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Abstract

Deep neural network (DNN) achieves human-level performance in many applica-

tions and gains attention from industries. However, the question remains at how to

integrate DNNs into the real world safely. It is reported that the performance of the

DNNs unexpectedly drops in some situations, e.g., when the environments radically

change from the training time. Decisions made concerning the predictions of DNN

possibly cause damage. This problem is crucial in the task that relates the human

life. Autonomous driving vehicles are one of the examples. To guarantee passenger

safety, it must be noticeable before DNNs run into failure. Thus, the decision towards

the problem can be handled by the human expert.

One source of failure in the open environment is when the model confronts the

input image that consists of an unfamiliar feature far from its training dataset. It is

called out-of-distribution (OOD). It is reported in many studies that the prediction

quality deteriorates regarding the OOD. Indeed, the OOD samples can be roughly

categorized into two conditions. First, the samples belong to the unknown class

that is not included in the training dataset. Second, the samples are of the known

classes whose feature differs from the seen samples in the training phase. The model

should neglect the former since they cause the prediction to be wrong; relying on

these predictions might cause damage by the consequent action. The latter is more

problematic because the samples belong to one of the known classes. The prediction

can be partially (in)correct. To handle them, the model needs to know how the

expected accuracy deteriorates given that input images. Thus, it is possible to reject

the prediction that has expected accuracy lower than the threshold or notify the user

that the prediction is likely to be wrong.

In the first part of this work, we tackle the OOD detection in the first condition,

i.e., the sample belongs to the unknown class. The baseline method has been eval-

uated using the probability of the selected class. It works fairly well to detect the

OOD samples. Consequent methods are proposed to improve the detection perfor-

mance so far. Some of the high performing methods assume that they can access a

small part of the OOD dataset and involve it in the hyperparameter tuning. Recently,
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many studies point out that this assumption does not apply in general since the OOD

samples may come from a different distribution and cause the detection performance

to be unexpectedly low. We proposed the OOD detection method that is free from

the hyperparameter tuning. The proposed method replaces the dot product with the

cosine similarity and the scale prediction module. We use the cosine similarity as

the measurement to detect the OOD samples. We found that the OOD detection

performance is significantly improved with sacrificing a slight classification accuracy.

The second part re-evaluates the well-known methods in a more practical situ-

ation and re-organizes the OOD detection cases. Although many OOD detection

methods have been proposed so far, most of them evaluate their performance on the

experimental datasets, e.g., CIFAR-10/100 and Tiny ImageNet. The effectiveness of

the methods on the real-world dataset is unknown; they differ in many aspects, e.g.,

image size and object saliency. We also separate the evaluation into three different

cases, i.e., irrelevant input detection, novel class detection, and domain shift detec-

tion. Irrelevant inputs and the novel classes belong to the first condition where these

samples are from the unknown class; however, their difficulty is different, causing the

evaluated methods to perform differently in two cases. The domain shift detection is

in the second condition. We apply the OOD detection method and use its measure-

ment to predict the deterioration of the classification accuracy. Our result confirms

two conclusions. First, using the network with cosine similarity performs consistently

high performance in most cases. Second, fine-tuning the network that is pre-trained

from the ImageNet dataset significantly contributes to the improvement.

Lastly, in the third part, we address the concrete relationship to bridge the gap

between in-distribution (ID) and the OOD. It has been proved that utilizing a large

source of the outlier as the assumable OOD examples can improve the OOD detec-

tion performance. This can be considered the auxiliary dataset representing the high

entropy prediction in the categorical distribution, i.e., the uniform random. We pro-

pose to replace the auxiliary dataset with the synthetic corrupted dataset. We first

train the model in the standard manner and observe the empirical accuracy of the

corrupted image datasets, using which we create a soft target label from them. We

then train the model again from scratch using the original ID samples and the cor-

rupted samples with the soft labels. The experimental result shows that our method

outperforms the state-of-the-art method while maintaining a classification accuracy

similar to the standard network.
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Chapter 1

Introduction

This chapter gives an introduction about the problem we will discuss throughout

this dissertation. We introduce an overview to illustrate the territory of the problem

in Sec. 1.1. To encourage more understanding, we include the preliminary knowledge

related to our study in Sec. 1.2. Lastly in this chapter, the outline of each individual

chapter are described in Sec. 1.3.

1.1 Overview of Out-of-Distribution Problem

Artificial intelligence (AI) system becomes an important part that backed many

advanced technologies nowadays. It plays an important role in many real-world tasks

both in daily life and industries. Although the current AI agents are recognized

as narrow AI, i.e., they are made to accomplish the narrowly defined task, their

performance reported outperform the human in many tasks, such as medical diagnosis

[8] and speech recognition [9].

However, there remain concerns in deployment to the real world. One of them is a

safety concern. It is reported in many studies that deep neural network (DNN) may

silently run into a failure in some situations [10]. Suppose we launch the autonomous

car into the real-world environment and it wrongly detects the pedestrians as the

street. This possibly causes damage to the system and human life. Thus, studying

about realizing the fail state of DNN is a preventive strategy. Once it is detected, we

could handle the situation effectively before it causes damage.
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Researchers study the failure of DNN in many aspects. In general, they are search-

ing for a way to allow the DNN to express confidence of the prediction accurately,

such that the users can effectively manage their risk. For example, suppose we consult

the AI stock investment advisor to decide on selling or buying stock. The investor can

decide not to follow or follow with just a small investment once the system advises

with low confidence. It is considered “calibrated” when the model gives the confidence

that expresses its correctness in predictions [11,12]. Bayesian model is also deployed

to get the uncertainty estimation. It can produce uncertainty from the randomness

of its parameters. Indeed, modern DNN usually uses the Bayesian approximation,

e.g., MC dropout [13], due to the difficulty of training the deep Bayesian model. It

shows an effective performance in the real-world applications [14–16].

One source of a wrong prediction is out-of-distribution (OOD). In the ideal situ-

ation, model trained on training samples, xtr, ytr ∼ D, is expected to be the expert

in classifying test samples from the same distribution, xte, yte ∼ D. However, it is

also possible that the test samples given in the real-world environment are not from

the same distribution, xte, yte ∼ D∗, where D 6= D∗. The samples from different

distribution are considered OOD for the model. Eventually, it leads to compromised

performance in the applications. Thus, we study the OOD problem in the classifica-

tion model, such that we can actively handle the OOD samples.

Suppose we launch a mobile application that aims to help the user classify the

food from the image and inform about the nutrition. However, the image of the

irrelevant object might be accidentally given to our application, e.g., an image of the

human or the animal. In this case, making a prediction on these images might reduce

the trust in our application. In this situation, detecting it as an irrelevant object is

considered a better user experience.

The OOD problem can cause even more crucial problems in the real world. As

we have mentioned in the example case of the autonomous car, the OOD sample is

a threat in its deployment too. In the training time, we definitely have a limited set

of samples for training. The model probably learns to recognize the objects on the

street from the feature of each object and becomes an expert in this task. In the

inference time, the image coming to the model is unlimited due to the variety in the

real-world object. Further, the image quality might decline at some point in time

2



such that the classification power reduces. Suppose there is a sofa lying on the street.

Since the model has learned the objects that are generally located on the street, the

possibility to see any sofa in the training time is low or zero. It is important for the

model to realize the sofa in an unknown object such that it does not make a wrong

prediction to it, e.g., predict it as a road and drive on it.

To the OOD samples, it might be acceptable if the model gives an accurate un-

certainty estimation such that OOD samples should obtain high uncertainty in pre-

dictions. Unfortunately, it is not the case. It is known that the natural uncertainty

measurements of the classification task, i.e., maximum softmax probability and pre-

dictive entropy, and the Bayesian approximation methods produce a fair performance

in the OOD detection [2,17,18]. Consequent methods have been proposed to improve

the OOD detection performance so far. Some of them are especially designed for

the classification model [3, 4, 19, 20], while the other can be used regardless to any

tasks [21–24]. Note that the classification based OOD detection methods tend to

achieve better detection performance and are easier to generalize to larger image size.

Types of OOD sample Suppose the classification model learns to predict the

object class of training samples, {(xi, yi)}Ni=1, where (xi, yi) is the image and label

pair of i-th sample. The label yi ∈ Y , where Y contains K known classes, indicates

the category that sample xi belongs to. It is possible to categorize OOD samples into

two categories.

1. OOD sample that does not belong to the known classes xi, yi ∼ D∗; yi 6∈
Y - Most of the OOD detection studies focus on this type of the OOD sample.

It is when the OOD is a sample of the class that is not included in the model

training, i.e., unknown class. To the human perception, it is easy to realize the

OOD samples in this type but it is unexpectedly difficult for the modern DNN.

However, predicting a sample xi as one of the known classes will definitely lead

to a wrong prediction. Thus, we can simply reject all the predictions for this

type of sample to prevent the mistake.

2. OOD sample that belongs to the known classes xi, yi ∼ D∗; yi ∈ Y -

This type of OOD sample is rarely considered in the OOD detection field of
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Figure 1.1: Examples of OOD that do not belong to known classes. (Image source:
https://cutt.ly/6j6PsKq)
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Figure 1.2: Examples of OOD that belong to known classes. (Image source: https:

//cutt.ly/fj6PJWI)

study. It is when the OOD sample is drawn from a different distribution, but it

is still a member of one of the known classes. For example, the model learns to

classify K object categories of the images taken by the DSLR camera, but the

test images are obtained from the low-resolution camera and are corrupted with

the noise. The difference in the image domain deteriorates the performance in

classification. Thus, it is important to predict the deterioration such that the

practitioner can realize and manage the risk.

Hyperparameter Tuning in OOD Detection Task Some OOD detection meth-

ods are proposed with a requirement to access a small amount of the OOD samples.

These samples are used to define the hyperparameter(s) such that the methods can

effectively detect the OOD samples. However, this logic does not apply in general.

The study by Shafaei et al. [1] raises the issue to this assumption. The variety of the

OOD samples hinders this assumption from being effective in practice because the

OOD samples can be very different from each other. Suppose the model decides its

hyperparameter using the OOD validation samples, i.e., {(xi, yi)|xi, yi ∼ D∗v}, where
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Figure 1.3: The parameter decided by using validation OOD samples does not guaran-
tee its generalization to the unseen OOD samples. Din represents the in-distribution
dataset and D∗v and D∗u are the validation OOD and the unseen OOD datasets, respec-
tively. The green dashed line illustrates the decided hyperparameter as a dependence
of the validation OOD dataset. It does not separate in-distribution from the unseen
OOD effectively.

D∗v is the validation OOD distribution, it does not guarantee that the decided hyper-

parameter will be appropriate for the unseen OOD, i.e., {(xi, yi)|xi, yi ∼ D∗u}, where

D∗u is the unseen OOD distribution and D∗v 6= D∗u, as shown in Fig. 1.3. Most of

the recent methods are proposed with avoiding the necessity of the validation OOD

samples [5, 25–27].

1.2 Preliminaries

To encourage more understanding, we introduce the preliminary knowledge that

is relevant to our work in this section.

1.2.1 Maximum a Posteriori

The statistical model predicts the output, y, from the input, x, using its learnable

parameter, θ. The proper solution for the learnable parameter is found by

θ̂ = arg max
θ

P(θ|Dtr),

where θ is the model’s parameter, Dtr is the training dataset, and P (θ|Dtr) is a pos-

terior term of the Bayes’ rule. It can be interpreted as the parameter that maximizes

the likelihood given the training dataset. However, calculating P (θ|Dtr) is intractable.
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According to the Bayes’ rule, we know that

P(θ|Dtr) =
P(Dtr|θ)P(θ)

P(Dtr)
.

To come up with the tractable solution, we convert the problem to

θ̂ = arg max
θ

P(Dtr|θ)P(θ)

P(Dtr)
.

Since the solution of the arg maxθ is independence of the denominator term, we can

then discard it. Thus, the formulation is given as

θ̂ = arg max
θ

P(Dtr|θ)P(θ),

where the prior probability term, P (θ), is usually represented by the weight regular-

ization. Finally, we use the parameter found by the optimization in the prediction,

y ∼ P (y|x, θ).

1.2.2 Negative Log Likelihood

The general concept of a predictive model is to allow the model to make a pre-

diction towards an incoming sample x. The output (i.e., prediction) of the model

will be a parameter(s) of the pre-defined probability distribution. For the regression

model, the model that outputs a concrete number as the prediction, the pre-defined

probability distribution is the Gaussian distribution. For the classification model, the

model that predicts the category of the input sample, it is categorical distribution.

Gaussian distribution is the probability distribution that depends on two param-

eters, i.e., mean (µ) and standard deviation (σ). The mean indicates the center of

where the values are distributed. The standard deviation represents how the value is

likely to deviate from the center. The probability density function (PDF) is given as

P(x) = Normx[µ, σ
2] =

1√
2πσ2

exp [
−(x− µ)

2σ2
].

Categorical distribution is the probability distribution defined for a K possible

outcomes, e.g., rolling dice. It requires K parameters where each of them rep-
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resents the probability of the individual drawn sample belongs to each category,

C = [c1, c2, . . . , cK ] and
∑K

i ci = 1. The PDF is defined as

P(x = k) = Catx[C] =
K∏
i

ceii ,

where ei ∈ {e1, e2, . . . , eK} where ek is one and all the others, {ei|i 6= k}, are zero.

Training the machine learning model is the optimization process performed con-

cerning the objective function. Specifically, the model learns such that the objective

function is satisfied, i.e., minimized, maximized, or getting to the equilibrium, by its

parameter θ. In general, the objective function is likelihood function,
∏N

i P (xi; θ),

where xi is the i-th observed sample, P (·) is the pre-defined PDF, and θ is the pa-

rameter of the PDF. It is the measurement of the goodness of the parameter in the

PDF regards to the observed samples. In this sense, the parameter will satisfy our

expectation if likelihood is maximized. However, it encounters a numerical problem in

the calculation since the likelihood tends to approach a low value close to zero when

the amount of the observed samples is expanded. The log function is introduced to

solve this problem and the formulation becomes log-likelihood, given as

Log − likelihood =
N∑
i

log P(xi; θ).

Most of the famous DNN frameworks, e.g., Pytorch or Tensoflow, learning step

is performed in the minimization manner. Thus, the objective function eventually

becomes negative log-likelihood,

NLL = −
N∑
i

log P(xi; θ).

The NLL of the Gaussian distribution is defined as

NLLgaus = −
N∑
i

[log
√

2π + log σ +
(xi − µ)2

2σ2
],
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and the NLL of the categorical distribution is defined as

NLLcat = −
N∑
i

K∑
i

eilogci.

1.2.3 Uncertainty Estimation

As we mentioned in the previous section, in the real-world application, it is crucial

to allow the model to realize when its prediction is likely to be a wrong prediction.

This is an important mechanism to help the practitioner decides whether to trust the

prediction from the predictive model. This concept is an uncertainty estimation.

The uncertainty can be categorized by its cause. Two types of uncertainty are

mentioned in many studies, i.e., Aleatoric and Epistemic uncertainty [14]. The

aleatoric uncertainty is the natural uncertainty that is caused by the observed data.

It can also be the noise of how to collect or measure the data. For example, suppose

we collect the data by measuring the length of the box with the ruler. The length

will be observed by human eyes. Observing the length multiple times by the same

or different persons may also cause different observed values; it is varied in a limited

range.

Aleatoric uncertainty can be estimated by the natural property of the posterior

distribution, i.e. the PDF. In the regression problem, the aleatoric uncertainty is

given by the predicted variance [14] with regard to the NLL optimization; the defi-

nition of the variance is that it conveys how the data diverge from its mean. Thus,

high predicted variance indicates high uncertainty. In the classification, the aleatoric

uncertainty is represented by the variational ratio or the entropy [28].

Epistemic uncertainty expresses the other type of uncertainty that is caused by

the model parameter. This type of uncertainty accounts for the lack of training

data. Thus, it is reduced once the dataset is increased. The Bayesian model, or its

approximation, e.g., dropout, is utilized to estimate the epistemic uncertainty.

1.2.4 Anomaly Detection

Anomaly detection is an approach to detect the sample that differs or diverge

from the normality, called anomaly. In general, the anomaly indicates some improper
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behaviors or events, e.g., the attack on the network system. It is simple to model the

statistic from the data to see the anomalous sample from the low dimensional data.

The problem becomes more challenging when the data is in a high dimension. Note

that anomaly is also referred to as the other terminology, e.g., outlier and novelty.

The basic idea to detect the anomaly is to model the P (x) that output the likeli-

hood of a sample. For the high-dimensional data, we can utilize the generative model

as the tool to model P (x). A simple way to perform the generative model is to use the

autoencoder model. The anomalous sample can be determined from the intermediate

layer, i.e., bottleneck layer, or from the reconstruction loss. The other types of neural

network are also proposed, e.g., PixelCNN [29], GAN [21], and Glow [22].

Image anomaly detection is widely applied to many real-world problems. It is

also used to determine the defection in the manufacturing goods [30]. The method

performs detection by observing the image of the product. The detected product is

considered an anomaly in this case.

1.2.5 Deep Neural Network

Artificial Neural Network (ANN) was introduced by Frank Rosenblatt in 1958

[31], inspired by the neuron in the human brain, called perceptron. It was made to

mimic how humans make a decision or learn to recognize the object. It resembles

the mechanism of how the brain works, i.e., dendrites and axons. Dendrites are

responsible for delivering the information into the neuron. Axons export the output

and let it flows across the synapse. Multiple neurons interact with each other and

exchange the information in one decision making. The ANN also models the decision

making by having the input information flows in, and delivers it out after processing.

It was used to classify the image of human into man or woman classes. It did not

work well at that time.

In 1986, David et al. [32] proposed backward propagation as a learning method

for the multi-layer perceptron. It was significant progress in the research of artificial

neural networks. It allows the ANN to learn effectively from its error. This became

a core idea in any neural network nowadays.

A modern neural network is built more complicated. Both hardware and software
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technologies in this era encourage the advance in neural network research. GPU

becomes necessary hardware to execute the model. The capacity that we have in

the modern computer is enough for the design of the deeper neural network these

days. We know it as deep neural network (DNN) or deep learning. It shows excellent

performance and even outperforms humans in many tasks. It can be applied in a wide

range of problems such as supervised learning, unsupervised learning, reinforcement

learning, generative adversarial network (GAN), etc.

A significant milestone was made by DNN when it won the ImageNet Large Scale

Visual Recognition Competition (ILSVRC) in 2012. Krizhevsky et al. tackled the im-

age classification problem with the DNN model called AlexNet and radically changed

the direction of the research community [33]. Specifically, the special type of neural

network used in the AlexNet is Convolutional Neural Network (CNN). It utilizes the

DNN module that calculates the output in a spatial invariant manner. Before that, it

was difficult to achieve high accuracy in this task by the traditional computer vision

approach. The performance made by the AlexNet at that time produced a big gap

in the improvement from the others.

The world got excited again by the rising of Deepmind’s AlphaGO, an AI that

plays Go better than professional human, at the beginning of 2016. Go is an ancient

board game that is originally played in China from 2,500 years ago 1. Two players have

to compete with each other by occupying the territory and avoid getting captured by

the opponent. The score is eventually counted at the end of the game by the occupied

area subtracted by the number of the captured stones. It is known that this game is

difficult for any computer program to competitively play with the professional human

player by the traditional AI algorithm such as Minimax [34]. AlphaGo combines two

mechanisms in their calculation, i.e., policy network and value network. Former

generates a set of multiple moves that possibly gain the score using reinforcement

learning. Latter estimates the goodness of that move considering the overall situation

using the regression model.

Many parts of neural networks are introduced and become necessary to push the

advance in this technology. In what follows, We describe the underlying idea of how

they work and why it is crucial for modern neural networks.

