the next switch in line. For example, S3 has to carry both g1 and

g2. This repetition decreases the available flow entry capacity (tc).

In contrast, as observed in Figure 3.3, there are some other topologies that might

offer a more favorable environment to mitigate the attack. In this topology, a switch

distributes the flow entries to parallelly connected switches, therefore avoiding flow

entry repetition.

To estimate the total flow table capacity, we use the holding time (h), which refers

to the duration until the flow table is full in case of an attack, with a given attack rate

15



Table 3.1: Abbreviations and Terms

g Guiding flow entries

tc Available total flow entry capacity

h Holding time

ra Attack rate

d Attack duration

Cn Total legitimate flow entry count

r New flow entry rate

v Flow entry removal rate

ts Time spent in the system

nh Total host count

Cs Legitimate flow entry count per switch

N Switch count in domain

a Available flow entry count

C Flow entry capacity of a switch

hn Holding time of naive approach

c Flow entry compression rate

hd Holding time of distribution approaches

nrs Required switches to mitigate

ns Switch count to start in dynamic approach

s Safety value

sthreshold Percentage to add a new switch

pt Packet-in rate threshold

Temrg Emergency state duration

felimit Flow entry limit per switch

mw Mask width for compression

mwt Mask width threshold for merging

dt Ternary Hamming Distance threshold
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(ra) and duration (d).

Table 3.1 summarizes the abbreviations and terms used in this section.

Initially, the total flow entry count on all switches (Cn) is calculated as shown in

Equation 3.1. As observed, the total flow entry installation ratio is determined by the

average flow entry installation per host (r) and average flow entry removal per host

(v). Then, we multiply this ratio with the time spent in the system (ts) to get average

number of flow entries for a host, at any time. Finally, we can get average total flow

entry count (Cn) originating from legitimate users by adding all.

Cn =

nh∑
i=1

r

v
.ts (3.1)

Next, we can calculate the legitimate flow entry count per switch (Cs) as shown in

Equation 3.2.

Cs =
Cn

N
(3.2)

For instance, in the case where there is no defense mechanism to mitigate the attack

(i.e., naive approach), the holding time (hn) can be calculated as shown in Equation

3.3. Note that, since there is no defense mechanism, first switch in the line is filled

with all flow entries.

tc = C − Cs

hn =
tc

ra
=

C − Cs

ra
(3.3)

Then, to calculate the guiding flow entry counts (g), we first need to calculate the

available space in a specific switch (a), as shown in Equation 3.4.

a = C − Cs (3.4)

Since, we compress the flow entries with a compression rate (c) that fills all available

space in the switch, as shown in Equation 3.5.

g = ac (3.5)

For instance, if we apply these formulas in Figure 3.2, the resulting available flow

entry count (a) and the total available flow entry count (tc) would be as follows:
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a1 = a1 g1 = a1.c

a2 = a1 − g1 = a1(1− c) g2 = a2.c

a3 = a1 − g1 − g2 = a1(1− c)2 g3 = a3.c

a2 = a1 − g1 − g2 − g3 = a5(1− c)3 g2 = a2.c

a1 = a1 − g1 − g2 − g3 − g2 = a1(1− c)4

tc = a1 + a2 + a3 + a4 + a5

tc = a1 + a1(1− c) + a1(1− c)2 + a1(1− c)3 + a1(1− c)4

Then, we can use Equation 3.6 to calculate total available flow entry count.

