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Abstract
Security in information communication is based on modern cryptology.

One of famous security protocols used daily is Transport Layer Security
(TLS), which is necessary when communicating over the Internet. While
TLS is actually important, it is difficult for laypeople to understand the
principle of TLS because it is automatically performed on computers. This
dissertation covers cryptographic ones using everyday objects, such as physi-
cal envelopes and a deck of playing cards, unlike the aforementioned modern
protocols. These unconventional protocols can be used for not only practi-
cal use but also didactic contexts because they can be executed by human
hands. Many studies on card-based cryptographic protocols achieving se-
cure multiparty computation (MPC) with a deck of playing cards, i.e., eval-
uating a predetermined function over private inputs without revealing any
information about the inputs more than necessary, have been conducted.
Improving the practicality of card-based protocols is important to promote
MPC (which has many applications such as analysis of sensitive data) be-
cause currently, they are the only easy way to perform MPC with human
hands.

In the research on card-based protocols, improving the number of re-
quired cards for computing logical functions, such as AND and majority
ones, has been mainly studied. For instance, the AND function with two
inputs can be computed with (a two colored deck of) six cards and one
shuffle, and the lower bounds on the number of required cards have been
provided. However, arithmetic circuits should be also efficiently computed,
such as comparing two numbers without revealing anything (also known as
Yao’s Millionaires’ problem) for card-based protocols to be more attractive;
few studies have focused on this topic. Besides, it has not been studied
that some of shuffle actions used in card-based protocols cannot be securely
implemented with human hands. If one can completely see through a shuf-
fle action, it means that information about inputs (or outputs) should be
leaked, and hence, MPC cannot be realized with a deck of cards. That is,
even if card-based protocols can be performed with a small number of cards,
they are not practical until they can be securely implemented.

In the first part of this dissertation (Part I), we discuss the aforemen-
tioned problems and show that card-based protocols are practical for both
the application of computation and implementation. For attractive appli-
cations, we propose two card-based implementations of Yao’s millionaire
protocol with a two-colored deck of cards. One of our implementations is
based on the principle behind Yao’s millionaire protocol. This implementa-
tion requires a cyclic shuffle called the random cut once, and hence, it can
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be easily performed. The other one is used to compute the comparison by
logical circuits, reducing the number of required cards. Moreover, we extend
our implementations to be performed with a commonly available standard
deck of cards. For another application, we explore zero-knowledge proof
(ZKP) protocols for famous pencil puzzles such as Sudoku. Our studies
show that a malicious prover who does not know the solution to a given
pencil puzzle can convince a verifier with a probability of zero, i.e., all of
our proposed ZKP protocols have no soundness error. In this dissertation,
we present card-based ZKP protocols for Sudoku and Slitherlink.

To implement card-based protocols securely, we propose two secure im-
plementations of a random bisection cut, which is a shuffle action of bisecting
a sequence of cards and shuffling two halves and is used in many protocols,
such as the aforementioned AND protocol. One of our implementations em-
ploys a curving polystyrene foam ball split into two halves so that a sequence
of cards can be placed in it. The other one is used to simplify the execution
of a random bisection cut to a random cut by exploiting the vertical asym-
metry of the back of cards. One notable feature of this implementation is
that no additional tool is required.

The second part of this dissertation (Part II) describes cryptographic
protocols based on everyday tools. We first propose a ball-based protocol,
i.e., an MPC protocol using physical balls and bags. For this, we consider the
use of an interesting feature in that the balls become disordered once placed
in a bag, namely, they are “automatically shuffled.” We confirm that our
ball-based protocol is based on realistic physical operations and is feasible
for humans.

Almost all of the existing physical cryptographic protocols exhibit a ma-
jor limitation (but not explicitly mentioned previously) in that they cannot
be performed remotely. We provide a novel solution to this problem by em-
ploying online apps such as Gmail and WhatsApp. In this dissertation, we
consider the use of a messaging app, such as Facebook Messenger, and show
how the existing secure auction protocol using envelopes can be remotely
performed. The read receipts and group chat features play a key role in
achieving fairness, privacy, and verifiability in our auction protocol.

To summarize, this thesis significantly improves the practicality of cryp-
tography using everyday objects and contributes to extending them.
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1. Introduction
We communicate with each other today over the Internet, in which a

cryptographic protocol called Transport Layer Security (TLS) provides pri-
vacy, data integrity, and authentication. TLS consists of combinations of
modern cryptology [12] such as symmetric/public-key cryptography, digital
signature, and public-key infrastructure. Security in network communica-
tion is based on TLS; however, it is difficult for laypeople to understand the
principle of TLS because it is automatically performed on computers.

In this thesis, we study cryptographic ones using physical objects, such
as envelopes and a deck of playing cards, unlike the aforementioned mod-
ern protocols. An important aspect of these unconventional protocols is
that they employ physical properties, such as invisibility inside an envelope,
which is intuitively known and used daily; hence, the correctness and se-
curity proof are easily understood (which was discussed in [15, 19, 50, 51]).
Therefore, these protocols are used for introducing the notion of cryptogra-
phy in a university coursei.

Such unconventional protocols include the ones using a PEZ dispenser [1,
4], 15 puzzle [43], dial lock [42], visual secret sharing sheets [10], transpar-
ent sheets [35,75], and coins [33]. Many studies on card-based cryptographic
protocols [11] have been conducted with a deck of cards to evaluate a pre-
determined function over private inputs without revealing any unnecessary
information regarding the inputs, thus achieving secure multiparty compu-
tation (MPC) [83]. MPC has many useful applications such as analysis of
sensitive data. Consequently, many studies on improving the efficiency of
MPC have been conducted (e.g., [3]); however, MPC generally requires cryp-
tographic techniques such as homomorphic encryption and secret sharing.
Therefore, we believe that improving the practicality of card-based proto-
cols is important to promote MPC because currently, they are the only easy
way to perform MPC with human hands.

In the research on card-based protocols, improving the number of re-
quired cards for computing logical functions, such as AND and majority
ones, has been mainly studied. Starting from the most elegant one called
the “five-card trick” invented by Den Boer [11] in 1989, card-based pro-
tocols for computing logical functions, such as AND and XOR, have been
presented [2,9,38,39,44,48,56,57,59,67,78,79]. Further, any Boolean func-
tion can be efficiently computed with respect to the numbers of required
cards [58] and required shuffles [77]. Besides, the lower bounds on the num-
ber of required cards for computing the two-input logical AND function

ihttps://www.cs.cornell.edu/courses/cs4830/2008fa/
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CHAPTER 1. INTRODUCTION 8

have been reported with respect to restrictions on running time and prac-
ticality of shuffles to be used [16, 26, 27, 29, 31, 63] (which were summarized
in a part of the dissertation by Koch [28]). However, card-based protocols
should have many applications, such as arithmetic circuits, to be attrac-
tive. Typical examples include a secure computation of the comparison
between two natural numbers without revealing anything (also known as
Yao’s Millionaires’ problem [83]). A few studies, including the ones based
on the card-based millionaires’ protocol and secure grouping protocol, have
focused on this topic using private operations [52] and using properties of
permutations [22]. (Card-based protocols using a tailor-made deck of cards,
such as regular polygon cards [76] and dihedral cards [74], were summarized
in a part of the dissertation by Shinagawa [73].)

In addition to the applications, the implementation of card-based proto-
cols is yet to be studied. Nakai et al. [52] reported that a random bisection
cut invented by Mizuki and Sone [48] (which bisects a sequence of cards, shuf-
fles two halves, and is used in many protocols including the aforementioned
AND protocols [44,48]) requires a private space to be securely implemented,
indicating that some of the card-based protocols cannot be executed pub-
licly. Consequently, even if card-based protocols can be performed with a
small number of cards and shuffles, they are not practical until they can be
securely implemented.

1.1. Contributions and Outline of the Thesis
We divide this dissertation into two parts. Each chapter is self-contained.

In the first part (Part I), we study the aforementioned problems and
show that card-based protocols have useful applications and can be securely
implemented. In Chapter 2, we propose two card-based implementations
of Yao’s millionaire protocol with a two-colored deck of cards, such as ♣ s
and ♥ s. One of our implementations is based on the principle behind Yao’s
millionaire protocol. This implementation requires a cyclic shuffle called the
random cut once, and hence, it can be easily performed. The other one is
used to compute the comparison by logical circuits, reducing the number of
required cards. Moreover, we extend our implementations to be performed
with a commonly available standard deck of cards, such as 1 2 3 · · · .

In Chapter 3, we explore physical zero-knowledge proof (ZKP) protocols
for famous pencil puzzles, such as Sudoku, i.e., we provide a way of con-
vincing a verifier that a prover knows the solution to a puzzle. Our studies
show that a malicious prover who does not know the solution to a pencil
puzzle can convince a verifier with a probability of zero, i.e., all of our pro-
posed ZKP protocols have no soundness error, improving on the existing
work [5,8,19]. In this dissertation, we present card-based ZKP protocols for
Sudoku and Slitherlink. After our papers for physical ZKP protocols were
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published, Ruangwises and Itoh constructed card-based ZKP protocols for
other pencil puzzles and graph problems [68–70].

In Chapter 4, we propose two secure implementations of a random bi-
section cut to implement card-based protocols securely. One of our imple-
mentations employs a curving polystyrene foam ball split into two halves so
that a sequence of cards can be placed into it. The other one is used to sim-
plify the execution of a random bisection cut to a random cut by exploiting
the vertical asymmetry of the back of cards. One notable feature of this
implementation is that no additional tool is required.

The second part of this dissertation (Part II) describes cryptographic
protocols based on everyday tools. In Chapter 5, we propose an MPC pro-
tocol using physical balls and bags, namely, a ball-based protocol. For this,
we consider the use of an interesting feature in which the balls become
disordered once placed in a bag, i.e., they are “automatically shuffled.” We
confirm that our ball-based protocol is based on realistic physical operations
and is feasible for humans.

Almost all the existing cryptographic protocols with physical objects ex-
hibit a major limitation (but not explicitly mentioned previously) in that
they cannot be performed remotely. Only cryptographic protocols with
tamper-evident seals [50, 51] can perform fair coin-flipping and oblivious
transfer by exchanging physical envelopes; however, the required cost and
time have not been discussed. In Chapter 6, we provide a novel solution to
this issue by employing online apps, such as Gmail and WhatsApp. We con-
sider the use of a messaging app, such as Facebook Messenger, and demon-
strate how the existing secure auction protocol using envelopes [13] can be
remotely performed. The read receipts and group-chat features play a key
role in achieving fairness, privacy, and verifiability in our auction protocol.

To summarize, this thesis contributes to the practicality of card-based
protocols from two important aspects, namely, applications and implementa-
tions, and extends the application of cryptographic protocols using physical
objects.

1.2. Publication Overview
Let me summarize how each chapter is organized with reference to our pub-
lications.

1.2.1. Part 1: Card-based Cryptographic Protocols
As I mentioned before, Part I contributes to card-based protocols for their
applications and implementations.

Chapter 2 is based on the following paper [37]:

Daiki Miyahara, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki
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Sone. “Practical Card-based Implementations of Yao’s Million-
aire Protocol.” Theoretical Computer Science, Elsevier, vol.803,
pp.207–221, 2020. DOI: j.tcs.2019.11.005. © 2019 Elsevier B.V.

In addition to the content of the above paper, we consider and solve a variant
of Yao’s millionaire problem.

Chapter 3 is based on the following two papers, to which I contributed
in the contructions of the proposed protocols and the papers [34,71]:

Tatsuya Sasaki, Daiki Miyahara, Takaaki Mizuki, and Hideaki
Sone. “Efficient Card-Based Zero-Knowledge Proof for Sudoku.”
Theoretical Computer Science, Elsevier, vol.839, pp.135–142, 2020.
DOI: j.tcs.2020.05.036. © 2020 The Authors. Published by Else-
vier B.V.
Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Tatsuya
Sasaki, and Hideaki Sone. “A Physical ZKP for Slitherlink: How
to Perform Physical Topology-preserving computation”. 15th
International Conference on Information Security Practice and
Experience (ISPEC 2019), Lecture Notes in Computer Science,
Springer, vol.11879, pp.135–151, 2019. DOI: 10.1007/978-3-030-
34339-2_8. © Springer Nature Switzerland AG 2019.

Moreover, we discuss a lower boud on the number of required cards for
card-based ZKP protocols for Sudoku.

Chapter 4 is based on the following paper, to which I contributed in
using the vertical asymmetricity of cards, experimenting a more secure way
of applying the random bisection cut, and the construction of the paper [80]:

Itaru Ueda, Daiki Miyahara, Akihiro Nishimura, Yu-ichi Hayashi,
Takaaki Mizuki, and Hideaki Sone. “Secure Implementations of
a Random Bisection Cut.” International Journal of Information
Security, Springer, vol.19, pp.445–452, 2020. DOI: 10.1007/s10207-
019-00463-w. © Springer-Verlag GmbHGermany, part of Springer
Nature 2019.

1.2.2. Part 2: Cryptographic Protocols with Everyday Tools
As I mentioned before, Part II explores the area of cryptographic protocols
with everyday tools.

Chapter 5 is based on the following paper:

Daiki Miyahara, Yuichi Komano, Takaaki Mizuki, and Hideaki
Sone. “Cooking Cryptographers: Secure Multiparty Computa-
tion Based on Balls and Bags.” in submission.

Chapter 6 is based on the following paper:

https://doi.org/10.1016/j.tcs.2019.11.005
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1007/978-3-030-34339-2_8
https://doi.org/10.1007/978-3-030-34339-2_8
https://doi.org/10.1007/s10207-019-00463-w
https://doi.org/10.1007/s10207-019-00463-w
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Daiki Miyahara, Yuichi Komano, Takaaki Mizuki, and Hideaki
Sone. “How to Perform Physical Auction Protocol Remotely
with Messaging App.” In the proceedings of Computer Security
Symposium 2020 (CSS2020), Online, October 26–29, 2020, (in
Japanese). © 2020 CSS2020 Organizing Committee.
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2. Millionaires’ Problem
Assume that Alice and Bob have a and b dollars, respectively, such that

a, b ∈ {1, 2, . . . ,m} for some natural number m. They want to know who is
richer without revealing any information about their values (more than that
is necessary), i.e., they want to determine only whether a< b or not. This
is the famous millionaires’ problem proposed by Yao [83] in 1982, and he
designed a protocol, which we call Yao’s millionaire protocol, to solve the
problem based on a public-key cryptosystem. The fundamental principle
behind Yao’s millionaire protocol could be interpreted as follows. If Alice
arranges m symbols consisting of a number a of ♠ s and a number (m−a)
of ♦ s as

1
♠

2
♠ · · ·

a
♠
a+1
♦

a+2
♦ · · ·

m
♦,

and Bob points at the b-th symbol, then the b-th symbol being ♦ implies
a < b, and the b-th symbol being ♠ implies a ≥ b :

1
♠

2
♠ · · ·

a
♠
a+1
♦

a+2
♦ · · ·

b
♦
↑

b-th

· · ·
m
♦ ⇐⇒ a < b ,

1
♠

2
♠ · · ·

b
♠
↑

b-th

· · ·
a
♠
a+1
♦

a+2
♦ · · ·

m
♦ ⇐⇒ a ≥ b .

While Yao’s millionaire protocol relies on the public-key cryptosystem to
implement the above principle without leaking actual values a and b, Nakai,
Tokushige, Misawa, Iwamoto, and Ohta [52] considered the use of a deck of
physical cards in 2016. That is, following the fundamental principle above,
they constructed a card-based scheme using cards of two types such as

♣ ♣ · · · ♣ ♥ ♥ · · · ♥

whose backs are all identical ? . Roughly speaking, in their scheme, Alice
first encodes her secret value a with a sequence of face-down cards, and then
Bob “privately” changes the positions of cards according to his secret value
b. We will describe the details in Section 2.1. Since many people on earth are
familiar with playing cards, their card-based scheme is human-friendly and
useful. Its only drawback is that it requires a player’s “private” action, called
Private Permutation (PP) [52], which permits Bob to rearrange the sequence
of cards privately (for example, he is allowed to manipulate the cards behind
his back). Private Permutation is considered to be such a strong assumption
that a malicious player may do an active attack. Hereinafter, we refer to
their scheme as the NTMIO protocol with PP; the acronym NTMIO is made
of the initial letters of the names of the authors [52].

13
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Table 2.1: The PP-free millionaire protocols

Deck #Cards #Shuffles Section

Our implementation with RC Two-colored 3m+1 1 § 2.2

Using a standard deck Standard 4m 4 § 2.3

The previous circuit-based [52] Two-colored 4dlogme+4 7dlogme−6 § 2.4

Our improved circuit-based Two-colored 4dlogme+2 2dlogme−1 § 2.5

Contribution
Thus, it is preferable to construct a card-based scheme which does not rely
on Private Permutation, in order to avoid possible malicious actions. To
this end, in this chapter, we present a “PP-free” scheme, which implements
the fundamental principle behind Yao’s millionaire protocol; instead of using
Private Permutation, we use a familiar shuffling operation called the random
cut (RC). A random cut is a cyclic shuffle, which can be easily implemented
by humans as in the case of usual card games (e.g. [11,30,81]). Therefore, our
scheme, named the PP-free protocol with RC, can be conducted completely
publicly, and hence, any malicious action can be detected. As will be seen in
Section 2.2, we straightforwardly implement the above principle. Therefore,
we believe that even non-experts can easily understand the correctness and
secrecy of our scheme, and can practically use it in everyday life.

Similarly to the NTMIO protocol with PP, our PP-free protocol with
RC uses a two-colored deck of cards ♣ ♣ · · · ♣ ♥ ♥ · · · ♥ . Compared with
such a two-colored deck of cards, a standard deck of playing cards is more
familiar with us. Therefore, we extend our protocol so that we can solve
the millionaire problem using a standard deck of playing cards (which is
sold in many toy stores all over the world). We note that simply replacing
a two-colored deck with a standard deck in the PP-free protocol with RC
does not work. Note also that our protocol uses another simple shuffle aside
from RC. These results will be presented in Section 2.3.

It should be noted that Nakai et al. [52] proposed a PP-free protocol
as well; they presented a card-based scheme, which follows not the above-
mentioned fundamental principle but a logical circuit representing the com-
parison a < b. This PP-free circuit-based protocol relies on a shuffling
operation called the random bisection cut [48] (instead of Private Permu-
tation). In this chapter, we improve upon this existing protocol; we will
reduce the number of required random bisection cuts to around 2/7. We
will explain the details in Sections 2.4 and 2.5.

Table 2.1 summarizes the performance of the PP-free protocols.
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Outline
The remainder of this chapter is organized as follows. In Section 2.1, we
introduce the NTMIO protocol with PP [52]. In Section 2.2, we present our
implementation, the PP-free protocol with RC. We confirm that simply re-
placing a two-colored deck with a standard deck in the PP-free protocol with
RC cannot solve the millionaire problem, and then present how to resolve
the issue in Section 2.3. As for circuit-based protocols, we introduce the pre-
vious protocol in Section 2.4, and give an improved protocol in Section 2.5.
Moreover, for the circuit-based protocols, we consider the use of a standard
deck of cards in Section 2.6. We conclude this chapter in Section 2.7.

2.1. The Previous Scheme: NTMIO Protocol with PP

In this section, we introduce the NTMIO protocol with PP [52].
Recall the fundamental principle behind Yao’s millionaire protocol; Alice

arranges m symbols:
1
♠

2
♠ · · ·

a
♠
a+1
♦

a+2
♦ · · ·

m
♦ .

Using a pair of physical cards ♣ and ♥ , let us encode each symbol as
follows:

♣ ♥ = ♠, ♥ ♣ = ♦ .

Thus, Alice can encode her private value a using m pairs of ♣ ♥ , and put
the cards with their faces down such that Bob does not see the order of the
cards. For such a sequence of m pairs encoding Alice’s secret value a, Bob
needs to point at the b-th pair without leaking any information about his
secret value b; to this end, Bob is permitted to use Private Permutation.
Specifically, the NTMIO protocol with PP proceeds as follows.

1. Alice holding m ♣ s and m ♥ s places a number a of ♣ ♥ s on a table
with their faces down, and then puts (m−a) ♥ ♣ s next to them:

1
?
♣
?
♥

2
?
♣
?
♥
· · ·

a

?
♣
?
♥

a+1
?
♥
?
♣

a+2
?
♥
?
♣
· · ·

m

?
♥
?
♣
,

while Bob does not see the order of each pair.

2. Bob uses Private Permutation; he takes the sequence of cards and
move them behind his back. Then, he moves the b-th pair to the first
without Alice seeing which pair comes first:

1
? ? · · ·

b−1
? ?

b

? ?
b+1
? ? · · ·

m

? ?

→
b

? ?
1

? ? · · ·
b−1
? ?

b+1
? ? · · ·

m

? ? .
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3. The first pair of cards is revealed.

• If the revealed cards are ♥ ♣ , a < b .
• If the revealed cards are ♣ ♥ , a ≥ b .

This is the existing card-based solution to the millionaires’ problem using
Private Permutationi. Let us stress that Bob needs to use Private Permu-
tation in Step 2.

The use of Private Permutation is so powerful as to contribute to im-
proving the efficiency of card-based protocols [52, 53, 64–66, 82], and also it
is used in other physical secure protocols [4, 43]; however, it might lead to
some issues. To implement Step 2 of this protocol, the following issues are
considered. (1) If Bob were malicious, he could make an active attack; for
instance, he could replace the sequence of cards with another set of cards
(prepared by himself beforehand) behind his back so that he would be able
to peep the exact value of a later; because this attack is done behind his
back, Alice does not notice it. (2) Alice and/or audience watching the exe-
cution of the protocol could learn Bob’s secret value b by observing his tiny
shoulder movement. (3) Permuting some cards behind one’s back might be
challenging because one only has to rely on the sense of hands; the case of
b = 1 or b = m might be no problem, but if b = m/2, Bob might have
difficulty in searching the desired pair of cards.

In the next section, we design a simple PP-free protocol.

2.2. Our Implementation Using a Random Cut
In this section, we present our card-based implementation of Yao’s million-
aire protocol; instead of relying on Private Permutation, we use

• a random cut (RC), which is a well-known and easy-to-perform shuffle,
and

• cards whose backs are # , which is a different pattern from ? .

2.2.1. How to Proceed
Our PP-free protocol with RC proceeds as follows.

1. Alice holds m ♣ s and (m−1) ♥ s. Depending on her secret value a,
she places a number a of ♣ s on a table with their faces down, and then

iIt should be noted that Fagin, Naor, and Winkler proposed a similar idea to solve the
socialist millionaires’ problem [25] where Alice and Bob want to know whether they think
the same person in mind or not (see Solution 11 in [15]). In addition, Nakai et al. [52]
presented another card-based scheme with Private Permutation, which compares a and b
bit by bit with the help of “storage” cards.
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puts a number (m−a) of ♥ s next to them. The resulting sequence is
Alice’s input:

1
?
♣

2
?
♣
· · ·

a

?
♣

a+1
?
♥

a+2
?
♥
· · ·

m

?
♥
.