1https://en.wikipedia.org/wiki/Go_(game)
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Fully Connected (FC) Layer

Fully connected (FC) layer is a linear approximation module that takes all el-

ements in the input into account. This module obtains the input and applies the

linear equation by its learnable parameters, i.e., weight and bias, to approximate the

output. The input and output can be a vector of any dimension. Suppose the in-

put x = {x1, x2, . . . , xm} is the vector of m dimensions and the output y contains n

dimensions, the calculation is

y = WTx + b =



w1,1x1 + w2,1x2 + · · ·+ wm,1xm + b1

w1,2x1 + w2,2x2 + · · ·+ wm,2xm + b2

...

w1,nx1 + w2,nx2 + · · ·+ wm,nxm + bn


,

where x is the input, W ∈ Rm×n is the weight parameter, and b ∈ Rn is the bias

parameter. The special case of the FC layer when n = 1 is the linear regression

model.

Stacking multiple FC layers increases the ability to approximate the value. How-

ever, naively stack the layers has an issue in mathematical aspect. It is necessary to

apply the activation function between each layer. The detail will be described in the

following section.

Activation Function

The key characteristic of the DNNs is that they are comprised of the multiple

layers such that it promotes the predictive power. Indeed, näıvely stacking the FC

layers does not improve much result in model learning because of the mathematical

issue. Specifically, the two-layer neural network calculation is

y = WT
2 (WT

1 x + b1) + b2

= WT
2 WT

1 x + WT
2 b1 + b2

= W̃Tx + b̃,
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Figure 1.4: The plot of sigmoid function.

where W̃T is the linear combination of the weight, i.e., WT
2 WT

1 , and b̃ is the adjusted

value of the bias, i.e., WT
2 b1 + b2. Thus, in this case, having two layers does not

increase the ability to approximate the output.

The activation function is introduced to solve this problem. Being the non-linear

function, it locates between layers to break their linearity. By the insertion, the

two-layer neural network becomes

y = WT
2 σ(WT

1 x + b1) + b2,

where σ(·) represents the activation function.

The well-known activation functions, that are mostly applied, are given as follows.

Sigmoid Function or Logistic Function Sigmoid function is the well-known

activation function that is also used in the logistic regression model. It converts

the input of real value, (−∞,∞), to the probability-like output, [0, 1], as shown in

Fig. 1.4. The formulation is given as

sigmoid(x) =
1

1 + e−x
.

Hyperbolic Tangent Function Hyperbolic tangent function (tanh) is one of the

hyperbolic functions, i.e., trigonometric functions defined for the hyperbola. It con-
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Figure 1.6: The plot of rectified linear unit (ReLU) function.

verts the input of real value, (−∞,∞), to the output of range [−1, 1]. This plot

between input and output is shown in Fig. 1.5. The function is defined as

tanh(x) =
ex − e−x

ex + e−x
.

Rectified Linear Unit (ReLU) Although the above two activation functions can

introduce non-linearity to the model, there remains a problem. In general, the op-

timization is performed utilizing the gradient (i.e., the slope) of the function. The

function that produces the output with the slope equals or close to zero will hinder

optimization. The problem is called gradient vanishing. Thus, for the sigmoid and
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hyperbolic tangent function, the model encounters this problem when the input value

is far from zero.

The ReLU function can solve this problem. ReLU is the non-linearity function

that outputs the value identical to its input when the input value is higher than zero;

otherwise, it outputs zero. Concretely, the function is

ReLU(x) = max(0, x).

The gradient that is caused by this function is 1 if the input is more than zero, and

it is 0 when the input is less than zero.

Convolutional Neural Network (CNN)

The traditional multi-layer neural network is comprised of the FC layers. It learns

to recognize the patterns from the data by the whole information at a time. Although

it works well for some types of data, e.g., tabular data, it does not work well on image

data.

Figure 1.7: Examples of dog images. The main interested areas are located
differently in different images. They differ in spatial dimension, size of ob-
ject, surrounding environments, etc. (Image source: https://www.kaggle.com/c/

dog-breed-identification)

Images contain a more complicated pattern than the tabular data. Since the image

has spatial dimensions, i.e., height and width, the informative content can be varied

in the image. For instance, the image sample that belongs to class Dog must present

the whole or some part of the dog in the image. Comparing two different samples, the

dog might be located in a totally different spatial position and context, as shown in

Fig. 1.7. Thus, the model must be invariant to changes in the spatial dimension. The
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Figure 1.8: Two dimensional convolution filter in CNN. The convolutional filter move
throughout the image in x and y axes. It performs the element-wise multiplication in
each area.

FC layer does not satisfy this requirement since it takes the whole image to calculate

the output.

CNN consists of the module called the 2-dimensional convolution layer. This

module is designed to capture the feature of the image such that its output is invariant

to the spatial dimension. Specifically, it calculates the output from a small and limited

area in the image, e.g., 3×3 or 5×5 pixels, but the calculation is performed throughout

the spatial dimension of the image by moving the weight, so-called filter, along with

height and width, as shown in Fig. 1.8. The step of moving the filter is called “stride”.

Pooling Layer

Similarly to the convolution layer, the pooling layer applies the filter throughout

the input. The difference is that it does not calculate the output using the parameter,

but it applies the aggregation function to the input data. Max pooling layer and

average pooling layer are the pooling layers that are mostly used in DNN.

The pooling layer is mostly used to reduce the spatial dimension of the input.

In this sense, it is usually applied to the input using the stride larger than 1, e.g.

stride = 2, such that the sliding of the filter will produce the output with lower

height and width.

The global pooling layer is a special type of pooling layer. It is attached at the

end of the convolution layers to aggregate the entire spatial dimension of the input,

and produce the output of 1× 1 pixels. The output is then possible to be forwarded

to the FC layer because the spatial dimension has been removed.
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The other variation of the pooling layer is the covariance pooling layer [35]. It

utilizes the covariance to replace the average function.

Batch Normalization (BN)

In modern DNN, the training is executed in batch manner. The batch of training

samples is randomly selected from the training dataset and is given to the model.

This way of training promotes the generalization of the trained model. However, it

encounters the problem when the sampled batches’ statistics is fluctuated, i.e., mean

and standard deviation. It causes a difficulty to the training, e.g., slow convergence.

This problem is called internal covariate shift [36].

Batch normalization was first introduced by Ioffe and Szegedy [36] to reduce the

internal covariate shift. During the training process, it transforms the input data

using empirical statistic of the batch with the standard score formulation,

z =
x− µ
σ

,

where x is the input sample, µ and σ are the empirical mean and standard deviation

observed from the batch. The running mean and standard deviation are tracked from

the training phase. They are applied instead of the empirical statistics in the inference

time.

The standard score is then modified by the parameterized shifting and scaling.

Concretely, the formulation is

ẑ = γz + β,

where z is the standard score produced by the previous step, γ is the learnable scaling

factor, and β is the learnable shifting offset.

Softmax and Temperature Scaled Softmax

Training DNN requires the model to output the probability-like value such that

the quality of the prediction can be estimated, i.e., loss value. In fact, the output

from the model is the real value that varies from −∞ to ∞. The softmax function is

generally attached at end of the network to transform the network’s output into the
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probability-like value that varies from 0 to 1. Concretely, the formulation is

Softmax(z)i =
exp zi∑C
j exp zj

,

where zi is the i-th element of the DNN’s output, called logit, C is the number of the

total classes.

Temperature scaling is also introduced in many tasks such as knowledge distil-

lation [37] and calibration [11]. The temperature scaling can be used to adjust the

confidence (probability) of the prediction. The formulation is given as

Softmax(z, T )i =
exp [zi/T ]∑C
j exp [zj/T ]

,

where T is the temperature. High temperature encourages the lower confidence, while

low temperature increases the confidence.

Loss Function and Gradient Descent Optimization

The model is trained using the optimization method. Meaning that we search

for the appropriate model for the training dataset by obtaining the clue from the

observed samples, i.e., the training dataset. In the optimization problem perspective,

the step of the optimization performs to satisfy the objective which is quantitatively

measured, whether it is minimization or maximization. From DNNs perspective,

the objective of the optimization is called loss function. The optimization aims to

minimize the loss regarding the training samples. In general, the loss function is the

negative log-likelihood function. See Section 1.2.2 for more detail.

To reduce the loss, the optimization measures the tendency of the loss value con-

cerning model parameters and adjusts the parameters in the direction that minimizes

the loss. This optimization is called gradient descent optimization. Gradient is the

tendency that is used to adjust the model’s parameters; it is the partial differentiation

with regard to the parameters, i.e., ∇w = dLoss
dw

, where ∇w is the gradient w.r.t. the

parameter w and Loss indicates the loss value.

Indeed, the stochastic variation of the gradient descent is adopted in DNNs. The

batch of the random samples is selected from the training dataset and is given to the
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model for training rather than using the entire dataset.

1.3 Outline of the Dissertation

In this dissertation, we describe and discuss the problems of the out-of-distribution

in the classification model. We also include analyses in many aspects. The outline of

the content is described in what follows.

In Chapter 2, we raise the unreasonable scheme of the existing OOD detection

methods. As we mentioned earlier in Section 1.1, many OOD detection methods

consider the problem in an unrealistic scenario. Specifically, they assume the existence

of the validation OOD samples and use them in the hyperparameter tuning before

evaluating the detection performance. We argue this assumption. The same argument

is also raised in the other paper [1]. Our assumption of the problem of the OOD

detection is that the OOD detection method should not depend on the validation

set for the hyperparameter tuning. Thus, we propose the cosine network, the novel

approach to detect the OOD samples. Furthermore, the proposed method is free of the

hyperparameter tuning that is done regards to the OOD detection task. To emphasize

the unrealistic of using validation OOD samples, we adopt the evaluation method

proposed by [1] which utilizes a more realistic assumption. The results prove that

requiring the validation samples is not appropriate; it gives low performance when

the validation does not represent the unseen OOD samples well enough. The cosine

network outperforms the other methods in this evaluation. It also has competitive

performance in the conventional evaluation which allows the unrealistic assumption.

In Chapter 3, we re-evaluate the existing OOD detection method in the practical

classification tasks. In the research community, many OOD detection methods show

high performance in the experimental dataset, e.g., CIFAR-10/100, MNIST, and

SVHN. However, there remains a question if these methods perform well to detect

the OOD samples in the realistic images, i.e., the image that has higher resolution,

and in the practical OOD cases. We only select the OOD detection methods that

are either independent of the hyperparameter tuning or having the relaxation to

remove the validation samples requirement. The experiments are separated into three

cases. First, we test the model on irrelevant inputs detection. It is the most common
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evaluation that is used in most of the OOD detection studies [2–4]. The irrelevant

input is the sample that is out of consideration in the application aspect. Second, we

consider more difficult case, i.e., novel class detection. Suppose we train the model

to classify k breeds of dogs. The (k + 1)-th breed is considered a novel class to

our model. In the application aspect, this type of sample is possibly the candidate

of being collected. They can involve in the improvement of the knowledge for the

classification model, e.g., re-train the model with the extended class. Third, we focus

on domain shift detection. Domain shifting is a problem that causes compromised

performance in real-world applications. It is when the incoming sample is far from the

seen training samples; it differs in some aspects, e.g., resolution, lighting condition,

and image quality. The domain shifting is represented by both real and synthesized

images. We use the OOD detection score to predict the accuracy deterioration such

that the practitioners can decide whether to accept the deterioration or to perform

the domain adaptation. We found that the cosine network works consistently well in

all cases compared to the others.

In chapter 4, we propose novel training to bridge the gap between ID and OOD

by the synthesized corrupted images. Cosine network has to sacrifice a slight perfor-

mance in the classification accuracy to perform well in OOD detection. The proposed

method in this chapter can achieve higher performance in OOD detection while the

ID accuracy is similar to, or even higher than, the standard network. In general, the

training dataset contains the samples that absolutely belong to one of the categories,

i.e., pc = 1, where c is the labeled class. Learning with the vanilla approach produces

a large gap between each learned categories. It causes difficulty for the DNN to as-

sign low confidence to the OOD samples. Hendrycks et al. [7] proposed to alleviate

this problem by using the auxiliary dataset which represents the seen outlier. It is

expected to well simulate the incoming OOD samples in the inference time. The effec-

tiveness of this assumption is questionable. Inspired by the experiment in Chapter 3,

we utilize the corrupted images to fill this gap in the feature space; the corrupted

image is considered shifted from the original training dataset. They involve in the

training to represent the area of low confident prediction. Specifically, we assign the

soft-label as the target label in the training. We found that the proposed method

achieves high performance in OOD detection and outperforms the others in conven-
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tional OOD detection. Utilizing the corrupted images also pushes the performance

in the ID classification. Besides, we also observe that it improves the calibration of

the model.

Finally, in Chapter 5, we summarize the content and provide the conclusion of

this dissertation. Furthermore, we state the open problem and the possible future

work in this chapter.
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Chapter 2

Hyperparameter-Free

Out-of-Distribution Detection

Using Cosine Similarity

2.1 Introduction

It is widely recognized that deep neural networks tend to show unpredictable

behaviors for out-of-distribution (OOD) samples, i.e., samples coming from a different

distribution from that of the training samples. They often give high confidence (i.e.,

high softmax value) to OOD samples, not only to in-distribution (ID) samples (i.e.,

test samples from the same distribution as the training samples). Therefore, it has

been a major research topic to detect OOD samples in classification performed by

deep neural networks; many methods have been proposed so far [2–4,19,27,38–40].

A problem with the existing methods, especially those currently recognized as the

state-of-the-art in the community, is that they have hyperparameters specific to OOD

detection. They determine these hyperparameters using a certain amount of OOD

samples as ‘validation’ data; that is, these studies assume the availability of (at least

a small amount of) OOD samples. This assumption, however, is unlikely to hold

true in practice; considering the definition of OOD, it is more natural to assume its

distribution to be unknown. Even when the assumption is indeed wrong, it will be

fine if OOD detection performance is insensitive to the choice of the hyperparamters,
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more rigorously, if the hyperparameters tuned on the assumed OOD samples generalize

well to incoming OOD samples we encounter in practice. However, a recent study [1]

indicates that this is not the case, concluding that none of the existing methods is

ready to use, especially for the tasks with high-dimensional data space, e.g., image

classification.

In this chapter, we propose a novel method that uses cosine similarity for OOD

detection, in which class probabilities are modeled using softmax of scaled cosine

similarity. It is free of any hyperparameters associated with OOD detection, and

thus there is no need to access OOD samples to determine hyperparameters, making

the proposed method free from the above issue. We show through experiments that

it outperforms the existing methods by a large margin on the recently proposed

test [1], which takes the above issue of hyperparameter dependency into account; it

also attains at least comparable performance to the state-of-the-art methods on the

conventional test, in which the other methods but ours tune hyperparameters using

explicit OOD samples.

It should be noted that a concurrent work [5] also shows the effectiveness of

softmax of the scaled cosine similarity for OOD detection. Our method is technically

mostly the same, but the present chapter shows several different results/conclusions

from their paper. The paper [5] shows a conjecture that the scaling factor of the cosine

similarity approximates the probability of an input being in-distribution, contributing

to improved detection performance. In this chapter, however, we show empirical

evidence that this is not the case. It is also noted that, although recent methods for

metric learning [41–46] similarly employ scaled cosine similarity as well, they do not

guarantee its effectiveness on OOD detection. There are several differences from them

in the output layer’s design, which contributes to detection accuracy. Concerning this,

we provide a detailed ablation study to clarify the method’s differences from common

metric learning approaches.

22



2.2 Related Works

2.2.1 Uncertainty of Prediction

It is known that when applied to classification tasks, deep neural networks often

exhibit overconfidence for unseen inputs. Many studies have been conducted to find

a solution to this issue. A popular approach is to evaluate uncertainty of a prediction

and use it as its reliability measure. There are many studies on this approach, most

of which are based on the framework of Bayesian neural networks or its approxima-

tion [13, 17, 47, 48]. It is reported that predicted uncertainty is useful for real-world

applications [14–16, 49, 50]. However, it is still an open problem to accurately evalu-

ate uncertainty. There are also studies on calibration of confidence scores [11,51,52].

Some studies propose to build a meta system overseeing the classifier that can esti-

mate the reliability of its prediction [53,54].

2.2.2 Out-of-distribution (OOD) Detection

Detection Methods.

A more direct approach to the above issue is OOD detection. A baseline method

that thresholds confidence score, i.e., the maximum softmax output, is evaluated in [2].

This study presents a design of experiments for evaluation of OOD detection methods,

which has been employed in the subsequent studies. Since then, many studies have

been conducted. It should be noted that these methods have hyperparameters for

OOD detection, which need to be determined in some way. Some studies assume a

portion of OOD samples to be given and regard them as a ‘validation’ set, by which

the hyperparemters are determined.

ODIN [3] applies perturbation with a constant magnitude ε to an input x in the

direction of increasing the confidence score (i.e., the maximum softmax) and then uses

the increased score in the same way as the baseline. An observation behind this proce-

dure is that such perturbation tends to increase confidence score more for ID samples

than for OOD samples. Rigorously, x is perturbed to increase a temperature-scaled

softmax value. Thus, ODIN has two hyperparameters ε and the softmax temperature.

In the experiments reported in [3], ε as well as the temperature are determined by
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using a portion of samples from a target OOD dataset; this is done for each pair of

ID and OOD datasets.

The current state-of-the-art of OOD detection is achieved by the methods [4, 38]

employing input perturbation similar to ODIN. It should be noted that there are

many studies with different motivations, such as generative models [21, 55], a prior

distribution [19], robustification by training networks to predict word embedding of

class labels [39], pretraining of networks [7, 56], and batch-wise fine-tuning [27].

In [38], a method that employs an ensemble of networks and similar input pertur-

bation is proposed, achieving the state-of-the-art performance. In the training step of

this method, ID classes are split into two sets, one of which is virtually treated as ID

classes and the other as OOD classes. A network is then trained so that the entropy

for the former samples is minimized while that for the latter samples is maximized.

Repeating this for different K splits of classes yields K leave-out classifiers (i.e., net-

works). At test time, an input x is given to these K networks, whose outputs are

summed to calculate ID class scores and an OOD score, where x is perturbed with

magnitude ε in the direction of minimizing the entropy. In the experiments, ε, the

temperature, and additional hyperparameters are determined by selecting a particu-

lar dataset (i.e., iSUN [57]) as the OOD dataset, and OOD detection performance on

different OOD datasets is evaluated.

In [4], another method is proposed, which models layer activation over ID samples

with class-wise Gaussian distributions. It uses the induced Mahalanobis distances

to class centroids for conducting the classification as well as OOD detection. It

employs logistic regression integrating information from multiple layers and input

perturbation similar to ODIN, which possesses several hyperparameters. For their

determination, it is suggested to use explicit OOD samples, as in ODIN [3]. Another

method is additionally suggested to avoid this potentially unrealistic assumption,

which is to create adversarial examples for ID samples [58] and use them as OOD

samples, determining the hyperparameters. However, even this method is not free

of hyperparameters; the creation of adversarial examples needs at least one (i.e.,

perturbation magnitude). It is not discussed how to choose it in their paper.
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Evaluation Methods.

Most of the recent studies employ the following evaluation method [2]. Specifying

a pair of ID and OOD datasets (e.g., CIFAR-10 for ID and SVHN for OOD), it

measures accuracy of distinguishing the OOD samples and ID samples. As the task

is detection, appropriate metrics are used, such as accuracy at true positive rate

(TPR) = 95%, area under the ROC curve (AUROC), and under the precision-recall

curve (AUPR). As is noted in Sec. 2.1, most of the existing methods assume the

availability of OOD samples and use them to determine their hyperparameters. Note

that these OOD samples are selected from the true OOD dataset specified in this

evaluation method. We will refer to this one-vs-one evaluation.