N−1∑
i=1

rn =
1− rN

1− r
(3.6)

As observed, the number of switches in domain (N) is used to formulate total

available capacity.

tc = a1
1− (1− c)N

1− (1− c)

tc = (C − Cs)
1− (1− c)N

c

Finally, we can calculate the holding time for distribution methods (hd), as follows.

hd =
tc

ra
= (C − Cs)

1− (1− c)N

c.ra
(3.7)

Also, we can now calculate the Virtual Honeypot holding time (hvh). Since we have

N − 1 parallel switches and the guiding flow entries (g) values are the same, we can

directly use Equation 3.4 and 3.5, as follows.

tc = N.a− (N − 1)g

tc = (C − Cs)(N −N.c+ c)

hvh =
(C − Cs)(N −N.c+ c)

ra
(3.8)

In order to mitigate a table overflow attack, our flow tables should not be full

regardless of the scale of the attack. Therefore, the holding time (h) have to be bigger

than the attack duration (d).

18



h > d (3.9)

We can obtain the number of required switches to mitigate (nrs) by replacing N in

Equation 3.8.

(C − Cs)(nrs − nrs.c+ c)

ra
> d (3.10)

To summarize, we can calculate the necessary number of switches to mitigate based

on a given attack rate and duration as follows.

nrs >
d.ra − c(C − Cs)

(1− c)(C − Cs)
(3.11)

It is worth noting that the Virtual Honeypot might be of two types: a static, and

dynamic.

3.2.1 Static Approach

The static approach on the Virtual Honeypot aims to increase the overall flow table

capacity of the domain a single time (i.e., when the attack is detected). Figure 3.4

illustrates the structure of the proposed Virtual Honeypot using a static approach.

The number of created virtual switches is constant, and they are instantiated directly

with the installation of the Virtual Honeypot. We can decide the number of virtual

switches using Equation 3.11 for an anticipated attack. The Edge Switch guides all of

the incoming traffic to the Virtual switches in the Virtual Honeypot. Once the virtual

switches are created, the NFVGuard Controller installs fine-grained flow entries into

these switches. Note that, the flow entries forward the legitimate traffic to the physical

switch (host switch) and block attackers on the virtual switches.

3.2.2 Dynamic Approach

In the Dynamic version, the Virtual Honeypot has a three-level structure, as illustrated

in Figure 3.5. The top and bottom levels connect the Virtual Honeypot to the physical

switches. In order to relieve the burden from the Edge Switch, the top-level switch

distributes the traffic to the middle-level switches. Although there is only one virtual
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Figure 3.4: Static Virtual Honeypot Structure

switch on the top level in diagram, this can be adjusted according to traffic volume

and diversity of the attack.

The middle level is in charge of applying fine-grained filtering policies. The dynamic

features of NFV and SDN are applied by adding/removing virtual switches at run-time.

The number of virtual switches is increased according to attack density and new virtual

switches are added as soon as a threshold (sthreshold) is passed to prevent flow table

overflow on the middle level. Consequently, only legitimate traffic passes to the target

domain’s physical network devices.

The number of virtual switches on middle level (ns) can be calculated easily by using

total flow entry count of legitimate traffic (Cn) by Equation 3.12, in only legitimate

traffic.

ns >
Cn

C
(3.12)

The threshold (sthreshold) is determined by the ratio of existing middle level switches

(ns) and how many switches we need to mitigate the attack (nrs), which is calculated

in the previous section by Equation 3.11. Also, we multiply this value by a safety value

(s) since we do not want to fill the tables.

sthreshold =
ns

nrs − ns

.s.100 (3.13)
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Figure 3.5: Dynamic Virtual Honeypot Structure
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3.3 NFVGuard Controller

The other important component of the proposal is the SDN controller called the NFV-

Guard Controller. NFVGuard Controller is responsible for standard networking oper-

ations such as traffic handling and state monitoring of the domain. However, it also

has the role of NFV Orchestrator for handling the Virtual Honeypot topology and

resources.

NFVGuard Controller consists of four main components and three databases. The

Policies database includes routines that enable traffic handling in the domain, such as

routing and firewalling. Then, the Flow Database includes information of flow entries

that guides the traffic to Virtual Honeypot’s middle layer. Finally, the Switch Database

entries are switch information such as datapath, ID, the number of flow entries in a

switch, and the out port from the guiding switch. All of the databases are implemented

as a simple list that resides in the RAM. We do not use any sophisticated database

system in the implementation since a prompt response is expected from the controller.