On the other hand, Bob holds (m−1) cards of ♣ whose backs are #
and a card of ♥ whose back is also # . Then, he places these m cards
with their faces down on the table such that only the b-th card is ♥ .
The resulting sequence is Bob’s input:

1
#
♣

2
#
♣
· · ·

b−1
#
♣

b

#
♥

b+1
#
♣
· · ·

m

#
♣
.

2. Take every card from Alice’s input sequence and Bob’s input sequence
from the left alternately one by one, and put it to the right of the
previous card:

1
? #

2
? # · · ·

m

? # .

We further add two cards to the sequence:
1

? #
2

? # · · ·
m

? #
m+1
?
♥

#
♣

;

these two cards are put for handling the case of a = b = m. Note that
recalling the fundamental principle behind Yao’s millionaire protocol,
the left card of Bob’s ♥-card determines whether a < b or not:

1
?
♣
#
♣
· · ·

a

?
♣
#
♣

a+1
?
♥
#
♣
· · ·

b

?
♥
#
♥
· · ·

m+1
?
♥
#
♣
⇐⇒ a < b ,

1
?
♣
#
♣
· · ·

b

?
♣
#
♥
· · ·

a

?
♣
#
♣

a+1
?
♥
#
♣
· · ·

m+1
?
♥
#
♣
⇐⇒ a ≥ b .

Note, furthermore, that when a ≥ b , the (b+1)-st pair determines
whether a= b or a > b : if the (b+1)-st pair is ♥ ♣ then a= b ; if it
is ♣ ♣ then a > b . Of course, we cannot open Bob’s cards # now;
hence, we add a randomization in the next step.

3. Apply a random cut to the sequence of (2m+2) cards, which means
shuffling the card sequence cyclically (we denote this operation by
< ·>):

< ? # ? # · · · ? # > .

The random cut can be securely implemented by the shuffle operation
called the “Hindu cut” [81]; the shuffle may be repeated by Alice and
Bob, or even other people until they are all satisfied with the result.
Note that the random cut can be done completely publicly [81], and
hence, each player can notice any illegal action if any.
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4. Reveal all the cards whose backs are # (namely, the m cards placed
by Bob and the additional card); then, one card of ♥ appears. Reveal
the card on its left.

• If the revealed card is ♥ , a < b .
• If the revealed card is ♣ , we have a ≥ b . To see whether equality

holds or not, open the card to the right of Bob’s ♥-card (apart
from cyclic rotation). If the opened card is ♥ , a=b . If it is ♣ ,
a > b .

This is our PP-free protocol with RC. It uses (3m+1) cards in total and
uses one shuffle. In Step 1, Alice places a ♣ s; if Alice has only a ♣ s at
first, the value a might be leaked from the number of cards that Alice holds.
Therefore, Alice needs to have m ♣ s at first (the number of ♥ is similar).
Since we apply a random cut in Step 3, revealing Bob’s cards in Step 4 does
not expose where Bob placed the ♥-card. If a=b, Alice and Bob will learn
the exact value; note that their values are not leaked to any other people
watching the execution of the protocol.

As for the use of a different back # , we were inspired by the technique
called the “Chosen Cut” that Koch and Walzer proposed [30]ii. If the back-
side symbol of the cards is vertically asymmetric, we do not need cards of
different backs like # : It suffices that Bob puts his cards upside down as
follows:

?
?

?
? · · · ?

?
.

Our protocol can be executed completely publicly. Any malicious action
will be noticed. Moreover, we can automatically confirm that Bob put his
input in a correct format when we reveal all Bob’s cards in Step 4. We can
even be convinced that Alice put her input in a correct format by applying
the idea in [46] with some additional cards.

2.2.2. Pseudocode
In this subsection, we present a more formal description of our protocol,
that is, we show a pseudocode that follows the computational model of
card-based protocols, which was formalized in [31,45,47].

First, let us describe an input card sequence. Remember that, for ex-
ample, if a = b = 1, then Alice and Bob will arrange their inputs with two
additional cards as:

Γ(1,1) = (

m cards︷ ︸︸ ︷
?
♣
,
?
♥
, . . . ,

?
♥
,

m cards︷ ︸︸ ︷
#
♥
,
#
♣
, . . . ,

#
♣
,
?
♥
,
#
♣

).

iiKoch and Walzer [30] showed that one can securely “choose” a permutation from a
specific set using helping cards with a different color.
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Generally, for a, b ∈ {1, 2, . . . ,m}, we define

Γ(a,b) = (
1
?
♣
, . . . ,

a−1
?
♣
,

a
?
♣
,

a+1
?
♥
, . . . ,

m
?
♥
,

m+1
#
♣
, . . . ,

m+b−1
#
♣

,

m+b
#
♥
,

m+b+1
#
♣

, . . . ,

2m
#
♣
,

2m+1
?
♥
,

2m+2
#
♣

).

Next, we need to define the following operations applied to a card se-
quence Γ = (α1, α2, . . . , αd):

• (turn, T ) for T ⊆ {1, 2, . . . , d}, i.e., turning over cards is denoted by a
set T such that every card whose position in T is turned over;

• (perm, π) for π ∈ Sd, where Si denotes the symmetric group of degree
i, i.e., a rearranging operation is denoted by permutation π;

• (shuf,Π,F) for Π ⊆ Sd and a probability distribution F on Π, i.e., a
shuffling operation is denoted by a permutation set Π and a probability
distribution F on Π. If F is uniform, we simply write it as (shuf,Π);

• (result, e) for some expression e. This indicates that the protocol ter-
minates with the output e.

Based on the above formalization, a pseudocode of our PP-free protocol with
RC is shown in Protocol 1, where “visible seq.” denotes what we can look
at for a card sequence on the table, and we define

σ :=

 1 2 3 · · · m m+1 m+2 · · · 2m 2m+1 2m+2

1 3 5 · · · 2m−1 2 4 · · · 2m 2m+1 2m+2

 ,
which corresponds to the action for taking cards alternately in Step 2 of the
protocol, and

RC2m+2 := {(1 2 3 · · · 2m+2)j | 1 ≤ j ≤ 2m+2},

where (1 2 3 · · · 2m+2) is a cyclic permutation, meaning that 1 7→ 2, 2 7→ 3,
and so on.

2.2.3. Example of Real Execution
Our protocol is quite simple and easy-to-implement. For example, two
colleagues, Alice and Bob, in a company are easily able to compare their
bonuses by using our protocol, where Alice’s bonus is 10a dollars and Bob’s
bonus is 10b dollars. The protocol falls into real world cryptography; Fig. 2.1
shows a real execution of our protocol form = 4, i.e., 10a, 10b ∈ {$10, $100, $1000, $10000},
requiring only 13 cards.iii Card-based protocols are far more practical than
might be imagined.

iiiRemember that the protocol requires 3m + 1 (=13) cards to allow Alice to input a
such that 1 ≤ a ≤ m (although there are only 10 cards on the table in Fig. 2.1).
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Protocol 1. The PP-free protocol with RC
input set:

{
Γ(a,b) | 1 ≤ a, b ≤ m

}
Steps:

1. (perm, σ)
2. (shuf,RC2m+2)
3. if visible seq. = (#, ?,#, ?, . . . ,#, ?) then
4. (perm, (2m+2 2m+1 · · · 1))
5. (turn, {2, 4, . . . , 2m+2})

6. let r s.t. visible seq. = (
1st︷︸︸︷

?,♣, . . . ,
(r−1)-st︷︸︸︷
?,♣ ,

r-th︷︸︸︷
?,♥,

(r+1)-st︷︸︸︷
?,♣ , . . . ,

(m+1)-st︷︸︸︷
?,♣ )

7. (turn, {2r−1})

8. if visible seq. = (?,♣, . . . ,
r-th︷ ︸︸ ︷
♥,♥, . . . , ?,♣) then (result, “a < b”)

9. else if visible seq. = (?,♣, . . . ,
r-th︷ ︸︸ ︷
♣,♥, . . . , ?,♣) then

10. (turn, {2r+1 (mod 2m+2)})

11. if visible seq. = (?,♣, . . . ,
r-th︷ ︸︸ ︷
♣,♥,

(r+1)-st︷ ︸︸ ︷
♥,♣ , . . . , ?,♣) then

12. (result, “a = b”)

13. else if visible seq. = (?,♣, . . . ,
r-th︷ ︸︸ ︷
♣,♥,

(r+1)-st︷ ︸︸ ︷
♣,♣ , . . . , ?,♣) then

14. (result, “a > b”)

2.3. A Millionaire Protocol Using a Standard Deck
Remember that our implementation with RC explained in Section 2.2 uses
a deck of black and red cards. As mentioned before, it would be great if we
can perform the same task using a standard deck of playing cards instead
of using a two-colored deck.

In this section, we first show that simply replacing the two-colored deck
with a standard deck of cards does not work. That is, such a straight-forward
protocol leaks information about Bob’s input, as shown in Section 2.3.1. In
Section 2.3.2, we construct a subprotocol as a new technique that prevents
Alice from knowing Bob’s input b. Based on this, we present the full descrip-
tion of our protocol using a standard deck of playing cards in Section 2.3.3.

2.3.1. Toward Using a Standard Deck of Cards
Let us first define a total order that captures a standard deck of playing
cards. A standard deck of playing cards is a 52-card deck consisting of
numbered cards 1 2 · · · 52 such that no two cards have the same number.
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(a) Arrange Alice’s input and Bob’s
input; the upside-down cards are put
by Bob.

(b) Apply a random cut to the se-
quence.

(c) Bob’s sequence (of upside-down
cards) is revealed and then one red
card appears.

(d) The left card of the red card is
revealed; we have a < b because the
revealed card is red.

Figure 2.1: An implementation of our PP-free protocol with RC whenm = 4

The back sides are all identical ? . For convenience, in the sequel, we often
regard an odd-number card as a black card ♣ and an even-number card as
a red card ♥ .

Let us execute our implementation with RC using the above standard
deck instead of a two-colored deck of cards ♣ ♣ · · · ♣ ♥ ♥ · · · ♥ . Assume
that m = 4. Because Alice requires four black cards and three red cards to
represent her input, she has 1 3 5 7 and 2 4 6 . Bob has 9 1113 and 8
as three black cards and one red card. Remembering Step 2 in which the
(m+ 1)-st additional pair of cards is put, we let Alice hold 10 and Bob hold
15 . Consider, for instance, the case where a = 4 and b = 2. Alice and Bob
place the following sequences of cards:

?
5
?
3
?
7

?
1
↑

a-th

?
10
,

?
15

?
8
↑

b-th

?
9

?
11

?
13
,

where Alice’s black cards 5 3 7 1 and red card 10 are randomly chosen
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and placed, and Bob’s sequence is arranged by shifting 8 9 111315 . Note
that Alice can memorize the order of numbers in her input. Thus, after
Steps 1 and 2, we have

?
5

?
15

?
3

?
8
?
7

?
9
?
1

?
11

?
10

?
13
.

They apply a random cut in Step 3 and then reveal Bob’s cards in Step 4.
For instance, assume that the resulting sequence in Step 4 becomes the
following sequence. (We here fix Bob’s upside down cards for convenience.)

?
1
?
10

?
5
?
3
?
7

111315 8 9 .

Remember that 8 corresponds to the red card. In this case, the position
of 8 placed by Bob in Step 1 is hidden due to the random cut. Therefore,
replacing Bob’s sequence of cards with standard cards does not cause a
problem. However, a security issue occurs when Alice’s card is revealed. In
this example, they reveal the fourth card of Alice’s input:

?
1
?
10

?
5

3 ?
7

111315 8 9 .

At this time, Alice gets to know that b = 2. That is, because Alice remem-
bers that she placed 3 at the second position in Step 1, she learns that Bob
put the red card 8 at the second position, which implies that b = 2. There-
fore, if we execute our protocol presented in Section 2.2 using a standard
deck of cards, the value of b would be leaked when Alice’s card is revealed
in Step 4. That is, this straight-forward implementation is not secure, and
we need a new technique.

2.3.2. Subprotocol
As seen in Section 2.3.1, simply replacing the deck with a standard deck of
playing cards does not work (namely, the value of b would be leaked to Alice).
Let us confirm again the reason why the simple replacement described in
Section 2.3.1 makes Alice know Bob’s input b. That occurs when Alice’s b-th
card is opened in Step 4 (because Alice memorizes the order of her cards).
Therefore, we construct a subprotocol that hides the order of Alice’s cards
from her while guaranteeing the “format” of Alice’s input, i.e., placing odd-
number cards at every position from the first to the a-th and even-number
cards from the (a + 1)-st to the last. If we execute such a subprotocol in
advance, b is hidden from Alice even if they reveal the b-th card in Alice’s
input sequence because Alice does not know where the revealed card was in
the input.

The subprotocol proceeds as follows:
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1. Alice and Bob shuffle m odd-number cards (corresponding to black)
and then place them on the table with their faces down. Similarly,
they shuffle m even-number cards (corresponding to red) and then
place them:

1
? · · ·

m

?︸ ︷︷ ︸
odd (black)

m+1
? · · ·

2m
?︸ ︷︷ ︸

even (red)

.

2. Alice takes m + 1 odd-number cards and m − 1 even-number cards
from the deck. Then, she places a sequence of cards consisting of odd-
number cards at positions from the (m−a+1)-st to the (2m−a+1)-st
(in any order) and even-number cards at the remaining positions (in
any order) below the sequence of cards placed in Step 1 with their
faces down:

1
? · · · · · · · · · · · ·

m

?︸ ︷︷ ︸
odd

m+1
? · · · · · · · · · · · ·

2m
?︸ ︷︷ ︸

even
1
? · · ·

m−a
?︸ ︷︷ ︸

even

m−a+1
? · · ·

2m−a+1
?︸ ︷︷ ︸

odd

2m−a+2
? · · ·

2m
?︸ ︷︷ ︸

even
.

Note that the subsequence just above the (m + 1) odd-number cards
placed now becomes an encode of the value of a. We call the sequence
placed by Alice the sequence in the second row.

3. Considering the two cards in the same column as a pile, apply a pile-
shifting shuffle to the sequence of piles:

〈 1
?
1
?

∣∣∣∣∣∣∣
2
?
2
?

∣∣∣∣∣∣∣
· · ·
· · ·

∣∣∣∣∣∣∣
2m
?

2m
?

〉
.

This cyclically shuffles a sequence of piles. To implement this shuffle,
we use a physical case that can store a pile of cards, such as boxes and
envelopes [61]; one cyclically shuffles them by hand until nobody can
trace the offset.iv

4. Reveal the sequence in the second row. The subsequence ofm+1 cards
above the revealed odd-number cards represents a. The revealed 2m
cards can be reused.

ivThis operation is the same as Bob puts his cards upside down and then they apply a
random cut (as described in Section 2.2.1). If the back-side symbol of the standard deck of
cards is vertically asymmetric, using a random cut is more efficient because an additional
tool is not required.
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Thus, we can obtain a sequence ofm+1 cards representing a ∈ {1, 2, . . . ,m}
by executing the above subprotocol:

1
? · · ·

a

?︸ ︷︷ ︸
odd (black)

a+1
? · · ·

m+1
?︸ ︷︷ ︸

even (red)

.

Note that, by virtue of the shuffle in Step 1, neither Alice nor Bob
can know the order of the obtained sequence of the number cards encoding
Alice’s value a in Step 4. Because they apply a pile-shifting shuffle in Step 3,
revealing the sequence in the second row does not leak any information about
the value of a. More specifically, we show that no information about Alice’s
input a is leaked during the execution of the subprotocol, as follows. In
Steps 1, 2, and 3, a is not leaked because players just place cards with their
faces down and publicly apply shuffle operations. In Step 4, the sequence
of cards in the second row placed in Step 2 is revealed. Then, odd-number
cards appear from the (m−a+1+r)-th to the (2m−a+1+r)-th (apart from
cyclic rotation) where r ∈ {0, 1, . . . , 2m − 1} is a random value generated
by the pile-shifting shuffle in Step 3. Therefore, a is not leaked by revealing
the sequence of cards in the second row.

The total number of shuffles required for the subprotocol is three because
two shuffles in Step 1 and one shuffle in Step 3 are applied. The number of
required cards is 4m.

2.3.3. Description
We are now ready to present our protocol using a standard deck of play-
ing cards; our implementation is obtained by combining the subprotocol
explained in Section 2.3.2 with the PP-free protocol with RC explained in
Section 2.2.

The protocol proceeds as follows:

1. Execute the subprotocol explained in Section 2.3.2 to obtain Alice’s
input sequence of cards:

1
? · · ·

a

?︸ ︷︷ ︸
odd

a+1
? · · ·

m+1
?︸ ︷︷ ︸

even
.

The revealed 2m cards in the subprotocol can be reused; Bob takes
them and then places m + 1 cards (namely, Bob’s input sequence)
below Alice’s, such that only the b-th card has an even number and
the remaining m odd-number cards starting at the (b+ 1)-st position
(apart from cyclic rotation) are sorted in ascending order (or in any
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order):

1
? · · · · · ·

a

?︸ ︷︷ ︸
odd

a+1
? · · · · · ·

m+1
?︸ ︷︷ ︸

even
1
? · · ·

b−1
?︸ ︷︷ ︸

odd

b

?︸︷︷︸
even

b+1
? · · ·

m+1
?︸ ︷︷ ︸

odd

.

2. Apply a pile-shifting shuffle:

〈 1
?
1
?

∣∣∣∣∣∣∣
2
?
2
?

∣∣∣∣∣∣∣
· · ·
· · ·

∣∣∣∣∣∣∣
m+1
?
m+1
?

〉
.

3. Reveal Bob’s cards. Then, one even-number card appears. Reveal the
card just above the even-number card.

• We have a < b if the revealed card is even.
• We have a ≥ b if the revealed card is odd. To see whether equality

holds or not, open the card to the right of the revealed card. If
the opened card is even, we have a = b. If it is odd, we have
a < b.

Thus, we can solve the millionaire problem by executing the above pro-
tocol. In Steps 1 and 2, information about Alice’s input a and Bob’s input
b is not leaked because they just execute the subprotocol, which is shown
to be secure in Section 2.3.2, and publicly apply a shuffle operation. In
Step 3, Bob’s input sequence is revealed at first. Then, one even-number
card appears in the (b + r)-th position (apart from cyclic rotation) where
r ∈ {0, 1, . . . ,m} is a random value generated by the pile-shifting shuffle
in Step 2. Therefore, the value of b is not leaked by revealing Bob’s input
sequence. Then, the card just above the revealed even-number card, i.e.,
the b-th card in Alice’s input sequence is revealed. This revealed card does
not leak b because nobody knows where the revealed card was placed in
the input due to the subprotocol. Therefore, the value of b is not leaked
by revealing the b-th card in Alice’s input sequence. Opening the (b+ 1)-st
card of Alice’s input sequence is similar.

2.3.4. The Efficiency
The total number of shuffles required for our implementation using a stan-
dard deck is four because three shuffles in the subprotocol and one shuffle
in Step 2 are applied. The number of required cards is 4m because they
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reuse cards to execute the protocol after executing the subprotocol with 4m
cards.v See Table 2.1 again.

2.4. The Existing Circuit-Based Protocol
Hereinafter, we deal with another approach for solving the millionaires’ prob-
lem: We introduce the existing circuit-based protocol [52] in this section,
and then we will improve upon it in the next section.

Consider the following encoding:

♣ ♥ = 0, ♥ ♣ = 1. (2.1)

Then, Alice and Bob can place sequences of cards corresponding to the
binary representations of a=(an, . . . , a1)2 and b=(bn, . . . , b1)2, respectively,
where n=dlog2me :

? ?︸ ︷︷ ︸
an

· · · ? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
bn

· · · ? ?︸ ︷︷ ︸
b1

.

Such a pair of face-down cards
? ?︸ ︷︷ ︸
x

corresponding to a bit x ∈ {0, 1} is called a commitment to x. Given the
above card sequence along with some additional cards, the existing circuit-
based protocol given by Nakai et al. [52] determines whether a < b or not:

? ?︸ ︷︷ ︸
an

· · · ? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
bn

· · · ? ?︸ ︷︷ ︸
b1

♣ ♥ ♣ ♥ → · · · → ? ?︸ ︷︷ ︸
bool(a<b)

,

where bool (a < b) represents

bool (a < b) :=

 0 if a ≥ b,

1 if a < b.

Their protocol proceeds based on the logical circuit shown in Protocol 2.
To implement that circuit, one requires AND (OR) and COPY protocols;

Nakai et al. [52] used the six-card AND protocol [48], producing a commit-
ment to x ∧ y from the input commitments to x and y:

? ?︸ ︷︷ ︸
x

♣ ♥ ? ?︸ ︷︷ ︸
y

→ · · · → ? ?︸ ︷︷ ︸
x∧y

,

vNote that the computational model of card-based protocols [45] assumes that all inputs
are given at the beginning. If we follow this assumption, i.e., Bob should put input cards
at the beginning of the protocol, the number of required cards is 5m.
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Protocol 2. The circuit-based protocol [52]
input: a = (an, . . . , a1)2, b = (bn, . . . , b1)2;
f1 = ā1 ∧ b1;
for (i : 2 to n) {
fi =(āi ∧ bi)∨((āi ∨ bi)∧fi−1); }

output : fn (= bool (a < b)).

and the six-card COPY protocol [48], producing two commitments to x from
an input commitment to x:

? ?︸ ︷︷ ︸
x

♣ ♥ ♣ ♥ → · · · → ? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
x

.

Let us count the number of required cards for implementing the circuit.
First, two additional cards ♣ ♥ are required to compute f1 = ā1 ∧ b1 using
the AND protocol [48]. Note that we have four reusable cards ♣ ♣ ♥ ♥ di-
rectly after computing f1. Then, because six additional cards ♣ ♣ ♣ ♥ ♥ ♥
are required to duplicate the commitments to a2 and b2 in order to compute
f2 =(ā2 ∧ b2)∨ ((ā2 ∨ b2)∧f1), another two cards ♣ ♥ are required. Conse-
quently, four additional cards ♣ ♣ ♥ ♥ are necessary before computing f1,
and hence, the total number of required cards is 4dlogme+4. (Note that
directly after computing fj , 2 ≤ j ≤ n − 1, we have enough reusable cards
to compute fj+1, i.e., four additional cards are sufficient to implement the
circuit.)