Recently, Shafaei et al. have raised a concern about the dependency of the ex-

isting methods on the explicit knowledge of the true OOD dataset, and proposed a

novel evaluation method that aims at measuring the practical performance of OOD

detection [1]. It assumes an ID dataset and multiple OOD datasets D = {D1, . . .} for

evaluation. Then, the evaluation starts with choosing one dataset Di ∈ D and use the

samples from it to determine the hyperparameters of the method under evaluation;

it then evaluates its detection accuracy when regarding each of the other datasets in

D (i.e., D\Di) as the OOD dataset, reporting the average accuracy over D\Di. Note

that this test returns the accuracy for each dataset in D (used for the assumed OOD

dataset). We will refer to this less-biased evaluation.

2.2.3 Cosine Similarity

The proposed method employs softmax of scaled cosine similarity instead of or-

dinary softmax of logits. A similar approach has already been employed in recent

studies of metric learning, such as L2-constrained softmax [41], SphereFace [42],

NormFace [43], CosFace [44], ArcFace [45], AdaCos [46], etc. Although it may seem

straightforward to apply these methods to OOD detection, to the authors’ knowledge,

there is no study that has tried this before.

These metric learning methods are identical in that they use cosine similarity.

They differ in i) if and how the weight w or the feature f of the last layer are

normalized; ii) if and how margins are used with the cosine similarity to encourage
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maximization of inter-class variance and minimization of intra-class variance; and iii)

how the scale parameter (i.e., s in (2.3)) is treated, i.e., as either a hyperparameter, a

learnable parameter [43], or other [46]. According to this categorization, our method

is the most similar to NormFace [43] and AdaCos [46], in which both w and f are

normalized and no margin is utilized. However, our method still differs from these

metric learning methods in that it predicts s along with class probabilities at inference

time. Ours also differs in that it uses a single fully-connected layer to compute

the cosine similarity, whereas these metric learning methods use two fully-connected

layers.

2.3 Proposed Method

2.3.1 Softmax of Scaled Cosine Similarity

The standard formulation of multi-class classification is to make the network pre-

dict class probabilities for an input, and use cross-entropy loss to evaluate the cor-

rectness of the prediction. The predicted class probabilities are obtained by applying

softmax to the linear transform Wf +b of the activation or feature f of the last layer,

and then the loss is calculated assuming 1-of-K coding of the true class c as

L = − log
ew

>
c f+bc∑C

i=1 e
w>

i f+bi
, (2.1)

where W = [w1, . . . ,wC ]> and b = [b1, . . . , bC ]>.

Metric learning attempts to learn feature space suitable for the purpose of open-

set classification, e.g., face verification. Unlike earlier methods employing triplet

loss [59,60] and contrastive loss [61,62], recent methods [43–45] modify the loss (2.1)

and minimize the cross entropy loss as with the standard multi-class classification.

The main idea is to use the cosine of the angle between the weight wi and the feature

f as a class score. Specifically, cos θi ≡ w>i f/(‖wi‖‖f‖) is used instead of the logit

w>i f + bi in (2.1); then a new loss is given as

L = − log
ecos θc∑C
i=1 e

cos θi
. (2.2)
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The behavior of softmax, i.e., how soft its maximum operation will be, depends

on the distribution of its inputs, which can be controlled by a scaling parameter of

the inputs, called temperature T . This parameter is used for several purposes [11,37].

In metric learning methods, it is employed to widen the range [−1, 1] of cos θi’s

inputted to softmax; specifically, all the input cosine cos θi’s are scaled by a parameter

s(= 1/T ), revising the above loss as

L = − log
es cos θc∑C
i=1 e

s cos θi
. (2.3)

2.3.2 Predicting the Scaling Parameter

In most of the metric learning methods employing similar loss functions, the scal-

ing parameter s in (2.3) is treated as either a hyperparameter chosen in a validation

step or a parameter automatically determined in the training step [43,46] There is yet

another method for determining s, which is to predict it from f together with class

probabilities. This makes the method hyperparameter-free. Moreover, we empirically

found that this performs the best. Among several ways of computing s from f , the

following works the best:

s = exp {BN(w>s f + bs)}, (2.4)

where BN is batch normalization [36], and ws and bs are the weight and bias of the

added branch to predict s.

2.3.3 Design of the Output Layer

In the aforementioned studies of metric learning, ResNets are employed as a base

network and are modified to implement the softmax of cosine similarity. Modern

CNNs like ResNets are usually designed to have a single fully-connected (FC) layer

between the final pooling layer (i.e., global average pooling) and the network output.

As ReLU activation function is applied to the inputs of the pooling layer, if we use

the last FC layer for computing cosine similarity (i.e., treating its input as f and its

weights as wi’s), then the elements of f take only non-negative values. Thus, the
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metric learning methods add an extra single FC layer on top of the FC layer and use

the output of the first FC layer as f , making f (after normalization) distribute on the

whole hypersphere. In short, the metric learning methods employ two FC layers at

the final section of the network.

However, we found that for the purpose of OOD detection, having two fully-

connected layers does not perform better than simply using the output of the final

pooling layer as f . Details will be given in our experimental results. Note that in

the case of a single FC layer, as f takes only non-negative values, f resides in the

first quadrant of the space, which is very narrow subspace comparative to the entire

space.

To train the modified network, we use a standard method. In our experiments,

we employ SGD with weight decay as the optimizer, as in the previous studies of

OOD detection [3, 4, 38, 39]. In several studies of metric learning [44, 45, 63], weight

decay is also employed on all the layers of networks. However, it may have different

effects on the last layer of the network employing cosine similarity, where weights are

normalized and thus its length does not affect the loss. In our experiments, we found

that it works better when we do not apply weight decay to the last layer.

2.3.4 Detecting OOD samples

Detecting OOD samples is performed in the following way. Given an input x, our

network computes cos θi (i = 1, . . . , C). Let imax be the index of the maximum of

these cosine values. We use cos θimax for distinguishing ID and OOD samples. To

be specific, setting a threshold, we declare x is an OOD sample if cos θimax is lower

than it. Otherwise, we classify x into the class imax with the predicted probability

es cos θimax/
∑
es cos θi .

2.4 Experimental Results

2.4.1 Experimental Settings

We conducted experiments to evaluate the proposed method and compare it with

existing methods.
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Evaluation Methods.

We employ the one-vs-one and less-biased evaluation methods explained in Sec. 2.2.2.

The major difference between the two is in the assumption of prior knowledge about

OOD datasets, which affects the determination of the hyperparameters of the OOD

detection methods under evaluation. Note therefore that the difference does not mat-

ter for our method, as it does not need any hyperparameter; it only affects the other

compared methods.

One-vs-one evaluation This evaluation assumes one ID and one OOD datasets. A

network is trained on the ID dataset and each method attempts to distinguish ID and

OOD samples using the network. Each method may use a fixed number of samples

from the specified OOD datasets for its hyperparameter determination. We followed

the experimental configurations commonly employed in the previous studies [3,4,38].

Less-biased evaluation This evaluation uses one ID and many OOD datasets.

Each method may access one of the OOD datasets to determine its hyperparameters

but its evaluation is conducted on the task of distinguishing the ID samples and

samples from each of the other OOD datasets. We followed the study of Shafaei et al.

[1] with slight modifications. First, we use AUROC instead of detection accuracy for

evaluation metrics (additionally, accuracy at TPR= 95% and AUPR-IN in Sec. 2.6),

as we believe that they are better metrics for detection tasks, and they are employed

in the one-vs-one evaluation. Second, we add more OOD datasets to those used in

their study to further increase the effectiveness and practicality of the evaluation.

Tasks and Datasets.

We use CIFAR-10/100 for the target classification tasks in all the experiments.

Using them as ID datasets, we use the following OOD datasets in one-vs-one evalu-

ation: TinyImageNet (cropped and resized) [64], LSUN (cropped and resized) [65],

iSUN [57],1 SVHN [66] and Food-101 [67] For the less-biased evaluation, we addi-

tionally use STL-10 [68], MNIST [69], NotMNIST, and Fashion MNIST [70]. As for

STL-10 and Food-101, we resize their images to 32× 32 pixels.

1Datasets are available at https://github.com/facebookresearch/odin.
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Remark We found that the cropped images of TinyImageNet and LSUN that are

provided by the GitHub repository of [3], which are employed in many recent studies,

have a black frame of two-pixel width around them; see Sec. 2.11 for details. Although

we are not sure if this is intentional, considering that the frame will make OOD

detection easier, we use two versions with/without the black frame in our experiments;

the frame-free version is indicated by ‘∗’ in what follows. In this section, we show

mainly results on the frame-free versions. Those on the original versions are shown

in Sec. 2.6, although it does not affect our conclusion.

Networks and Their Training.

For networks, we employ the two CNNs commonly used in the previous studies,

i.e., Wide ResNet [71] and DenseNet [72] as the base networks. Following [3], we use

WRN-28-10 and DenseNet-100-12 having 100 layers with growth rate 12. The former

is trained with batch size = 128 for 200 epochs with weight decay = 0.0005, and the

latter is trained with batch size = 64 for 300 epochs with weight decay = 0.0001.

Dropout is not used in the both networks. We employ a learning rate schedule, where

the learning rate starts with 0.1 and decreases by 1/10 at 50% and 75% of the training

steps.

The proposed method modifies the final layer and the loss of the base networks.

Table 2.1 shows comparisons between the base networks and their modified version.

The numbers are an average over five runs and their standard deviations are shown

in parenthesis. It is seen that the modification tends to lower classification accuracy

by a small amount. If this difference does matter, one may use the proposed network

only for OOD detection and the standard network for ID classification.

Compared Methods.

The methods we compare are as follows: the baseline method [2], ODIN [3],

Mahalanobis detector [4]2, and leave-out ensemble [38]. The last two methods are

reported to achieve the highest performance in the case of a single network and

multiple networks, respectively. We conduct experiments separately with the first

2We used the publicly available code: https://github.com/pokaxpoka/deep_Mahalanobis_

detector
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Table 2.1: Performance of the base networks and their modified versions for the
proposed method for the task of classification of ID (in-distribution) samples.

Network In-Dist
Testing Accuracy

Standard Cosine

Dense-100-12
CIFAR-10 95.11(0.10) 94.92(0.04)

CIFAR-100 76.97(0.24) 75.65(0.12)

WRN-28-10
CIFAR-10 95.99(0.09) 95.72(0.05)

CIFAR-100 81.04(0.37) 78.53(0.28)

three and the last one due to the difference in settings. We report those with the

leave-out ensemble in Sec. 2.10.

All these methods (but the baseline) have hyperparameters for OOD detection.

For ODIN and the Mahalanobis detector, we follow the authors’ methods [3, 4] to

determine them using a portion of the true OOD dataset. For the leave-out ensemble

(comparisons in Sec. 2.10), we use the values of detection accuracy from its paper

[38], in which the authors use a specific OOD dataset (iSUN) for hyperparameter

determination.

2.4.2 Comparison by Less-biased Evaluation

We first show the performance of the four methods, i.e., the baseline, ODIN,

the Mahalanobis detector, and ours, measured by the less-biased evaluation method.

Figure 2.1 shows the results3. The details of the experimental settings are as follows.

We use either CIFAR-10 or CIFAR-100 for the ID dataset. For the actual OOD

dataset, we choose one of the eleven datasets described above and evaluate the OOD

detection performance on each of the eleven ID-OOD pairs. For each ID-OOD pair,

we use one of the rest (i.e., ten datasets) as a hypothesized OOD dataset, using which

the hyperparameters are chosen for ODIN and Mahalanobis detector. We iterate this

for the ten datasets. For each method/setting, we evaluate five models trained from

3A complete table including other metrics, i.e., accuracy at TPR= 95% and AUPR-IN, is shown
in Sec. 2.6
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different initial values. Finally, we calculate, for each method on each ID-OOD pair,

the mean and standard deviation of AUROC (a bar and its error bar in Fig. 2.1) over

the five models and the ten hypothesized datasets (for ODIN and Mahalanobis).
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Figure 2.1: OOD detection performance (AUROC) measured by the less-biased evalu-
ation [1] for the baseline method [2], ODIN, [3] and the Mahalanobis detector [4], and
the proposed one (denoted as ‘Cosine’). Other metrics, i.e., accuracy at TPR=95%
and AUPR-IN, are reported in Sec. 2.6

It is seen from Fig. 2.1 that the proposed method consistently achieves better

performance than others. It is noted that the Mahalanobis detector, which shows the

state-of-the-art performance in the conventional (i.e., one-vs-one) evaluation, shows

unstable behaviors; the mean of AUROC tends to vary significantly and the standard

deviation is very large depending on the dataset used for hyperparameter determina-

tion. The same observation applies to ODIN.

This clearly demonstrates the issue with these methods, that is, their performance

is dependent on the choice of the hyperparameters. On the other hand, the proposed

method performs consistently for all the cases. This is also confirmed from Fig. 2.2,

which shows a different plot of the same experimental result; it shows AUROC for a

single OOD dataset instead of the mean over multiple OOD datasets shown in Fig. 2.1.

It is seen that the performance of the Mahalanobis detector varies a lot depending

on the assumed OOD dataset. Additionally, it can be seen that the dataset yielding

the highest performance differs for different true OOD datasets; iSUN, TIN(r), or
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Gaussian etc. is the best for detecting LSUN(r) as OOD, whereas F-MNIST or

NotMNIST is the best for detecting MNIST as OOD.
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Figure 2.2: Dependency of detection performance (AUROC) on the assumed OOD
datasets (whose names are given in the horizontal axis) used for determining hy-
perparameters. Mahalanobis detector (solid lines) [4] and our method (broken lines).
CIFAR-100 is used as ID and either LSUN(r) (in red color) or MNIST (in green color)
is used as true OOD. DenseNet-100-12 is used for the network. Our method does not
have hyperparameters and thus is independent of the assumed OOD dataset.

2.4.3 Comparison by One-vs-one Evaluation

We then show the comparison of the same four methods in the one-vs-one eval-

uation, which is employed in the majority of the previous studies. We ran each

method five times from the training step, where the network weights are initialized

randomly, and report the mean and standard deviation here. Table 2.2 shows the

results. It is observed that the proposed method achieves better or at least competi-

tive performance to the others. When using DenseNet-100-12, the proposed method

consistently achieves higher performance than the Mahalanobis detector on almost

all the datasets.

2.4.4 Ablation Study

Although the proposed method employs softmax of cosine similarity equivalent

to metric learning methods, there are differences in detailed designs, even compared

with the most similar NormFace [43]. To be specific, they are the scale prediction

(referred to as Scale in Table 2.3), the use of a single FC layer instead of two FC

layers (Single FC), and non-application of weight decay to the last FC layer (w/o
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Table 2.2: OOD detection performance of the four methods measured by conventional
one-vs-one evaluation.

ID OOD
AUROC

Base [2] ODIN [3] Maha [4] Cosine

D
en

se
-1

00
-1

2

C
IF

A
R

-1
0

TIN (c) 94.90(0.43) 98.79(0.32) 94.48(1.19) 98.89(0.24)

TIN (c)* 93.26(0.85) 96.67(0.97) 97.36(0.39) 98.74(0.23)

TIN (r) 92.67(1.23) 97.20(1.17) 98.91(0.23) 98.82(0.29)

LSUN (c) 95.57(0.20) 98.48(0.14) 89.06(3.21) 99.09(0.12)

LSUN (c)* 93.72(0.39) 96.41(0.52) 93.63(0.69) 98.83(0.18)

LSUN (r) 94.28(0.52) 98.43(0.49) 99.00(0.23) 99.19(0.22)

iSUN 93.62(0.83) 97.92(0.71) 98.95(0.21) 99.20(0.19)

SVHN 90.28(2.47) 95.11(0.48) 98.89(0.37) 99.11(0.36)

Food-101 89.87(0.44) 92.06(0.71) 80.38(3.83) 93.98(0.54)

C
IF

A
R

-1
00

TIN (c) 83.70(4.00) 94.48(3.21) 92.97(1.63) 97.90(0.29)

TIN (c)* 79.32(4.14) 88.54(4.27) 93.18(0.39) 97.31(0.45)

TIN (r) 77.07(6.35) 88.14(6.92) 96.81(0.27) 97.82(0.53)

LSUN (c) 82.92(0.59) 94.72(0.59) 91.65(2.96) 96.73(0.31)

LSUN (c)* 78.46(0.91) 87.89(1.13) 85.44(1.85) 95.52(0.32)

LSUN (r) 78.44(5.41) 90.38(4.76) 97.00(0.15) 97.59(0.75)

iSUN 76.89(6.28) 88.27(6.49) 97.04(0.10) 97.45(0.73)

SVHN 77.36(2.83) 91.60(0.73) 96.48(0.68) 96.90(0.79)

Food-101 84.38(0.48) 90.82(0.60) 67.14(1.39) 90.79(0.49)

ID OOD
AUROC

Base [2] ODIN [3] Maha [4] Cosine

W
R

N
-2

8-
10

C
IF

A
R

-1
0

TIN (c) 93.86(0.90) 95.88(1.01) 95.99(1.04) 98.35(0.32)

TIN (c)* 91.79(1.57) 92.17(2.19) 98.50(0.11) 98.17(0.33)

TIN (r) 89.21(2.65) 90.60(3.21) 99.15(0.18) 97.65(0.66)

LSUN (c) 95.41(0.26) 97.20(0.15) 92.65(1.33) 99.19(0.07)

LSUN (c)* 93.67(0.50) 95.08(0.42) 96.90(0.35) 98.98(0.07)

LSUN (r) 92.45(1.48) 94.48(1.70) 99.37(0.13) 98.59(0.34)

iSUN 91.22(2.05) 93.25(2.43) 99.29(0.10) 98.48(0.36)

SVHN 94.43(1.30) 93.34(3.60) 99.28(0.09) 99.52(0.24)

Food-101 89.71(0.90) 89.18(2.37) 90.43(1.54) 93.95(0.41)

C
IF

A
R

-1
00

TIN (c) 84.47(1.24) 91.72(1.10) 92.58(2.60) 96.76(0.34)

TIN (c)* 80.90(0.90) 87.08(1.29) 96.45(0.30) 95.91(0.42)

TIN (r) 76.67(2.03) 86.28(2.43) 97.82(0.13) 95.84(0.67)

LSUN (c) 81.91(1.31) 91.75(0.44) 80.48(1.14) 96.09(0.62)

LSUN (c)* 79.17(1.25) 88.06(0.46) 91.13(0.52) 94.92(0.65)

LSUN (r) 78.00(1.95) 87.90(1.83) 97.80(0.15) 95.18(0.86)

iSUN 77.29(2.15) 87.07(2.00) 97.66(0.14) 95.39(0.55)

SVHN 79.82(2.49) 93.46(1.05) 97.96(0.49) 97.52(0.41)

Food-101 89.25(0.40) 90.76(0.35) 91.15(0.66) 92.53(0.38)

WD). To see their impacts on performance, we conducted an ablation study, in which

WRN-28-10 is used for the base network and TinyImageNet (resized) is chosen for

an OOD dataset.

Table 2.3 shows the results. Row 1 shows the results of the baseline method

[2], which are obtained in our experiments. Row 2 shows the results obtained by

incorporating the scale prediction in the standard networks; to be specific, s predicted

from f according to (2.4) is multipled with logits as s · (wif +bi) (i = 1, . . . , C), which

are then normalized by softmax to yield the cross-entropy loss. As is shown in Row 2,

this simple modification to the baseline boosts the performance, which is surprising.

Row 3 and below show results when cosine similarity is used for OOD detection.