Figure 3.6 shows the relationship between the NFVGuard Controller modules and

the interactions between NFVGuard Controller and other physical structures whose

functionality are explained in the following subsections.

Figure 3.6: NFVGuard Controller Modules

3.3.1 Communication Module (CM)

The Communication Module (CM) provides a channel to NFVGuard Controller for

interactions with Virtualization Platform that creates virtual switches (i.e., Virtual
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Honeypot). The module forwards requests to the Virtualization Platform and processes

the response, which is the new information. The CM updates the Switch Database with

this new information. In the current implementation, the communication is done via

a simple TCP client that sends/receives compressed (pickled) binary data.

3.3.2 Flow Monitoring Module (FMM)

This module oversees updates of Flow and Switch Databases. In addition, it also creates

requests for switch addition/removal in the dynamic approach. This module can be

implemented using two versions, polling type in the static approach and asynchronous

type in the dynamic approach.

In the case of the polling type, it collects flow table information from the OpenFlow

switches. Then, this module also deletes the flow entries that are removed from the

flow table. This process is done by comparing all entries in the Flow Database and the

response. Finally, it also calculates the flow entry counts in each switch to update the

Switch Database. Note that this method has O(n2) of time complexity.

Flow entries with the OFPFF SEND FLOW REM flag trigger the asynchronous

OFPT FLOW REMOVED message when it is removed from the switch. The switches

with the flow table overflow possibility have all of their flow entries set the OF-

PFF SEND FLOW REM flag in the dynamic approach. Databases are updated event-

based, which decreases the time complexity to O(n) which is a significant improvement

compared to polling type.

Based on the information collected by this module, NFVController can add/remove

switches, as explained in the following sub sections.

Switch Addition

To add a switch, FMM checks the occupancy rates of all switches every T seconds.

When the occupancy rates of all switches pass a threshold (sthreshold), a request for

a new switch is sent to Communication Module (CM). Details on how to calculate

sthreshold is given at Section 3.2.2.
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Switch Removal

Since the removal process depends on the duration of the attack, to simplify the model

we can assume the network traffic with a Poisson Distribution [20]. Events, which are

client accesses, are independent, and two events from the same source cannot occur

simultaneously. We use the average Packet-in per second as the Poisson Distribution

parameter (λ). An abnormal number of Packet-in messages may arrive in case of an

attack or a high load of legitimate traffic in specific cases. In both cases, abnormal

traffic load might reoccur in a short period again. Therefore, removing underutilized

virtual switches right away is not a wise solution.

k∑
i=0

e−λ
λi

i!
(3.14)

A Packet-in rate threshold (pt) is calculated using the Cumulative Distribution

Function (CDF) 3.14, with a 99% probability. When the Packet-in rate passes the

threshold, “Emergency State” is declared on the controller. This emergency state is

not lifted until the normal packet-in rate continues for a time (Temrg); thus, no flow

removal happens. Switches with lower occupancy than sthreshold are removed if the

controller is not in the emergency state by sending a switch removal request to the

Virtualization Platform.

3.3.3 Topology Discovery Module (TDM)

This module checks the switches that enter/leave to this domain and update the Switch

Database, including the virtual switches in the Virtual Honeypot.

3.3.4 Packet-in Processing Module (PPM)

PPM is the core of our NFVGuard mechanism. This module creates wildcard rules to

guide and distribute the flow entries between the Virtual Honeypot switches. PPM is

explained in the next section thoroughly.
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3.4 Filtering and Flow Distribution

The traffic is filtered by applying fine-grained policies on the Virtual Honeypot. As

explained in the preceding section, the Static approach has a single level, therefore, the

packets are filtered in the whole Virtual Honeypot. However, in the dynamic approach,

the Virtual Honeypot has a multilevel structure and the filtering is conducted on the

middle level. The controller creates wildcard rules to guide the traffic to the filtering

layer of Virtual Honeypot. However, a flow distribution method is necessary to prevent

flow table overflow on the middle-level switches too.