Next, let us count the number of required shuffles. Note that each of
the AND [48] and COPY [48] protocols uses one shuffle and we have two
reusable cards after the protocol terminates; furthermore, we can obtain two
more reusable cards after using the AND protocol [48] if we apply one more
shuffle (as seen in Appendices A and B). First, one shuffle is required to
compute f1, and one more shuffle is required to produce four reusable cards.
Then, the circuit-based protocol uses the COPY protocol [48] twice and the
AND (OR) protocol [48] four times to compute fi, 2 ≤ i ≤ n. Moreover,
one more shuffle is required to produce reusable cards enough to compute
fi+1. That is, seven shuffles are required to compute fj , 2 ≤ j ≤ n− 1, and
six shuffles are required to compute fn. Consequently, the total number of
required shuffles is 7dlogme−6.

It should be noted that, as seen above, this existing circuit-based protocol
produces a commitment to bool (a < b) (while our implementations with RC
presented in Sections 2.2 and 2.3 reveal the value of it to the players at the
end of the protocols). Therefore, one can reuse the commitment in a larger
protocol.



CHAPTER 2. MILLIONAIRES’ PROBLEM 28

2.5. Our Improved Circuit-Based Protocol
In this section, we improve upon the circuit-based protocol introduced in
Section 2.4, i.e., we present an improved circuit-based protocol that uses a
less number of shuffles and cards. We first show the idea behind our im-
proved circuit-based protocol in Section 2.5.1, and then show the procedure
of our improved circuit-based protocol in Section 2.5.2.

2.5.1. Idea
We borrow the idea behind the storage protocol [52]; it uses Private Permu-
tation and regards fi shown in Section 2.4 as:

fi =

 fi−1 if ai = bi,

bi if ai 6= bi.
(2.2)

That is, the storage protocol is supposed to choose fi−1 or bi depending on
whether ai = bi or not. More specifically,

• fi−1 is equal to bool ((ai−1, . . . , a1) < (bi−1, . . . , b1));

• ai = bi implies fi = fi−1;

• ai = 0 and bi = 1 imply (ai, . . . , a1)<(bi, . . . , b1), and hence fi = 1 = bi
while ai = 1 and bi = 0 imply (ai, . . . , a1)>(bi, . . . , b1), and hence
fi = 0 = bi.

Such a choice can be made without Private Permutation; if we can let a
six-card sequence be either

? ?︸ ︷︷ ︸
ai⊕bi

? ?︸ ︷︷ ︸
fi−1

? ?︸ ︷︷ ︸
bi

or ? ?︸ ︷︷ ︸
ai⊕bi

? ?︸ ︷︷ ︸
bi

? ?︸ ︷︷ ︸
fi−1

,

then, we can obtain a commitment to fi by revealing the first two cards as
follows:

♣ ♥ ? ?︸ ︷︷ ︸
fi

? ? or ♥ ♣ ? ? ? ?︸ ︷︷ ︸
fi

.

The above flow can be accomplished by using the procedure of the six-card
AND protocol [48].

Moreover, we can easily obtain commitments to ai ⊕ bi and bi by using
the six-card COPY protocol [48]. That is, from the following sequence where
r is a uniform random bit:

? ?︸ ︷︷ ︸
bi⊕r

? ?︸ ︷︷ ︸
ai⊕r

? ?︸ ︷︷ ︸
r

,
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it is determined whether r = bi or r = b̄i by revealing the first two cards,
and then we obtain commitments to ai ⊕ bi and bi as:

♣ ♥ ? ?︸ ︷︷ ︸
ai⊕bi

? ?︸ ︷︷ ︸
bi

or ♥ ♣ ? ?︸ ︷︷ ︸
ai⊕bi

? ?︸ ︷︷ ︸
b̄i

.

Note that revealing the first two cards leaks no information about bi because
r is a random bit.

As described above, by using the procedure of the COPY and AND
protocols [48], we can obtain a commitment to fi according to Eq. (2.2)
without revealing the values of ai, bi, and fi−1. It should be noted that fi in
Eq. (2.2) is the three-input majority function of ai, bi, and fi−1 . An efficient
card-based protocol for the three-input majority function was proposed by
Nishida et al. [60] in 2013, which was based on the same idea mentioned
above.

2.5.2. The Description of Our Protocol
Based on the idea presented in Section 2.5.1, we construct an improved
circuit-based protocol. Given the input card sequence

? ?︸ ︷︷ ︸
an

· · · ? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
bn

· · · ? ?︸ ︷︷ ︸
b1

and two additional cards, our protocol proceeds as follows.

1. Compute f1 = ā1 ∧ b1 by using the six-card AND protocol [48]:

? ?︸ ︷︷ ︸
ā1

? ?︸ ︷︷ ︸
b1

♣ ♥ → · · · → ? ?︸ ︷︷ ︸
f1

.

Now, two reusable cards remain.

2. Repeat the following computation from i = 2 to i = n.

(a) Obtain commitments to ai ⊕ bi and bi from the commitments to
ai and bi by using the six-card COPY protocol [48] (and the NOT
computation):

? ?︸ ︷︷ ︸
bi

? ?︸ ︷︷ ︸
ai

? ?︸ ︷︷ ︸
0

→ ? ?︸ ︷︷ ︸
ai⊕bi

? ?︸ ︷︷ ︸
bi

.

(b) Obtain a commitment to fi from the commitments to ai ⊕ bi, bi,
and fi−1 by using the six-card AND protocol:

? ?︸ ︷︷ ︸
ai⊕bi

? ?︸ ︷︷ ︸
fi−1

? ?︸ ︷︷ ︸
bi

→ ? ?︸ ︷︷ ︸
fi

.
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3. Then, a commitment to fn = bool (a < b) can be obtained:

? ?︸ ︷︷ ︸
bool(a<b)

.

Due to the use of two additional cards, this protocol uses (4dlogme+2)
cards in total. The number of required shuffles is 2dlogme− 1 in total,
because this protocol repeats each procedure of the AND protocol and the
COPY protocol from i = 2 to i = n after AND computation for f1, as shown
in Table 2.1.

This improved circuit-based protocol is a combination of the existing
information theoretically secure card-based protocols, and hence, it is guar-
anteed to be secure.

2.6. Circuit-based Protocols with a Standard Deck
In this section, let us run the circuit-based protocols presented in Sections 2.4
and 2.5 with a standard deck of cards. To achieve this, we consider the use
of the existing elementary protocols with a standard deck of cards, namely
the AND and COPY protocols listed in Table 2.2.

First, combine these elementary protocols with the (NTMIO) circuit-
based protocol [52] presented in Section 2.5. Table 2.3 shows the numbers
of required cards and shuffles; they can be counted in a similar way to
Section 2.4.

Next, let us run our improved circuit-based protocol explained in Sec-
tion 2.5 with a standard deck of cards. Because Step 2(b) of our protocol
uses not a normal AND computation but a special choice of cards, we can-
not use the elementary AND protocols straightforwardly. Fortunately, we
found that the choice can be made by the (extended) existing AND proto-
col [39] easily. The extended protocol requires four additional cards and five
shuffles.vi Therefore, the resulting circuit-based protocol uses (4dlogme+4)
cards and (6dlogme−2) shuffles in total.

2.7. Conclusion
In this chapter, we proposed three card-based protocols to solve the mil-
lionaires’ problem without using Private Permutation. See Table 2.1 again
for the performance of the PP-free millionaire protocols. In particular, the
PP-free protocol with RC proposed in Section 2.2 uses only one random cut,
and its correctness and secrecy are clear. Therefore, we believe that even

viMore specifically, the extended protocol proceeds in a similar way to the existing
AND protocol [39] except for producing “opaque” commitments to fi−1 and bi; refer to
the paper [39] for details.
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Table 2.2: The existing elementary protocols with a standard deck of cards.
Note that the number of required shuffles for each of the AND protocol pro-
posed by Niemi and Renvall [57] and the one proposed by Koch, Schrempp,
and Kirsten [29] is an expected value.

Function #Cards #Shuffles

Niemi–Renvall [57] AND 5 9.5

Mizuki [39] AND 8 4

Koch–Schrempp–Kirsten [29] AND 4 6

Mizuki [39] COPY 6 1

Table 2.3: The NTMIO circuit-based protocol with a standard deck of cards
using the existing elementary protocols [29,39,57]

#Cards #Shuffles

NTMIO with Niemi–Renvall [57] 4dlogme+4 40dlogme−30.5

NTMIO with Mizuki [39] 4dlogme+6 18dlogme−14

NTMIO with Koch–Schrempp–Kirsten [29] 4dlogme+4 26dlogme−20

non-experts such as high school students can easily understand and use it
practically. Note that a random cut can be easily and securely implemented
by using the Hindu cut [81]. When preparing a two-colored deck of cards is
hard, our protocol presented in Section 2.3 will be benefical because it can
be executed with a standard deck of cards, which is sold almost all over the
world.

Moreover, we can use our protocols in didactic contexts in order to invite
young people and students to cryptography; they would be an ideal tool to
exhibit the concept of secure multiparty computations, as often pointed out,
e.g., [20, 36].

Regarding the number of required cards, one might think of the use of the
existing four-card AND [31], the five-card AND [2], and the five-card COPY
protocols [62] in the previous circuit-based protocol because the number of
required cards should be reduced. However, the numbers of required shuffles
for the four-card and five-card AND protocols are eight and seven on average,
respectively. Moreover, the five-card COPY protocol requires ideal cases for
execution. Therefore, for practicality, we considered only the six-card AND
protocol [48] and the six-card COPY protocol [48].



3. ZKP for Puzzles
Sudoku is one of the most famous puzzles. In a standard challenge, a

9× 9 grid is used, which is divided into 3× 3 subgrids. Some of the cells are
already filled with numbers between 1 and 9. The goal of Sudoku is to fill
all the empty cells with numbers so that each row, each column, and each
subgrid contains all the numbers from 1 to 9. Figure 3.1 shows an example
of a standard Sudoku challenge, and its solution.

We address a generalized version of Sudoku in this study. That is, a
Sudoku puzzle where a grid is n × n cells, a subgrid is k × k cells, and
numbers from 1 to n are used. Note that n = k2; the standard size of a
Sudoku puzzle corresponds to n = 9 and k = 3.

We solicit zero-knowledge proof protocols for Sudoku. That is, for a
certain Sudoku puzzle, we assume a prover P who knows the solution to
the Sudoku puzzle and a verifier V who does not know it, and suppose that
P wants to convince V of the following without revealing any information
about the solution:

• There is a solution to the puzzle;

• P knows the solution.
Unlike in conventional cryptographic zero-knowledge proofs (see, e.g., [18]),
in our setting, we do not want to use electronic devices such as computers
and network devices. Instead, we want to use only everyday items to execute
a protocol manually. Further, the prover P and the verifier V are assumed
to be in the same place. Such a restricted zero-knowledge proof is called a
physical zero-knowledge proof [5, 8, 19].

In 2009, Gradwohl, Naor, Pinkas, and Rothblum proposed several physi-
cal zero-knowledge proof protocols for Sudoku [19]. Among them, Protocol 3
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Figure 3.1: Example of the standard Sudoku challenge, and its solution
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(hereinafter referred to as GNPR Protocol 3 ) utilizes a deck of cards hav-
ing numbers on their faces, such as playing cardsi. This protocol needs 3n2

cards, and it has an extractability error, i.e., a prover P who does not know
the solution can convince V with a non-zero probability. By contrast, Pro-
tocol 5 (hereinafter referred to as GNPR Protocol 5 ) avoids extractability
error by utilizing special cards (namely, scratch-off cards that allow the col-
ors to be covered) together with scissorsii. Unfortunately, GNPR Protocol 5
consumes non-reusable scratch-off cards at every execution of the protocol.
Therefore, it is preferable to construct a protocol that can be implemented
with only reusable everyday objects such as playing cards.

Contribution
In this chapter, we propose new zero-knowledge proof protocols that satisfy
the following: (i) they utilize the same items as GNPR Protocol 3, namely
a standard deck of playing cards, and (ii) they have no extractability error,
implying that if P does not know a solution, P cannot convince V . The
main idea behind our protocols is to apply techniques of card-based cryp-
tography (e.g., [22,23,46]). Table 3.1 shows a comparison of performances of
GNPR Protocol 3 and our three protocols, which we call Protocols A, B, and
C; recall that we assume an n × n Sudoku grid. As known from Table 3.1,
we will design three protocols considering a tradeoff between the number
of cards and the number of shuffles. The most important point is that our
protocols have no extractability error, i.e., they are “perfectly extractable.”
As will be explained in Section 3.1.1, for physical zero-knowledge protocols,
perfect extractability is crucial in terms of efficiency and feasibility.

Moreover, we propose a physical ZKP protocol for Slitherlink, which is
not like other Nikoli’s puzzles since it requires to draw a single loop to solve
the puzzle. This feature of the puzzle is a challenge that was not present in
the previous physical ZKPs for Nikoli’s puzzles [5, 6, 8, 14,19,72].

Outline
The remainder of this chapter is organized as follows. In Section 3.1, we
review zero-knowledge proof of knowledge and GNPR Protocol 3. In Sec-
tion 3.2, we present our proposed protocols for Sudoku, named Protocols A
and B, which are designed with the help of “copy technique.” In Section 3.3,
we introduce another idea of utilizing interaction so as to have Protocol C.
In Section 3.4, we change the target puzzle to Slitherlink. In Section 3.5
we present our ZKP protocol for Slitherlink. In Section 3.6, we prove the

iProtocols 1 and 2 presented in [19] are conventional (i.e., non-physical) zero-knowledge
proof protocols.

iiProtocol 4 in [19] is a variation of GNPR Protocol 3.
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Table 3.1: Comparison of protocols

#Cards #Shuffles Extractability Error

GNPR Protocol 3 3n2 3n at most 1/9

Our Protocol A n2 + n 5n 0

Our Protocol B 2n2 + n 4n 0

Our Protocol C 3n2 3n+ 1 0

three properties of our proposed protocol. In Section 3.7, we conclude this
chapter.

3.1. Preliminaries
In this section, we first review zero-knowledge proof and then introduce the
existing protocol, GNPR Protocol 3.

3.1.1. Zero-Knowledge Proof
A zero-knowledge proof is an interactive proof between a prover P and a
verifier V . Formally, they both have an instance I of a problem and only
P knows a solution w. In addition, V is computationally bounded so that
V cannot obtain w from I. Under these assumptions, P wants to convince
V that he/she knows w without revealing any information about w. Such a
proof is called a zero-knowledge proof, which must satisfy the following three
properties.

Completeness If P knows w, P can convince V .

Extractability If P does not know w, P cannot convince V (with a high
probability).

Zero-knowledge V cannot obtain any information about w. In order to
prove that a protocol satisfies this property, assuming a probabilistic
polynomial time algorithm M(I) not having w, if outputs of the pro-
tocol and outputs of M(I) follow the same probability distribution,
the zero-knowledge property is satisfied.

The probability that V will be convinced although P does not know w is
called the extractability error. If we have a zero-knowledge proof protocol,
the extractability error of which is δ > 0, repeating the protocol ` times
allows V to detect that P does not know w with a probability 1−δ`. There-
fore, in general, even if a protocol has a non-zero extractability error, i.e., it
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is not perfectly extractable, we can in practice establish zero-knowledge proof
with a negligible extractability error by repeating the protocol. However,
since we assume that a protocol is executed by human hands, it is imprac-
tical to repeat the protocol many times. Therefore, it is indispensable to
design a protocol having no extractability error.

A zero-knowledge proof was first defined by Goldwasser, Micali, and
Rackoff [18], and it was proved that (computational) zero-knowledge proofs
exist for any NP problems [17]. Because it is known that Sudoku is NP-
complete [84], we can construct conventional (computational) zero-knowledge
proof protocols for it [19]. Remember, however, that this paper focuses not
on conventional zero-knowledge proof but on physical zero-knowledge proof
for Sudoku. Hence, we introduce the existing physical protocol, GNPR Pro-
tocols 3, in the next subsection.

3.1.2. Gradwohl, Naor, Pinkas, and Rothblum Protocol 3
Here, we review GNPR Protocol 3 [19]. This protocol utilizes physical cards,
the face side of each of which has one number between 1 and n, such as
1 2 ... n ; all the back sides are identical, ? ? ... ? . The protocol uses
3n sets of such n cards, namely, 3n2 cards in total.

Before presenting the protocol, we define a shuffle operation for cards.
Given a sequence of m face-down cards (c1, c2, c3, ..., cm), a shuffle results in
a sequence (

cr−1(1), cr−1(2), cr−1(3), ..., cr−1(m)
)
,

where r ∈ Sm is a uniformly distributed random permutation, and Sm is the
symmetric group of degree m.

GNPR Protocol 3 proceeds as follows.

1. The prover P places three face-down cards on each cell according to
the Sudoku solution. On the filled-in cells, P places three face-up cards
corresponding to the numbers filled in. After V confirms the values of
the face-up cards, P turns them over.

2. The verifier V picks one card randomly from each cell of a row to
make a packet of n cards corresponding to the row. Because there
are n rows, n packets are created. The same procedure is applied for
each column and each subgrid. Thus, V makes 3n packets in total and
passes them to P .

3. P who received the packets from V applies a shuffle to the cards in
each packet and returns the 3n shuffled packets to V .

4. V opens all the cards in all the packets and checks that each packet
contains all the numbers from 1 to n.
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This is GNPR Protocol 3, which satisfies the three properties of zero-
knowledge proof, as follows.

Completeness: If P places the face-down cards correctly according to the
solution, every packet made by V must contain all the numbers from
1 to n. By checking them, V is convinced that all the cards have been
placed according to the solution. Furthermore, V is convinced that
the packets are not a solution to another puzzle instance, because V
saw the face-up cards placed on filled-in cells be compatible with the
given puzzle instance.

Extractability: Consider a situation where V is convinced in spite of an
illegal input by P . Such a situation occurs when the three cards placed
on each cell are not identical; it was proved that the probability that
V is convinced in this case is at most 1/9 [19]. Thus, the GNPR Pro-
tocol 3 has an extractability error, i.e., it is not perfectly extractable.

Zero-knowledge: If all distribution of revealed cards during an execution
of a protocol can be simulated by a simulator M(I), the protocol
satisfies zero-knowledge. In GNPR Protocol 3, each packet is opened
in Step 4. Since a shuffle operation has been applied for every packet
in Step 3, the order of each sequence is uniformly distributed on Sn.
Therefore, M(I) can simulate the outputs.

In this GNPR Protocol 3, P places three cards on each cell, and hence,
the protocol uses 3n2 cards in total. For example, in the case of a Sudoku
puzzle consisting of a 9 × 9 grid, this protocol needs 243 cards. Because
this protocol has an extractability error, we have to repeat the protocol
many times to make the extractability error negligible. As mentioned in
Section 3.1, a protocol which has no extractability error is preferable. In
the next section, we propose such two perfectly extractable protocols with
fewer cards.

3.2. Proposed Protocols A and B for Sudoku: Applying
Copy Technique

In this section, we propose two efficient zero-knowledge proof protocols for
Sudoku with no extractability error in which card-based cryptography per-
spectives are applied. For easy to explain our protocols, we first define some
terms in Section 3.2.1 and some subprotocols in Sections 3.2.2 and 3.2.3.
Then, we construct our first protocol called Protocol A in Section 3.2.4 and
our second protocol called Protocol B in Section 3.2.5. The outline of both
protocols is as follows:
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1. P places exactly one face-down card on each cell corresponding to the
solution;

2. V checks that the format of the packet of face-down cards placed on
each row, each column and each subgrid is correct.

In Section 3.2.6, we show that our protocols satisfy the zero-knowledge proof
properties.

3.2.1. Terminologies
In this subsection, we present some terms.

Commitment as Input. In our protocols, the prover P places a single
face-down card on each cell according to the solution. On filled-in cells, P
places face-up cards. After V confirms the value of the face-up cards, P
turns them over. Now, there are exactly n2 cards placed on the grid. We
call a sequence of n face-down cards corresponding to each row, each column
or each subgrid a commitment.

For example, in the case of the top-left subgrid in Figure 3.1, P places
nine cards according to the solution; after V confirms the value of the face-up
cards, P turns them over:

? ? 1

? 2 ?

6 7 ?

→
? ? ?

? ? ?

? ? ? .

This is a commitment corresponding to this subgrid, and we regard it as a
sequence:

1st row︷ ︸︸ ︷
? ? ?

2nd row︷ ︸︸ ︷
? ? ?

3rd row︷ ︸︸ ︷
? ? ? .

Pile-scramble Shuffle We here introduce a well-known shuffle operation
called pile-scramble shuffle [24]. Given m piles, each of which consists of the
same number of face-down cards, we denote this by

(pile1, pile2, pile3, . . . , pilem) .

For such a sequence of piles, applying a pile-scramble shuffle results in(
piler−1(1), piler−1(1), piler−1(3), . . . , piler−1(m)

)
,

where r ∈ Sm is a uniformly distributed random permutation. A pile-
scramble shuffle can be implemented with the help of clips, envelopes, or
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similar items. More specifically, for example, we put each pile of cards in an
envelope and then shuffle the envelopes until nobody can trace the move;
if players have difficulty in shuffling the envelopes, they may put all the
envelops in a large box, close the box, and randomly rotate it to scramble
the envelopes inside.

3.2.2. Verification Protocol
In this subsection, we construct a protocol which verifies that a given com-
mitment contains all the numbers without revealing its order, and further-
more, produces the same commitment as the original one by using addi-
tional n cards. To construct this protocol, we borrow two existing ideas:
(i) a method for regarding a commitment as a permutation and a technique
for inverting a permutation, which were given partially by Hashimoto, Shi-
nagawa, Nuida, Imamura, and Hanaoka [22] and Ibaraki and Manabe [23],
and (ii) a technique for checking the format of a sequence of face-down
cards, which was given by Mizuki and Shizuya [46]. That is, we regard a
commitment consisting of n cards as a permutation v ∈ Sn:

? ? ? . . . ? (v),

where a card having number i, 1 ≤ i ≤ n, on its face side is placed at the
v(i)-th position, and a permutation with parentheses, such as (v), means
that the permutation is hidden (because the cards are face-down).

Given a commitment corresponding to v ∈ Sn, our verification protocol
proceeds as follows.

1. V puts n cards numbered from 1 to n in this order to generate a card
sequence corresponding to the identity permutation id under the given
commitment to v:

? ? ? . . . ?

1 2 3 . . . n

(v)

id .

2. V turns over all the face-up cards in the bottom row and stacks the
cards in each column so that there are n two-card piles:

? ? . . . ?

? ? . . . ?

(v)

(id) .

3. P applies a pile-scramble shuffle to them and obtains a commitment
to rv ∈ Sn and a commitment to r ∈ Sn, where r ∈ Sn is a uniformly
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distributed random permutation:

[
? ? . . . ?

? ? . . . ?