Rows 3 to 6 show the results obtained when a fixed value (i.e., 16, 32, 64, 128) is

chosen for s. It is observed from this that the application of scaling affects a lot

detection performance, and it tends to be sensitive to their choice. This means that,

if s is treated as a fixed parameter, it will become a hyperparameter that needs to be

tuned for each dataset. Row 7 shows the result when the scale is predicted from f as

in Row 1 but with cosine similarity. It is seen that this provides results comparable

to the best case of manually chosen scales.
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Table 2.3: Ablation tests for evaluating the contribution of different components (i.e.,
‘Cosine’, ‘Single FC’, ‘Scale’, and ‘w/o WD’; see details from the main text) of the
proposed method. AUROCs for detection of OOD samples (TinyImageNet (resized))
are shown.

Cosine Single FC Scale w/o WD C-10 C-100

(1) Baseline [2] 89.22 76.59

(2) 7 3 Pred 7 95.74 88.70

(3) 3 3 16 7 94.09 82.76

(4) 3 3 32 7 96.53 89.02

(5) 3 3 64 7 87.06 95.66

(6) 3 3 128 7 62.02 94.82

(7) 3 3 Pred 7 95.16 91.30

(8) 3 3 Pred 3 97.66 95.84

(9) 3 7 Pred 7 94.71 87.55

(10) 3 7 Pred 3 89.90 86.96

Row 8 shows the results obtained by further stopping application of weight decay

to the last layer, which is the proposed method. It is seen that this achieves the best

performance for both CIFAR-10 and CIFAR-100. Rows 9 and 10 show the results

obtained by the network having two FC layers in its final part, as in the recent metric

learning methods. Following the studies of metric learning, we use 512 units in the

intermediate layer. In this architecture, it is better to employ weight decay in the last

layer as with the metric learning methods (i.e., Rows 9 vs 10). In conclusion, these

results confirm that the use of cosine similarity as well as all the three components

are indispensable to achieve the best performance.

2.5 Effectiveness of the Scaling Factor

2.5.1 Explanation by Hsu et al.

Our method and that of Hsu et al. [5] share the key component, the scaled cosine

similarity, s cos θi, in which the angle θi with the i-th class centroid as well as the scale
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Figure 2.3: Upper: Histograms of g(x) of [5] for samples from ID (CIFAR-100) and
different OOD datasets, respectively. Lower: Histograms of the cosine similarity for
the same ID and OOD samples. The network is WRN-28-10 and dropout is not
employed.

s are both predicted from the input x. In [5], not s but its inverse (i.e., 1/s), denoted

by g(x), is predicted in a different way. The authors argue that g(x) approximates

p(din|x), the probability of the input x being in-distribution. They then argue that

this contributes to better OOD detection performance. However, this explanation

contradicts with empirical observation, and therefore it must be wrong. Figure 2.3

(the upper row) shows the histograms of g(x), which is computed according to the

method of [5], for ID and OOD samples. Here, we use CIFAR-100 for the ID dataset

and several others for OOD datasets; test samples are used for both. As is clearly

seen, g(x) is statistically not larger for ID samples than OOD samples, although

its value should be consistently larger for ID than OOD samples if their argument

is true. The lower row of Fig. 2.3 shows the histograms of the cosine similarity

that is used for detecting OOD samples, showing its ability to distinguish ID and

OOD samples. In short, g(x) cannot be seen as an approximation of p(din|x) and

it alone cannot detect OOD samples with good accuracy. The authors show that

using dropout regularization induces different behavior of g(x) between ID and OOD

samples, but it is not employed in the main experiments evaluating OOD detection

performance. Although it is not clear why the use of dropout makes g(x) behave

(slightly) differently, it should be concluded that the aforementioned claim on g(x) is

not the reason for the good performance of OOD detection.
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Figure 2.4: Evolution of the scale s in first training epoch. The x-axis shows the
training step and the y-axis indicates the average scale over the training batch.

2.5.2 Why Is Predicting s Essential?

Then, why is it essential to make the network predict the scale s. We remind the

readers that we use cos θi without s to detect OOD samples, which is the case as well

with [5]. Thus, it is obviously associated not with prediction but with learning; that is,

it contributes to better learning of feature space for OOD detection. An observation

from our experiments is that s tends to be small at the initial training stage and

becomes larger as the training goes, as shown in Fig. 2.4. This is reasonable since

small s induces high entropy (i.e., softmax scores being more uniform and flattened)

and large s induces low entropy; at the initial stage, there are a lot of misclassifications

due to random weight initialization, leading to large cross-entropy loss, which will be

compensated by making s small. More importantly, once the network has learned

to correctly classify ID samples, or specifically, once it has learned to be able to

consistently output max-logits for the correct classes, then s will start to become large;

the minimization of the loss will be achieved not by reorganizing the feature space

but by making s larger. We conjecture that this mechanism serves as a regularization

to avoid overfitting the learned feature space to ID samples, while such overfitting

occurs in the training of the standard networks. We believe that this leads to the

difference in the OOD detection performance between the proposed cosine networks

and standard networks.
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2.6 Detailed Results of Less-Biased Evaluation

In Sec. 2.4.2, we report results of the less-biased evaluation in Fig. 2.1. We show

here additional, more detailed results of the same experiments including two addi-

tional metrics, i.e., accuracy at TPR= 95% and AUPR-In, in Table 2.4. The details

of the experimental configurations are provided in Sec. 2.4.1.

In the above experiments, we used TIN(c)* and LSUN(c)*, i.e., our corrected

version of the cropped images from TinyImageNet and LSUN; see Sec. 2.11. For

the sake of completeness, we also conducted the same experiments using TIN(c) and

LSUN(c), their original versions having a two-pixel black frame, supplied by the

GitHub repository of the authors of ODIN [3]. Table 2.5 shows the results.

2.7 Dependency on an OOD Validation Dataset:

Full Version

In Fig. 2.2 of Sec. 2.4.2, we demonstrate the dependency of the previous methods

on the assumed OOD dataset used for hyperparameter determination, where only

TinyImageNet (resized) and F-MNIST are used as the assumed datasets. We show

here the complete results in Fig. 2.5; it shows AUROC of detecting OOD samples

given in the horizontal axis when CIFAR-100 [73] is the ID dataset and WRN-28-10

is employed.

2.8 Mahalanobis Detector with Hyperparameters

Tuned by Adversarial Samples

As mentioned in Sec. 2.2.2, the Mahalanobis detector [4] has two modes of selecting

its hyperparameters. One is to use the explicit OOD samples and the other is to

create adversarial examples from the ID samples and assume them as OOD samples.

Although the latter does not need explicit OOD samples, it incorporates another

hyperparameter(s) for the creation of the adversarial examples, and thus will not

be an ideal solution, as we point out previously. One may wonder, however, how
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Table 2.4: More detailed results of OOD detection performance measured by the
less-biased evaluation. The same four methods as those considered in Sec. 2.4.2 are
compared.

Network ID OOD Accuracy at TPR= 95% AUROC AUPR-In

Baseline [2] / ODIN [3] / Mahalanobis [4] / Ours

D
e
n
se

-1
0
0
-1
2

C
IF

A
R
-1
0

TIN (c)* 74.53(1.93) / 87.45(3.49) / 81.94(11.54) / 94.34(0.61) 93.26(0.85) / 96.02(1.64) / 90.16(11.53) / 98.74(0.23) 94.61(0.80) / 95.87(2.20) / 89.54(13.12) / 98.86(0.19)

TIN (r) 73.51(2.48) / 88.42(4.02) / 86.52(12.24) / 94.67(0.60) 92.67(1.23) / 96.43(1.64) / 92.97(10.27) / 98.82(0.29) 94.06(1.17) / 96.42(1.92) / 92.36(11.57) / 98.89(0.26)

LSUN (c)* 75.35(1.90) / 85.40(2.07) / 74.04(9.96) / 94.54(0.39) 93.72(0.39) / 94.57(1.40) / 83.64(16.27) / 98.83(0.18) 95.06(0.27) / 93.63(2.32) / 83.67(16.41) / 98.88(0.17)

LSUN (r) 76.74(1.40) / 92.05(2.55) / 87.07(12.11) / 95.72(0.56) 94.28(0.52) / 97.86(0.97) / 94.21(7.96) / 99.19(0.22) 95.60(0.44) / 97.99(1.01) / 94.22(8.49) / 99.26(0.20)

iSUN 75.12(2.08) / 90.60(2.99) / 86.53(12.74) / 95.62(0.51) 93.62(0.83) / 97.33(1.15) / 93.33(9.83) / 99.20(0.19) 95.48(0.66) / 97.69(1.14) / 93.70(9.85) / 99.33(0.16)

SVHN 68.84(2.90) / 76.81(7.84) / 81.63(17.75) / 95.36(0.87) 90.28(2.47) / 89.81(5.11) / 82.92(27.86) / 99.11(0.36) 82.90(7.23) / 76.03(11.04) / 78.05(30.89) / 97.99(0.73)

Food-101 67.93(0.59) / 71.83(5.12) / 56.14(4.56) / 79.79(1.03) 89.87(0.44) / 87.43(4.92) / 73.10(8.68) / 93.98(0.54) 83.58(0.96) / 73.45(11.31) / 58.06(11.76) / 89.99(0.90)

MNIST 76.35(3.52) / 95.81(2.11) / 91.93(11.67) / 95.15(1.51) 94.54(1.02) / 99.24(0.68) / 96.60(7.90) / 98.90(0.49) 95.98(0.83) / 99.36(0.55) / 97.66(5.91) / 99.06(0.42)

F-MNIST 81.65(2.11) / 95.70(1.25) / 79.22(9.62) / 94.83(0.71) 95.76(0.50) / 99.20(0.47) / 92.86(6.69) / 98.84(0.21) 96.76(0.35) / 99.28(0.39) / 94.15(6.49) / 98.94(0.17)

NotMNIST 75.95(3.71) / 90.83(5.11) / 89.22(7.87) / 95.75(1.09) 93.72(1.49) / 97.33(1.75) / 94.99(7.17) / 99.01(0.30) 91.90(2.37) / 95.26(2.89) / 89.81(11.58) / 98.62(0.45)

Gaussian 63.72(14.12) / 90.27(16.11) / 95.02(10.42) / 97.50(0.00) 91.96(4.29) / 97.92(3.28) / 97.51(13.79) / 100.00(0.00) 95.17(2.27) / 98.71(1.98) / 98.35(9.25) / 100.00(0.00)

Uniform 60.28(19.27) / 82.27(21.01) / 94.94(10.75) / 97.50(0.00) 88.72(7.18) / 94.66(7.88) / 97.42(13.85) / 100.00(0.00) 93.28(4.22) / 96.61(5.07) / 98.20(9.49) / 100.00(0.00)

C
IF

A
R
-1
0
0

TIN (c)* 60.26(1.93) / 70.35(5.42) / 65.48(12.80) / 89.81(1.52) 79.32(4.14) / 86.48(4.87) / 71.81(23.34) / 97.31(0.45) 80.66(6.76) / 85.96(6.62) / 73.56(20.11) / 97.55(0.37)

TIN (r) 58.66(2.35) / 70.94(6.67) / 70.66(16.66) / 91.37(1.59) 77.07(6.35) / 86.12(6.70) / 75.25(25.95) / 97.82(0.53) 78.60(9.30) / 85.48(8.86) / 77.31(21.32) / 97.99(0.45)

LSUN (c)* 58.61(0.57) / 67.31(3.92) / 59.41(7.88) / 85.26(0.79) 78.46(0.91) / 84.87(2.21) / 63.89(22.87) / 95.52(0.32) 80.86(0.93) / 85.02(1.94) / 66.59(20.06) / 95.82(0.29)

LSUN (r) 59.32(2.47) / 72.23(7.36) / 70.16(17.28) / 90.69(2.23) 78.44(5.41) / 87.80(5.81) / 76.61(25.13) / 97.59(0.75) 80.74(6.55) / 87.99(6.59) / 79.78(19.97) / 97.83(0.65)

iSUN 58.37(2.76) / 70.66(7.07) / 69.86(17.11) / 90.48(2.17) 76.89(6.28) / 86.28(6.40) / 75.20(25.92) / 97.45(0.73) 80.56(7.56) / 87.43(6.90) / 79.64(19.95) / 97.88(0.56)

SVHN 56.40(1.82) / 60.28(8.31) / 64.99(14.82) / 88.42(2.57) 77.36(2.83) / 80.18(5.87) / 68.85(29.66) / 96.90(0.79) 66.58(4.07) / 67.51(7.64) / 60.65(31.79) / 93.95(1.33)

Food-101 62.64(0.63) / 61.81(5.88) / 50.09(2.38) / 68.29(1.18) 84.38(0.48) / 83.91(5.60) / 62.73(10.63) / 90.79(0.49) 77.21(0.77) / 74.57(8.77) / 48.80(12.33) / 86.96(0.59)

STL-10 57.82(1.32) / 67.22(4.44) / 64.71(13.15) / 75.20(3.96) 76.53(2.23) / 83.14(3.86) / 70.19(26.16) / 90.28(1.95) 81.56(2.67) / 85.23(3.91) / 76.73(20.01) / 92.43(1.54)

MNIST 62.68(2.68) / 87.24(6.78) / 64.53(20.93) / 86.62(5.51) 81.56(3.83) / 96.09(3.00) / 83.64(22.90) / 96.17(2.06) 84.50(3.62) / 96.49(2.65) / 89.05(16.34) / 96.62(1.82)

F-MNIST 70.15(1.95) / 90.24(3.60) / 62.67(18.30) / 94.69(1.10) 88.52(1.04) / 97.33(1.27) / 79.12(19.24) / 98.92(0.35) 90.30(0.80) / 97.54(1.07) / 84.07(15.08) / 99.02(0.31)

NotMNIST 59.04(1.67) / 79.64(6.86) / 71.91(16.07) / 84.44(3.09) 79.97(1.37) / 92.35(3.38) / 82.46(22.02) / 95.80(0.86) 73.28(2.54) / 87.56(4.71) / 78.13(22.69) / 93.87(1.12)

Gaussian 47.54(0.05) / 55.72(14.42) / 75.98(24.43) / 97.50(0.00) 53.73(13.50) / 61.56(31.80) / 68.81(40.93) / 99.74(0.52) 69.06(10.42) / 73.30(23.12) / 78.59(28.01) / 99.84(0.30)

Uniform 48.34(1.81) / 60.07(20.04) / 77.50(23.34) / 97.50(0.01) 63.59(20.05) / 75.66(20.60) / 73.64(39.00) / 99.71(0.56) 75.90(13.16) / 83.94(14.22) / 81.48(26.97) / 99.82(0.34)

W
R
N
-2
8
-1
0

C
IF

A
R
-1
0

TIN (c)* 76.10(1.38) / 81.36(3.70) / 89.67(7.11) / 92.63(1.26) 91.79(1.57) / 90.35(3.81) / 96.50(4.12) / 98.17(0.33) 90.94(2.91) / 87.44(5.17) / 96.28(5.14) / 98.42(0.27)

TIN (r) 72.35(2.13) / 79.39(4.11) / 91.47(7.96) / 91.05(2.24) 89.21(2.65) / 89.43(3.78) / 96.96(4.98) / 97.65(0.66) 87.62(4.65) / 86.83(5.01) / 96.60(6.01) / 97.94(0.54)

LSUN (c)* 78.31(2.05) / 81.76(2.78) / 85.97(2.24) / 94.96(0.16) 93.67(0.50) / 90.12(3.69) / 95.69(1.16) / 98.98(0.07) 93.90(0.56) / 86.47(5.93) / 95.98(1.79) / 99.06(0.05)

LSUN (r) 76.39(2.41) / 84.92(3.58) / 92.85(7.86) / 94.02(1.29) 92.45(1.48) / 93.48(2.45) / 97.78(4.34) / 98.59(0.34) 92.33(2.31) / 92.19(3.13) / 97.94(4.23) / 98.79(0.28)

iSUN 74.82(2.19) / 83.11(3.82) / 92.54(7.77) / 93.47(1.35) 91.22(2.05) / 92.21(2.94) / 97.64(4.37) / 98.48(0.36) 91.40(3.31) / 91.44(3.60) / 97.89(4.47) / 98.82(0.26)

SVHN 80.66(2.52) / 81.60(5.57) / 94.14(1.97) / 96.50(0.69) 94.43(1.30) / 90.52(4.39) / 98.63(0.83) / 99.52(0.24) 88.55(4.75) / 74.03(11.15) / 97.11(2.52) / 98.94(0.52)

Food-101 71.61(1.04) / 70.21(5.85) / 63.31(5.20) / 78.73(1.42) 89.71(0.90) / 80.29(8.31) / 84.19(5.85) / 93.95(0.41) 76.04(3.29) / 55.33(13.49) / 73.64(9.95) / 90.41(0.47)

MNIST 72.35(5.94) / 87.91(6.39) / 95.08(4.88) / 94.60(1.22) 91.16(3.19) / 95.67(2.84) / 98.83(1.22) / 98.60(0.39) 91.37(3.95) / 95.22(3.27) / 99.19(0.86) / 98.91(0.28)

F-MNIST 81.20(1.34) / 90.65(2.12) / 92.05(5.25) / 94.03(0.72) 94.59(0.61) / 96.71(0.96) / 97.73(1.85) / 98.60(0.24) 94.91(0.79) / 96.13(1.20) / 98.21(1.85) / 98.78(0.20)

NotMNIST 81.27(2.34) / 92.38(3.23) / 95.95(2.67) / 96.33(0.62) 95.00(0.58) / 97.60(1.06) / 99.28(0.85) / 99.11(0.28) 92.37(1.43) / 94.82(1.96) / 98.85(1.40) / 98.84(0.32)

Gaussian 82.94(17.44) / 93.87(7.97) / 97.12(2.80) / 97.50(0.00) 95.16(6.00) / 98.52(2.71) / 99.60(2.91) / 99.98(0.02) 96.47(4.70) / 98.80(2.29) / 99.39(4.51) / 99.99(0.01)

Uniform 78.59(14.28) / 93.38(5.71) / 96.25(6.97) / 97.50(0.00) 95.30(2.90) / 98.52(1.69) / 98.01(13.34) / 99.99(0.01) 96.70(2.10) / 98.81(1.38) / 98.47(9.15) / 99.99(0.01)

C
IF

A
R
-1
0
0

TIN (c)* 61.96(0.78) / 69.18(2.82) / 77.40(12.03) / 85.01(1.35) 80.90(0.90) / 85.73(1.93) / 87.95(13.71) / 95.91(0.42) 81.38(1.79) / 85.44(2.16) / 88.31(13.86) / 96.48(0.31)

TIN (r) 58.89(0.99) / 68.94(4.03) / 80.24(14.04) / 84.94(2.40) 76.67(2.03) / 84.60(3.21) / 88.31(16.07) / 95.84(0.67) 76.74(3.62) / 84.20(3.69) / 88.70(15.65) / 96.40(0.47)

LSUN (c)* 58.99(0.77) / 66.46(5.62) / 69.79(7.98) / 82.97(1.77) 79.17(1.25) / 83.37(3.97) / 83.87(11.80) / 94.92(0.65) 80.88(1.99) / 82.91(4.16) / 84.43(12.89) / 95.45(0.57)

LSUN (r) 58.98(1.47) / 69.64(4.44) / 79.14(14.57) / 82.76(2.40) 78.00(1.95) / 86.05(2.90) / 88.30(15.18) / 95.18(0.86) 79.25(2.28) / 86.09(2.87) / 88.98(14.72) / 95.92(0.68)

iSUN 58.54(1.43) / 68.94(4.43) / 79.29(14.03) / 83.73(1.92) 77.29(2.15) / 85.38(3.03) / 88.01(15.49) / 95.39(0.55) 80.27(2.59) / 86.73(2.80) / 89.40(14.30) / 96.40(0.35)

SVHN 58.13(2.90) / 66.73(10.20) / 76.30(14.18) / 90.28(1.57) 79.82(2.49) / 83.05(7.38) / 86.67(16.70) / 97.52(0.41) 66.44(4.78) / 68.06(11.64) / 79.01(22.03) / 95.13(0.54)

Food-101 69.12(0.76) / 63.20(4.76) / 58.46(6.74) / 72.68(1.01) 89.25(0.40) / 83.76(4.39) / 80.49(11.90) / 92.53(0.38) 83.20(0.70) / 70.63(8.14) / 73.20(16.92) / 89.37(0.54)

STL-10 58.23(0.55) / 64.30(2.64) / 72.25(11.96) / 71.03(1.17) 77.68(0.61) / 81.20(2.27) / 84.18(16.28) / 88.89(0.51) 81.66(1.01) / 83.70(2.31) / 87.95(12.62) / 91.70(0.43)

MNIST 61.79(5.62) / 83.33(7.90) / 72.71(13.36) / 85.60(3.96) 82.64(4.73) / 95.07(3.39) / 87.62(12.89) / 96.03(1.49) 85.99(3.87) / 95.84(2.82) / 89.95(11.51) / 96.59(1.25)

F-MNIST 72.39(2.13) / 86.47(3.21) / 76.60(10.40) / 92.48(1.22) 90.33(1.02) / 95.93(1.09) / 90.71(10.09) / 98.27(0.36) 91.74(0.87) / 96.18(0.97) / 92.33(8.75) / 98.46(0.31)

NotMNIST 56.15(1.61) / 76.13(7.89) / 82.57(14.47) / 77.23(2.62) 80.00(2.79) / 91.23(3.99) / 89.53(17.24) / 93.05(1.47) 73.99(4.65) / 86.76(5.07) / 85.80(21.25) / 90.53(2.00)

Gaussian 47.54(0.07) / 75.96(21.36) / 88.34(18.59) / 97.50(0.00) 59.59(30.02) / 82.89(24.64) / 88.04(30.26) / 99.82(0.15) 73.02(23.16) / 88.04(17.98) / 91.67(20.57) / 99.88(0.09)
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Table 2.5: More detailed results of OOD detection performance measured by the less-
biased evaluation. The original cropped images are used instead of their ‘*’ version.