3.4.1 Switch Selection

Wildcards rules are created by changing the mask of an OpenFlow match field. We

use the source IP of incoming packets to compress the flow entry rules. The Hamming

distance between two strings is the total number of different elements. We create a

term we call Ternary Hamming Distance (THD) inspired by [21]. IP is a ternary string

with do-not-care bits (i.e., *) as well as 0 and 1 bits. If the bit pair has either a do-

not-care bit or they are the same, Ternary Hamming Distance is 0; otherwise, it is 1.

For example, THD is 2 for given strings “10*001” and “00*101”.

THD is shown in Algorithm 1 of Appendix A-1. An IP (N) and its mask (K)

that resides in the Flow Database is compared to a newcomer packet IP (M). The

merged version of both IPs is also calculated together with the THD in order to remove

redundancy.

3.4.2 Flow Distribution

PPM picks a switch to forward the traffic with created wildcard rules. The switch with

the lowest occupancy is selected as the next hop in the static approach. On the other

hand, in the dynamic approach, more elaborate policies can be applied. For instance,

we used round-robin for rule distribution in the current implementation. Flow entry

admission is stopped to the switches that pass the flow entry limit (felimit). Equation

3.15 shows that felimit is the safe flow table capacity which depends on the before-

mentioned capacity (C) of the flow table and the aforementioned safety value (s).
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felimit = C × s (3.15)

The reason we are using the safety value twice, both in Equation 3.13 and Equation

3.15 , is because we do not forward new flow entries to switches which pass felimit

because compressed guiding flows might carry too much flow entries than intended. We

use felimit as a fail-safe for flow table overflow that might stem from the compression.

3.4.3 Packet-in Processing

Packet-in processing is the most critical part of this work. We explain the Packet-in

processing on the guiding switch first. The guiding switch is the Edge Switch in the

static approach and the top-level switch in the dynamic approach.

Algorithm 2 of Appendix A-2 shows the proposed Packet-in processing mechanism

for the guiding switch (GS). First, the switch to forward is selected as explained in the

previous section, then action for forwarding to the chosen switch is created. Packet-in

message (M) is compared to existing flow entries in the Flow Database (flowDB).

THD between an existing flowDB entry and the source IP of the packet (M.IP ) is

calculated. We introduce mask width (mw) and mask width threshold (mwt) here.

Mask width is the number of zeros in the bitmask, do-no-care bits in another word.

The mask width is limited because making wide wildcard rules makes flow distribution

ineffective.

THD will be zero if the flow entry is deleted from the switch but still exist in the

Flow Database. We update the Flow Database and install the flow entry with a match

field that only has the source IP of the packet. If THD is lower than the threshold (dt)

and mask width is lower than its threshold, we remove the existing flow entry from

the switch and database. Then, the new flow entry with the wildcard rule is installed

into the switch, and the database is updated. At last, if none of the flow entries match

the source IP of the new incoming packet, a new flow entry is installed without any

wildcards.

The filtering process is implemented by applying fine-grained policies to the filtering

level switch packet-in messages i.e, all virtual switches in the static approach, and mid-

dle level in the dynamic approach). The incoming packets can be forwarded, dropped,
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or altered on this level. Fine-grained policies can be supported by an Intrusion De-

tection System (IDS) or machine learning techniques [22] to decide which packets to

block. Since this work focuses on the pragmatic implementation of a flow table over-

flow mitigation mechanism rather attack detection, we assume that we already have a

blacklist provided by an external source.
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Chapter 4

Experiment

4.1 Experiment Outline

In our first two experiments, we emulate both the physical network infrastructure

and the Virtual Honeypot using Mininet [23]. In these experiments, it is assumed all

switches except the ones in Virtual Honeypot are physical switches. Also, RYU [24] is

used to implement the NFV Controller modules we mention in Chapter 3.