] (v)

(id)
→

? ? . . . ?

? ? . . . ?

(rv)

(r) .

4. V reveals the commitment to rv in the top row; let x1, x2, . . . , xn be
the numbers written on the revealed cards in this order:

? ? . . . ?

? ? . . . ?

(rv)

(r)
→

x1 x2 . . . xn

? ? . . . ?

rv

(r) .

If they consist of all numbers from 1 to n, V is convinced that the orig-
inal commitment was in a correct format. Further, since V learns only
the value of rv, which is also a random permutation, no information
about v leaks.

5. From now on, we reconstruct the original commitment to v. First, P
turns over all the opened cards and applies a pile-scramble shuffle to
them again. After that, a commitment to rv becomes r′rv ∈ Sn, and
a commitment to r becomes r′r ∈ Sn, where r′ ∈ Sn is a uniformly
distributed random permutation:

[
? ? . . . ?

? ? . . . ?

] (rv)

(r)
→

? ? . . . ?

? ? . . . ?

(r′rv)

(r′r) .

6. V reveals the bottom row; let y1, y2, . . . , yn be the revealed numbers.
Then, V sorts the columns so that the bottom row becomes id:

? ? . . . ?

y1 y2 . . . yn

(r′rv)

r′r
→

? ? . . . ?

1 2 . . . n

(v)

id .

This means that permutation (r′r)−1 is multiplied to each row, and
hence, the top row becomes the same commitment as the original one
to v.

This is our verification protocol, which can verify the format of a given
commitment without destroying it.

3.2.3. Copy Protocol
Next, we present our copy protocol, which is an extended version of the
verification protocol constructed in the previous subsection. Given a com-
mitment to v, this protocol makes two identical copied commitments to v,
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and furthermore, verifies that the given commitment contains all the num-
bers. Given a commitment to v ∈ Sn along with 2n additional cards, the
copy protocol proceeds as follows.

1. P and V apply the same procedure as Steps 1 to 4 in the verifi-
cation protocol. After that, they obtain a card sequence rv and a
commitment to r, where r ∈ Sn is a uniformly distributed random
permutation:

? ? . . . ?

1 2 . . . n

(v)

id
→

x1 x2 . . . xn

? ? . . . ?

rv

(r) .

2. Using additional n cards, V generates the same card sequence as the
top row and puts it at the top so that we have

x1 x2 . . . xn

? ? . . . ?

rv

(r)
→

x1 x2 . . . xn

x1 x2 . . . xn

? ? . . . ?

rv

rv

(r) .

3. In a similar manner to Step 5 in the verification protocol, V turns
over all the opened cards and applies a pile-scramble shuffle to them.
After that, for a uniformly distributed random permutation r′ ∈ Sn,
we have

? ? . . . ?

? ? . . . ?

? ? . . . ?


(rv)

(rv)

(r)

→

? ? . . . ?

? ? . . . ?

? ? . . . ?

(r′rv)

(r′rv)

(r′r) .

4. Finally, V applies a similar procedure to Step 6 in the verification pro-
tocol. More precisely, V reveals the bottom row to see the numbers
y1, y2, . . . , yn, and V sorts the columns so that the bottom row becomes
id. Then, they obtain two copied commitments to v:

? ? . . . ?

? ? . . . ?

y1 y2 . . . yn

(r′rv)

(r′rv)

r′r

→

? ? . . . ?

? ? . . . ?

1 2 . . . n

(v)

(v)

id .

This is the copy protocol; notice that it uses 2n additional cards.
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3.2.4. Protocol A
We are now ready to describe our first protocol, Protocol A. It proceeds as
follows.

1. The prover P places a single card on each cell according to the solution
(as described in Section 3.2.1).

2. V regards the n cards placed on each row as a commitment and applies
the verification protocol (described in Section 3.2.2) to the commit-
ment. By doing so, V can verify whether each commitment contains
all numbers. Note that the revealed cards in the verification protocol
are reuseable.

3. For the n cards placed in each column, V does the same procedure as
Step 2.

4. As in a similar way to GNPR Protocol 3, make n packets corresponding
to n subgrids. Each packet is shuffled. V opens all the packets and
checks that each packet includes all numbers from 1 to n.

Let us count how many cards we use in this Protocol A. After P inputs
the cards in Step 1, there are n2 cards on the grid. For applying the verifica-
tion protocol, we need n additional cards, and hence, we need n2 +n cards in
total. Next, let us count the number of shuffles in this protocol. Every exe-
cution of the verification protocol requires two pile-scramble shuffles, and it
is performed for each of n rows and n columns. The packet shuffle in Step 4
is performed once for each subgrid, and there are n subgrids. Therefore, the
total number of shuffles is 5n. See Table 3.1 again.

3.2.5. Protocol B
We next propose a variant of Protocol A; we call it Protocol B. The main
idea behind this protocol is to reduce the number of shuffles by using the
copy protocol instead of the verification protocol. Protocol B proceeds as
follows.

1. The prover P places a single card on each cell according to the solution
(as described in Section 3.2.1).

2. The verifier V regards n cards placed on each row as a commitment and
applies the copy protocol (described in Section 3.2.3) to the commit-
ment. After doing so, they obtain two identical copied commitments
corresponding to each row. Further, verification of each row has been
completed.
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3. Note that each cell now has two identical cards. As in a similar way to
GNPR Protocol 3, make 2n packets corresponding to the n columns
and n subgrids. Each packet is shuffled. V opens all the packets and
checks that each packet includes all numbers from 1 to n.

After Step 2 of this Protocol B, two cards are placed on each cell, and
then, we need n additional cards to apply the copy protocol. Thus, this
protocol needs 2n2 + n cards in total. Next, let us count the number of
shuffles in this protocol. Every execution of the copy protocol requires two
pile-scramble shuffles, and it is performed for each of the n rows. The
packet shuffle in Step 3 is performed once for each column and each subgrid.
Therefore, the total number of shuffles is 4n.

3.2.6. Correctness of the Proposed Protocols
In this subsection, we show that Protocol A described in Section 3.2.4 sat-
isfies the properties of zero-knowledge proof. Since the proof of the validity
of protocol B is almost the same as that of Protocol A, it is omitted.

Completeness: A prover P who knows the solution can place cards so
that each row, each column and each subgrid contains all numbers.
Whether the format of each row and each column is correct can be
checked by the verification protocol. Further, V is convinced that P ’s
input is not a solution to another puzzle instance by seeing the face-up
cards having the same value as the filled-in cells.

Extractability: If P ’s input is invalid, at least one of rows, columns, and
subgrids does not contain all numbers. Since such a packet can be
always detected in the verification phase, V can always detect an illegal
P ’s input. Therefore, Protocol A is perfectly extractable.

Zero-knowledge: In order to prove this, it is sufficient to show that all
distributions of opened cards can be simulated by a simulator M(I)
who does not know the solution.

• In Steps 4 and 6 in the verification protocol, the commitments to
rv and r′r are opened. Their orders are uniformly distributed on
Sn due to the pile-scramble shuffles. Thus, it can be simulated
by M(I).

• In Step 4 in Protocol A, the n packets corresponding to the n
subgrids are opened. Their order is uniformly distributed on Sn
due to the shuffle. Thus, it can be simulated by M(I).
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3.3. Proposed Protocol C for Sudoku: Interactive In-
puts

In the previous section, we designed two zero-knowledge proof protocols for
Sudoku, which have no extractability error thanks to the copy/verification
technique. In this section, we consider more direct variant of GNPR Proto-
col 3.

Remember why GNPR Protocol 3 has a non-zero extractability error; if
we guaranteed that the three cards placed on each cell were identical, we
could immediately eliminate any extractability error, i.e., we could attain
perfect extractability. Taking this in mind, we now consider an interaction
between P and V to prepare input cards, so that every pile of three cards
placed on each cell are identical. Our Protocol C, which we can call the
interactive input protocol, proceeds as follows.

1. The verifier V publicly generates n piles each containing three “1”
cards and turns their faces down; similarly, V generates n piles for
each of 2 to n. After that, there are n2 piles in total on the table.

2. P applies a pile-scramble shuffle to all the n2 piles.

3. P picks one pile and looks at the cards in his/her hands to see the
number on them while keeping it hidden from V . Then, P places the
picked pile on a cell compatible with the solution.

4. P applies the same procedure as Steps 3 to all the remaining piles.
After that, three cards are placed on each cell.

5. Execute Steps 2 to 4 of GNPR Protocol 3.

This is Protocol C. Because all three cards placed on each cell are guaranteed
to be identical, Protocol C has no extractability error. Its performance is
shown in Table 3.1.

3.4. Slitherlink
Hereinafter, we focus on constructing a ZKP protocol for Slitherlink that
was introduced in 1989 in issue the 26th of Nikoli’s Puzzle Times. It is
also known as Loop-the-Loop. It is explained on Nikoli’s web site as follows:
“Getting the loop right is absorbing and addictive. Watch out not to get
lost in Slitherlink. It’s amazing to see how endless patterns can be made
using only four numbers (0, 1, 2 and 3)”. Slitherlink was proven to be
NP-complete in [84] and other variants in [32].

Slitherlink is one of the most famous pencil puzzles published in the
puzzle magazine Nikoli. The puzzle instance consists of lattice-like dots
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Figure 3.2: Example of a standard Slitherlink challenge, and its solution.

where some squares contain numbers between 0 and 3. The goal of the
puzzle is to draw lines that satisfy the following rulesi:

1. Connect vertical/horizontal adjacent dots with lines to make a single
loop.

2. Each number indicates the number of lines that should surround its
square, while empty squares may be surrounded with any number of
lines.

3. The loop never crosses itself and never branches off.

Figure 3.2 shows an example of a Slitherlink puzzle and its solution; one can
easily verify that all conditions are satisfied.

We introduce a new technique to construct a ZKP protocol for a puzzle
where constructing a single loop is one of the requirements of the solution.
The difficulty is to avoid leaking any information regarding the solution to
the verifier. For this, we use a topological point of view; more precisely, we
use the notion of homology that defines and categorizes holes in a manifold.
The main idea is that after any continuous transformations, the number
of holes always remains the same. Using this simple idea, we construct
transformations that preserve the number of loops in the solution. First,
the verifier checks that the initial configuration has only a single big loop.
Then, by transforming in several steps this trivial big loop into the solution,
the prover convinces step after step that the solution has only one loop at the
end by proving that the transformation does not break the loop or introduce
an extra hole. This construction is applied to Slitherlink in this article but
it can be used for any other puzzles that require such type of features in
their rules.

ihttps://www.nikoli.co.jp/en/puzzles/slitherlink.html

https://www.nikoli.co.jp/en/puzzles/slitherlink.html
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3.4.1. Notations

We use the following physical cards: ♣ ♣ · · · ♥ ♥ ; the black ♣ and
red ♥ cards are called binary cards in this chapter. The backs of all cards
are identical and denoted by ? . In our construction, binary cards are used
to encode the existence of a line while number cards are used for rearranging
the positions of cards, as shown later.

Encoding. We encode Boolean values with two binary cards as follows:
♣ ♥ = 0 and ♥ ♣ = 1. Two face-down cards encoding 0 and 1 are called
a 0-commitment and a 1-commitment, which are denoted by 0 and 1 ,
respectively.

In our protocol, a 0-commitment placed on a gap between two adjacent
dots means that there is no line on the gap, and a 1-commitment means
that there is a line on the gap. With this encoding, we can represent a
loop that is made of several lines. Note that given an x-commitment for
x ∈ {0, 1}, swapping the two cards consisting the commitment results in an
x-commitment; thus, negation can be easily done.

Shuffle. Given a sequence of m face-down cards (c1, c2, . . . , cm), a shuf-
fle results in a sequence

(
cr−1(1), cr−1(2), . . . , cr−1(m)

)
, where r ∈ Sm is a

uniformly distributed random permutation and Sm denotes the symmetric
group of degree m.

Pile-shifting Shuffle. The goal of this operation, which is also called pile-
shifting scramble [61], is to cyclically shuffle piles of cards. That is, given
m piles, each of which consists of the same number of face-down cards,
denoted by (pile1, pile2, . . . , pilem), applying a pile-shifting shuffle results in
(piles+1, piles+2, . . . , piles+m):

?︸︷︷︸
pile1

?︸︷︷︸
pile2

· · · ?︸︷︷︸
pilem

→ ?︸︷︷︸
piles+1

?︸︷︷︸
piles+2

· · · ?︸︷︷︸
piles+m

,

where s is uniformly and randomly chosen from Z/mZ. To implement pile-
shifting shuffle, we use physical cases that can store a pile of cards, such as
boxes and envelopes; a player (or players) cyclically shuffle them by hand
until nobody traces the offset. It can be done by physical object as the one
created for the physical ZKP for Sudoku in [72].

Chosen Pile Cut. It was proposed in [30]. chosen pile cut enables a
prover to choose a pile pilei from m piles (pile1, pile2, . . . , pilem) without
revealing i to a verifier. The chosen pile cut proceeds as follows, given m
piles along with m additional cards:
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1. The prover P holds m − 1 ♣ s and one ♥ . Then, P places m cards
with their faces down below the piles such that only the i-th card is
♥ :

?︸︷︷︸
pile1

?︸︷︷︸
pile2

. . . ?︸︷︷︸
pilei−1

?︸︷︷︸
pilei

?︸︷︷︸
pilei+1

. . . ?︸︷︷︸
pilem

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

2. Regarding the cards in the same column as a pile, apply pile-shifting
shuffle to the piles (denoted by 〈 · | . . . |· 〉):

〈 ?︸︷︷︸
pile1

?

∣∣∣∣∣∣∣∣∣∣
?︸︷︷︸
pile2

?

∣∣∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣∣∣
?︸︷︷︸

pilem

?

〉
→

?︸︷︷︸
piles+1

?︸︷︷︸
piles+2

. . . ?︸︷︷︸
piles+m

? ? . . . ? ,

where s is generated uniformly at random from Z/mZ by this shuffle
action.

3. Reveal all the cards in the second row. Then, one ♥ appears, and
the pile above the revealed ♥ is pilei, and hence, we can obtain the
desired pilei.

Owing to the pile-shifting shuffle in Step 2, revealing cards leaks no infor-
mation about i and thus, chosen pile cut leaks no information about i, the
index of the chosen pile.

3.5. Proposed Protocol for Slitherlink
In this section, we construct our physical zero-knowledge proof protocol for
Slitherlink. The outline of our protocol is as follows.

Input Phase: The verifier V puts a 1-commitment (i.e., two face-down
cards encoding 1) on every gap on the boundary of the puzzle board
and 0-commitments on all the remaining gaps. In other words, V
creates a single big loop whose size is the same as the board.

Topology-preserving Computation Phase: The prover P transforms
the shape of the loop according to the solution. After this phase,
V is convinced that the placement of 1-commitments satisfies Rules 1
and 3 of Slitherlink without the disclosure of any information about
the shape.

Verification Phase: V verifies that the placement of 1-commitments sat-
isfies Rule 2 of Slitherlink.
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We introduce some subprotocols in Section 3.5.1 before presenting our pro-
tocol in Section 3.5.2.

3.5.1. Subprotocols
Chosen pile protocol. This is an extended version of the chosen pile
cut [30] explained in Section 3.4.1. Given m piles with 2m additional cards,
this protocol enables P to choose the i-th pile and regenerate the original
sequence of m piles.

1. Using m − 1 ♣ s and one ♥ , the prover P places m cards with their
faces down below the given piles such that only the i-th card is ♥ :

?︸︷︷︸
pile1

?︸︷︷︸
pile2

. . . ?︸︷︷︸
pilei−1

?︸︷︷︸
pilei

?︸︷︷︸
pilei+1

. . . ?︸︷︷︸
pilem

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

We further put m cards below the cards such that only the first card
is ♥ :

?︸︷︷︸
pile1

?︸︷︷︸
pile2

. . . ?︸︷︷︸
pilei−1

?︸︷︷︸
pilei

?︸︷︷︸
pilei+1

. . . ?︸︷︷︸
pilem

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

?
♣

?
♣

. . . ?
♣

2. Considering the cards in the same column as a pile, apply a pile-
shifting shuffle to the sequence of piles:

〈 ?︸︷︷︸
pile1

?

?

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

?︸︷︷︸
pile2

?

?

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

?︸︷︷︸
pilem

?

?

〉
→

?︸︷︷︸
piles+1

?︸︷︷︸
piles+2

. . . ?︸︷︷︸
piles+m

? ? . . . ?

? ? . . . ?
,

where s is generated uniformly at random from Z/mZ.

3. Reveal all the cards in the second row. Then, one ♥ appears, and the
pile above the revealed ♥ is the i-th pile (and hence, P can obtain
pilei). When this protocol is invoked, certain operations are applied
to the chosen pile. Then, the chosen pile is placed back to the i-th
position in the sequence.
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4. Remove the revealed cards, i.e., the cards in the second row. Then,
apply a pile-shifting shuffle:

〈 ?︸︷︷︸
piles+1

?

∣∣∣∣∣∣∣∣∣∣
?︸︷︷︸

piles+2

?

∣∣∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣∣∣
?︸︷︷︸

piles+m

?

〉
→

?︸︷︷︸
piles′+s+1

?︸︷︷︸
piles′+s+2

. . . ?︸︷︷︸
piles′+s+m

? ? . . . ? ,

where s′ is generated uniformly at random from Z/mZ.

5. Reveal all the cards in the second row. Then, one ♥ appears, and the
pile above the revealed ♥ is pile1. Therefore, by shifting the sequence
of piles, we can obtain a sequence of piles whose order is the same as
the original one without revealing any information about the order of
input sequence.

Verifying-degree Protocol. This protocol can verify that the “degree”
of a target vertex (dot) is not four. Here, degree means the number of
1-commitments placed around a target vertex. Thus, the prover P wants
to prove that there is at least one 0-commitment around the target vertex
(when only P knows what the four commitments around the target are).

The verifying-degree protocol proceeds as follows.

1. Given four commitments that are placed around the target vertex,
these can be regarded as a sequence of 4 commitments:

·

? ?

· ? ? · ? ? ·

? ?

·

→ ? ? ? ?

2. By using the chosen pile protocol, P chooses one of the 0-commitments.
Open the chosen pile to show that it is 0. Now, V is convinced that
the degree of the target vertex is not four. Then, V turns over all
the opened cards. Because only a 0-commitment is always opened, no
information about the four commitments is disclosed.

3. V performs the remaining steps in the chosen pile protocol. Then, all
the cards are placed back to their original positions.
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Figure 3.3: Three transformations.

Topology-preserving Computation. This protocol changes a given loop
into another loop by one of the three transformations given in Figure 3.3.
Each transformation changes the lines surrounding a square, represented by
dash line in Figure 3.3.

Remember that a line is expressed by a commitment (i.e., two face-down
binary cards) in our protocol. Therefore, for example, a (2,2)-transformation
means

· 1 ·

1 0
· 0 ·

→

· 0 ·

0 1
· 1 ·

This can be implemented by swapping two cards of each commitment. (Re-
member that swapping the two cards performs negation of a commitment.)
A (3,1)-transformation and a (1,3)-transformation can also be implemented
by swapping two cards of each commitment:

· 1 ·

0 1
· 1 ·

→

· 0 ·

1 0
· 0 ·

· 0 ·

0 0
· 1 ·

→

· 1 ·

1 1
· 0 ·

Now, P wants to apply one of the three transformations while the applied
transformation is hidden from V . Furthermore, P needs to show that the
commitments around a target square are “transformable.” Note that the
three transformations are applicable to four commitments around a square
if and only if there exists a 0-commitment facing a 1-commitment.

The topology-preserving computation proceeds as follows.

1. Pick four commitments around a target square:

? ? ? ?

2. P chooses a 0-commitment facing a 1-commitment using chosen pile
protocol.
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Figure 3.4: Small example of Slitherlink challenge, and its solution.
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Figure 3.5: Transformation process.

3. V reveals the chosen commitment and the commitment that is two
piles away from it:

↓ ↓

? ? ? ?

♥ ♣ ♣ ♣

? ? ? ?

Then, V checks that the two commitments are a 0-commitment and a
1-commitment to be convinced that any transformation can be applied.

4. After turning over all the opened cards, V performs the remaining
steps in the chosen pile protocol to place all the cards back to their
original positions.

5. Swap the two cards of each of the four commitments. (Remember
that this results in negating all the four commitments, and hence, a
transformation is applied.)

6. V applies the verifying-degree protocol to each of the four dots of the
target square. Then, V is convinced that no dots of degree four have
been obtained as the result of transformation. This guarantees that
the loop was not split and thus, it remains a single loop.

3.5.2. Our Construction
As mentioned at the beginning of this section, the main idea behind our
protocol is that the verifier V first creates a big loop and then the prover
P transforms the loop into the solution loop one by one. Let us consider a
puzzle instance shown in Figure 3.4 as an example. Our protocol transforms
the loop as illustrated in Figure 3.5.
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We are now ready to present the full description of our zero-knowledge
proof protocol for Slitherlink.

Input Phase. The verifier V puts a 1-commitment on every gap on the
boundary of the puzzle board and 0-commitments on all the other gaps. This
placement corresponds to the single loop with the same size as the board.
The following is an example of the placement of (2×2)-square puzzle board:

· 1 · 1 ·

1 0 1
· 0 · 0 ·

1 0 1
· 1 · 1 ·

P will apply the topology-preserving computation to these commitments to
transform the shape of the loop into the solution. Here, P needs to hide
the target square. Therefore, we make a sequence of piles from the placed
cards, pick the four target commitments using the chosen pile protocol,
and apply the topology-preserving computation. To properly pick the four
commitments, a sequence of piles is formed, as follows.

We first expand the puzzle board by adding dots around the original
board. (For explanation, the expanded dots are denoted by �.)

� � � � �

� · 1 · 1 · �

1 0 1
� · 0 · 0 · �

1 0 1
� · 1 · 1 · �

� � � � �

Note that the expanded area is unrelated to the actual puzzle board. V
puts dummy commitments on the gaps at the expanded area other than the
right and the bottom ends. Each dummy commitment consists of two black
cards ♣ ♣ to prevent the loop from spreading over the expanded area. We
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denote the dummy commitment by ♣ .

� ♣ � ♣ � ♣ � ♣ �

♣ ♣ ♣ ♣

� ♣ · 1 · 1 · ♣ �

♣ 1 0 1
� ♣ · 0 · 0 · ♣ �

♣ 1 0 1
� ♣ · 1 · 1 · ♣ �

♣ ♣ ♣ ♣

� � � � �

Next, V makes a sequence of 4-card piles as follows. For each square, V
first makes a pile from the commitments placed on the left and the top (the
commitment on the gap between each vertically consecutive dots is placed
on the commitment on its upper right.)