Network ID OOD Accuracy at TPR= 95% AUROC AUPR-In

Baseline [2] / ODIN [3] / Mahalanobis [4] / Ours

D
e
n
se

-1
0
0
-1
2

C
IF

A
R
-1
0

TIN (c) 78.86(1.37) / 93.31(2.04) / 75.77(7.50) / 94.83(0.68) 94.90(0.43) / 98.31(0.82) / 86.44(8.15) / 98.89(0.24) 96.09(0.36) / 98.39(0.90) / 85.19(9.46) / 98.97(0.20)

TIN (r) 73.51(2.48) / 88.47(3.99) / 82.87(13.81) / 94.67(0.60) 92.67(1.23) / 96.44(1.63) / 90.45(11.13) / 98.82(0.29) 94.06(1.17) / 96.42(1.92) / 89.51(12.38) / 98.89(0.26)

LSUN (c) 81.22(1.46) / 92.22(1.49) / 65.60(6.43) / 95.27(0.19) 95.57(0.20) / 97.78(0.77) / 76.89(9.64) / 99.09(0.12) 96.59(0.11) / 97.62(1.11) / 75.44(10.64) / 99.12(0.11)

LSUN (r) 76.74(1.40) / 92.09(2.51) / 83.55(13.63) / 95.72(0.56) 94.28(0.52) / 97.87(0.96) / 92.18(8.81) / 99.19(0.22) 95.60(0.44) / 97.99(1.00) / 92.19(9.12) / 99.26(0.20)

iSUN 75.12(2.08) / 90.64(2.95) / 82.53(14.57) / 95.62(0.51) 93.62(0.83) / 97.34(1.14) / 90.59(11.06) / 99.20(0.19) 95.48(0.66) / 97.69(1.14) / 91.08(10.81) / 99.33(0.16)

SVHN 68.84(2.90) / 76.56(8.01) / 74.45(20.13) / 95.36(0.87) 90.28(2.47) / 89.62(5.30) / 72.18(32.66) / 99.11(0.36) 82.90(7.23) / 75.67(11.31) / 65.64(35.76) / 97.99(0.73)

Food-101 67.93(0.59) / 71.93(5.11) / 56.95(4.79) / 79.79(1.03) 89.87(0.44) / 87.48(4.91) / 73.17(8.51) / 93.98(0.54) 83.58(0.96) / 73.56(11.24) / 57.03(11.25) / 89.99(0.90)

MNIST 76.35(3.52) / 95.86(2.06) / 91.42(11.63) / 95.15(1.51) 94.54(1.02) / 99.26(0.67) / 96.59(7.93) / 98.90(0.49) 95.98(0.83) / 99.37(0.53) / 97.60(5.92) / 99.06(0.42)

F-MNIST 81.65(2.11) / 95.72(1.25) / 79.24(10.83) / 94.83(0.71) 95.76(0.50) / 99.20(0.47) / 92.32(7.38) / 98.84(0.21) 96.76(0.35) / 99.29(0.39) / 93.38(7.38) / 98.94(0.17)

NotMNIST 75.95(3.71) / 90.85(5.01) / 88.61(9.04) / 95.75(1.09) 93.72(1.49) / 97.33(1.72) / 94.06(8.89) / 99.01(0.30) 91.90(2.37) / 95.24(2.86) / 88.25(14.73) / 98.62(0.45)

Gaussian 63.72(14.12) / 90.36(15.81) / 93.22(13.48) / 97.50(0.00) 91.96(4.29) / 97.95(3.19) / 96.12(15.44) / 100.00(0.00) 95.17(2.27) / 98.73(1.92) / 97.43(10.34) / 100.00(0.00)

Uniform 60.28(19.27) / 81.82(21.23) / 92.92(13.69) / 97.50(0.00) 88.72(7.18) / 94.63(7.73) / 96.62(14.15) / 100.00(0.00) 93.28(4.22) / 96.59(4.96) / 97.67(9.68) / 100.00(0.00)

C
IF

A
R
-1
0
0

TIN (c) 64.67(2.28) / 81.15(6.13) / 66.07(10.16) / 91.71(0.85) 83.70(4.00) / 92.79(3.90) / 73.92(19.34) / 97.90(0.29) 84.98(6.13) / 92.52(5.05) / 73.78(15.87) / 98.03(0.24)

TIN (r) 58.66(2.35) / 71.32(6.55) / 68.00(16.07) / 91.37(1.59) 77.07(6.35) / 86.35(6.63) / 71.75(25.16) / 97.82(0.53) 78.60(9.30) / 85.68(8.80) / 73.14(20.57) / 97.99(0.45)

LSUN (c) 62.53(0.41) / 79.02(3.86) / 60.97(11.23) / 88.48(0.77) 82.92(0.59) / 92.58(1.87) / 66.52(19.93) / 96.73(0.31) 85.41(0.77) / 92.98(1.75) / 67.46(18.44) / 96.89(0.28)

LSUN (r) 59.32(2.47) / 72.75(7.20) / 67.95(16.61) / 90.69(2.23) 78.44(5.41) / 88.13(5.65) / 73.90(24.51) / 97.59(0.75) 80.74(6.55) / 88.29(6.42) / 76.66(19.51) / 97.83(0.65)

iSUN 58.37(2.76) / 71.08(6.98) / 67.10(16.53) / 90.48(2.17) 76.89(6.28) / 86.56(6.29) / 71.71(25.16) / 97.45(0.73) 80.56(7.56) / 87.67(6.78) / 76.00(19.33) / 97.88(0.56)

SVHN 56.40(1.82) / 59.66(7.63) / 60.25(13.81) / 88.42(2.57) 77.36(2.83) / 79.74(5.50) / 61.99(27.81) / 96.90(0.79) 66.58(4.07) / 66.79(7.23) / 50.78(29.99) / 93.95(1.33)

Food-101 62.64(0.63) / 62.29(5.44) / 50.50(2.39) / 68.29(1.18) 84.38(0.48) / 84.41(5.15) / 61.97(10.18) / 90.79(0.49) 77.21(0.77) / 75.20(8.23) / 46.60(11.77) / 86.96(0.59)

STL-10 57.82(1.32) / 67.57(4.27) / 64.44(12.97) / 75.20(3.96) 76.53(2.23) / 83.43(3.67) / 67.71(25.77) / 90.28(1.95) 81.56(2.67) / 85.48(3.72) / 73.69(19.52) / 92.43(1.54)

MNIST 62.68(2.68) / 87.43(6.85) / 71.45(22.63) / 86.62(5.51) 81.56(3.83) / 96.16(3.01) / 85.24(23.54) / 96.17(2.06) 84.50(3.62) / 96.55(2.66) / 89.93(16.70) / 96.62(1.82)

F-MNIST 70.15(1.95) / 90.46(3.67) / 67.74(19.52) / 94.69(1.10) 88.52(1.04) / 97.41(1.28) / 80.36(20.33) / 98.92(0.35) 90.30(0.80) / 97.61(1.09) / 84.05(16.58) / 99.02(0.31)

NotMNIST 59.04(1.67) / 79.54(6.79) / 75.28(16.97) / 84.44(3.09) 79.97(1.37) / 92.29(3.37) / 83.24(22.35) / 95.80(0.86) 73.28(2.54) / 87.43(4.71) / 78.33(22.92) / 93.87(1.12)

Gaussian 47.54(0.05) / 54.60(13.58) / 70.35(24.18) / 97.50(0.00) 53.73(13.50) / 59.75(31.22) / 62.78(41.05) / 99.74(0.52) 69.06(10.42) / 72.10(22.75) / 74.21(27.99) / 99.84(0.30)

Uniform 48.34(1.81) / 59.13(19.58) / 72.29(23.29) / 97.50(0.01) 63.59(20.05) / 74.60(20.42) / 68.71(38.75) / 99.71(0.56) 75.90(13.16) / 83.24(14.11) / 77.56(27.12) / 99.82(0.34)

W
R
N
-2
8
-1
0

C
IF

A
R
-1
0

TIN (c) 78.71(1.31) / 86.55(2.87) / 78.05(7.26) / 93.26(0.96) 93.86(0.90) / 95.03(1.74) / 90.53(5.96) / 98.35(0.32) 94.45(1.23) / 94.50(2.05) / 90.09(6.58) / 98.53(0.27)

TIN (r) 72.35(2.13) / 79.50(4.13) / 90.84(7.94) / 91.05(2.24) 89.21(2.65) / 89.43(3.78) / 96.62(4.95) / 97.65(0.66) 87.62(4.65) / 86.82(4.98) / 96.15(5.98) / 97.94(0.54)

LSUN (c) 82.07(1.93) / 87.51(1.97) / 69.63(5.03) / 95.58(0.21) 95.41(0.26) / 94.92(1.72) / 85.47(5.73) / 99.19(0.07) 96.19(0.18) / 93.83(2.66) / 85.34(7.15) / 99.23(0.07)

LSUN (r) 76.39(2.41) / 85.04(3.58) / 92.36(7.84) / 94.02(1.29) 92.45(1.48) / 93.49(2.45) / 97.58(4.32) / 98.59(0.34) 92.33(2.31) / 92.19(3.12) / 97.72(4.22) / 98.79(0.28)

iSUN 74.82(2.19) / 83.22(3.82) / 91.92(7.76) / 93.47(1.35) 91.22(2.05) / 92.22(2.94) / 97.38(4.35) / 98.48(0.36) 91.40(3.31) / 91.44(3.58) / 97.62(4.45) / 98.82(0.26)

SVHN 80.66(2.52) / 81.36(5.60) / 93.77(2.04) / 96.50(0.69) 94.43(1.30) / 90.31(4.41) / 98.47(0.86) / 99.52(0.24) 88.55(4.75) / 73.47(11.23) / 96.80(2.55) / 98.94(0.52)

Food-101 71.61(1.04) / 70.11(5.79) / 63.73(5.36) / 78.73(1.42) 89.71(0.90) / 80.07(8.16) / 84.27(5.84) / 93.95(0.41) 76.04(3.29) / 54.80(13.10) / 73.44(9.85) / 90.41(0.47)

MNIST 72.35(5.94) / 88.24(5.90) / 94.88(5.09) / 94.60(1.22) 91.16(3.19) / 95.80(2.62) / 98.77(1.33) / 98.60(0.39) 91.37(3.95) / 95.36(3.02) / 99.13(0.98) / 98.91(0.28)

F-MNIST 81.20(1.34) / 90.75(2.10) / 91.51(5.27) / 94.03(0.72) 94.59(0.61) / 96.73(0.96) / 97.54(1.86) / 98.60(0.24) 94.91(0.79) / 96.15(1.20) / 98.01(1.88) / 98.78(0.20)

NotMNIST 81.27(2.34) / 92.55(3.10) / 95.61(2.86) / 96.33(0.62) 95.00(0.58) / 97.66(1.01) / 99.08(1.08) / 99.11(0.28) 92.37(1.43) / 94.90(1.86) / 98.39(2.27) / 98.84(0.32)

Gaussian 82.94(17.44) / 94.05(7.44) / 97.12(2.80) / 97.50(0.00) 95.16(6.00) / 98.61(2.50) / 99.60(2.91) / 99.98(0.02) 96.47(4.70) / 98.87(2.11) / 99.39(4.51) / 99.99(0.01)

Uniform 78.59(14.28) / 93.77(5.26) / 96.25(6.97) / 97.50(0.00) 95.30(2.90) / 98.61(1.58) / 98.01(13.34) / 99.99(0.01) 96.70(2.10) / 98.87(1.30) / 98.47(9.15) / 99.99(0.01)

C
IF

A
R
-1
0
0

TIN (c) 65.24(1.62) / 75.01(3.51) / 67.17(8.92) / 87.94(1.16) 84.47(1.24) / 90.67(1.73) / 81.80(11.04) / 96.76(0.34) 86.08(1.27) / 91.31(1.49) / 81.95(11.95) / 97.11(0.25)

TIN (r) 58.89(0.99) / 68.95(3.98) / 79.33(13.77) / 84.94(2.40) 76.67(2.03) / 84.62(3.16) / 87.65(15.93) / 95.84(0.67) 76.74(3.62) / 84.22(3.63) / 87.92(15.56) / 96.40(0.47)

LSUN (c) 60.99(1.01) / 71.10(5.89) / 59.21(5.80) / 86.49(1.74) 81.91(1.31) / 88.32(3.51) / 74.40(5.23) / 96.09(0.62) 84.68(1.45) / 89.14(3.00) / 74.50(5.80) / 96.41(0.56)

LSUN (r) 58.98(1.47) / 69.67(4.41) / 78.24(14.33) / 82.76(2.40) 78.00(1.95) / 86.07(2.87) / 87.56(15.15) / 95.18(0.86) 79.25(2.28) / 86.11(2.84) / 88.12(14.79) / 95.92(0.68)

iSUN 58.54(1.43) / 68.97(4.40) / 78.27(13.79) / 83.73(1.92) 77.29(2.15) / 85.40(3.01) / 87.20(15.42) / 95.39(0.55) 80.27(2.59) / 86.75(2.78) / 88.57(14.29) / 96.40(0.35)

SVHN 58.13(2.90) / 66.89(10.04) / 73.78(15.04) / 90.28(1.57) 79.82(2.49) / 83.23(7.27) / 83.92(18.34) / 97.52(0.41) 66.44(4.78) / 68.31(11.47) / 74.78(24.30) / 95.13(0.54)

Food-101 69.12(0.76) / 63.17(4.72) / 58.03(6.90) / 72.68(1.01) 89.25(0.40) / 83.72(4.37) / 79.23(12.65) / 92.53(0.38) 83.20(0.70) / 70.54(8.15) / 71.23(18.04) / 89.37(0.54)

STL-10 58.23(0.55) / 64.29(2.56) / 71.78(11.79) / 71.03(1.17) 77.68(0.61) / 81.19(2.19) / 83.70(16.12) / 88.89(0.51) 81.66(1.01) / 83.70(2.23) / 87.45(12.48) / 91.70(0.43)

MNIST 61.79(5.62) / 83.44(7.86) / 72.43(13.40) / 85.60(3.96) 82.64(4.73) / 95.11(3.39) / 87.26(12.91) / 96.03(1.49) 85.99(3.87) / 95.87(2.82) / 89.60(11.51) / 96.59(1.25)

F-MNIST 72.39(2.13) / 86.51(3.21) / 75.80(10.71) / 92.48(1.22) 90.33(1.02) / 95.94(1.09) / 90.00(10.31) / 98.27(0.36) 91.74(0.87) / 96.19(0.97) / 91.63(8.96) / 98.46(0.31)

NotMNIST 56.15(1.61) / 76.13(7.88) / 80.87(15.35) / 77.23(2.62) 80.00(2.79) / 91.24(4.00) / 87.56(18.87) / 93.05(1.47) 73.99(4.65) / 86.78(5.08) / 83.07(23.07) / 90.53(2.00)

Gaussian 47.54(0.07) / 75.81(21.68) / 87.95(18.57) / 97.50(0.00) 59.59(30.02) / 83.00(24.41) / 87.92(30.23) / 99.82(0.15) 73.02(23.16) / 88.14(17.78) / 91.59(20.54) / 99.88(0.09)

Uniform 47.51(0.02) / 68.50(20.65) / 88.96(17.14) / 97.50(0.00) 60.88(14.02) / 88.19(12.01) / 88.33(29.70) / 99.95(0.10) 74.03(12.70) / 92.15(8.43) / 91.62(20.71) / 99.97(0.07)
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Figure 2.5: Dependency of (a) Mahalanobis Detector and (b) ODIN on the assumed
OOD dataset used for hyperparameter determination. AUROC of detecting OOD
samples given in the horizontal axis. The line colors indicate the assumed OOD
dataset.
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Table 2.6: OOD detection performance of the Mahalanobis Detector [4] using the
adversarial samples for its hyperparameters tuning. The results are averaged from 5
runs.

ID OOD AUROC

D
e
n
se

-1
0
0
-1
2

C
IF

A
R
-1
0

TIN (c) 87.77(3.71)

TIN (c)* 96.84(0.89)

TIN (r) 98.62(0.41)

LSUN (c) 73.16(3.51)

LSUN (c)* 91.49(1.73)

LSUN (r) 98.79(0.37)

iSUN 98.72(0.37)

SVHN 97.21(1.84)

Food-101 77.22(4.29)

MNIST 98.51(0.26)

F-MNIST 93.83(1.14)

NotMNIST 96.60(3.07)

Gaus. Noise 100.0(0.0)

Unif. Noise 100.0(0.0)

C
IF

A
R
-1
0
0

TIN (c) 79.75(3.69)

TIN (c)* 92.70(0.39)

TIN (r) 96.45(0.30)

LSUN (c) 62.37(8.15)

LSUN (c)* 84.24(2.72)

LSUN (r) 96.66(0.29)

iSUN 96.64(0.38)

SVHN 93.16(1.16)

Food-101 72.54(1.12)

STL-10 93.19(1.15)

MNIST 87.82(8.88)

F-MNIST 80.33(3.47)

NotMNIST 91.61(3.05)

Gaus. Noise 100.0(0.0)

Unif. Noise 100.0(0.0)

ID OOD AUROC

W
R
N
-2
8
-1
0

C
IF

A
R
-1
0

TIN (c) 87.79(1.48)

TIN (c)* 97.54(0.53)

TIN (r) 98.65(0.29)

LSUN (c) 70.97(1.90)

LSUN (c)* 93.53(0.91)

LSUN (r) 99.16(0.21)

iSUN 99.07(0.21)

SVHN 98.03(0.55)

Food-101 73.55(6.09)

MNIST 98.89(0.72)

F-MNIST 97.89(0.59)

NotMNIST 99.41(0.28)

Gaus. Noise 100.0(0.0)

Unif. Noise 100.0(0.0)

C
IF

A
R
-1
0
0

TIN (c) 86.61(1.13)

TIN (c)* 96.24(0.13)

TIN (r) 97.69(0.19)

LSUN (c) 67.07(3.41)

LSUN (c)* 87.00(1.34)

LSUN (r) 97.67(0.23)

iSUN 97.62(0.19)

SVHN 92.95(1.03)

Food-101 86.78(1.39)

STL-10 94.73(0.59)

MNIST 84.63(7.77)

F-MNIST 93.41(2.11)

NotMNIST 97.37(0.82)

Gaus. Noise 100.0(0.0)

Unif. Noise 100.0(0.0)

is the performance on this scenario. As there is no mention of the intuition of its

hyperparameters choosing, we follow the one provided by the authors of [4].4 We

show its results in Table 2.6.