We use a simple approach that does not do mitigation as the benchmark approach

(i.e., naive approach). The naive approach has the same “physical” topology as the

proposed method in the experiments, except the Virtual Honeypot. Moreover, its flow

entry install policy is the default one (i.e., once an unknown packet arrives to the edge

switch, it is sent to the controller and the corresponding flow entry is installed).

We use metrics such as Round Trip Time (RTT) and CPU usage of the controller

to assess the performance. In addition, we use flow table occupancy as it is stated in

Equation 4.1.

Occupancy =
Flow entry count

Capacity
(4.1)

We also conducted a third experiment, wherein we made a theoretical comparison

with existing distribution approaches.
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4.2 Experiment 1: Performance Test Using the Static

Approach

4.2.1 Outline

The purpose of Experiment 1 is to test the feasibility of the static approach and

overall confirmation of our proposal. Figure 4.1 shows the experiment’s topology, and

it is implemented on an Ubuntu virtual machine with four cores of CPU and 4 GB

RAM.

Table 4.1: Experiment 1 Metrics

Attackers Clients dt mwt C

60 15 2 3 300

There are two hosts set as Web Servers in the network domain on the right-hand

side of the topology, which are the targets of the attack. The Edge Switch connects

outside domain to the target domain, and it is the main target of the table overflow

attacks. The attacker domain on the left-hand side of the topology has two hosts.

Both of the hosts create HTTP Get requests in order to simulate the scenario. The

attacker simulates 60 attackers, and the client host simulates 15 clients with unique IP

addresses. The attack duration is 120 seconds for this experiment. Finally, the Virtual

Honeypot has three virtual switches.

4.2.2 Results

Figure 4.2 illustrates the results obtained using the benchmark approaches. As ob-

served, the flow table overflow succeeds in the naive approach, while in the case of

NFVGuard the attack was successfully mitigated. Note that, although the wildcard

creation metrics dt and mwt have small values, there is only 50% of flow table usage.

The occupancy is lower on non-attack times too, which is an expected outcome due to

the compression applied in our method.

However, regardless of the successful mitigation, the controller CPU usage was

high even in NFVGuard. After carefully inspecting the modules, we found out that
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Figure 4.1: Topology of Experiment 1

Figure 4.2: Flow Table Occupancy on the Edge Switch

polling of the switch statistics in a short period was the culprit. Therefore, we set the

asynchronous method on the Flow Monitoring Module of the controller for the second

experiment.
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4.3 Experiment 2: Performance Test Using the Dy-

namic Approach

4.3.1 Outline

Experiment 2 aims to test the feasibility of the dynamic approach of our proposal. As

mentioned before, the dynamic approach adds virtual switches to the Virtual Honeypot

on-the-fly during the attack. Figure 4.3 shows the topology used for this experiment.

As observed, we used two different domains with their corresponding controller. The

network simulator and the SDN controller of each domain run on a Ubuntu virtual

machine separately. Moreover, the network domains are connected via a GRE Tunnel.

Table 4.2: Experiment 2 Metrics

Attackers Clients dt mwt C s sthreshold

450 100 3 4 1000 0.7 10

There are 550 hosts in the client domain in this experiment, where 450 are attackers,

and 100 are legitimate clients. We use iperf [25] for creating the data traffic. Note that,

the data traffic of Experiment 1 is more realistic, but iperf allows us to easily measure

RTT and other metrics. Moreover, we configured two hosts on the target domain as

the iperf servers. Every client and attacker sends data through iperf client. The attack

starts approximately 60 seconds from the beginning of the experiment and lasts 240

seconds.