� ♣ ♣ � ♣ ♣ � ♣ ♣ � ♣ ♣ �

� ♣ ♣ · 1 1 · 0 1 · 1 ♣ �

� ♣ ♣ · 1 0 · 0 0 · 1 ♣ �

� ♣ ♣ · ♣ 1 · ♣ 1 · ♣ ♣ �

� � � � �

Then, pick 4-card piles from top to bottom:

♣ ♣ ♣ ♣ ♣ ♣ . . . ♣ 1 ♣ 1 ♣ ♣

to make a sequence of piles:

? ? ? . . . ? ? ?
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Topology-preserving computation phase. In this phase, P applies
transformations (explained in Section 3.5.1) to stepwise change the big loop
to the solution loop. Let n be the size of the puzzle instance, namely the
number of squares on the puzzle board. Then, note that P can make the
solution loop by at most n transformations.

1. P applies the following exactly n−1 times such that either the resulting
loop is already the solution, or one more transformation will end up
the solution. (This is possible because successive two transformations
(of the same) to the same square keep the loop unchanged.)

(a) P applies the chosen pile protocol to the sequence of 4-card piles:
P picks a 4-card pile composed of left and top edges of the square
that P wants to transform. The other edges can be picked by
counting the distance from the chosen pileii.

(b) P applies the topology-preserving computation to the four picked
commitments.

(c) V performs the remaining steps in the chosen pile protocol to
place the cards back to their original positions.

2. P applies one more transformation or does not change the solution
loop so that V does not learn which action occurs, as follows.

(a) Similarly to Step 1 (a) above, P picks four commitments around
the target square.

(b) By using the method explained in the topology-preserving com-
putation, V confirms that any transformation is applicable.

(c) V arranges the four commitments vertically and makes a pile
from each column:

? ?

? ?

? ?

? ?

→ ? ?

Note that swapping two piles results in inverted value of each
commitment. Thus, it is equivalent to applying a transformation.

(d) Using the chosen pile cut, if P wants to transform the target
square, then P chooses the right pile; otherwise, the left pile is
chosen.

iiIn the above example, the bottom edge corresponds to the pile which is 4 piles away
from the chosen pile. Note that the distance between any two piles never changes because
only Pile-Shifting Shuffle is applied.
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(e) Rearrange the cards vertically such that the chosen pile is placed
at left:

?︸︷︷︸
Chosen pile

? →

? ?

? ?

? ?

? ?

(f) V makes four commitments from each row, performs the remain-
ing steps in the chosen pile protocol, and places each commitment
back to their original position.

3. Finally, all cards are placed on the puzzle board and the cards at the
dummy area are removed.

Verification phase. V is now convinced that the placement of 1-commitments
is a single loop (Rule 1) and it never branches off (Rule 3). Therefore, V
only needs to verify that the placement satisfies Rule 2 of Slitherlink.

Now, V verifies that the number on each square is equal to the number of
lines surrounding it. The verification proceeds as follows, where we virtually
assume that the board is colored like a checkered pattern so that all squares
in the first row are alternation of blue and yellow, those in the second row
are alternation of yellow and blue, and so on.

1. V picks all left cards (if the square is virtually blue) or all right cards
(if the square is yellow) of four commitments around a square on which
a number is written:

? ? ? ? .

2. P shuffles the four cards.

3. V reveals the four cards.

• If V picked all the left cards of four commitments in Step 1, V
checks that the number of red cards ♥ is equal to the number on
the square.

• If V picked all the right cards of four commitments in Step 1, V
checks that the number of black cards ♣ is equal to the number
on the square.

4. Apply Steps 1 to 3 to all other numbered squares. (Note that a com-
mitment is related to at most one blue numbered square and one yellow
numbered square.)

Our protocol uses 6(p + 2)(q + 2) + 8 cards in total, where we have a
p× q board.
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3.6. Security Proofs for Our Construction
In this section, we show that our construction presented in Section 3.4 sat-
isfies the completeness, extractability, and zero-knowledge properties.

Completeness. In the input phase, V is convinced that 1-commitments
are placed in a single loop because V does the operations by himself/herself,
and hence, V is convinced that the placement satisfies Rules 1 and 3 of
Slitherlink. As explained in Section 3.5.1, the transformations are applied
to only applicable squares. Thus, every transformation is performed while
preserving Rules 1 and 3. By verifying that the placement satisfies Rule 2
in verification phase, V is convinced that P knows the solution. Therefore,
if P has a solution for the puzzle then P can always convince V .

Remember that P uses only (3,1)-, (1,3)-, and (2,2)-transformations in
the topology-preserving computation to transform a single loop into the
shape of the solution. We now prove that this is possible in Theorem 1.

Theorem 1 Let n be the number of squares in the puzzle instance (namely,
the big loop), and let k be the number of squares inside its solution loop. By
applying a transformation to the loop exactly n − k times, the big loop can
be transformed into the solution loop.

To prove Theorem 1, we first show Lemmas 1 and 2.

Lemma 1 The resulting placement of 1-commitments after the topology-
preserving computation always represents a single loop.

Proof Remember Steps 2 and 6 in the topology-preserving computation:
Due to Step 2, the target square is guaranteed to be none of the following
two ones (up to rotations).

That is, one of (2,2)-, (3,1)-, and (1,3)-transformations is always applied
to the target square.

Due to the execution of the verifying-degree protocol in Step 6, the fol-
lowing two transformations that make a loop split cannot occur.

Therefore, it remains a single loop. 2

Lemma 2 For any single loop, there is always a (3,1)-, (1,3)-, or (2,2)-
transformation that increases the number of squares inside the loop by exactly
one.
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Proof Consider a single loop; let ` be the number of squares inside the
loop. To prove this lemma, we show that there always exists a square on the
board such that a (3,1)-, (1,3)-, or (2,2)-transformation can be applied to
the square such that ` increases. Note that the loop remains single after the
application of the transformation by Lemma 1.

If ` ≤ 2, a (1,3)-transformation increases the number of squares by one.
Thus, one may assume that ` ≥ 3. Then, any square outside the loop can
be classified in one of the following five types (up to rotations):

If none of (a), (b), and (c) exists, all squares outside the loop are either (d)
or (e), and hence, it would not be a sigle loop. Therefore, at least one square
of type (a), (b), or (c) must exist outside the loop.

Applying a (3,1)-, (1,3)-, or (2,2)-transformation to such an external
square results in increasing ` by one. 2

By these lemmas, Theorem 1 can be proved.

Proof (of Theorem 1) By Lemmas 1 and 2, we can always increase the
number of squares inside the solution loop by a transformation. Therefore,
we can repeat the transformation so that the solution loop becomes the big
loop. This means that, conversely, the big loop can be transformed into the
solution loop by applying (3,1)-, (1,3)-, or (2,2)-transformation exactly n−k
times. 2

Extractability. Only the person who knows the solution can transform
the loop so that the shape satisfies Rule 2. Therefore, V can detect any
illegal prover in Verification Phase. Thus, if the prover does not know the
solution for a puzzle, then V will be never convinced, irrespective of P ’s
behavior.

More formally, to prove the extractability, we are required to show that
any shape that does not satisfy Rule 1, 2, or 3 is always rejected during the
protocol.

Theorem 2 If the prover does not know the solution for the Slitherlink
puzzle, then the verifier always rejects regardless of the prover’s behavior.

To prove Theorem 2, we show that the resulting loop after the topology-
preserving computation always satisfies Rules 1 and 3 (as in Lemma 1) and
any single loop that does not satisfy Rule 2 is always rejected in Verification
Phase (as in Lemma 3). Therefore, any single loop except for the solution
is always rejected.
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Lemma 3 Any (single) loop that does not satisfy Rule 2 is always rejected
in Verification Phase.

Proof Consider any (single) loop that does not satisfy Rule 2, i.e., there
are four commitments surrounding a numbered square such that the number
of 1-commitments among them is not equal to the number. Due to Step 3
in Verification Phase, all the left (or right) cards of four commitments are
turned over (after shuffling them), and hence, the number of 1-commitments
is revealed. This means that the verifier can always reject any (single) loop
that does not satisfy Rule 2. 2

Proof (of Theorem 2) By Lemma 1, the resulting loop after the topology-
preserving computation is always single, i.e., it satisfies Rules 1 and 3. By
Lemma 3, if it does not satisfy Rule 2, the verifier always rejects it in Veri-
fication Phase. That is, any loop except for the solution cannot go through
Verification Phase. 2

Zero-knowledge. In our construction, all the opened cards have been
shuffled before being opened. Therefore, all distributions of opened cards
can be simulated by a simulator M(I) who does not know the solution.
For example, at Step 3 in Verification Phase, the Pile-Scramble Shuffle have
been applied to opened commitments; thus, this is indistinguishable from a
simulation putting randomly 1-commitments such that the number of them
is equal to the number of the square.

3.7. Conclusion
In this chapter, we proposed three card-based zero-knowledge proof proto-
cols for Sudoku. See Table 3.1 again for a comparison of performances of
GNPR Protocol 3 and our protocols; all our protocols have no extractability
error and use fewer cards, and hence, they are efficient.

Moreover, we introduced a new technique that can transform a single
loop encoded with physical objects into a new geometrical figure while pre-
serving the single loop. By using this secure computation, we constructed
the first physical zero-knowledge proof protocol for Slitherlink.



4. Secure Implementations
It is known that by using a deck of cards, we can realize secure multiparty

computations. For example, consider a secure AND computation of bits
a ∈ {0, 1} and b ∈ {0, 1}, i.e., assume that we only want to know the value
of a ∧ b. By utilizing a black card ♣ and a red card ♥ , we can represent
the value of a bit as follows:

♣ ♥ = 0, ♥ ♣ = 1.

According to this encoding, each of the input bits a and b can be represented
using two face-down cards of different colors:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

.

A pair of face-down cards (such as in the above example) is called a commit-
ment. That is, the two cards on the left constitute a commitment to a, and
the two cards on the right constitute a commitment to b. As in this example,
the cards we use are either black cards ♣ or red cards ♥ , whose backs are
assumed to be identical ? . As shown in Table 4.1, many protocols have
been designed to perform a secure AND computation, from among which
we introduce the Mizuki–Sone AND protocol [48]. Given commitments to
inputs a and b along with two additional cards ♣ ♥ , the protocol works as
follows.

1. A commitment to 0 is placed between the two input commitments:

? ?︸ ︷︷ ︸
a

♣ ♥ ? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
b

.

Table 4.1: Some committed-format AND protocols (RC: Random Cut, RBC:
Random Bisection Cut)

#Colors #Cards Type of Shuffles Avg. #Trials

[9] 4 10 RC 6

[56] 2 12 RC 2.5

[78] 2 8 RC 2

[48] 2 6 RBC 1

[2] 2 5 RC,RBC 5

58
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2. The sequence order is then rearranged as follows:

? ? ? ? ? ?
Q
QQs

�
�	
�
�	

? ? ? ? ? ? .

3. A random bisection cut is applied as follows:[
? ? ?

∣∣∣ ? ? ?
]
→ ? ? ? ? ? ? .

A random bisection cut is a shuffling operation that bisects a sequence
of cards and swaps the two halves randomly. Therefore, the shuffle
results in two possible cases, depending on whether the two halves are
swapped, each with a probability of 1/2.

4. The sequence order is rearranged as follows:

? ? ? ? ? ?
@@R@@R
�

��+

? ? ? ? ? ? .

5. The two left-most cards are turned over, and we are able to obtain a
commitment to a ∧ b as follows:

♣ ♥ ? ?︸ ︷︷ ︸
a∧b

? ? or ♥ ♣ ? ? ? ?︸ ︷︷ ︸
a∧b

.

Although we omitted an explanation regarding the correctness and se-
crecy of this protocol, one can confirm that the protocol outputs a commit-
ment to a∧ b by using six cards after one execution of the random bisection
cut [48]. (A protocol such as this that outputs commitments is called a
committed-format protocol.)

Random Bisection Cut
In practice, humans can perform a random bisection cut by shuffling the two
halves after bisecting a given sequence of cards, as illustrated in Figure 4.1.
Thus, given a sequence of six cards

1
?

2
?

3
?

4
?

5
?

6
? ,

a random bisection cut results in
1
?

2
?

3
?

4
?

5
?

6
? or

4
?

5
?

6
?

1
?

2
?

3
? ,
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(a) Bisection of a sequence of cards (b) Shuffling of the two halves

Figure 4.1: Execution of a random bisection cut

with a probability of 1/2 for each possibility, where the numbers attached
to the cards are for the sake of convenience.

Following the computational model formalized in the studies [31,45], this
random bisection cut can be described as follows:

(shuffle, {id, (1 4)(2 5)(3 6)}),

where id represents the identity permutation, and an expression, such as
(1 4), represents a cyclic permutation. Therefore, id indicates that the two
halves are not swapped, and permutation (1 4)(2 5)(3 6) indicates that the
two halves are swapped.

Historically, random bisection cuts first appeared when a six-card AND
protocol was designed in 2009 [48]. Even before this design, some committed-
format AND protocols had been designed. These earlier protocols employed
random cut as a shuffling operation, as shown in Table 4.1. A random cut
refers to a cyclic shuffling operation. For example, given eight face-down
cards

1
?

2
?

3
?

4
?

5
?

6
?

7
?

8
? ,

a random cut results in one of the following eight cases, each with a proba-
bility of 1/8:

1
?

2
?

3
?

4
?

5
?

6
?

7
?

8
?

2
?

3
?

4
?

5
?

6
?

7
?

8
?

1
?

...
8
?

1
?

2
?

3
?

4
?

5
?

6
?

7
? .

Therefore, by following the computational model in the studies [31, 45],
we can similarly describe the random cut as

(shuffle, {id, π, π2, π3, π4, π5, π6, π7}) ,
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Table 4.2: Some other protocols

#Colors #Cards Type of Shuffles Avg. #Trials

◦ Non-committed-format AND Protocols

[11] 2 5 RC 1

[44] 2 4 RBC 1

◦ Committed-format XOR Protocols

[9] 4 14 RC 6

[49] 2 10 RC 2

[48] 2 4 RBC 1

where π = (8 7 6 5 4 3 2 1).
As seen in Table 4.1, committed-format AND computations have become

more efficient by virtue of the introduction of the random bisection cut in
2009. This introduction also provided the additional benefit of improving
the efficiency of non-committed-format AND computations and committed-
format XOR computations, as detailed in Table 4.2. In addition, other
efficient protocols have been designed using random bisection cuts [24, 38,
40,58,59].

Contribution
As explained earlier, card-based protocols are intended in practice to be exe-
cuted by humans who actually desire to perform secure multiparty compu-
tations by using a real deck of cards. Hence, when we execute a card-based
protocol, it is expected that all players gather at the same physical location,
and perform operations, such as shuffles, in public, as in the case of ordinary
card games [46] i.

To implement a random cut in such a situation, it is sufficient that each
player cuts a sequence of face-down cards in turn until all players are satisfied
with the result. Indeed, in practice, it is relatively easy to implement a
random cut such that nobody is able to determine the result of the shuffle
at all. We will discuss this further in Section 4.4.

When players operate a random bisection cut, if they are not familiar
with playing cards and have difficulty in shuffling the two halves such that

iIt should be noted that recent work (e.g., [53,54]) considers the use of private actions
by players to design efficient protocols.
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Figure 4.2: Each half is placed in
an envelope

Figure 4.3: Each half is placed in
a box

each half stays together, as in Figure 4.1(b), then they may secure each half
using paper clips or envelopes [44,48]. By using these auxiliary tools, we are
able to fix each of the two halves together, as shown in Figure 4.2. Following
this, it suffices to swap the two bundles of cards randomly. However, the
result of the shuffle could be revealed when we execute a random bisection
cut in public because there are only two possibilities, i.e., the two halves
of the card sequence are swapped or not swapped. That is, someone may
count how many times the two bundles are swapped. To avoid such a leak of
information, one solution is that each player shuffles the two bundles behind
his/her back or under a table, so that other players cannot see whether the
two bundles are swapped. In this case, it may be preferable to use envelopes
or boxes (as illustrated in Figures 4.2 and 4.3) rather than paper clips to
avoid malicious actionsii. Nevertheless, it is desirable for all actions to be
performed in front of all players and/or third parties publicly. Therefore, in
Sections 4.1, 4.2, and 4.3, we present implementations of random bisection
cuts, where every action can be performed in public.

Outline
The remainder of this chapter is organized as follows. In Section 4.1, we
present some methods for implementing a random bisection cut by using
auxiliary tools. In Section 4.2, we propose a method to reduce the execution
of a random bisection cut to the execution of random cuts using dummy
cards. In Section 4.3, we propose another method to implement a random
bisection cut without relying on dummy cards. In Section 4.4, we discuss
secure implementations of the random cut.

iiEnvelopes or boxes can be also used for implementing other types of shuffling opera-
tions ( [21,23,24,63]).
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(a) Separator and two halves (b) One half is placed on the sep-
arator

(c) The pile consisting of one half
and the separator is flipped

(d) The other half is placed on the
pile

Figure 4.4: Setup for spinning throw

4.1. Executing a Random Bisection Cut Using Auxiliary
Tools

In this section, we provide methods for implementing a random bisection
cut by using auxiliary tools that consist of everyday objects.

4.1.1. Use of a Separator Card and Rubber Band
In this subsection, we present a novel method of performing a random bi-
section cut by using a separator card with a rubber band. Both sides of the
separator (as shown in the middle of Figure 4.4(a)) must be indistinguish-
able.

The method works as follows. First, a sequence of cards is bisected,
with one half placed on the separator, as shown in Figure 4.4(b). Second,
the pile consisting of one half and the separator is turned over, as shown
in Figure 4.4(c)iii. Third, the other half is placed on the pile, as shown in
Figure 4.4(d), and these are fixed together by using a rubber band to prevent
the cards from scattering. Next, the pile is thrown in a spinning manner (as
illustrated in Figure 4.5). We call this action a spinning throw. After the
pile is caught, we are completely unsure of which half is on the top. Finally,

iiiThe separator prevents information regarding the color of cards from being leaked.
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(a) Hold the pile of cards

(b) Throw the pile like a coin-flipping

Figure 4.5: A spinning throw

the rubber band is removed, and the actions described in Figure 4.4 are
undone in the reverse order from Figures 4.4(d) to 4.4(a). In this manner,
we can conduct a random bisection cut securely.

4.1.2. More Secure Implementation by Using a Ball
During execution of the spinning throw shown in Figure 4.5, the outcome
cannot be traced by human eyesight. For checking the security of this shuffle,
we recorded a videoiv of a spinning throw and confirmed that we could not
determine the result of the shuffle by watching the video even in slow-motion.

Nevertheless, someone may assume that if we use an enterprise high-
speed camera, the result of this shuffle might possibly be revealed. To ad-
dress this issue, we considered the use of a curving polystyrene foam ball,
as shown in Figure 4.6.

The procedure of using the ball device is as follows. After banding the
pile by using a rubber band and a separator, it is placed in one half of
a curving ball, as illustrated in Figure 4.6(a), covered with the other half
(Figure 4.6(b)), and the halves are then taped together (Figure 4.6(c)) so
as not to be separated. Finally, the ball is thrown in the air in a spinning
manner, as illustrated in Figure 4.7. In this case, the pile spins inside the
ball, and is therefore shuffled out of sight of everyone present. Consequently,

ivThe camera we used was SONY FDR-AX40 and the video was recorded in 4K reso-
lution and 60 fps.
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(a) The pile is placed into one half
of the curving ball

(b) Cover the pile with the other

(c) The ball’s halves are taped to-
gether

Figure 4.6: Making a ball device to execute a spinning throw securely

a random bisection cut is implemented perfectly.

4.2. Execution of a Random Bisection Cut by Using
Dummy Cards

In this section, we propose a method for reducing the execution of a random
bisection cut to the execution of random cuts by using dummy cards.

Hereafter, we assume that we want to apply a random bisection cut to
a sequence of 2n cards, where n ≥ 2:[

? ? · · · ?︸ ︷︷ ︸
n cards

∣∣∣ ? ? · · · ?︸ ︷︷ ︸
n cards

]
.

Formally, it cam be defined as

(shuffle, {id, (1 n+1)(2 n+2) · · · (n 2n)}),

following the card-based computational model [31,45].
As dummy cards, we use cards with backs as ? and faces other than ♣

and ♥ , namely ♦ or ♠ . Specifically, we use 2ds/2e ♦ and 2bs/2c ♠ cards,
where s ≥ 2. That is, we have a total of 2s additional cards.

By using such dummy cards, we are able to implement a random bisec-
tion cut as follows.
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(a) Holding the ball (b) Throwing the ball

(c) Catching the ball

Figure 4.7: The scene of throwing the ball device in the air with a spin

1. Place dummy cards with their faces down, as follows:

dummy cards︷ ︸︸ ︷
? ? · · · ? ? ? · · · ?︸ ︷︷ ︸

n cards

dummy cards︷ ︸︸ ︷
? ? · · · ? ? ? · · · ?︸ ︷︷ ︸

n cards

,

where the dummy cards are arranged as

ds/2e cards︷ ︸︸ ︷
?
�
?
�
· · · ?

�

bs/2c cards︷ ︸︸ ︷
?
♠
?
♠
· · · ?
♠
.

2. Apply a random cut:

〈 ? ? · · · ? ? ? · · · ? ? ? · · · ? ? ? · · · ? 〉 .

3. Turn over the left-most card.

(a) If the face-up card is ♦ , then turn over cards in the forward (the
right-hand) direction until bs/2c ♠ cards appear. Now that the
positions of all of the dummy cards have been determined, all of
them can be removed:

♦ · · ·♦
bs/2c cards︷ ︸︸ ︷
♠ · · ·♠

n cards︷ ︸︸ ︷
? · · · ?

s cards︷ ︸︸ ︷
♦ · · ·♠

n cards︷ ︸︸ ︷
? · · · ? ♦ · · ·♦ .

(b) If the face-up card is ♠ , then turn over cards in the backward
direction (aside from cyclic rotations) until ds/2e ♦ cards appear.
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After determining the positions of all of the dummy cards, all of
them can be removed:

♠ · · ·♠
n cards︷ ︸︸ ︷
? · · · ?

s cards︷ ︸︸ ︷
♦ · · ·♠

n cards︷ ︸︸ ︷
? · · · ?

ds/2e cards︷ ︸︸ ︷
♦ · · ·♦ ♠ · · · ♠ .

(c) If the face-up card is ♣ or ♥ , then turn it over again and return
to Step 2.

In this manner, after all the dummy cards have been removed, a random
bisection cut is completed.v

In Step 3, the probability that either (a) or (b) occurs is s/(n + s).
Therefore, we are able to implement a random bisection cut by using 2s
dummy cards after an average of (n+ s)/s executions of the random cut.