As shown in the table, the results show similar instability to the case of using

explicit OOD samples; the method shows good performance with some OOD datasets

but not with others. This is illustrated more clearly illustrated in Fig. 2.6. We suspect

that it performs well only if the created adversarial examples resemble the true OOD

examples. We cannot expect this is always the case in the real world problems. In

short, our conclusion remains the same with this method.

4https://github.com/pokaxpoka/deep Mahalanobis detector
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Figure 2.6: The instability of the OOD detection performance for Mahalanobis De-
tector using adversarial samples in its hyperparameters tuning (ID = CIFAR-100).

2.9 More Complete Results of One-vs-one Evalu-

ation

Table 2.7 shows a more complete version of Table 2.2 in Sec. 2.4.3. It shows the

performances measured by the two additional metrics as above.

2.10 OOD Detection Using an Ensemble of Net-

works

The leave-out ensemble proposed in [38] uses multiple networks and is reported

to achieve high OOD detection performance in the one-vs-one evaluation. To make

a fair comparison, we consider an extension of our method to an ensemble model.

The underlying thought is that the use of an ensemble of multiple models will yield

better results, as seen in many inference tasks. To be specific, in the training step,

we train multiple networks on the target classification task; in our experiments, we

trained models of the same architecture initialized with different random weights. At

test time, given an input sample, we make the networks output the cosine similarities

and calculate their averages over different networks. Table 2.8 - 2.9 show the results.

For the leave-out ensemble, it shows the performances reported in [38] and those ob-

tained in our own experiments (indicated by *); we used a public code5 suggested by

the author of [38]. It is seen that our method shows better or at least comparable

performance as compared with the leave-out ensemble, even in the one-vs-one evalua-

5https://github.com/YU1ut/Ensemble-of-Leave-out-Classifiers
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Table 2.7: Performance of four out-of-distribution detection methods on a single
network using one-vs-one evaluation.

Network ID OOD Accuracy at TPR= 95% AUROC AUPR-In

Baseline [2] / ODIN [3] / Mahalanobis [4] / Ours

D
e
n
se

-1
0
0
-1
2

C
IF

A
R
-1
0

TIN (c) 78.86(1.37) / 94.59(0.80) / 85.51(2.28) / 94.83(0.68) 94.90(0.43) / 98.79(0.32) / 94.48(1.19) / 98.89(0.24) 96.09(0.36) / 98.86(0.28) / 93.76(1.67) / 98.97(0.20)

TIN (c)* 74.53(1.93) / 88.97(2.54) / 90.84(0.96) / 94.34(0.61) 93.26(0.85) / 96.67(0.97) / 97.36(0.39) / 98.74(0.23) 94.61(0.80) / 96.64(0.96) / 97.64(0.37) / 98.86(0.19)

TIN (r) 73.51(2.48) / 90.39(2.98) / 95.00(0.54) / 94.67(0.60) 92.67(1.23) / 97.20(1.17) / 98.91(0.23) / 98.82(0.29) 94.06(1.17) / 97.27(1.10) / 99.04(0.20) / 98.89(0.26)

LSUN (c) 81.22(1.46) / 93.67(0.53) / 74.91(5.87) / 95.27(0.19) 95.57(0.20) / 98.48(0.14) / 89.06(3.21) / 99.09(0.12) 96.59(0.11) / 98.62(0.16) / 89.00(2.32) / 99.12(0.11)

LSUN (c)* 75.35(1.90) / 87.61(1.40) / 82.51(1.62) / 94.54(0.39) 93.72(0.39) / 96.41(0.52) / 93.63(0.69) / 98.83(0.18) 95.06(0.27) / 96.69(0.53) / 94.21(0.58) / 98.88(0.17)

LSUN (r) 76.74(1.40) / 93.63(1.37) / 95.48(0.43) / 95.72(0.56) 94.28(0.52) / 98.43(0.49) / 99.00(0.23) / 99.19(0.22) 95.60(0.44) / 98.52(0.44) / 99.15(0.20) / 99.26(0.20)

iSUN 75.12(2.08) / 92.26(1.99) / 95.09(0.51) / 95.62(0.51) 93.62(0.83) / 97.92(0.71) / 98.95(0.21) / 99.20(0.19) 95.48(0.66) / 98.21(0.58) / 99.22(0.15) / 99.33(0.16)

SVHN 68.84(2.90) / 88.83(0.28) / 95.01(0.78) / 95.36(0.87) 90.28(2.47) / 95.11(0.48) / 98.89(0.37) / 99.11(0.36) 82.90(7.23) / 83.30(1.91) / 97.67(0.73) / 97.99(0.73)

Food-101 67.93(0.59) / 76.90(1.39) / 64.14(1.46) / 79.79(1.03) 89.87(0.44) / 92.06(0.71) / 80.38(3.83) / 93.98(0.54) 83.58(0.96) / 85.30(1.54) / 63.50(8.01) / 89.99(0.90)

MNIST 76.35(3.52) / 97.00(0.49) / 97.50(0.00) / 95.15(1.51) 94.54(1.02) / 99.69(0.20) / 99.43(0.44) / 98.90(0.49) 95.98(0.83) / 99.72(0.18) / 99.68(0.25) / 99.06(0.42)

F-MNIST 81.65(2.11) / 96.49(0.39) / 92.79(4.59) / 94.83(0.71) 95.76(0.50) / 99.51(0.13) / 97.87(2.00) / 98.84(0.21) 96.76(0.35) / 99.54(0.11) / 97.95(2.26) / 98.94(0.17)

NotMNIST 75.95(3.71) / 94.44(2.12) / 96.04(1.24) / 95.75(1.09) 93.72(1.49) / 98.61(0.95) / 99.18(0.60) / 99.01(0.30) 91.90(2.37) / 97.04(2.34) / 98.98(0.63) / 98.62(0.45)

Gaussian 63.72(14.12) / 97.48(0.03) / 97.50(0.00) / 97.50(0.00) 91.96(4.29) / 99.30(0.47) / 100.00(0.00) / 100.00(0.00) 95.17(2.27) / 99.54(0.26) / 100.00(0.00) / 100.00(0.00)

Uniform 60.28(19.27) / 96.79(1.52) / 97.50(0.00) / 97.50(0.00) 88.72(7.18) / 98.79(0.95) / 100.00(0.00) / 100.00(0.00) 93.28(4.22) / 99.23(0.57) / 100.00(0.00) / 100.00(0.00)

C
IF

A
R
-1
0
0

TIN (c) 64.67(2.28) / 84.84(4.02) / 81.53(4.16) / 91.71(0.85) 83.70(4.00) / 94.48(3.21) / 92.97(1.63) / 97.90(0.29) 84.98(6.13) / 94.16(4.45) / 93.00(1.86) / 98.03(0.24)

TIN (c)* 60.26(1.93) / 73.44(4.06) / 80.13(0.82) / 89.81(1.52) 79.32(4.14) / 88.54(4.27) / 93.18(0.39) / 97.31(0.45) 80.66(6.76) / 87.97(6.39) / 94.05(0.42) / 97.55(0.37)

TIN (r) 58.66(2.35) / 74.66(5.82) / 88.95(0.58) / 91.37(1.59) 77.07(6.35) / 88.14(6.92) / 96.81(0.27) / 97.82(0.53) 78.60(9.30) / 87.18(9.82) / 97.26(0.30) / 97.99(0.45)

LSUN (c) 62.53(0.41) / 84.21(1.09) / 77.94(5.23) / 88.48(0.77) 82.92(0.59) / 94.72(0.59) / 91.65(2.96) / 96.73(0.31) 85.41(0.77) / 94.80(0.69) / 91.67(2.98) / 96.89(0.28)

LSUN (c)* 58.61(0.57) / 73.30(1.74) / 70.53(0.95) / 85.26(0.79) 78.46(0.91) / 87.89(1.13) / 85.44(1.85) / 95.52(0.32) 80.86(0.93) / 87.55(1.35) / 86.39(2.20) / 95.82(0.29)

LSUN (r) 59.32(2.47) / 76.53(5.59) / 89.82(0.48) / 90.69(2.23) 78.44(5.41) / 90.38(4.76) / 97.00(0.15) / 97.59(0.75) 80.74(6.55) / 90.49(5.57) / 97.54(0.10) / 97.83(0.65)

iSUN 58.37(2.76) / 74.54(6.13) / 89.43(0.20) / 90.48(2.17) 76.89(6.28) / 88.27(6.49) / 97.04(0.10) / 97.45(0.73) 80.56(7.56) / 89.01(7.25) / 97.80(0.13) / 97.88(0.56)

SVHN 56.40(1.82) / 78.49(1.49) / 87.06(2.51) / 88.42(2.57) 77.36(2.83) / 91.60(0.73) / 96.48(0.68) / 96.90(0.79) 66.58(4.07) / 82.08(1.58) / 94.33(0.78) / 93.95(1.33)

Food-101 62.64(0.63) / 70.96(1.24) / 55.43(2.48) / 68.29(1.18) 84.38(0.48) / 90.82(0.60) / 67.14(1.39) / 90.79(0.49) 77.21(0.77) / 85.64(1.04) / 46.59(4.01) / 86.96(0.59)

STL-10 57.82(1.32) / 70.35(2.12) / 85.77(6.70) / 75.20(3.96) 76.53(2.23) / 85.41(2.55) / 91.64(5.03) / 90.28(1.95) 81.56(2.67) / 87.27(2.78) / 91.32(5.15) / 92.43(1.54)

MNIST 62.68(2.68) / 91.17(5.19) / 97.47(0.07) / 86.62(5.51) 81.56(3.83) / 97.57(2.07) / 99.81(0.19) / 96.17(2.06) 84.50(3.62) / 97.74(1.94) / 99.88(0.12) / 96.62(1.82)

F-MNIST 70.15(1.95) / 93.01(1.50) / 94.79(2.94) / 94.69(1.10) 88.52(1.04) / 98.27(0.49) / 98.58(1.11) / 98.92(0.35) 90.30(0.80) / 98.33(0.48) / 98.66(1.18) / 99.02(0.31)

NotMNIST 59.04(1.67) / 85.20(2.34) / 94.73(2.98) / 84.44(3.09) 79.97(1.37) / 94.73(1.37) / 98.69(1.02) / 95.80(0.86) 73.28(2.54) / 90.74(2.83) / 97.98(0.88) / 93.87(1.12)

Gaussian 47.54(0.05) / 77.72(19.57) / 97.50(0.00) / 97.50(0.00) 53.73(13.50) / 93.44(6.60) / 100.00(0.00) / 99.74(0.52) 69.06(10.42) / 95.41(4.73) / 100.00(0.00) / 99.84(0.30)

Uniform 48.34(1.81) / 79.64(23.92) / 97.50(0.00) / 97.50(0.00) 63.59(20.05) / 94.60(6.66) / 100.00(0.00) / 99.71(0.56) 75.90(13.16) / 96.41(4.48) / 100.00(0.00) / 99.82(0.34)

W
R
N
-2
8
-1
0

C
IF

A
R
-1
0

TIN (c) 78.71(1.31) / 88.38(1.69) / 86.46(2.18) / 93.26(0.96) 93.86(0.90) / 95.88(1.01) / 95.99(1.04) / 98.35(0.32) 94.45(1.23) / 95.38(1.23) / 96.55(0.98) / 98.53(0.27)

TIN (c)* 76.10(1.38) / 83.16(2.07) / 93.57(0.31) / 92.63(1.26) 91.79(1.57) / 92.17(2.19) / 98.50(0.11) / 98.17(0.33) 90.94(2.91) / 89.77(3.56) / 98.72(0.10) / 98.42(0.27)

TIN (r) 72.35(2.13) / 81.86(3.29) / 95.59(0.34) / 91.05(2.24) 89.21(2.65) / 90.60(3.21) / 99.15(0.18) / 97.65(0.66) 87.62(4.65) / 87.99(4.53) / 99.25(0.19) / 97.94(0.54)

LSUN (c) 82.07(1.93) / 90.24(0.84) / 78.82(2.25) / 95.58(0.21) 95.41(0.26) / 97.20(0.15) / 92.65(1.33) / 99.19(0.07) 96.19(0.18) / 97.28(0.17) / 93.12(1.38) / 99.23(0.07)

LSUN (c)* 78.31(2.05) / 85.89(1.53) / 88.26(1.26) / 94.96(0.16) 93.67(0.50) / 95.08(0.42) / 96.90(0.35) / 98.98(0.07) 93.90(0.56) / 94.42(0.56) / 97.46(0.27) / 99.06(0.05)

LSUN (r) 76.39(2.41) / 87.33(2.22) / 96.40(0.31) / 94.02(1.29) 92.45(1.48) / 94.48(1.70) / 99.37(0.13) / 98.59(0.34) 92.33(2.31) / 93.12(2.42) / 99.47(0.10) / 98.79(0.28)

iSUN 74.82(2.19) / 85.49(2.99) / 96.08(0.20) / 93.47(1.35) 91.22(2.05) / 93.25(2.43) / 99.29(0.10) / 98.48(0.36) 91.40(3.31) / 92.35(3.24) / 99.46(0.08) / 98.82(0.26)

SVHN 80.66(2.52) / 87.37(3.32) / 95.79(0.22) / 96.50(0.69) 94.43(1.30) / 93.34(3.60) / 99.28(0.09) / 99.52(0.24) 88.55(4.75) / 79.63(11.13) / 98.51(0.16) / 98.94(0.52)

Food-101 71.61(1.04) / 75.92(1.90) / 71.73(1.64) / 78.73(1.42) 89.71(0.90) / 89.18(2.37) / 90.43(1.54) / 93.95(0.41) 76.04(3.29) / 71.88(6.62) / 84.07(3.15) / 90.41(0.47)

MNIST 72.35(5.94) / 92.32(2.53) / 97.42(0.05) / 94.60(1.22) 91.16(3.19) / 97.36(1.50) / 99.56(0.11) / 98.60(0.39) 91.37(3.95) / 97.03(1.79) / 99.71(0.07) / 98.91(0.28)

F-MNIST 81.20(1.34) / 92.25(1.25) / 96.24(0.68) / 94.03(0.72) 94.59(0.61) / 97.28(0.65) / 99.03(0.23) / 98.60(0.24) 94.91(0.79) / 96.65(0.91) / 99.28(0.21) / 98.78(0.20)

NotMNIST 81.27(2.34) / 94.93(0.51) / 97.33(0.14) / 96.33(0.62) 95.00(0.58) / 98.48(0.38) / 99.77(0.07) / 99.11(0.28) 92.37(1.43) / 96.20(1.28) / 99.65(0.10) / 98.84(0.32)

Gaussian 82.94(17.44) / 96.33(2.54) / 97.50(0.00) / 97.50(0.00) 95.16(6.00) / 99.39(0.94) / 100.00(0.00) / 99.98(0.02) 96.47(4.70) / 99.48(0.82) / 100.00(0.00) / 99.99(0.01)

Uniform 78.59(14.28) / 96.65(1.53) / 97.50(0.00) / 97.50(0.00) 95.30(2.90) / 99.41(0.53) / 100.00(0.00) / 99.99(0.01) 96.70(2.10) / 99.48(0.53) / 100.00(0.00) / 99.99(0.01)

C
IF

A
R
-1
0
0

TIN (c) 65.24(1.62) / 77.12(2.53) / 79.69(5.23) / 87.94(1.16) 84.47(1.24) / 91.72(1.10) / 92.58(2.60) / 96.76(0.34) 86.08(1.27) / 92.21(0.95) / 93.37(2.43) / 97.11(0.25)

TIN (c)* 61.96(0.78) / 71.32(1.31) / 87.88(0.94) / 85.01(1.35) 80.90(0.90) / 87.08(1.29) / 96.45(0.30) / 95.91(0.42) 81.38(1.79) / 86.72(1.71) / 97.02(0.29) / 96.48(0.31)

TIN (r) 58.89(0.99) / 71.53(2.26) / 91.88(0.30) / 84.94(2.40) 76.67(2.03) / 86.28(2.43) / 97.82(0.13) / 95.84(0.67) 76.74(3.62) / 85.82(3.03) / 98.09(0.10) / 96.40(0.47)

LSUN (c) 60.99(1.01) / 78.04(0.67) / 68.64(0.78) / 86.49(1.74) 81.91(1.31) / 91.75(0.44) / 80.48(1.14) / 96.09(0.62) 84.68(1.45) / 91.90(0.47) / 79.46(1.59) / 96.41(0.56)

LSUN (c)* 58.99(0.77) / 74.15(0.57) / 77.82(1.07) / 82.97(1.77) 79.17(1.25) / 88.06(0.46) / 91.13(0.52) / 94.92(0.65) 80.88(1.99) / 87.28(0.65) / 92.04(0.52) / 95.45(0.57)

LSUN (r) 58.98(1.47) / 72.74(2.41) / 91.98(0.32) / 82.76(2.40) 78.00(1.95) / 87.90(1.83) / 97.80(0.15) / 95.18(0.86) 79.25(2.28) / 87.83(1.99) / 98.12(0.13) / 95.92(0.68)

iSUN 58.54(1.43) / 71.72(2.57) / 91.69(0.46) / 83.73(1.92) 77.29(2.15) / 87.07(2.00) / 97.66(0.14) / 95.39(0.55) 80.27(2.59) / 88.13(1.99) / 98.18(0.10) / 96.40(0.35)

SVHN 58.13(2.90) / 83.04(1.69) / 92.39(1.42) / 90.28(1.57) 79.82(2.49) / 93.46(1.05) / 97.96(0.49) / 97.52(0.41) 66.44(4.78) / 84.81(3.06) / 96.05(0.68) / 95.13(0.54)

Food-101 69.12(0.76) / 71.12(0.79) / 70.23(1.61) / 72.68(1.01) 89.25(0.40) / 90.76(0.35) / 91.15(0.66) / 92.53(0.38) 83.20(0.70) / 84.74(0.78) / 87.69(0.85) / 89.37(0.54)

STL-10 58.23(0.55) / 66.14(0.39) / 86.69(2.54) / 71.03(1.17) 77.68(0.61) / 83.02(1.12) / 94.73(1.36) / 88.89(0.51) 81.66(1.01) / 85.27(1.49) / 95.52(1.95) / 91.70(0.43)

MNIST 61.79(5.62) / 87.27(4.78) / 94.15(3.68) / 85.60(3.96) 82.64(4.73) / 96.71(1.39) / 98.54(1.01) / 96.03(1.49) 85.99(3.87) / 97.18(1.17) / 98.89(0.65) / 96.59(1.25)

F-MNIST 72.39(2.13) / 88.50(1.70) / 87.63(0.67) / 92.48(1.22) 90.33(1.02) / 96.61(0.68) / 96.61(0.30) / 98.27(0.36) 91.74(0.87) / 96.71(0.75) / 97.36(0.24) / 98.46(0.31)

NotMNIST 56.15(1.61) / 81.37(2.36) / 96.48(0.38) / 77.23(2.62) 80.00(2.79) / 93.47(1.35) / 98.93(0.13) / 93.05(1.47) 73.99(4.65) / 89.37(2.60) / 98.84(0.15) / 90.53(2.00)

Gaussian 47.54(0.07) / 86.50(21.83) / 97.50(0.00) / 97.50(0.00) 59.59(30.02) / 80.04(41.24) / 100.00(0.00) / 99.82(0.15) 73.02(23.16) / 85.54(30.09) / 100.00(0.00) / 99.88(0.09)

Uniform 47.51(0.02) / 75.44(20.61) / 97.50(0.00) / 97.50(0.00) 60.88(14.02) / 92.66(8.46) / 100.00(0.00) / 99.95(0.10) 74.03(12.70) / 95.08(6.01) / 100.00(0.00) / 99.97(0.07)
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tion. Note that iSUN is chosen as the validation OOD dataset for the hyperparameter

determination of the leave-out ensemble, following [38].