Virtual Honeypot is placed right after the Edge Switch and starts with two virtual

switches as default. We also increase dt and mwt by one in this experiment since the

network scale is more extensive. In addition, we set sthreshold as 10%, which is calculated

with Equation 3.13.

4.3.2 Results

We compare Edge Switch in the naive approach and the Top Level Switch in the

NFVGuard since they are the most vulnerable switch for table overflow attacks. Figure
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Figure 4.3: Topology of Experiment 2

4.4 shows the flow table occupancy of these two vulnerable switches. As observed, a

Flow table overflow happens on the Edge Switch of the naive approach within 30

seconds after the attack. On the other hand, top level switch of our proposed dynamic

approach reaches only 30% flow table occupancy. Therefore, we can conclude that flow

table overflow is successfully mitigated in our proposed approach. Furthermore, the

flow table usage is mostly occupied by legitimate traffic is nearly 50% lower as it is in

Experiment 1.

Figure 4.4: Flow Table Occupancy on Vulnerable Switches
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Figure 4.5: Middle Level Flow Table Occupancy

Since the middle level switches of Virtual Honeypot contains fine-grained flow en-

tries; there is a higher chance of flow table overflow at this level. We prevent this

by setting the threshold as mentioned before. Note that, within 20 seconds after the

beginning of the attack, three virtual switches are added to the middle level as it can

be seen from Figure 4.5. These switches take the burden of switches 1 and 2; later on,

other two switches added during the attack, just before the peaks, that helps newly

added switches too.

In order to evaluate service delay, we get the RTT between a client and a server. As

illustrated in Figure 4.6, the RTT value of the proposed method increases at various

parts, such as the beginning and peak points of the attack. However, the proposed

method has no service outages, unlike the naive approach. The naive approach has an

irregular service coverage which decreases almost half the attack without connection.

Concerning the CPU usage of the controller, we can say that we improved the CPU

load of polling by using asynchronous updating on Flow Monitoring Module. Figure

4.7 shows the CPU usage of the controller. There is a peak in CPU usage at the

beginning of the attack since complex processing. However, this value is within the

expected bounds. Also, we observe CPU usage is similar to the naive approach when

there is no attack.
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Figure 4.6: RTT of Clients

4.4 Experiment 3: Theoretical Holding Time

The aim of Experiment 3 is to compare NFVGuard mechanism with Virtual Honeypot

and distribution approaches, [2] and [16], on physical topologies as well as the naive

approach. We use the holding time as our result metric, as done in [2,16]. The topology

of naive approach and the distribution methods is shown in Figure 4.8.

4.4.1 Outline

We consider a topology with serially connected switches as the worst-case scenario for

distribution methods since we cannot change the physical topology. In this experiment,

we started the number of switches with three and progressively increased up to eight

hundred. Again, they are serially connected.

The formula for holding time and how they are derived were explained in Section

3.2. For instance, the holding time of the naive approach (hn) and holding time of

distribution methods (hd) are as follows:

hn =
tc

ra
=

C − Cs

ra

hd =
tc

ra
= (C − Cs)

1− (1− c)N

c.ra

NFVGuard uses the Virtual Honeypot to create an advantageous topology using

virtual switches. Figure 4.9 show the Virtual Honeypot Topology. S1 is used to guide
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Figure 4.7: Controller CPU

Figure 4.8: Naive and Distribution Topology

flow entries into the switches. We set switches after S1 in parallel. For example, if we

have 25 virtual switches in the Virtual Honeypot, there are 24 parallel switches.

We use the formula we derived in 3.2 for calculating holding time for Virtual Hon-

eypot (hvh). We can use this formula for both static and dynamic approaches of

NFVGuard Mechanism. In case of the static approach, the number of virtual switches

would be N . Dynamic approach starts with several virtual switches. However, the

number of maximum virtual switches can be used in Virtual Honeypot is limited with

the capabilities of the NFV Infrastructure. In this experiment, we assume NFVI can

only support N virtual switches.

hvh =
(C − Cs)(N −N.c+ c)

ra
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Figure 4.9: Virtual Honeypot Topology

4.4.2 Results

Firstly, we measured the effect of attack rate on holding time while keeping the same

number of physical and virtual switches. In this part, both physical topology and

Virtual Honeypot have 16 and 755 switches. As observed in Figure 4.10 and Figure

4.11, NFVGuard has better holding times than the distribution and naive approaches.