This method of discarding dummy cards was first devised by Crépeau
and Kilian [9], when they proposed some random permutation generating
protocols. We adopted their idea in this study.

Regarding the parameter s, a trade-off exists between the number of
required cards and the average number of executions of the random cut.
For example, if we want to implement the Mizuki–Sone six-card AND pro-
tocol [48] with an average number of two random cuts, then we require six
additional dummy cards. This requires more cards than Stiglic’s eight-card
AND protocol [78] (although the Mizuki–Sone six-card AND protocol might
have the advantage that its correctness is simpler to understand).

4.3. Utilizing Vertical Asymmetricity of the Backs of
Cards

In Section 4.2, we required additional types of cards to reduce the execution
of a random bisection cut to the execution of random cuts.

In this section, we present another method to implement a random bi-
section cut without relying on dummy cards. To this end, we exploited the
vertical asymmetricity of the backs of cards ? . As the back is asymmetric,
it can be seen as either ? or ? , depending on its position.

4.3.1. Reduction to a Random Cut
The method of reducing to a random cut is quite simple, described as follows.

1. The first card of each half is rotated 180◦:
?
? · · · ?

?
? · · · ? .

vNote that we need two types of dummy cards (♦ ,♠ ) to determine their exact posi-
tions.



CHAPTER 4. SECURE IMPLEMENTATIONS 68

2. Apply a random cut:

〈 ? ? · · · ?
?
? · · · ? 〉 → ? · · ·

? · · · ? ? · · ·
? · · · ? .

Then, cyclically shift the sequence with the first card as ? :
?
? · · · ?

?
? · · · ? .

3. Rotate the two of ? again:
?
? · · · ?

?
? · · · ? → ? ? · · · ? ? ? · · · ? .

In this manner, by executing one random cut, we are able to implement a
random bisection cut with no dummy card.

For example, the Mizuki–Sone six-card AND protocol [48] can be imple-
mented using one random cut, as described in the following subsection.

4.3.2. Six-Card AND Protocol with a Random Cut
We rewrite the six-card AND protocol [48] by using the method presented
in Section 4.3.1.

1. The two cards of a commitment to a are placed upside down:

? ?︸ ︷︷ ︸
a

♣ ♥ ? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
b

.

2. The order sequence is rearranged as follows:
? ?

? ? ? ?
Q
QQs

��	 ��	?
? ?

?
? ? .

3. A random cut (rather than a random bisection cut) is applied, and
then the card(s) is cyclically shifted so that the first card is ? :〈 ?

? ?
?
? ?

〉
→ ?

? ?
?
? ? .

4. Two of ? are turned over:
♣ ? ?︸ ︷︷ ︸

a∧b

♥ ? ? or ♥ ? ? ♣ ? ?︸ ︷︷ ︸
a∧b

.
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Figure 4.8: Simple execution of a random cut

4.3.3. Application to Pile-Shifting Scrambles
We can extend the method described in Section 4.3.1 to implement a more
general shuffle, called the pile-shifting scramble. In a pile-shifting scramble,
a card sequence of n cards (such that n mod m = 0) is divided into m piles,
and a random cut is applied to the sequence of the piles without changing
the order of the cards inside each plie. Therefore, a random bisection cut is
a special case of pile-shifting scrambles, i.e., it corresponds to m = 2. One
can easily have a reduction of a pile-shifting scramble to a random cut based
on the idea that the first card in each pile is marked by placing it upside
down.

In our method, we must apply a random cut to cards with asymmetric
backs, and hence information regarding the result of the shuffle could be
leaked more easily than with cards that have identical backs.

By considering the aforementioned, we discuss secure implementations
of the random cut in the next section.

4.4. Secrecy of Implementations of the Random Cut
In Sections 4.2 and 4.3, we proposed some methods for reducing the execu-
tion of a random bisection cut to the execution of random cuts. In general,
it is believed that a random cut can be securely implemented by humans.
To support this belief, we discuss the secure implementation of a random
cut by shuffling a real deck of cards.

As a random cut consists of a cyclic shuffle, its simple implementation
proceeds as in Figure 4.8: some cards (or a card) are taken from the top of
the pile, and then moved to the bottom of the pile (this is called a cut). At
every cut, we should change the number of cards to be moved. For such an
implementation, some people can trace the move of cards.

Thus, we require an alternative secure implementation of the random
cut. The point of strength of shuffle secureness is the visual observation
of the number of cards moved at every cut, and summing up of all the
numbers. Hence, the key is to ensure that it is impossible for people to
count the number of cards moved during every cut.

One concept is to move cards from the bottom to the top of the pile
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Figure 4.9: Execution of a “Hindu cut”; take a random number of cards
from the bottom, move them to the top of the pile, and repeat this.

instead of moving them from the top to the bottom when executing a cut
operation. As such, the recognition of the number of cards that have been
moved becomes difficult. Moreover, if the positions of the cards are out of
alignment, as shown in Figure 4.8, then it is possible to easily recognize the
number of cards moved. Therefore, we should ensure that cards are not out
of alignment when we execute cut operations.

Based on this concept, we found that a variation of the so-called Hindu
shuffle (shown in Figure 4.9) is effective for preventing the cut operation
from being revealed (we call this the Hindu cut).

We have experimentally demonstrated the security of this Hindu cut in
the paper [81]. A summary of the experience is as follows. We requested
72 participants (who were non-specialists) to watch a video depicting the
execution of the Hindu cut to the sequence of eight cards containing two
non-identical back sides. As a result, 64 participants told us that they had
not been able to track the move of the shuffle. Regarding the remaining 8
participants, to rule out wild guesses, we asked them to watch four more
videos, and consequently, none of them was able to answer correctly for all
of the five video. Refer to [81] for the details.

4.5. Conclusion
The random bisection cut has played an important role in improving card-
based protocols. However, implementation issues have not been previously
discussed. Therefore, in this chapter, we proposed some novel methods for
implementing the random bisection cut and demonstrated that it could be
implemented in practice. Users can choose one from our several methods
proposed in Sections 4.1, 4.2, and 4.3, depending on the availability of aux-
iliary tools and the patterns of backs of available cards.
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5. Balls and Bags
Three cryptographers are just cooking Borscht soup at the kitchen. Each

of them has brought typical ingredients for Borscht soup such as carrots
and onions. They might be paying for the ingredients, or some of them
might be funded by NFSA (National Fictional Security Agency). The three
cryptographers respect each other’s ideology to have a relation to NFSA,
but they wonder if they eat food funded by NFSA. All they have in the
kitchen are the ingredients (namely, carrots and onions) and saucepans with
Borscht soup. Then, they decide to resolve their uncertainty by conducting
a secure AND computation with the ingredients and saucepans, to make
sure whether they all paid or not. We call this the Cooking Cryptographers
Problem, which is named in honor of the Dining Cryptographers Problem [7].

Cooking Cryptographers
For simplicity, let us consider the Cooking Cryptographers Problem with
two players. Assume that Alice and Bob have private inputs a, b ∈ {0, 1},
respectively (the individual input is 0 if he/she was supported by NFSA;
otherwise, it is 1). Our goal is to compute the two-input logical AND func-
tion f(a, b) = a∧ b without revealing any information except for the output
value. Remembering that they are in the kitchen, let us construct a secure
protocol for this function using cooking tools and ingredients. Interestingly,
we can give an example of the computation using two carrots, four onions,
and three saucepans, as follows.

1. There are three saucepans filled with Borscht soup on kitchen coun-
tertops. Each of Alice and Bob holds one carrot and two onions.

2. If a = 0, Alice puts the carrot into the second saucepan and the
onions into the other saucepans privately (so that Bob cannot learn
which saucepan contains the carrot). If a = 1, she puts the carrot into
the first saucepan and the onions into the other saucepans.

The ingredients go to the bottom so that nobody sees them directly
in any saucepans.

72
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3. If b = 0, Bob privately puts the carrot into the third saucepan and the
onions into the other saucepans. If b = 1, he puts the carrot into the
first saucepan and the onions into the other saucepans.

Note that the two carrots are in the same saucepan if and only if
a = b = 1.

4. Alice and Bob shuffle the three saucepans so that the resulting order
of the three saucepans becomes unknown to them.

5. After simmering the Borscht soup in the three saucepans, they enjoy
eating the cooked Borscht soup in the three saucepans; if there is a
saucepan of Borscht soup only with carrots, we have f(a, b) = a∧ b =
1 (meaning that none of Alice and Bob was supported by NFSA);
otherwise, a ∧ b = 0.

Contribution
In this chapter, we formalize the above two-party protocol with a general
setting. Because it is not so easy or realistic to cook Borscht soup whenever
people want to perform a secure computation, let us replace ingredients
and saucepans (with Borscht soup) by colored balls (such as red and white
balls) and non-transparent bags, respectively. Assume that a bag possibly
includes balls but the colors of the balls are invisible from the outside. Balls
and bags are easy to prepare, and they are also familiar tools for learning
Probability in high school. Therefore, basing on balls and bags will be more
human-friendly than cooking soup for secure computations.
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Then, our problem is reformulated as: Can we realize secure multiparty
computations (MPCs) [83] with such balls and bags? As will be reviewed,
there are MPC protocols with familiar tools, such as a deck of physical
cards [9, 11, 44]. Unlike these existing protocols, we attempt to construct
the first protocol using colored balls and bags together with simple actions:
putting balls into a bag, shuffling the order of bags, and taking balls from
a bag. Notice that, similar to ingredients in Borscht soup, balls in a bag
have an interesting property that a collection of balls automatically becomes
disordered once they are put into a bag, namely automatic shuffle.i

We positively answer the above question; we construct simple protocols
to establish MPCs of the logical AND function with more than two inputs as
well as general MPCs. We also give a formal treatment for our protocols and
their security (namely, ball-based cryptography). To easily confirm correct-
ness and security of a protocol, we construct a diagram showing probability
traces of the protocol, which was proposed in [41] for card-based protocols.
We believe that ball-based cryptography is a realization of usable security
that helps people with understanding the principles of MPCs.

Outline
The remainder of this chapter is organized as follows. In Section 5.1, we
propose ball-based cryptography by presenting a formal treatment of pro-
tocols using balls and bags. In Section 5.2, we show a pseudocode of the
AND protocol with two inputs, and then show a diagram of the protocol,
which implies correctness and security of the protocol. In Section 5.3, we ex-
tend the two-input AND protocol to an AND protocol with more than two
inputs. In Section 5.4, we further extend the protocols to design general
MPCs. In Section 5.5, we discuss the efficiency of our AND protocols. In
Section 5.6, we show implementation examples for ball-based cryptography.
We conclude this chapter in Section 5.7.

Related Work

Physical objects enable us to achieve cryptographic tasks, such as MPCs [15],
zero-knowledge proofs [19], polling [50], and visual secret sharing [55]. As
we perform these secure protocols with hand, their principles can be intu-
itively understood; hence, they are attractive. There are several researches
on this subject (called real-life hands-on cryptography), such as a deck
of playing cards [9, 11, 44] (known as card-based cryptography), tamper-
evident seals [51], visual secret sharing sheets [10], coins [33], and a PEZ

iAlthough we believe that this automatic shuffle works well, shaking a bag after putting
balls into it would be another way to achieve this.
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dispenser [1, 4]. Real-life hands-on cryptography has been attracting many
young people to the field of security and privacy.

Compared with their researches, our work employs the property of bags
(namely, automatic shuffle) and utilize simple actions with colored balls and
bags for performing MPCs. Related to probability theory, taking a ball out
of a bag in ball-based cryptography can be a variant of an urn problem by
regarding a bag as an urn. An urn problem often appears in probability
theory and statistics, where a player takes one or more balls from an urn
containing some balls. Some examples of urn problems such as binomial
distribution are known. MPCs would be included in the collection of urn
problems due to our work.

Comparison with Card-based Cryptography
Among related work introduced above, card-based cryptography is the most
famous topic on real-life hands-on cryptography. We note that card-based
cryptography and ball-based cryptography are different; a state of balls in
a bag is denoted by a multiset (as will be seen in Section 5.1.1) while a
playing card is defined as a fraction to represent two states of face-down
and face-up [45].

Let us discuss the relation between them. Although it is true that a
bag containing one ball can be regarded as a face-down card, balls and bags
cannot be used to implement any card-based protocol. This is because,
with balls and bags, it seems relatively difficult to realize a cyclic shuffle,
which is used in a large number of card-based protocols to cyclically shuffle
a sequence of cards. On the other hand, any ball-based protocol can be
implemented by using a deck of playing cards because a bag containing
balls can be represented by a set of face-down cards. That is, we can regard
a pile of cards as a bag containing balls; by completely shuffling the pile
of cards, the property of being disordered is guaranteed. For instance, the
above two-party protocol can be implemented with two red cards and four
white ones. However, such an implementation is no longer efficient because
the famous five-card trick proposed by den Boer [11] requires only five cards;
hence, they are different settings.

Overall, ball-based cryptography will open a new vista, and we expect
that it will contribute to increasing people who are intersted in computer
security and privacy.

5.1. Formalizing Protocols Based on Balls and Bags
In this section, we present a formal treatment of protocols based on balls
and bags by constructing a model of ball-based secure computations.
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Figure 5.1: An example of executing our ball-based AND protocol with two
inputs (when a = b = 1)

5.1.1. Notations
Remember the AND protocol (which computes f(a, b) = a ∧ b) proposed
before. We now replace ingredients and saucepans with balls and bags,
respectively. That is, we use two red balls, four white balls, and three bags
as illustrated in Fig. 5.1; this is an example of executing our AND protocol
using balls and bags when a = b = 1.

Let • and ◦ denote a red ball and a white ball, respectively. Assume that
all balls have the same size. Seeing Fig. 5.1, notice that we have to consider
two kinds of multisets of balls, namely a “bag” and a “tray.” Thus, we
introduce two expressions of a multiset of balls: {{·}} is an invisible multiset
representing a bag possibly containing balls, and [·] is a visible multiset
representing a tray. We use “invisible multiset” and “bag” interchangeably;
we call an invisible multiset of balls {{b1, . . . , b`}} a bag (into which balls are
put) where b1, . . . , b` ∈ {•, ◦} for a natural number `. Similarly, we call an
visible multiset of balls [b1, . . . , b`] a tray (on which balls are put).

We assume that once balls are put into a bag, the order of the balls auto-
matically becomes disordered. We call this property automatically shuffled.
For example, {{•, ◦, •}} and {{•, •, ◦}} are indistinguishable to players. In
this chapter, we write red balls first in an (in)visible multiset to unify the
notation. It is interesting that constructing MPCs is possible even with balls
and bags having such a property.

Using these notations, at the beginning of the two-party protocol, we
have three empty bags (invisible multisets) {{}}, {{}}, {{}} and a tray (visible
multiset) [•, •, ◦, ◦, ◦, ◦] on a table. Let us describe it with a tuple:

([•, •, ◦, ◦, ◦, ◦]; {{}}, {{}}, {{}}; [], [], []) . (5.1)

We call this tuple a configuration. The first part of the configuration (before
the first semi-colon) is a multiset of available balls, its second part (between
the first and second semi-colons) is a sequence of bags, and its last part is a
sequence of trays keeping balls picked from the bags. The last part may be
omitted if there is no visible ball at that time.

Let us review the two-player protocol with these notations. At Step 2,
Alice holds one red ball and two white balls, i.e., [•, ◦, ◦], and puts them
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into the three bags depending on the value of a; the above configuration is
transformed into as follows:

([•, •, ◦, ◦, ◦, ◦]; {{}}, {{}}, {{}}; [], [], [])→{
([•, ◦, ◦]; {{◦}}, {{•}}, {{◦}}; [], [], []) , if a = 0,
([•, ◦, ◦]; {{•}}, {{◦}}, {{◦}}; [], [], []) , if a = 1.

(5.2)

At Step 3, Bob also puts balls depending on b; there are four possibilities:

([]; {{◦, ◦}}, {{•, ◦}}, {{•, ◦}}; [], [], []) , if (a, b) = (0, 0),
([]; {{•, ◦}}, {{•, ◦}}, {{◦, ◦}}; [], [], []) , if (a, b) = (0, 1),
([]; {{•, ◦}}, {{◦, ◦}}, {{•, ◦}}; [], [], []) , if (a, b) = (1, 0),
([]; {{•, •}}, {{◦, ◦}}, {{◦, ◦}}; [], [], []) , if (a, b) = (1, 1).

(5.3)

Let pij for i, j ∈ {0, 1} represent the probability that the input (a, b) is (i, j).
Then, the first line in Eq. (5.3) occurs with a probability of p00, the second
line occurs with a probability of p01, and so on. Therefore, we now denote
the above status Eq. (5.3) by

([]; {{◦, ◦}}, {{•, ◦}}, {{•, ◦}}; [], [], []) (p00, 0, 0, 0),
([]; {{•, ◦}}, {{•, ◦}}, {{◦, ◦}}; [], [], []) (0, p01, 0, 0),
([]; {{•, ◦}}, {{◦, ◦}}, {{•, ◦}}; [], [], []) (0, 0, p10, 0),
([]; {{•, •}}, {{◦, ◦}}, {{◦, ◦}}; [], [], []) (0, 0, 0, p11),

(5.4)

where a 4-tuple (q00, q01, q10, q11) on the right side means that qij is the
conditional probability that (a, b) = (i, j) and the current configuration is
the left one.

Next, at Step 4, the three bags are shuffled; the resulting configurations
will be:

([]; {{◦, ◦}}, {{•, ◦}}, {{•, ◦}}; [], [], []) (p00
3 ,

p01
3 ,

p10
3 , 0),

([]; {{•, ◦}}, {{•, ◦}}, {{◦, ◦}}; [], [], []) (p00
3 ,

p01
3 ,

p10
3 , 0),

([]; {{•, ◦}}, {{◦, ◦}}, {{•, ◦}}; [], [], []) (p00
3 ,

p01
3 ,

p10
3 , 0),

([]; {{•, •}}, {{◦, ◦}}, {{◦, ◦}}; [], [], []) (0, 0, 0, p11
3 ),

([]; {{◦, ◦}}, {{•, •}}, {{◦, ◦}}; [], [], []) (0, 0, 0, p11
3 ),

([]; {{◦, ◦}}, {{◦, ◦}}, {{•, •}}; [], [], []) (0, 0, 0, p11
3 ).

(5.5)

Finally, Alice and Bob take all the balls out of the three bags; this is
denoted by the last part of the configurations, namely visible multisets, as
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follows:

([], {{}}, {{}}, {{}}; [◦, ◦], [•, ◦], [•, ◦])
(
p00
p0
, p01
p0
, p10
p0
, 0
)
,

([], {{}}, {{}}, {{}}; [•, ◦], [•, ◦], [◦, ◦])
(
p00
p0
, p01
p0
, p10
p0
, 0
)
,

([], {{}}, {{}}, {{}}; [•, ◦], [◦, ◦], [•, ◦])
(
p00
p0
, p01
p0
, p10
p0
, 0
)
,

([], {{}}, {{}}, {{}}; [•, •], [◦, ◦], [◦, ◦]) (0, 0, 0, 1),
([], {{}}, {{}}, {{}}; [◦, ◦], [•, •], [◦, ◦]) (0, 0, 0, 1),
([], {{}}, {{}}, {{}}; [◦, ◦], [◦, ◦], [•, •]) (0, 0, 0, 1),

(5.6)

where p0 = p00 + p01 + p10. The last part of the configurations, i.e., balls
picked from each bag, tells us that the AND value a∧b is obtained depending
on whether two red balls are taken from the same bag or not and that no
information except for the output is leaked (see Section 5.2 for more rigorous
discussion).

5.1.2. Definition of Protocols
Let us introduce a formal definition of protocols based on balls and bags.

Before going into the details, we first introduce extended operations for
a sequence of multisets. Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be
sequences of multisets of the same length k. We define the following two
operations: X∪Y := (X1 ∪Y1, . . . , Xk ∪Yk) and union(X) := X1 ∪ · · · ∪Xk.

Next, we formally define a configuration (examples of which were seen
in Section 5.1.1).

Definition 1 (Configuration) Let D be a multiset of balls and k ≥ 1 be
an integer (representing the number of bags). We call a triple (T0; B; T) =
(T0;B1, . . . , Bk;T1, . . . , Tk) a configuration if it satisfies the following:

• T0 ⊆ D is a tray, where all balls in D are put here before the execution
of a protocol;

• B = (B1, . . . , Bk) ⊆ Dk is a sequence of k bags;

• T = (T1, . . . , Tk) ⊆ Dk is a sequence of k trays representing that balls
in Ti were taken out of Bi for every i, 1 ≤ i ≤ k;

• T0 ∪ union(B ∪T) = D.

We denote by C(D,k) the set of all configurations derived by fixing D and k.

Given a configuration (T0;B1, . . . , Bk;T1, . . . , Tk), balls in trays T0 and
T1, . . . , Tk are visible while balls in bags B1, . . . , Bk are invisible. We assume
that the number of balls inside each bag is known to the public. Bearing
this in mind, we define a visible configuration vis(C) for a configuration C =
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(T0;B1, . . . , Bk;T1, . . . , Tk) as follows: vis(C) := (T0; |B1|, . . . , |Bk|;T1, . . . , Tk),
where |Bi| denotes the number of elements (balls) in Bi. We also define the
set of all visible configurations as Vis(D,k) =

{
vis(C) | C ∈ C(D,k)

}
.ii

We are now ready to formally define a “protocol” P achieving MPCs
using balls and bags.
Definition 2 (Protocol) A protocol P is a tuple (D, k, n, U,Q,A) satis-
fying the following:

• D is a multiset over {•, ◦}, representing balls used in the protocol and
k ≥ 1 is the number of bags; therefore, the initial configuration is
C0 = (D; B0; T0) such that union(B0 ∪T0) = φ and |B0| = |T0| = k.

• n ≥ 2 represents the number of players participating in the protocol.

• U is the set of players’ possible inputs. In the sequel, we fix it to
U = {0, 1}n, meaning that each player’s input is a bit.

• Q is a set of states with two distinguished states, namely, the initial
state q0 and the final state qf .

• A : (Q \ {qf}) × Vis(D,k) → Q × Action is an action function, which
specifies the next state and an action, given a current state and a
visible configuration. The set Action includes the following actions,
where we describe each action for a configuration C = (T0; B; T) =
(T0;B1, . . . , Bk;T1, . . . , Tk).

– (PublicPut, b, p) for b ∈ T0 and p ∈ {1, 2, . . . , k}: This puts the
ball b from the tray T0 into the p-th bag Bp publicly (i.e., the color
of the ball is known to all players). That is, it transforms C into
the following configuration C ′:

C ′ = (T0 \ [b];B1, . . . , Bp−1, Bp ∪ {{b}}, Bp+1, . . . , Bk; T).

Note that the player executing this action must show the ball b to
other players before putting it into the bag.