2.11 Black Frame in the Cropped OOD Images

The OOD datasets, i.e., LSUN (cropped & resized), TinyImageNet (cropped &

resized), and iSUN, provided in the authors’ GitHub repo of ODIN [3] 6 are used

in many studies [3, 27, 38]. As mentioned briefly in Sec. 2.4.1, we found that every

image in the datasets of cropped images, i.e., Tiny ImageNet (cropped) and LSUN

(cropped), unexpectedly has a black frame with two-pixel widths, as shown in Fig. 2.7.

Those images is of 36× 36 pixels (4 pixels larger than CIFAR images), implying that

it is a mistake of the authors. In any case, adding a black frame is not invalid by

itself, as any image could be an OOD sample. However, it will ease the problem

without a doubt.

In our experiments, we used both of the corrected versions (indicated by *) and

the original version. The results show that the proposed method achieves similar

performance on both versions of the datasets. On the other hand, the other methods,

ODIN [3], Mahalanobis detector [4] and Leave-out Ensemble [38], show more sensitive

behaviors to the difference, as observable in Tables 2.4 - 2.9 in this chapter.

2.12 Equivalence Between Max-softmax With a High

Temperature and Max-logit

In the earlier section, we mention that when a high temperature is used in the

softmax function, using the max-softmax criteria for OOD detection is equivalent to

using the max-logit criteria. A brief proof is given below.

When employing a temperature, the score (or posterior probability) pi of class

i ∈ [1, C] is given by

pi = softmaxi(x/t) =
exi/t∑C
i=1 e

xj/t
,

6https://github.com/facebookresearch/odin
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Table 2.8: Performance of OOD detection by ensemble models (five networks) in the
one-vs-one evaluation (DenseNet).

Network ID OOD
Accuracy

AUROC AUPR-In
at TPR= 95%

Leave-out [38] / Leave-out* / Ours

Dense-100-12

CIFAR-10

TinyIm (c) 96.89 / 96.76 / 96.43 99.65 / 99.66 / 99.43 99.68 / 99.67 / 99.48

TinyIm (c)* - / 94.83 / 96.21 - / 98.98 / 99.33 - / 99.05 / 99.39

TinyIm (r) 96.04 / 96.21 / 96.14 99.34 / 99.45 / 99.36 99.37 / 99.48 / 99.40

LSUN (c) 95.79 / 95.65 / 96.51 99.25 / 99.27 / 99.51 99.29 / 99.32 / 99.53

LSUN (c)* - / 91.04 / 96.06 - / 97.83 / 99.33 - / 98.00 / 99.36

LSUN (r) 97.12 / 96.71 / 96.79 99.75 / 99.67 / 99.61 99.77 / 99.68 / 99.64

iSUN - / 96.47 / 96.69 - / 99.60 / 99.61 - / 99.62 / 99.67

SVHN - / 81.09 / 96.53 - / 94.39 / 99.54 - / 95.06 / 98.93

Food-101 - / 75.64 / 85.06 - / 92.85 / 95.89 - / 94.13 / 93.25

MNIST - / 97.19 / 97.01 - / 99.76 / 99.53 - / 99.79 / 99.61

F-MNIST - / 96.59 / 96.60 - / 99.58 / 99.45 - / 99.62 / 99.51

NotMNIST - / 93.39 / 97.11 - / 98.64 / 99.45 - / 98.83 / 99.24

Gausian 96.20 / 97.50 / 97.50 98.55 / 99.99 / 100.00 98.94 / 99.99 / 100.00

Uniform 97.50 / 97.50 / 97.50 99.84 / 99.96 / 100.00 99.89 / 99.97 / 100.00

CIFAR-100

TinyIm (c) 93.36 / 95.11 / 94.44 98.43 / 99.00 / 98.78 98.58 / 99.05 / 98.86

TinyIm (c)* - / 88.78 / 93.09 - / 96.79 / 98.30 - / 97.03 / 98.46

TinyIm (r) 87.24 / 91.45 / 93.89 96.27 / 97.80 / 98.60 96.66 / 98.01 / 98.72

LSUN (c) 90.16 / 89.34 / 91.54 97.37 / 97.05 / 97.80 97.62 / 97.26 / 97.91

LSUN (c)* - / 75.23 / 88.55 - / 90.75 / 96.74 - / 91.27 / 96.99

LSUN (r) 89.39 / 93.25 / 93.16 97.03 / 98.37 / 98.38 97.37 / 98.52 / 98.55

iSUN - / 90.91 / 92.93 - / 97.53 / 98.23 - / 97.66 / 98.53

SVHN - / 50.84 / 92.82 - / 75.79 / 98.22 - / 81.16 / 96.39

Food-101 - / 74.44 / 76.42 - / 92.39 / 93.76 - / 93.82 / 91.23

STL-10 - / 86.56 / 78.48 - / 96.34 / 92.04 - / 96.78 / 93.93

MNIST - / 96.35 / 89.23 - / 99.27 / 97.35 - / 99.39 / 97.68

F-MNIST - / 96.73 / 96.88 - / 99.66 / 99.64 - / 99.67 / 99.67

NotMNIST - / 92.20 / 87.92 - / 98.07 / 96.97 - / 98.25 / 95.57

Gausian 57.64 / 81.18 / 97.50 92.00 / 95.57 / 100.00 94.77 / 97.36 / 100.00

Uniform 78.24 / 95.72 / 97.50 94.89 / 97.73 / 100.00 96.36 / 98.61 / 100.00
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Table 2.9: Performance of OOD detection by ensemble models (five networks) in the
one-vs-one evaluation (Wide Resnet).

Network ID OOD
Accuracy

AUROC AUPR-In
at TPR= 95%

Leave-out [38] / Leave-out* / Ours

WRN-28-10

CIFAR-10

TinyIm (c) 97.09 / 96.35 / 94.83 99.75 / 99.54 / 98.93 99.77 / 99.57 / 99.05

TinyIm (c)* - / 93.47 / 94.62 - / 98.56 / 98.77 - / 98.65 / 98.95

TinyIm (r) 96.03 / 95.09 / 93.41 99.36 / 99.10 / 98.41 99.40 / 99.13 / 98.62

LSUN (c) 96.54 / 94.97 / 96.42 99.55 / 99.09 / 99.46 99.57 / 99.16 / 99.49

LSUN (c)* - / 88.93 / 95.91 - / 97.14 / 99.30 - / 97.33 / 99.35

LSUN (r) 97.06 / 95.88 / 95.74 99.70 / 99.39 / 99.14 99.72 / 99.37 / 99.27

iSUN - / 95.33 / 95.53 - / 99.22 / 99.06 - / 99.22 / 99.28

SVHN - / 73.78 / 96.99 - / 91.80 / 99.73 - / 93.15 / 99.36

Food-101 - / 66.64 / 81.60 - / 87.37 / 95.10 - / 89.23 / 92.34

MNIST - / 95.52 / 96.12 - / 99.09 / 98.98 - / 99.22 / 99.22

F-MNIST - / 96.59 / 95.33 - / 99.59 / 99.04 - / 99.60 / 99.16

NotMNIST - / 92.33 / 96.99 - / 97.91 / 99.38 - / 98.05 / 99.19

Gausian 89.31 / 97.50 / 97.50 96.77 / 99.97 / 100.00 97.78 / 99.98 / 100.00

Uniform 97.50 / 97.50 / 97.50 99.58 / 99.98 / 100.00 99.71 / 99.98 / 100.00

CIFAR-100

TinyIm (c) 92.92 / 92.88 / 90.58 98.22 / 98.33 / 97.62 98.39 / 98.46 / 97.89

TinyIm (c)* - / 84.19 / 87.83 - / 95.34 / 96.80 - / 95.69 / 97.26

TinyIm (r) 85.24 / 88.74 / 87.09 95.18 / 96.89 / 96.64 95.50 / 97.16 / 97.11

LSUN (c) 90.39 / 83.34 / 88.61 97.38 / 95.43 / 97.00 97.62 / 96.03 / 97.26

LSUN (c)* - / 68.83 / 85.23 - / 87.66 / 95.87 - / 88.55 / 96.33

LSUN (r) 89.24 / 92.17 / 84.58 96.77 / 97.98 / 95.97 97.03 / 98.13 / 96.65

iSUN - / 90.33 / 85.66 - / 97.31 / 96.17 - / 97.41 / 97.05

SVHN - / 51.65 / 92.66 - / 76.30 / 98.20 - / 80.87 / 96.41

Food-101 - / 68.62 / 78.00 - / 89.87 / 94.38 - / 91.49 / 92.02

STL-10 - / 80.86 / 72.86 - / 94.33 / 90.16 - / 95.00 / 92.72

MNIST - / 93.84 / 86.94 - / 98.62 / 96.79 - / 98.82 / 97.23

F-MNIST - / 97.05 / 95.37 - / 99.77 / 99.16 - / 99.79 / 99.24

NotMNIST - / 86.31 / 78.95 - / 96.53 / 94.32 - / 97.03 / 92.40

Gausian 47.55 / 97.50 / 97.50 83.44 / 99.65 / 99.98 89.43 / 99.79 / 99.99

Uniform 48.37 / 97.50 / 97.50 93.04 / 99.60 / 100.00 88.64 / 99.76 / 100.00
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(b) LSUN (cropped)

(a) TinyImageNet (cropped)

Figure 2.7: The images with and without a black frame. (a) TinyImageNet (cropped).
(b) LSUN (cropped).

where xi is the logit of class i and t is the temperature. As shown in Hinton et al. [37],

when t is large, pi can be approximated as

pi ≈
1 + xi/t

N
.

The ODIN [3] employs the max-softmax criteria with a high temperature for OOD

detection, which is written using the above approximation as

1 + xmax/t

N
< τ,

where xmax is the maximum of the logits. This is rewritten as

xmax < t(Nτ − 1).

By regarding the rhs as a new threshold, this coincides with the max-logit criteria.
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Table 2.10: Comparison of computational time (per batch of 128 samples) of the three
methods.

Network
Time (second)

Mahalanobis ODIN Cosine

Dense-100-12 0.67 0.19 0.08

WRN-28-10 1.61 0.61 0.22

2.13 Computational Cost

While the proposed method needs only the standard forward propagation to per-

form OOD detection, the previous methods, particularly those showing good per-

formance in the one-vs-one evaluation, employ a lot more complicated computation,

such as input perturbation [3, 4]. We measure the computational time that ODIN,

the Mahalanobis detector, and ours need to get the results. Table 2.10 shows the

average time per batch containing 128 samples.

2.14 Summary and Conclusions

In this chapter, we have presented a novel method for OOD detection, and exper-

imentally confirmed its superiority to existing approaches. We started our discussion

with the observation that existing methods have hyperparameters specific to OOD de-

tection, and their performance can be sensitive to their determination. The proposed

method does not have such hyperparameters. It is based on the softmax of scaled

cosine similarity and can be used with any networks by replacing their output layer.

Training is performed by the standard method, i.e., minimizing a cross-entropy loss on

the target classification task. Although a similar approach has already been employed

in metric learning methods, the proposed method has several technical differences,

which are essential to achieve high OOD detection performance, as was demonstrated

in our ablation test. We have shown experimental comparisons between the proposed

method and the existing methods using two different evaluation methods, i.e., the

less-biased evaluation recently proposed in [1] and the conventional one-vs-one eval-

uation. In the former evaluation, which takes the above issue with hyperparameter
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determination into account, the proposed method shows clear superiority to others.

Our method also shows at least comparable performance to them in the conventional

evaluation. These results support the practicality of the proposed method in real-

world applications. Lastly, we have briefly discussed why cosine similarity is effective

for OOD detection.
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Chapter 3

Practical Evaluation of

Out-of-Distribution Detection

Methods for Image Classification

3.1 Introduction

Despite their high performance on various visual recognition tasks, convolutional

neural networks (CNNs) often show unpredictable behaviors against out-of-distribution

(OOD) inputs, i.e., those sampled from a different distribution from the training data.

For instance, CNNs often classify irrelevant images to one of the known classes with

high confidence. A visual recognition system should desirably be equipped with an

ability to detect such OOD inputs upon its real-world deployment.

There are many studies of OOD detection that are based on diverse motivations

and purposes. However, as far as the recent studies targeted at visual recognition are

concerned, most of them follow the work of [2], which provides a formal problem state-

ment of OOD detection and an experimental procedure to evaluate the performance

of methods. Employing this procedure, the recent studies focus mainly on increasing

detection accuracy, where the performance is measured using the same datasets.

On the one hand, the employment of the experimental procedure has arguably

bought about the rapid progress of research in a short period. On the other hand,

little attention has been paid to how well the employed procedure models real-world
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problems and applications. They are diverse in purposes and domains, which obvi-

ously cannot be covered by the single problem setting with a narrow range of datasets.

In this study, to address this issue, we consider multiple, more realistic scenarios

of the application of OOD detection, and then experimentally compare the represen-

tative methods. To be specific, we consider the three scenarios: detection of irrelevant

inputs, detection of novel class inputs, and detection of domain shift. The first two

scenarios differ in the closeness between ID samples and OOD samples.

Unlike the first two, domain shift detection is not precisely OOD detection. Nonethe-

less, it is the same as the other two in that what we want is to judge if the model

can make a meaningful inference for a novel input. In other words, we can generalize

OOD detection to the problem of judging this. Then, the above three scenarios are

naturally fallen into the same group of problems, and it becomes natural to consider

applying OOD detection methods to the third scenario. It is noteworthy that domain

shift detection has been poorly studied in the community. Despite many demands

from practitioners, there is no established method in the context of deep learning for

image classification. Based on the above generalization of OOD detection, we propose

a meta-approach in which any OOD detection method can be used as its component.

For each of these three scenarios, we compare the following methods: the confidence-

based baseline [2], MC dropout [13], ODIN [3], cosine similarity [5, 74], and the Ma-

halanobis detector [4]. Domain shift detection is studied in [75] with natural language

processing tasks, where proxy-A distance (PAD) is reported to perform the best; thus

we test it in our experiments.

As for choosing the compared methods, we follow the argument shared by many

recent studies [1, 5, 26, 27, 74] that OOD detection methods should not assume the

availability of explicit OOD samples at training time. Although this may sound ob-

vious considering the nature of OOD, some of the recent methods (e.g., [3, 4]) use a

certain amount of OOD samples as validation data to determine their hyperparam-

eters. The recent studies, [1, 74], show that these methods do perform poorly when

encountering OOD inputs sampled from a different distribution from the assumed

one at test time. Thus, for ODIN and the Mahalanobis detector, we employ their

variants [4,5] that can work without OOD samples. The other compared methods do

not need OOD samples.
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The contribution of this study are summarized as follows. i) Listing three prob-

lems that practitioners frequently encounter, we evaluate the existing OOD detection

methods on each of them. ii) We show a practical approach to domain shift detection

that is applicable to CNNs for image classification. iii) We show experimental eval-

uation of representative OOD detection methods on these problems, revealing each

method’s effectiveness and ineffectiveness in each scenario.

3.2 Problems and Methods

3.2.1 Practical Scenarios of OOD Detection

We consider image recognition tasks in which a CNN classifies a single image x

into one of C known classes. The CNN is trained using pairs of x and its label,

and x is sampled according to x ∼ p(x). At test time, it will encounter an unseen

input x, which is usually from p(x) but is sometimes from p′(x), a different, unknown

distribution. In this study, we consider the following three scenarios.

Detecting Irrelevant Inputs The new input x does not belong to any of the

known classes and is out of concern. Suppose we want to build a smartphone app

that recognizes dog breeds. We train a CNN on a dataset containing various dog

images, enabling it to perform the task with reasonable accuracy. We then point the

smartphone to a sofa and shoot its image, feeding it to our classifier. It could classify

the image as a Bull Terrier with high confidence. Naturally, we want to avoid this by

detecting the irrelevance of x. Most studies of OOD detection assumes this scenario

for evaluation.

Detecting Novel Classes The input x belongs to a novel class, which differs from

any of C known classes, and furthermore, we want our CNN to learn to classify it

later, e.g., after additional training. For instance, suppose we are building a system

that recognizes insects in the wild, with an ambition to make it cover all the insects

on the earth. Further, suppose an image of one of the endangered (and thus rare)

insects is inputted to the system while operating it. If we can detect it as a novel

class, we would be able to update the system in several ways. The problem is the

same as the first scenario in that we want to detect whether x ∼ p(x) or not. The
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difference is that x is more similar to samples of the learned classes, or equivalently,

p′(x) is more close to p(x), arguably making the detection more difficult. Note that

in this study, we don’t consider distinguishing whether x is an irrelevant input or a

novel class input, for the sake of simplicity. We left it for a future study.

Detecting Domain Shift The input x belongs to one of C known classes, but

its underlying distribution is p′(x), not p(x). We are especially interested in the case

where a distributional shift p(x) → p′(x) occurs either suddenly or gradually while

running a system for the long term. Our CNN may or may not generalize beyond

this shift to p′(x). Thus, we want to detect if it does not. If we can do this, we would

take some actions, such as re-training the network with new training data [75]. We

consider the case where no information is available other than the incoming inputs

x′s.

A good example is a surveillance system using a camera deployed outdoor. Let

us assume the images’ quality deteriorates after some time since its deployment, for

instance, due to the camera’s aging. Then, the latest images will follow a different

distribution from that of the training data. Unlike the above two cases where we have

to decide for a single input, we can use multiple inputs; we should, especially when

the quality of input images deteriorate gradually as time goes.

The problem here has three differences from the above two scenarios. First, the

input is a valid sample belonging to a known class, neither an irrelevant sample nor

a novel class sample. Second, we are basically interested in the accuracy of our CNN

with the latest input(s) and not in whether x ∼ p(x) or p′(x). Third, as mentioned

above, we can use multiple inputs {xi}i=1,...,n for the judgment.

Additional remarks on this scenario. Assuming a temporal sequence of inputs,

the distributional shift is also called concept drift [76]. It includes several different

subproblems, and the one considered here is called virtual concept drift in its termi-

nology. Mathematically, concept drift occurs when p(x, y) changes with time. It is

called virtual when p(x) changes while p(y|x) does not change. Intuitively, this is the

case where the classes (i.e., concept) remain the same but p(x) changes, demanding

the classifier to deal with inputs drawn from p′(x). Then, we are usually interested

in predicting if x lies in a region of the data space for which our classifier is well

trained and can correctly classify it. If not, we might want to retrain our classifier
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using additional data or invoke unsupervised domain adaptation methods [77,78].

3.2.2 Compared Methods

We select five representative OOD detection methods that do not use real OOD

samples to be encountered at test time.