Distribution approaches lose their effectiveness with increasing the number of switches.

Moreover, the naive approach has an evident difference since it does not take any

defensive measures, therefore, the edge switch gets overflowed easily. Regardless of the

attack rate, no significant updates can be seen in naive approach holding time.

Figure 4.10: Holding Time for the Topology with 16 Switches
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Figure 4.11: Holding Time for the Topology with 755 Switches

Next, we evaluated how switch count effects holding time difference while having

same attack rate, 100 packet-ins per second (pps). Since switch count does not have any

effect in the naive approach, the holding time does not change. Moreover, NFVGuard

has a linear increase while distribution methods have non-linear increase. This non-

linearity stems from cumulative guiding flow entries. The guiding flow entry count

increases with the switch count. Therefore, the available space decreases while the

holding time becomes significantly different.

Figure 4.12: Holding time for Maximum 32 Switches
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Figure 4.13: Holding time for Maximum 800 Switches

4.5 Discussion

In this chapter, we tested the feasibility of both static and dynamic approaches in

the experiments and confirmed that NFVGuard is feasible to implement and effective

on mitigating the flow table overflow attack. However, this section presents a brief

discussion on the results obtained.

Firstly, concerning the static approach. All virtual switches need to run continu-

ously. Therefore, if we have a dedicated hardware for Virtual Honeypot, it would work

without the concerns of resource management or cost. However, it would be costly for

both on cloud environments and on an in-house shared server. For instance, Cloud en-

vironments charges for every extra minute of resource usage. An in-house shared server

would have other programs or services running in there so a dynamic management of

resources would be better. In addition, we realized there was a high CPU usage in the

NFVGuard Controller. The cause of it is the polling of the flow tables in order update

databases on Flow Monitoring Modules (FMM).

Next, concerning the dynamic approach. We believe the dynamic approach, which

adapts to attacks, would be cost-effective for cloud environments and resource-effective

for an in-house server implementation. However, we saw an imbalance on middle level

switches. In current flow entry distribution implementation, we are simply distributing

new flow entries in a round-robin manner. We are not re-routing existing flow entries;

thus, switches that initialized earlier have more flow entries. This does not lead to

table overflow because of the safety value we set but it might create a bandwidth
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competition in highly utilized switches. In addition, NFVGuard updates databases

using an asynchronous OpenFlow message, triggered when a flow entry is removed

from the flow table. Therefore, the high CPU usage we detected on static approach is

avoided in the dynamic approach.

Finally, concerning the last experiment. We conducted this experiment in order to

assess how the topology might affect the holding time. From the results, we observed

how the advantageous mitigation topology we created in virtual honeypot results in

better holding time. In addition, while NFVGuard has a linear efficiency on the switch

count, distribution approaches lose their efficiency near three hundred switches. How-

ever, we can still improve NFVGuard based on the flexible capabilities of the NFVI,

regardless of the duration and density of the attacks.
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Chapter 5

Conclusion

5.1 Summary

As the diffusion of SDN increases in different fronts, more vulnerabilities will be dis-

covered and exploited. Flow table overflow is one of those vulnerabilities that needs

to be addressed. We state the issues regarding the flow table overflow and its current

mitigation methods as follows:

(P1) High dependency on the size of the physical infrastructure: Number

and the capacity of physical network devices that reside in the domain greatly

affects mitigation method.