– (PrivatePut, i, I0, I1) for i, 1 ≤ i ≤ n, and sequences of k multisets
I0 = (I1

0 , . . . , I
k
0 ) and I1 = (I1

1 , . . . , I
k
1 ) such that union(I0) =

union(I1) ⊆ T0 and |Ij0 | = |I
j
1 | for every j, 1 ≤ j ≤ k: This makes

the i-th player holding an input xi ∈ {0, 1} take balls from T0
and then privately put them into B as specified by Ixi. That is,
it transforms C into the following configuration C ′:

C ′ = (T0\union(Ixi); B ∪ Ixi ; T).

Because union(I0) = union(I1), the numbers of • and ◦ in I0 and
I1 are the same.

iiInformation about a configuration transition (e.g., a red ball was moved to the second
bag) can be captured by a visible “configuration-trace” that will be mentioned later.
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– (Shuf, R) for R ⊆ {1, 2, . . . , k}: This shuffles bags specified by R
so that the resulting order of the bags becomes unknown to all
players. That is, it transforms C into the following configuration
C ′:

C ′ =
(
T0;Bπ−1(1), Bπ−1(2), . . . , Bπ−1(k); T

)
,

where π is uniformly drawn at random from the set of all permu-
tations such that all positions except for R are fixed points (i.e.,
π(i) = i for any i /∈ R).

– (Take, p) for p ∈ {1, 2, . . . , k}: This takes a ball out of the p-th bag
Bp and then the ball is put on the tray Tp. That is, it transforms
C into the following configuration C ′:

C ′ := (T0; B′; T′), where
B′ = (B1, . . . , Bp−1, Bp \ {{b}}, Bp+1, . . . , Bk), and
T′ = (T1, . . . , Tp−1, Tp ∪ [b], Tp+1, . . . , Tk),

for a (taken) ball b ∈ Bp. Note that the taken ball was drawn
uniformly at random from Bp. Also note that, during this action,
no player can get no information about other balls in Bp. If we
take all balls in all bags, we write this action as (TakeAll).

– (Move, b, p) for b ∈ Tp and p ∈ {1, 2, . . . , k}: This moves the ball
b on the p-th tray Tp to the tray T0. That is, it transforms C into
the following configuration C ′:

C ′ = (T0 ∪ [b]; B;T1, . . . , Tp−1, Tp \ [b], Tp+1, . . . , Tk).

If we move all balls on all trays, we write this action as (MoveAll).
– (MergeBags, p1, p2) for p1, p2 ∈ {1, 2, . . . , k}: This merges the p1-

th bag with the p2-th bag, i.e., all balls in Bp1 are moved into Bp2

without revealing the colors of the balls. That is, it transforms C
into the following configuration C ′:

C ′=(T0;B1, . . . , Bp1−1, {{}}, . . . , Bp2 ∪Bp1 , . . . , Bk; T).

– (Return, e) for some expression e. This special action indicates
that the protocol terminates with the output e.

A protocol P = (D, k, n, U,Q,A) proceeds as follows, given inputs x =
(x1, . . . , xn) ∈ U = {0, 1}n. Balls and bags corresponding to D and k, re-
spectively, are on the table, i.e., the initial configuration is C0 = (D; B0; T0)
where union(B0 ∪T0) = φ and |B0| = |T0| = k. Each i-th player privately
holds an input xi ∈ {0, 1}, and the state of the protocol is q0 ∈ Q. Then, the
configuration and the state are transformed according to the output of the
action function A(q0, vis(C0)). The protocol continues to apply the action
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function A with its current configuration and state being transformed until
the state becomes qf ; it terminates with (Return, e).

Let f be a Boolean function such that f : {0, 1}n → {0, 1}. We say that
a protocol P is correct for f if e (which is an output of Return) derived by
executing P is always equivalent to the value of f(x1, . . . , xn).

Next, let us consider security of a protocol P. We mention some terms.
Consider an execution of a protocol P; the enumeration of all visible configu-
rations (vis (C0) , vis (C1) , . . . , vis (Ct)) from the initial to the final one (where
Ci−1 is transformed into Ci by an action) is called a visible configuration-
trace (of P).

Definition 3 (Security) Let P = (D, k, n, U,Q,A) be a protocol which
is correct for f . Let V be the random variable representing the visible
configuration-trace of P, M be the random variables representing the in-
puts of P, and F be the random variable representing the output of f . We
say that P is secure for f if it satisfies

Pr [M = x | F = 0] = Pr [M = x | V = v, F = 0] , and
Pr [M = x | F = 1] = Pr [M = x | V = v, F = 1] ,

for any x ∈ U and visible configuration-trace v.

The security of P intuitively means that no information except for the output
is leaked from balls taken out of bags.

5.2. AND Protocol with Two Inputs
In this section, based on the definitions in Section 5.1.2, we present a formal
description of our AND protocol with two inputs (x1, x2) ∈ {0, 1}2 intro-
duced in Section 5.1.1. We first review the principle of our AND protocol
and then present its description. Finally, a diagram of the AND protocol is
given in Fig. 5.2, from which its correctness and security can be confirmed.

5.2.1. Principle and Description
Remember the AND protocol introduced in Section 5.1.1. Alice and Bob
put • into the (first) bag B1 if his/her private bit is 1; otherwise, they are
supposed to put • into different bags, B2 and B3.

More formally, Alice acts by
(

PrivatePut, 1, ([◦], [•], [◦]), ([•], [◦], [◦])
)
,

and the possible configurations will be as in Eq. (5.2). Then, Bob holding x2

acts by
(

PrivatePut, 2, ([◦], [◦], [•]), ([•], [◦], [◦])
)
, and the possible configura-

tions will be as in Eq. (5.4). After shuffling the three bags and then taking
all balls, they can know that the AND value is 1 if there is [•, •]; otherwise,
0. No information about the inputs (beyond the output) is leaked.
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Protocol 3. The two-input AND protocol:(
[•, •, ◦, ◦, ◦, ◦], 3, 2, {0, 1}2, Q,A

)
.

1. (PrivatePut, 1, ([◦], [•], [◦]), ([•], [◦], [◦]))
2. (PrivatePut, 2, ([◦], [◦], [•]), ([•], [◦], [◦]))
3. (Shuf, {1, 2, 3})
4. (TakeAll)
5. if visible conf. includes [•, •] then
6. (Return, “x1 ∧ x2 = 1”)
7. else
8. (Return, “x1 ∧ x2 = 0”)

As seen above, our two-input AND protocol uses six balls and three bags;
a formal description of the protocol is shown in Protocol 3. See Table 5.1 for
the performance of the protocol and Section 5.5 is devoted to the discussion
about it (as well as that of our multi-input AND protocol which will be
presented in Section 5.3).

5.2.2. Security: A diagram of status transitions
To confirm the correctness and security of the AND protocol, we construct
an diagram in Fig. 5.2 showing status transitions of the protocol. This
method was first proposed in [31] for card-based protocols, and then an
extended diagram was proposed in [41], which uses the probability trace
below.

Definition 4 (Probability Trace) Let P be a protocol with an input set
U = {0, 1}n, and let v be a visible configuration-trace. We regard every
input x ∈ U = {0, 1}n as a decimal number x, 1 ≤ x ≤ |U | = 2n. A |U |-
tuple (q1, q2, . . . , q|U |) such that qx = Pr [M = x,Gv = C |V = v] for every
x ∈ U is called a probability trace for a configuration C and the visible
configuration-trace v, where M , Gv, and V are random variables of the
original input, configuration when v is seen, and visible configuration-trace,
respectively.

See Fig. 5.2 again. Each “box” in the figure including several pairs
of a configuration and a probability trace is called a status. Each status
is associated with a prefix of the visible configuration-trace. As stated in
Section 5.1.1 and formally defined in Definition 4, a probability trace next
to a configuration represents the conditional probability that the current
configuration is the configuration, given the prefix of the visible sequence-
trace.

A status in Fig. 5.2 is transformed into the next status by an action as
follows:
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([•, •, ◦, ◦, ◦, ◦]; {{}}, {{}}, {{}}; [], [], []) (p00, p01, p10, p11)

([•, ◦, ◦]; {{◦}}, {{•}}, {{◦}}; [], [], []) (p00, p01, 0, 0)
([•, ◦, ◦]; {{•}}, {{◦}}, {{◦}}; [], [], []) (0, 0, p10, p11)

([]; {{◦, ◦}}, {{•, ◦}}, {{•, ◦}}; [], [], []) (p00, 0, 0, 0)
([]; {{•, ◦}}, {{•, ◦}}, {{◦, ◦}}; [], [], []) (0, p01, 0, 0)
([]; {{•, ◦}}, {{◦, ◦}}, {{•, ◦}}; [], [], []) (0, 0, p10, 0)
([]; {{•, •}}, {{◦, ◦}}, {{◦, ◦}}; [], [], []) (0, 0, 0, p11)

([]; {{◦, ◦}}, {{•, ◦}}, {{•, ◦}}; [], [], []) (p00
3 ,

p01
3 ,

p10
3 , 0)

([]; {{•, ◦}}, {{•, ◦}}, {{◦, ◦}}; [], [], []) (p00
3 ,

p01
3 ,

p10
3 , 0)

([]; {{•, ◦}}, {{◦, ◦}}, {{•, ◦}}; [], [], []) (p00
3 ,

p01
3 ,

p10
3 , 0)

([]; {{•, •}}, {{◦, ◦}}, {{◦, ◦}}; [], [], []) (0, 0, 0, p11
3 )

([]; {{◦, ◦}}, {{•, •}}, {{◦, ◦}}; [], [], []) (0, 0, 0, p11
3 )

([]; {{◦, ◦}}, {{◦, ◦}}, {{•, •}}; [], [], []) (0, 0, 0, p11
3 )

([]; {{}}, {{}}, {{}}; [◦, ◦], [•, ◦], [•, ◦]) (p00
p0
, p01
p0
, p10
p0
, 0)

⇒ (Return, “x1 ∧ x2 = 0”)
([]; {{}}, {{}}, {{}}; [•, •], [◦, ◦], [◦, ◦]) (0, 0, 0, 1)
⇒ (Return, “x1 ∧ x2 = 1”)

([]; {{}}, {{}}, {{}}; [◦, ◦], [•, •], [◦, ◦]) (0, 0, 0, 1)
⇒ (Return, “x1 ∧ x2 = 1”)

([]; {{}}, {{}}, {{}}; [◦, ◦], [◦, ◦], [•, •]) (0, 0, 0, 1)
⇒ (Return, “x1 ∧ x2 = 1”)

([]; {{}}, {{}}, {{}}; [•, ◦], [•, ◦], [◦, ◦]) (p00
p0
, p01
p0
, p10
p0
, 0)

⇒ (Return, “x1 ∧ x2 = 0”)

([]; {{}}, {{}}, {{}}; [•, ◦], [◦, ◦], [•, ◦]) (p00
p0
, p01
p0
, p10
p0
, 0)

⇒ (Return, “x1 ∧ x2 = 0”)

(PrivatePut, 1, ([◦], [•], [◦]), ([•], [◦], [◦]))

(PrivatePut, 2, ([◦], [◦], [•]), ([•], [◦], [◦]))

(Shuf, {1, 2, 3})

(TakeAll)

Figure 5.2: A diagram of the two-input AND protocol with two inputs
x1, x2 ∈ {0, 1} introduced in Section 5.1.1, where p0 = p00 + p01 + p10.

• The topmost status consists of a single pair of the initial configuration
C0 and the probability trace (p00, p01, p10, p11).

• The first (and second) action is PrivatePut. For instance, when x1 = 0,
three balls specified by I1

0 = ([◦], [•], [◦]) are privately put into the
bags, and the probability trace becomes (p00, p01, 0, 0).

• The third action is Shuf. After the action, there are three possible
configurations with the equal probability, i.e., 1/3. This can be seen
in the coefficient in the probability traces for the three configurations.

• The fourth action is TakeAll, yielding six visible configurations. As-
sume for example that we have observed ([◦, ◦], [•, ◦], [•, ◦]). The
fourth coordinate in the probability trace is 0, and other coordinates
are all p00+p01+p10

3 , and hence, we know that the inputs must not be
(1,1). It means that the output is “x1 ∧ x2 = 0”. Furthermore, no
information about the inputs is leaked because the distribution of the
conditional probability that the inputs are (0,0), (0,1), and (1,0) is
the same as the one of knowing x1 ∧ x2 before the execution of the
protocol.
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5.3. AND Protocol with More Than Two Inputs
In this section, we deal with secure AND computation with more than two
inputs. That is, we present a general AND protocol that securely com-
putes x1 ∧ · · · ∧ xn, given that n players P1, . . . , Pn hold private input bits
x1, . . . , xn ∈ {0, 1}, respectively.

5.3.1. Idea and Description
Simply extending the two-input AND does not work. As stated
in Section 5.2.1, our two-input AND protocol computes the AND value by
making two players privately put • into the same bag if and only if their
private bits both are 1. If we simply extend this principle, can we construct
an n-input AND protocol for any n? Consider for instance that there are
three players P1, P2, and P3 where Pi holds his/her private bit xi ∈ {0, 1}
for every i, 1 ≤ i ≤ 3. We prepare four (empty) bags B1, B2, B3, and B4
and make each player Pi privately put • into the (first) bag B1 if xi is 1
(otherwise, into the (i+1)-st bag Bi+1) and ◦ into the remaining bags. Then,
the resulting configurations will be as follows:

(; {{◦, ◦, ◦}}, {{•, ◦, ◦}}, {{•, ◦, ◦}}, {{•, ◦, ◦}}; ) (p000, 0, 0, 0, 0, 0, 0, 0),
(; {{•, ◦, ◦}}, {{•, ◦, ◦}}, {{•, ◦, ◦}}, {{◦, ◦, ◦}}; ) (0, p001, 0, 0, 0, 0, 0, 0),
(; {{•, ◦, ◦}}, {{•, ◦, ◦}}, {{◦, ◦, ◦}}, {{•, ◦, ◦}}; ) (0, 0, p010, 0, 0, 0, 0, 0),
(; {{•, ◦, ◦}}, {{◦, ◦, ◦}}, {{•, ◦, ◦}}, {{•, ◦, ◦}}; ) (0, 0, 0, p100, 0, 0, 0, 0),
(; {{•, •, ◦}}, {{•, ◦, ◦}}, {{◦, ◦, ◦}}, {{◦, ◦, ◦}}; ) (0, 0, 0, 0, p011, 0, 0, 0),
(; {{•, •, ◦}}, {{◦, ◦, ◦}}, {{•, ◦, ◦}}, {{◦, ◦, ◦}}; ) (0, 0, 0, 0, 0, p101, 0, 0),
(; {{•, •, ◦}}, {{◦, ◦, ◦}}, {{◦, ◦, ◦}}, {{•, ◦, ◦}}; ) (0, 0, 0, 0, 0, 0, p110, 0),
(; {{•, •, •}}, {{◦, ◦, ◦}}, {{◦, ◦, ◦}}, {{◦, ◦, ◦}}; ) (0, 0, 0, 0, 0, 0, 0, p111),

(5.7)

where we omit the tray T0 and empty trays. Therefore, after shuffling the
four bags and taking all balls, all the players can know that the AND value
is 1 if there is [•, •, •]; otherwise, 0. As seen from Eq. (5.7), however, they
obtain additional information about the inputs from the number of • in a
tray; for example, if there is [•, •, ◦], it means that the number of 1 among
the inputs x1, x2, and x3 is two. Therefore, this straightforward extension
is not a secure computation of AND.

Our idea Let us go back to Step 4 in the AND protocol introduced in
Section 5.1.1 (or the fourth status in Fig. 5.2). Suppose that we replace the
action (TakeAll) with (Take, 1), i.e., taking a ball out of the (first) bag B1 in
Eq. (5.5). There are two possibilities, i.e., • is taken with a probability of
1/3 or ◦ is taken with a probability of 2/3.iii If it is •, the configurations in

iiiRemember that in Step 3, the three bags have been shuffled. Hence, taking a ball out
of B1 does not leak information about x1 and x2.
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Eq. (5.5) are transformed into the followings:iv

([]; {{◦}}, {{•, ◦}}, {{◦, ◦}}; [•], [], []) (p00
2 ,

p01
2 ,

p10
2 , 0),

([]; {{◦}}, {{◦, ◦}}, {{•, ◦}}; [•], [], []) (p00
2 ,

p01
2 ,

p10
2 , 0),

([]; {{•}}, {{◦, ◦}}, {{◦, ◦}}; [•], [], []) (0, 0, 0, p11).
(5.8)

Note that this (Take, 1) action does not leak any information about the
inputs because the coordinate-wise sum of the probability traces in Eq. (5.8)
is equal to (p00, p01, p10, p11), meaning that the (conditional) distribution on
inputs does not change. Then, consider that we add the fourth bag and
make the third player P3 act by(

PrivatePut, 3, x3, ([◦], [], [], [•, ◦]), ([•], [], [], [◦, ◦])
)
.

That is, if x3 = 0, the configurations in Eq. (5.8) are transformed into
([]; {{◦, ◦}}, {{•, ◦}}, {{◦, ◦}}, {{•, ◦}}; [•], ) ( p000

2 , 0, p010
2 , p100

2 , 0, 0, 0, 0),
([]; {{◦, ◦}}, {{◦, ◦}}, {{•, ◦}}, {{•, ◦}}; [•], ) ( p000

2 , 0, p010
2 , p100

2 , 0, 0, 0, 0),
([]; {{•, ◦}}, {{◦, ◦}}, {{◦, ◦}}, {{•, ◦}}; [•], ) (0, 0, 0, 0, 0, 0, p110, 0).

If x3 = 1, the configurations in Eq. (5.8) are transformed into
([]; {{•, ◦}}, {{•, ◦}}, {{◦, ◦}}, {{◦, ◦}}; [•], ) (0, p001

2 , 0, 0, p011
2 , p101

2 , 0, 0),
([]; {{•, ◦}}, {{◦, ◦}}, {{•, ◦}}, {{◦, ◦}}; [•], ) (0, p001

2 , 0, 0, p011
2 , p101

2 , 0, 0),
([]; {{•, •}}, {{◦, ◦}}, {{◦, ◦}}, {{◦, ◦}}; [•], ) (0, 0, 0, 0, 0, 0, 0, p111).

As seen from the above configurations, there is {{•, •}} if the AND value
x1 ∧ x2 ∧ x3 is 1; otherwise, the four bags are a permuted sequence of
{{•, ◦}}, {{•, ◦}}, {{◦, ◦}}, {{◦, ◦}}. Thus, after (Shuf, {1, 2, 3, 4}) and (TakeAll),
all the players can obtain the AND value of the three inputs x1 ∧ x2 ∧ x3
without revealing any information except for the output.

Next, let us consider n = 4. In the same way as n = 3, assume that
we replace the above action (TakeAll) (in the three-input protocol) with
(Take, 1) and then a red ball is taken. The resulting configurations will be
the followings:

(; {{◦}}, {{•, ◦}}, {{◦, ◦}}, {{◦, ◦}}; [•], ) ( p000
3 ,p001

3 ,p010
3 ,p100

3 ,p011
3 ,p101

3 ,p110
3 ,0),

(; {{◦}}, {{◦, ◦}}, {{•, ◦}}, {{◦, ◦}}; [•], ) ( p000
3 ,p001

3 ,p010
3 ,p100

3 ,p011
3 ,p101

3 ,p110
3 ,0),

(; {{◦}}, {{◦, ◦}}, {{◦, ◦}}, {{•, ◦}}; [•], ) ( p000
3 ,p001

3 ,p010
3 ,p100

3 ,p011
3 ,p101

3 ,p110
3 ,0),

(; {{•}}, {{◦, ◦}}, {{◦, ◦}}, {{◦, ◦}}; [•], ) (0, 0, 0, 0, 0, 0, 0, p111).

(5.9)

These are the “same” configurations as in Eq. (5.8), i.e., the first bag contains
a red ball if and only if x1 = x2 = x3 = 1. Thus, a four-input AND protocol
can be constructed by making P4 privately put balls in a similar way to P3
when n = 3.

In this way, we can extend the two-input AND protocol to the n-input
one for n ≥ 3.

ivIf it is ◦, we return ◦ into B1 and then repeat shuffling bags and taking a ball out of
B1 until • is taken.
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Protocol 4. The AND protocol with n (≥ 3) inputs:
([•, •, ◦, ◦, . . . , ◦], n+ 1, n, {0, 1}n, Q,A).

1. (PrivatePut, 1, I1
0, I1

1)
2. (PrivatePut, 2, I2

0, I2
1)

3. for i← 3 to n− 1 do
4. while(1)
5. (Shuf, {1, 2, . . . , i})
6. (Take, 1)
7. if taken ball = • then
8. (Move, •, 1)
9. (PrivatePut, i, Ii0, Ii1)

10. break
11. else if taken ball = ◦ then
12. (Move, ◦, 1)
13. (PublicPut, ◦, 1)
14. (PrivatePut, n, In0 , In1 )
15. (Shuf, {1, 2, . . . , n+ 1})
16. (TakeAll)
17. if visible conf. includes [•, •] then
18. (Return, “x1 ∧ · · · ∧ xn = 1”)
19. else
20. (Return, “x1 ∧ · · · ∧ xn = 0”)

Description. Based on the idea explained above, we present a formal
description of our AND protocol with n (≥ 3) inputs in Protocol 4. Here,

I1
0 =

(
[◦], [•], [◦], [], . . . , []

)
,

I2
0 =

(
[◦], [◦], [•], [], . . . , []

)
,

I1
1 = I2

1 =
(
[•], [◦], [◦], [], . . . , []

)
,

and for every i, 3 ≤ i ≤ n,

Ii0 =
( 1
[◦],

2
[], . . . ,

i−1
[] ,

i

[•, ◦],
i+1
[] , . . . ,

k

[]
)
,

Ii1 =
(
[•], [], . . . , [], [◦, ◦], [], . . . , []

)
.