(P2) Coarse-grained flow entries block legitimate users: Traditional Access

Control List (ACL) compression methods use subnet masking based mechanisms,

which limits compression rate. However, more abstract masks are implemented

in order to decrease the rule size which results in blocking of legitimate packets.

(P3) Harsh eviction policies with high probability of dropping legitimate

traffic: Proactive firewall policies are not sufficient to implement fine-grained

blocking rules that only filter attackers.

To achieve the main goal of this research and solve the above-mentioned problems,

we propose an NFV-based mitigation mechanism for SDN-based environments. More

concretely, we proposed following.
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(S1) Dynamic NFV infrastructure: A dynamic network topology created with

virtual OpenFlow switches takes the burden of physical switches.

(S2) Fine-grained flow entries distributed among the virtual infrastructure:

Increased overall flow table capacity allows a fine-grained filtering that only blocks

attackers.

Based on the experimental results shown in Chapter 4, overall, we can say that the

proposed mechanism can successfully mitigate the above mentioned issues. Moreover,

we can conclude that the static approach is suitable for the cases when the target

domain uses commodity servers; where the maximum number of virtual switches does

not change the overall cost. By contrast, the dynamic approach is more suited to cloud

environments where every resource used has a cost and in-house shared servers where

resource usage and management might influence other services. The dynamic approach

is a cost efficient method since it only creates extra resources in case of an attack, and

according to the attack rate. We also compared our method with some of the existing

distribution methods and find out that the proposed approach has better holding time

as it creates better conditions to mitigate the table overflow attack (i.e, in terms of

topology, policy management).

5.2 Future Work

A future work plan to include some points that were over simplified in the current

implementation, for instance:

Scaling of Virtual Honeypot topology: Currently the topologies used were an

initial step, and the switch removal mechanism was not implemented. This function is

necessary to improve the dynamic scaling. In addition, the Virtual Honeypot topology

can be changed into different structure and find a better structure to mitigate the

attack.

Imbalance on filtering virtual switches: In our current implementation, we

are distributing flow entries in middle level using a round robin method. However, we

do not re-route existing flow entries in the switches. Therefore, the switches that exist

more, have more flow entries. This imbalance does not result in flow table overflow
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due to the safety value we set on distribution. Regardless, it might create bandwidth

competition on highly utilized switches. Implementing a better flow distribution policy

that does efficient load balancing would solve this problem.

Evaluation in real environments: In all of our experiments, we did not use

actual physical switches or a dedicated NFVI. Therefore, it would be helpful to evaluate

the effectiveness of NFVGuard in these environments as well. For instance, we would

like to test our methods in a cloud environment and in an in-house shared server to

see cost and resource efficiency better.
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Appendix A

Algorithms

A-1

Algorithm 1 Calculate THD & Merge IP

1: procedure THD(M,N,K)

2: distance = 0 ▷ Ternary Hamming Distance

3: IP = “”

4: mask = “”

5: for i in 0..31 do

6: mi, ni, ki ←M [i], N [i], K[i]

7: if ki = 1 ∧mi ̸= ni then

8: distance← distance+ 1

9: IP = IP + ki ∧mi ∧ ni

10: mask = mask + ki ∨ (mi ⊕ ni)
return distance, IP,mask
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A-2

Algorithm 2 Packet-in processing

1: procedure packet in(M)

2: switch = pick switch()

3: action = output(switch)

4: for each flow in flowDB do

5: d, ip,mask = THD(M.IP, flow.ip, f low.mask)

6: mw = mask.count(′0′)

7: if d = 0 then ▷ Flow Timeout

8: match = M.IP

9: Update flowDB

10: addF low(GS,M.IP, action)

11: return

12: else if d < dt and mw < mwt then

13: old match = flow.IP, flow.mask

14: match = ip,mask

15: addF low(GS,match, action)

16: Update flowDB

17: removeF low(GS, old match)

18: return

19: Create a new flow

20: Update flowDB

21: match = M.IP

22: addF low(GS,match, action)
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