5.3.2. Correctness and Security
Figure 5.3 shows a part of the diagram of the n-input AND protocol de-
scribed in Section 5.3.1; the partial diagram corresponds to Steps 3–13 in
Protocol 4. From this figure, we can see that there is {{•, •}} if and only if
x1 = x2 = · · · = xi = 1.
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([◦, . . . , ◦]; {{◦}}, {{•, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{}}; [•]) (p000···00
i−1 , p000···01

i−1 , p000···10
i−1 , . . . , 0, 0)

([◦, . . . , ◦]; {{◦}}, {{◦, ◦}}, {{•, ◦}}, . . . , {{◦, ◦}}, {{}}; [•]) (p000···00
i−1 , p000···01

i−1 , p000···10
i−1 , . . . , 0, 0)

...
([◦, . . . , ◦]; {{◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{•, ◦}}, {{}}; [•]) (p000···00

i−1 , p000···01
i−1 , p000···10

i−1 , . . . , 0, 0)
([◦, . . . , ◦]; {{•}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{}}; [•]) (0, 0, 0, . . . , p111···10, p111···11)

([•, ◦, . . . , ◦]; {{◦}}, {{•, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{}}; ) (p000···00
i−1 , p000···01

i−1 , p000···10
i−1 , . . . , 0, 0)

([•, ◦, . . . , ◦]; {{◦}}, {{◦, ◦}}, {{•, ◦}}, . . . , {{◦, ◦}}, {{}}; ) (p000···00
i−1 , p000···01

i−1 , p000···10
i−1 , . . . , 0, 0)

...
([•, ◦, . . . , ◦]; {{◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{•, ◦}}, {{}}; ) (p000···00

i−1 , p000···01
i−1 , p000···10

i−1 , . . . , 0, 0)
([•, ◦, . . . , ◦]; {{•}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{}}; ) (0, 0, 0, . . . , p111···10, p111···11)

([◦, . . . , ◦]; {{◦, ◦}}, {{•, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{•, ◦}}; ) (p000···00
i−1 , 0, p000···10

i−1 , . . . , 0, 0)
([◦, . . . , ◦]; {{◦, ◦}}, {{◦, ◦}}, {{•, ◦}}, . . . , {{◦, ◦}}, {{•, ◦}}; ) (p000···00

i−1 , 0, p000···10
i−1 , . . . , 0, 0)

([◦, . . . , ◦]; {{•, ◦}}, {{•, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; ) (0, p000···01
i−1 , 0, . . . , 0, 0)

([◦, . . . , ◦]; {{•, ◦}}, {{◦, ◦}}, {{•, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; ) (0, p000···01
i−1 , 0, . . . , 0, 0)

...
([◦, . . . , ◦]; {{◦, ◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{•, ◦}}, {{•, ◦}}; ) (p000···00

i−1 , 0, p000···10
i−1 , . . . , 0, 0)

([◦, . . . , ◦]; {{•, ◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{•, ◦}}, {{◦, ◦}}; ) (0, p000···01
i−1 , 0, . . . , 0, 0)

([◦, . . . , ◦]; {{•, ◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{•, ◦}}; ) (0, 0, 0, . . . , p111···10, 0)
([◦, . . . , ◦]; {{•, •}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; ) (0, 0, 0, . . . , 0, p111···11)

([◦, . . . , ◦]; {{•, ◦}}, {{•, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; )
(
p000···00

i+1C2
, p000···01

i+1C2
, p000···10

i+1C2
, . . . , p111···10

i+1C2
, 0
)

([◦, . . . , ◦]; {{•, ◦}}, {{◦, ◦}}, {{•, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; )
(
p000···00

i+1C2
, p000···01

i+1C2
, p000···10

i+1C2
, . . . , p111···10

i+1C2
, 0
)

([◦, . . . , ◦]; {{◦, ◦}}, {{•, ◦}}, {{•, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; )
(
p000···00

i+1C2
, p000···01

i+1C2
, p000···10

i+1C2
, . . . , p111···10

i+1C2
, 0
)

...
([◦, . . . , ◦]; {{•, ◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{•, ◦}}; )

(
p000···00

i+1C2
, p000···01

i+1C2
, p000···10

i+1C2
, . . . , p111···10

i+1C2
, 0
)

([◦, . . . , ◦]; {{◦, ◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{•, ◦}}, {{•, ◦}}; )
(
p000···00

i+1C2
, p000···01

i+1C2
, p000···10

i+1C2
, . . . , p111···10

i+1C2
, 0
)

([◦, . . . , ◦]; {{•, •}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; ) (0, 0, 0, . . . , 0, p111···11
i+1 )

([◦, . . . , ◦]; {{◦, ◦}}, {{•, •}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; ) (0, 0, 0, . . . , 0, p111···11
i+1 )

([◦, . . . , ◦]; {{◦, ◦}}, {{◦, ◦}}, {{•, •}}, . . . , {{◦, ◦}}, {{◦, ◦}}; ) (0, 0, 0, . . . , 0, p111···11
i+1 )

...
([◦, . . . , ◦]; {{◦, ◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{•, •}}, {{◦, ◦}}; ) (0, 0, 0, . . . , 0, p111···11

i+1 )
([◦, . . . , ◦]; {{◦, ◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{•, •}}; ) (0, 0, 0, . . . , 0, p111···11

i+1 )

([◦, . . . , ◦]; {{•}}, {{•, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; [◦])
(
p000···00

i+1C2
, 2p000···01

i+12 , p000···10
i+1C2

, . . . , p111···10
i+1C2

, 0
)

([◦, . . . , ◦]; {{•}}, {{◦, ◦}}, {{•, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; [◦])
(
p000···00

i+1C2
, p000···01

i+1C2
, p000···10

i+1C2
, . . . , p111···10

i+1C2
, 0
)

([◦, . . . , ◦]; {{◦}}, {{•, ◦}}, {{•, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; [◦])
(
p000···00

i+1C2
, p000···01

i+1C2
, p000···10

i+1C2
, . . . , p111···10

i+1C2
, 0
)

...
([◦, . . . , ◦]; {{•}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{•, ◦}}; [◦])

(
p000···00

i+1C2
, p000···01

i+1C2
, p000···10

i+1C2
, . . . , p111···10

i+1C2
, 0
)

([◦, . . . , ◦]; {{◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{•, ◦}}, {{•, ◦}}; [◦])
(
p000···00

i+1C2
, p000···01

i+1C2
, p000···10

i+1C2
, . . . , p111···10

i+1C2
, 0
)

([◦, . . . , ◦]; {{◦}}, {{•, •}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; [◦]) (0, 0, 0, . . . , 0, p111···11
i )

([◦, . . . , ◦]; {{◦}}, {{◦, ◦}}, {{•, •}}, . . . , {{◦, ◦}}, {{◦, ◦}}; [◦]) (0, 0, 0, . . . , 0, p111···11
i )

...
([◦, . . . , ◦]; {{◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{•, •}}; [◦]) (0, 0, 0, . . . , 0, p111···11

i )

([◦, . . . , ◦]; {{◦}}, {{•, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; [•]) (p000···00
i , p000···01

i , p000···10
i , . . . , p111···10

i , 0)
([◦, . . . , ◦]; {{◦}}, {{◦, ◦}}, {{•, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; [•]) (p000···00

i , p000···01
i , p000···10

i , . . . , p111···10
i , 0)

...
([◦, . . . , ◦]; {{◦}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{•, ◦}}; [•]) (p000···00

i , p000···01
i , p000···10

i , . . . , p111···10
i , 0)

([◦, . . . , ◦]; {{•}}, {{◦, ◦}}, {{◦, ◦}}, . . . , {{◦, ◦}}, {{◦, ◦}}; [•]) (0, 0, 0, . . . , 0, p111···11)

(Move, 1)

(PrivatePut, i, Ii0, Ii1)

(Shuf, {1, 2, 3, . . . , i, i+ 1})

(Take, 1)
◦ is taken with prob. 2/3. • is taken with prob. 1/3.

Figure 5.3: A crucial part of a diagram of the AND protocol with n inputs
x1, x2, . . . , xn ∈ {0, 1}n for the loop index i ∈ {3, 4, . . . , n− 1}, where empty
trays and empty bags (over the (i+ 2)-nd) are omitted for simplicity.

We can furthermore see that (Take, 1) leaks no information about the
inputs because the probability of taking a red ball is always 1

i+1 , which is
independent of the inputs. Therefore, this protocol is secure.

5.4. Protocols for Any Boolean Function
In this section, we will explain how to realize protocols for any Boolean func-
tion with balls and bags. To achieve it, we will propose committed-format
AND and NOT protocols that are known to be functionally complete. Note
that in our AND protocols shown in Sections 5.2 and 5.3, the balls should
be revealed to obtain the AND values in the final step. Namely, the pre-
vious AND protocols cannot be used as building blocks for a composition
of another protocol. As a building block for a composite protocol, the fol-
lowing property called committed-format is required: We say a protocol is
committed-format if its output can be an input for another (next) protocol
without revealing balls themselves.
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Protocol 5. The committed-format AND protocol, where the number of
balls in each bag is denoted by m:(
[◦, . . . , ◦], 4, 2, {0, 1}2, Q,A

)
.

Initial state:
([◦, . . . , ◦]; {{◦, ◦, . . . , ◦}}, {{•, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}}, {{•, ◦, . . . , ◦}}; [], [], [], []) (p00, 0, 0, 0)

([◦, . . . , ◦]; {{◦, ◦, . . . , ◦}}, {{•, ◦, . . . , ◦}}, {{•, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}}; [], [], [], []) (0, p01, 0, 0)

([◦, . . . , ◦]; {{•, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}}, {{•, ◦, . . . , ◦}}; [], [], [], []) (0, 0, p10, 0)

([◦, . . . , ◦]; {{•, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}}, {{•, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}}; [], [], [], []) (0, 0, 0, p11)

Steps:
1. (MergeBags, 3, 1)
2. (PublicPut, ◦ · · · ◦, 2)
3. (PublicPut, ◦ · · · ◦, 4)
4. while(1)
5. (Shuf, {1, 2, 4})
6. (Take, 1)
7. if taken ball = • then
8. break
9. else
10. (Move, ◦, 1)
11. (PublicPut, ◦, 1)
12. (MergeBags, 4, 2)
13. (PublicPut, ◦ · · · ◦, 1)
14. (Result, 1, 2)

Note that in the sequel, we will construct committed-format protocols
with balls, where sizes of all balls are the same.

5.4.1. Committed-Format AND protocol
Encoding. We encode a Boolean value with two bags, each of which in-
cludes the same number of balls, as follows:

{{◦, ◦, ◦, . . . , ◦}}, {{•, ◦, ◦, . . . , ◦}} = 0,
{{•, ◦, ◦, . . . , ◦}}, {{◦, ◦, ◦, . . . , ◦}} = 1.

(5.10)

That is, a pair of bags where the second (resp. first) bag contains exactly
one red ball • represents 0 (resp. 1). A pair of bags representing a bit
x ∈ {0, 1} according to the above encoding rule is called a commitment to
x.

Let us replace a Return action in Definition 2 with a Result action for
a committed-format protocol: (Result, p1, p2) for p1, p2 ∈ {1, . . . , k}. This
means that the protocol terminates with the commitment consisting of the
p1-th and p2-th bags.
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Idea. Given two commitments to x1 ∈ {0, 1} and x2 ∈ {0, 1}, a committed-
format AND protocol produces a commitment to x1 ∧ x2. Let B1 and B2
be two bags constituting a commitment to x1, and B3 and B4 be those con-
stituting a commitment to x2 such that |B1| = |B2| = |B3| = |B4| = m.
Suppose that we merge B3 with B1 via MergeBags (i.e., B1 and B3 become
such that |B1| = 2m and |B3| = 0) and put m white balls into each of B2
and B4 (i.e., they become such that |B2| = 2m and |B4| = 2m). Then, the
resulting configurations will be as follows:

(; {{◦, ◦, ◦, . . . , ◦}}, {{•, ◦, ◦, . . . , ◦}}, {{}}, {{•, ◦, ◦, . . . , ◦}}; ) (p00,0,0,0),
(; {{•, ◦, ◦, . . . , ◦}}, {{•, ◦, ◦, . . . , ◦}}, {{}}, {{◦, ◦, ◦, . . . , ◦}}; ) (0,p01,0,0),
(; {{•, ◦, ◦, . . . , ◦}}, {{◦, ◦, ◦, . . . , ◦}}, {{}}, {{•, ◦, ◦, . . . , ◦}}; ) (0,0,p10,0),
(; {{•, •, ◦, . . . , ◦}}, {{◦, ◦, ◦, . . . , ◦}}, {{}}, {{◦, ◦, ◦, . . . , ◦}}; ) (0,0,0,p11),

where we omit the tray T0. Note that these are similar to Eq. (5.4) if we
eliminate the empty bag B3, i.e., two red balls are in B1 if and only if
x1 = x2 = 1. Therefore, we can compute an AND value via (Shuf, {1, 2, 4})
and (TakeAll) in the same way to our two-input AND protocol.

Next, let us consider how to produce a commitment to x1 ∧ x2 from
the above configurations (where B3 is removed). Suppose that we repeat
applying (Shuf, {1, 2, 3}) and (Take, 1) until the color of a taken ball is redv.
Then, the resulting configurations will be as follows:

(; {{◦, ◦, . . . , ◦}}, {{•, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}};[•]) ( p00
2 ,

p01
2 ,

p10
2 ,0),

(; {{◦, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}}, {{•, ◦, . . . , ◦}};[•]) ( p00
2 ,

p01
2 ,

p10
2 ,0),

(; {{•, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}}, {{◦, ◦, . . . , ◦}};[•]) (0, 0, 0, p11),
(5.11)

where we omit the empty bag and empty trays. From the above configura-
tions, notice that if we merge B2 and B3 into one bag, say B2, then a pair of
B1 and B2 can be a commitment to x1∧x2. Thus, we can obtain the output
commitment by moving all the balls in B3 into B2 (and put 2m white balls
into B1 to make the numbers of balls be the same).

Description. Given two commitments to x1 ∈ {0, 1} and x2 ∈ {0, 1},
our committed-format AND protocol proceeds as shown in Protocol 5. We
denote by B1 and B2 two bags constituting a commitment to x1 and by
B3 and B4 those constituting a commitment to x2. Hereinafter, for suc-
cessive two actions (PublicPut, b1, p) and (PublicPut, b2, p), we simply write
(PublicPut, b1b2, p).

We omit a diagram of our committed-format AND protocol as it is similar
to that of our multi-input AND protocol shown in Fig. 5.3. We discuss the
performance of the protocol in Section 5.5.

vIf it is ◦, we return ◦ into B1.
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5.4.2. How to Construct a Protocol for Any Function
See Eq. (5.10) again. We note that a committed-format NOT protocol can
be easily constructed; just swapping two bags constituting a commitment
to x ∈ {0, 1} results in a commitment to the negation x̄.

We now have committed-format AND and NOT protocols as shown
above. Based on these protocols, we can construct a protocol for any Boolean
function f as follows.

1. Create a Boolean circuit representing f (with AND and NOT gates).

2. Each player prepares a required number of commitments to his/her
private input via PrivateInput according to the circuit.

3. Obtain a commitment to the output value of f by evaluating the circuit
using our committed-format AND/NOT protocols. If the number of
balls is different between input commitments when performing the
AND protocol, players put white balls such that the number of balls
becomes the same.

Since our committed-format AND protocol is secure and any information
about the inputs and output does not leak (because of committed-format),
the above protocol for f is also secure.

5.5. Performance of Our Protocols
This section discusses the efficiency of our AND protocols shown in Sec-
tions 5.2, 5.3, and 5.4.1. Table 5.1 summarizes the performance of our
proposed protocols. We evaluated them in terms of two items: the number
of balls and bags, and runtime.

The Number of Balls and Bags. Our two-input AND protocol requires
six balls (namely, two red and four white balls) and three bags. Our conjec-
ture is that two bags would be insufficient for a secure computation of the
two-input AND computation. On the other hand, our AND protocol with n
inputs requires 2n+ 2 balls (namely, two red and 2n white balls) and n+ 1
bags. Our committed-format AND protocol would be inefficient because it
requires 8m balls (and four bags) where m denotes the number of balls in
each of bags constituting input commitments.

Let C be a Boolean circuit with the logical AND/NOT gates and d(C)
denote the depth of C. Let us consider the number of required balls for
our committed-format AND protocol that evaluates the “final” AND gate
for C (i.e., it is of the depth d(C)), denoted by αd(C). Remember that the
number of balls in each of bags constituting the output commitment is four
times greater than that of input commitments in our committed-format
AND protocol. Thus, we have αd(C) = 2× 4d(C), i.e., αd(C) = O(4d(C)).
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Table 5.1: The efficiency of our proposed protocols, where m denotes the
number of balls in each of bags constituting an input commitment.

Function #Balls #Bags Runtime

two-input AND §5.2 6 3 Deterministic

n-input AND §5.3 2n+ 2 n+ 1 Expected

committed-format AND §5.4.1 8m 4 Expected

Boolean circuit C §5.4.2 2× 4d(C) 2×#input-node Expected

Runtime. Our two-input AND protocol has a deterministic runtime. By
contrast, our AND protocol with n inputs and committed-format AND pro-
tocol are Las Vegas algorithms. Each protocol includes a repetition of shuf-
fling bags and taking a ball until • appears. Let us estimate the expected
number of the repetition

For our AND protocol with n inputs, let us first consider the case of n = 3
as a simple case. Remember that we repeat (Shuf, {1, 2, 3}) and (Take, 1)
(and (PublicPut, •, 1)) from Eq. (5.4) until • appears. The expected number
of the repetition is three because the probability of taking • is exactly 1/3.
Then, let us consider the case of n = 4. In addition to the actions for
n = 3, we repeat (Shuf, {1, 2, 3, 4}) and (Take, 1) from four bags including
eight balls (namely, two red and six white balls) until • is taken. Therefore,
the expected number of the repetition is 3 + 4 = 7.

When we have n (≥3) inputs, the expected number of repetition can be
written as follows:

n∑
k=3

k = (n− 2)(n+ 3)
2 .

That is, it is O (n2).
For our committed-format AND protocol, let us also show the expected

number of repetition. The probability of taking • (as in Eq. (5.11)) is
2/(6m − 2) because the total numbers of red and white balls in the bags
are 2 and 6m− 2, respectively. Thus, the expected number of repetition is
3m− 1. As for the number of balls, let us consider the expected number of
repetition for our committed-format AND protocol that evaluates the final
AND gate for C, denoted by βd(C). We have βd(C) = 3 × 4d(C)−1 − 1, i.e.,
βd(C) = O(4d(C)).

5.6. Implementation Examples
In this section, we show implementation examples for ball-based cryptogra-
phy to show the feasibility of using (physical) balls and bags. For this, we
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Figure 5.4: Two-colored balls and three bags we purchased. The bags are
closed at the top with drawstrings.

(a) PublicPut (b) PrivatePut (c) Shuf

(d) Take (e) MergeBags

Figure 5.5: Implementing all the actions defined in Definition 2

purchased two-colored balls for approximately $1 and three bags for approxi-
mately $3 as shown in Fig. 5.4. Using these balls and bags, we implemented
all the actions defined in Definition 2 (except for Move and Resultvi), as
shown in Fig. 5.5. As a result, we confirmed that ball-based cryptography
proposed in this study is based on realistic physical operations and is feasible
for humans.

5.7. Conclusion
In this work, we showed that balls and bags provide us a simple way for
achieving a secure computation of the logical AND. We formalized protocols

viMove can be performed without using a bag, and Result requires no ball and bag.
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with balls and bags and showed how to construct a diagram of a protocol,
from which its correctness and security can be confirmed. Moreover, we
presented general MPCs by constructing committed-format AND and NOT
protocols.



6. Online App
Cryptographic protocols using physical tools such as card-based cryp-

tography enable us to easily achieve cryptographic tasks without the need
for mathematical knowledge of algebra. However, all players participating
in such a protocol are required to be in the same place because they use
physical tools. In this chapter, we focus on how to perform such a pro-
tocol remotely while keeping its property (i.e., it can be performed easily)
consistent. Precisely, we propose an auction protocol with a messaging app
such as Facebook Messenger, which extends the existing protocol with en-
velopes [13]. Our idea is to utilize the read receipts and group chat features
loaded in a messaging app. We note that security requirements between
our proposed protocol and the existing protocol [13] are similar; while our
proposed protocol requires a messaging app used in the protocol to have no
vulnerability, the existing protocol also requires physical tools to have no
vulnerability.

6.1. Proposed Protocol

Our proposed auction protocol computes in a similar way of [13] that it
reveals bits from the most significant bit of bids one by one. The idea
behind our proposed protocol is to make group chats with an auctioner and
bidders per values of possible prices of bids.

6.2. Abstract
Let A denote an auctioner, S1, S2, . . . , Sn denote bidders, and pm > pm−1 >
· · · > p1 denote possible prices of bids.

Setup. The auctioner A makes m groups with the bidders S1, S2, . . . , Sn
on a messaging app. Let pi, 1 ≤ i ≤ m, be the name of each group.

Bid. Let pj′ denote the value of the bid by Sj , 1 ≤ j ≤ m. The bidder Sj
sends a message of 1 to the group of pj′ and sends 0s to the remaining
groups.

Open. The auctioner A read the messages sent to the group of pm. If there
is a message of 1, the bidder sent it becomes the winner, and A tells
the winner and the highest value pm to the bidders. Otherwise, A
reads the messages sent to the one of pm−1, and so on. If there is a
message deleted by a bidder, A aborts the protocol.

94
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Protocol 6. Message-app-based auction protocol.
1. for i = 1 to m do
2. (Make, pi, A, {S1, . . . , Sn})
3. for i = 1 to n do
4.

(
Send, Si′

i , pi′ , Si, (1, ∅)
)
where pi′ denotes the bid of Si

5. for j = 1 to m do
6. if j 6= i′ then
7.

(
Send, Sj

i , pj , Si, (0, ∅)
)

8. for i = 0 to i = m− 1 do
9. (Read, pm−i, A)

10. Let W be the set of sellers S` that performed
(
Send, Sm−i

` , pm−i, S`, (1, ∅)
)

for some ` ∈ {1, . . . , n}
11. if W 6= ∅ then
12. for j = 1 to m do
13. (Tell, A, Sj , W and pm−i)
14. A outputs W and pm−i

15. Let k be m− i
16. break
17. for i = 1 to i = n do
18. for j = k to j = m do
19. (Read, pj , Si)
20. if there exists a seller S` that performed

(
Send, Sj

` , pj , S`, (1, ∅)
)
for some

` ∈ {1, . . . , n} such that j 6= k then
21. Si outputs ⊥
22. for j = 1 to j = k − 1 do
23. if (Verify, Sj

i , Si) > 0 then
24. Si outputs ⊥
25. for i = 1 to i = n do
26. for j = 1 to j = k − 1 do
27. (Delete, Sj

i , Si)
28. Si outputs W and pk

Verification. Let ph denote the highest value of the bids. The bidder Sj
reads the messages sent to the groups of pk for k ≥ h to verify the
winner and ph. Besides, Sj verifies that the messages Sj sent to the
groupes of p` for ` < h have not been read. If not, Sj aborts the
protocol.

Delete. The bidder Sj deletes the messages which Sj sent to the groupes
of p` for ` < h.

6.2.1. Formal Description
Here, we show a fomal description of our proposed auction protocol in Pro-
tocol 6, where for any text ∈ M, let (Tell, Pi, Pj , text) mean that Pi sends
text to Pj by any means.
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