Baseline: Max-softmax [2] showed that the maximum of the softmax outputs, or

confidence, can be used to detect OOD inputs. We use it as the score of an input being

in-distribution (ID). We will refer to this method as Baseline. It is well known that

the confidence can be calibrated using temperature to better represent classification

accuracy [11, 12]. We also evaluate this calibrated confidence, which will be referred

to as Calib.

MC Dropout The confidence (i.e., the max-softmax) is also thought of as a measure

of uncertainty of prediction, but it captures only aleatoric uncertainty [28]. Bayesian

neural networks (BNNs) can also take epistemic uncertainty into account, which is

theoretically more relevant to OOD detection. MC (Monte-Carlo) dropout [13] is

an approximation of BNNs that is computationally more efficient than an ensemble

of networks [17]. To be specific, using dropout [79] at test time provides multiple

prediction samples, from which the average of their max-softmax values is calculated

and used as ID score.

Cosine Similarity It is recently shown in [5, 74] that using scaled cosine similar-

ities at the last layer of a CNN, similar to the angular softmax for metric learning,

enables accurate OOD detection. To be specific, the method first computes cosine

similarities between the feature vector of the final layer and class centers (or equiv-

alently, normalized weight vectors for classes). They are multiplied with a scale and

then normalized by softmax to obtain class scores. The scale, which is the inverse

temperature, is predicted from the same feature vector. These computations are per-

formed by a single layer replacing the last layer of a standard CNN. The maximum

of the cosine similarities (without the scale) gives ID score. The method is free of

hyperparameters for OOD detection. We will refer to it as Cosine.

ODIN (with OOD-sample Free Extension) ODIN was proposed by [3] to

improve Baseline by perturbing an input x → x + ε · sgn(δx) in the direction δx of
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maximally increasing the max-softmax and also by temperature scaling. Thus, there

are two hyperparameters, the perturbation size ε and the temperature T . In [3],

they are chosen by assuming the availability of explicit OOD samples. Recently, [5]

proposed to select ε← argmaxε
∑
yκ(x+ε·sgn(δx)), where yκ is the max-softmax and

the summation is taken over ID samples in the validation set. As for the temperature,

they set T = 1000. ID score is given by yκ(x + ε · sgn(δx)). To distinguish from the

original ODIN, we refer to this as ODIN∗.

Mahalanobis Detector The above three methods are based on the confidence.

Another approach is to formulate the problem as unsupervised anomaly detection. [4]

proposed to model the distribution of intermediate layer’s activation by a Gaussian

distribution for each class but with a shared covariance matrix among the classes.

Given an input, the Mahalanobis distance concerning the predicted class is calculated

at each layer. A score for OOD is given by the weighted sum of those calculated at

different layers. The weights are predicted by logistic regression, which is determined

by assuming the availability of OOD samples. To be free from the assumption, another

method is suggested that generates adversarial examples from ID samples and regard

them as OOD samples. It is also reported in [5] that setting all the weights to one

works reasonably well. We evaluate the last two methods that do not need OOD

samples. Although the original method optionally uses input perturbation similar to

ODIN, we do not use it because our experiments show that its improvement is very

small despite its high computational cost.

Effects of Fine-tuning a Pre-trained Network It has been well known that

fine-tuning a pre-trained network on a downstream task improves its prediction accu-

racy, especially when a small amount of training data is available. It was pointed out

in [80] that the improvement is little when there is sufficient training data. [56] then

show that even in that case, using a pre-trained network helps increase the overall

robustness of the inference. It includes improved OOD detection performance, in

addition to robustness to adversarial attacks, better calibration of confidence, robust-

ness to covariate shift. However, their experimental validation is performed only on

a single configuration with a few datasets. It remains unclear if the improvement can

generalize to a broader range of purposes and settings that may differ in image size,

the number of training samples, and ID/OOD combinations.

56



3.3 Experimental Results

We use Resnet-50 [81] for a base network. We use it as is for Baseline, ODIN∗,

and Mahalanobis, which share the same networks with the same weights, which will

be referred to as Standard. We apply dropout to the last fully-connected layer with

p = 0.5 and draw ten samples for MC dropout. We modify the last layer and the

loss function for Cosine, following [74]. We use the ImageNet pre-trained model pro-

vided by the Torchvision libraryfor their pre-trained models. We employ AUROC to

evaluate OOD detection performance with the first two scenarios, following previous

studies.

3.3.1 Detection of Irrelevant Inputs

We employ the following five tasks and datasets: dog breed recognition (120

classes and 10,222 images; [82]), plant seeding classification (12 classes and 5,544

images; [83]), Food-101 (101 classes and 101,000 images; [67]), CUB-200 (200 classes

and 11,788 images; [84]), and Stanford Cars (196 classes and 16,185 images; [85]).

These datasets will be referred to as Dog, Plant, Food, Bird, and Cars. They are

diverse in terms of image contents, the number of classes, difficulty of tasks (e.g.,

fine-grained/coarse-grained), etc. Choosing one of the five as ID and training a net-

work on it, we regard each of the other four as OOD, measuring the OOD detection

performance of each method on the 5× 4 ID-OOD combination. We train each net-

work for three times to measure the average and standard deviation for each configu-

ration. Table 3.1 shows the accuracy of the five datasets/tasks for the three networks

(i.e., Standard, MC dropout, and Cosine) trained from scratch and fine-tuned from a

pre-trained model, respectively. It is seen that there is large gap between training-

from-scratch and fine-tuning a pre-trained model for the datasets with fewer training

samples.

Figure 3.1: Example images for the five datasets.
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Table 3.1: Classification accuracy (mean and standard deviation in parenthesis) of
the three networks on the five datasets/tasks.

Dataset
Train-from-scratch Fine-tuning

Standard MC dropout Cosine Standard MC dropout Cosine

Dog 26.7(3.4) 28.9(2.8) 36.2(1.4) 79.4(0.1) 79.3(0.3) 78.5(0.3)

Plant 94.1(0.4) 94.7(0.2) 95.8(0.9) 95.2(0.6) 95.5(0.5) 92.7(2.6)

Food 75.5(1.0) 76.4(0.2) 76.6(0.1) 80.5(0.0) 80.7(0.1) 79.2(0.1)

Bird 24.7(0.9) 28.5(0.6) 31.3(2.4) 71.9(0.3) 72.4(0.4) 70.1(0.3)

Car 18.2(3.8) 22.0(1.6) 36.0(6.2) 77.6(0.3) 77.7(0.3) 73.7(0.6)

Figure 3.2: OOD detection performance of the compared methods. ‘Dog’ indicates
their performance when Dog is ID and all the other four datasets are OOD, etc. Each
bar shows the average AUROC of a method, and the error bar indicates its minimum
and maximum values. Upper: The networks are trained from scratch. Lower: Pre-
trained models are fine-tuned.

Figure 3.2 shows the average AUROC of the compared OOD detection methods

for each ID dataset over the four OOD datasets and three trials for each. The error

bars indicate the minimum and maximum of AUROC. The full results for each of the

twenty ID-OOD pairs are reported in Tables 3.5 and 3.6 in Sec. 3.4. The upper row

of Fig. 3.2 shows the results with the networks trained from scratch. It is seen that

the ranking of the compared methods are mostly similar for different ID datasets.

For the five datasets, Cosine is consistently among the top group; Mahalanobis will

be ranked next, since it performs mediocre for Dog and Food. For the tasks with low

classification accuracy, Dog, Bird, and Car, as shown in Table 3.1, the OOD detection

accuracy tends to be also low; however, there is no tendency in the ranking of the

OOD detection methods depending on the ID classification accuracy.
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The lower row of Fig. 3.2 shows the results with the fine-tuned networks. It is first

observed for any dataset and method that the OOD detection accuracy is significantly

higher than the networks trained from scratch. This reinforces the argument made

by [56] that the use of pre-trained networks improves OOD detection performance.

Furthermore, the performance increase is a lot higher for several cases than reported

in their experiments that use CIFAR-10/100 and Tiny ImageNet [64]. The detection

accuracy is pushed to a near-maximum for each case. Thus, there is only a little

difference among the methods; Cosine and Mahalanobis(sum) shows slightly better

performance for some datasets.

3.3.2 Detection of Novel Classes

We conducted two experiments with different datasets. The first experiment uses

the Oxford-IIIT Pet dataset [86], consisting of 25 dog breeds and 12 cat breeds. We

use only the dog breeds and split them into 20 and 5 breeds. We then train each

network on the first 20 dog breeds using the standard train/test splits per class. The

remaining five breeds (i.e., Scottish Terrier, Shiba Inu, Staffordshire Bull Terrier,

Wheaten Terrier, Yorkshire Terrier) are treated as OOD. It should be noted that

the ImageNet dataset contains 118 dog breeds, some of which overlap with them.

We intentionally leave this overlap to simulate a similar situation that could occur in

practice. In the second experiment, we use the Food-101 dataset. We remove eight

classes1 contained in the ImageNet dataset. We split the remaining 93 classes into

46 and 47 classes, called Food-A and -B, respectively. Each network is trained on

Food-A. We split Food-A into 800/100/100 samples per class to form train/val/test

sets. Treating Food-B as OOD, we evaluate the methods’ performance.

Table 3.2 shows the methods’ performance of detecting OOD samples (i.e., novel

samples). In the table we separate the Mahalanobis detector and the others; the

latter are all based on confidence or its variant, whereas Mahalanobis is not. The

ranking of the methods is similar between the two experiments. Cosine attains the

top performance for both of the two training methods. While this is similar to the

results of irrelevant sample detection (Fig. 3.2), the gap to the second best group

1Apple Pie, Breakfast Burrito, Chocolate Mousse, Gaucamole, Hamburger, Hot Dog, Ice Cream,
Pizza
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Table 3.2: Novel class detection performance of the compared methods measured by
AUROC.

Method
Dog Food-A

From-scratch Fine-tuning From-scratch Fine-tuning

Baseline 61.1(0.8) 88.7(1.0) 82.5(0.1) 84.6(0.2)

Calib. 62.9(0.5) 86.5(1.1) 83.4(0.1) 84.8(0.2)

MC dropout 61.7(0.4) 89.8(0.8) 82.7(0.1) 84.7(0.1)

Cosine 68.8(1.3) 94.1(0.8) 83.7(0.1) 85.7(0.3)

ODIN* 59.9(0.5) 85.3(1.4) 77.4(0.1) 74.7(0.3)

Maha. (sum) 52.3(1.2) 78.7(1.4) 51.3(0.1) 61.9(0.5)

Maha. (adv) 49.0(0.2) 65.8(1.5) 51.8(0.3) 57.1(7.2)

(Baseline, Calib., and MC dropout) is much larger here; this is significant for training

from scratch. Another difference is that neither variant of Mahalanobis performs well;

they are even worse than Baseline. This will be attributable to the similarity between

ID and OOD samples here. The classification accuracy of the original tasks, Dog and

Food-A are given in Table 3.7 in Sec. 3.5.

3.3.3 Detection of Domain Shift

Problem Formulation

Given a network trained on a dataset Ds, we wish to estimate its classification

error on a different dataset Dt. In practice, a meta-system monitoring the network

estimates the classification error on each of the incoming datasetsD(1)
t ,D(2)

t , · · · , which

are chosen from the incoming data stream. It issues an alert if the predicted error for

the latest D(T )
t is higher than the pre-fixed target.

We use an OOD score S for this purpose. To be specific, given Dt = {xi}i=1,...,n,

we calculate an average of the score S =
∑n

i Si/n, where Si is the OOD score for xi;

note that an OOD score is simply given by a negative ID score. We want to use S to

predict the classification error err =
∑n

i=1 1(yi = ti)/n, where y and t are a prediction

and the true label, respectively. Following [75], we train a regressor f to do this, as

err ∼ f(S). We assume multiple labeled datasets Do’s are available, each of which

do not share inputs with Ds or Dt. Choosing a two-layer MLP for f , we train it on
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Table 3.3: Errors of the predicted classification error by the compared methods.

Method
Food-A (From-scratch) Food-A (Fine-tuning) ImageNet

MAE RMSE MAE RMSE MAE RMSE

Baseline 15.8(3.0) 20.5(3.7) 6.4(1.3) 7.9(1.6) 4.6(0.8) 6.3(1.0)

Calib. 15.0(2.9) 19.6(3.4) 6.3(1.3) 7.9(1.6) 4.3(0.8) 6.0(1.0)

MC dropout 15.3(2.7) 19.7(3.0) 5.8(1.1) 7.2(1.4) 4.0(0.7) 5.3(0.9)

Cosine 6.6(1.3) 8.2(1.6) 6.1(1.6) 7.5(2.2) 3.8(0.9) 4.7(1.1)

ODIN* 14.7(1.9) 17.4(2.2) 8.9(1.3) 10.8(1.4) 9.1(0.8) 12.3(1.2)

Maha. (sum) 15.3(1.5) 18.4(1.8) 15.6(1.5) 18.9(2.1) 15.1(2.2) 18.5(2.9)

Maha. (adv) 14.3(1.5) 17.5(2.0) 19.1(15.8) 24.1(27.6) 16.1(1.7) 19.6(2.6)

PAD 16.3(1.5) 19.2(1.9) 17.5(1.3) 20.5(1.6) 11.0(1.1) 12.9(1.2)

Do’s plus Ds. As they have labels, we can get the pair of err and S for each of them.

Note that Dt does not have labels.

It is reported in [75] that Proxy-A Distance (PAD) [87] performs well on several

NLP tasks. Thus, we also test this method (rigorously, the one called PAD∗ in their

paper) for comparisons. It first trains a binary classifier using portions of Ds and

Dt to distinguish the two. Then, the classifier’s accuracy is evaluated on the held-

out samples of Ds and Dt, which is used as a metric of the distance between their

underlying distributions. Intuitively, the classification is easy when their distance is

large, and vice versa. We train f using 1 − (mean absolute error) for S as in the

previous work.

Domain Shift by Image Corruption

We first consider the case when the shift is caused by the deterioration of image

quality. An example is a surveillance camera deployed in an outdoor environment.

Its images are initially of high quality, but later their quality deteriorates gradually

or suddenly due to some reason, e.g., dirt on the lens, failure of focus adjustment,

seasonal/climate changes, etc. We want to detect it if it affects classification accuracy.

To simulate multiple types of image deterioration, we employ the method and code

for generating image corruption developed by [6]. It can generate 19 types of image

corruptions, each of which has five levels of severity.
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We consider two classification datasets/tasks, Food-A (i.e., 46 selected classes

from Food-101 as explained in Sec. 3.3.2) and ImageNet (the original 1,000 object

classification). For Food-A, we first train each network on the training split, consisting

only of the original images. We divide the test split into three sets, 1,533, 1,533, and

1,534 images, respectively. The first one is used for Ds as is (i.e., without corruption).

We apply the image corruption method to the second and third sets. To be specific,

splitting the 19 corruption types into 6 and 13, we apply the 6 corruptions to the

second set to make Do’s, and the 13 corruptions to the last to make Dt’s. As each

corruption has five severity levels, there are 30(= 6× 5) Do’s and 65(= 13× 5) Dt’s.
The former is used for training f (precisely, 20 are used for training and 10 are for

validation), and the latter is for evaluating f .

For ImageNet, we choose 5,000, 2,000, and 5,000 images from the validation split

without overlap. We use them to make Ds, Do’s, and Dt’s, respectively. As with

Food-A, we apply the 6 and 13 types of corruption to the second and third sets,

making 30 Do’s and 65 Dt’s, respectively.

For the evaluation of f , we calculate mean absolute error (MAE) and root mean

squared error (RMSE) of the predicted err over the 65 Dt’s. We repeat this for 20

times with different splits of image corruptions (19 → 6 + 13), reporting their mean

and standard deviation.

Table 3.3 shows the results for Food-A and ImageNet. (The accuracies of the

original classification tasks of Food-A and ImageNet are reported in Table 3.7 and

Table 3.10 in Sec. 3.5 and 3.6.) It is seen for both datasets that Cosine achieves

the top-level accuracy irrespective of the training methods. For Food-A, using a pre-

trained network boosts the performance for the confidence-based methods (i.e., from

Baseline to ODIN∗), resulting in that MC dropout performs the best; Cosine attains

almost the same accuracy. On the other hand, Mahalanobis and PAD do not perform

well regardless of the datasets and training methods. This well demonstrates the

difference between detecting the distributional shift p(x) → p′(x) and detecting the

deterioration of classification accuracy. We show scatter plots of S vs. err in Fig. 3.4

and 3.5 in Sec. 3.6, which provides a similar, or even clearer, observation.
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Office-31

To study another type of domain shift, we employ the Office-31 dataset [88], which

is popular in the study of domain adaptation. The dataset consists of three subsets,

Amazon, DSLR, and Webcam, which share the same 31 classes and are collected

from different domains. We train our CNNs on Amazon and evaluate the compared

methods in terms of prediction accuracy of classification errors for samples in DSLR

and Webcam. The classification accuracy of the CNNs on Amazon is provided in

Table 3.11 in Sec. 3.7.

To obtain Do’s for training f , we employ the same image corruption methods

as Sec. 3.3.3; we apply them to Amazon samples to create virtual domain-shifted

samples. The effectiveness of modeling the true shifted data, i.e., DSLR and Webcam,

with these samples is unknown and needs to be experimentally validated. If this

works, it will be practically useful. Specifically, we split the test splits of Amazon

containing 754 images evenly into two sets. We use one for Ds and the other for

creating Do’s. We apply all the types of corruption, yielding 95(= 19 × 5) Do’s. We

then split them into those generated by four corruptions and those generated by the

rest; the latter is used for training f , and the former is used for the validation. We

iterate this for 20 times with different random splits of the corruption types, reporting

the average over 20× 3 trials, as there are three CNN models trained from different

initial weights.

To evaluate each method (i.e., f based on a OOD score), we split DSLR and

Webcam into subsets containing 50 samples, yielding 18 Dt’s in total. We apply f to

each of them, reporting the average error of predicting classification errors. Table 3.4

shows the results. It is observed that Cosine works well in both training methods.

The two variants of Mahalanobis show good performance when using a pre-trained

model, but this may be better considered a coincidence, as explained below. Figure

3.3 shows the scatter plots of OOD score vs. classification error for each method.

The green dots indicate Do’s, corrupted Amazon images used for training f , and

the blue ones indicate Dt’s, subsets from DSLR and Webcam containing 50 samples

each. For the method for which the green dots distribute with narrower spread,

the regressor f will yield more accurate results. Thus, it is seen from Fig. 3.3 that

both Mahalanobis’s tend to have large spread, meaning that they could perform
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Table 3.4: Errors of the predicted classification error by the compared methods on
50 sample subsets of DSLR and Webcam. The CNN is trained on Amazon and the
regressor f is trained using corrupted images of Amazon.

Method
Train-from-scratch Fine-tuning

MAE RMSE MAE RMSE

Baseline 12.1(3.1) 14.6(3.1) 10.6(2.3) 11.7(2.3)

Calib. 9.5(3.2) 11.5(3.4) 9.7(2.3) 10.8(2.3)

MC dropout 8.0(1.9) 10.1(2.7) 9.3(1.7) 10.5(1.7)

Cosine 5.6(1.5) 6.8(1.7) 8.5(2.0) 10.0(2.2)

ODIN* 7.3(2.5) 8.1(2.6) 13.4(3.6) 15.3(3.6)

Maha. (sum) 18.8(4.7) 20.7(3.9) 7.9(2.0) 9.7(2.1)

Maha. (adv) 34.1(15.8) 40.0(22.5) 8.2(2.1) 9.9(2.2)

PAD 10.6(2.2) 12.1(2.6) 16.8(3.4) 18.3(3.2)

poorly depending on incoming domain-shifted data. Cosine and MC dropout have

narrower spread, confirming their performance in Table 3.4. Other results for DSLR

and Webcam subsets with a different number of samples are provided in Sec. 3.7.
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Figure 3.3: OOD score vs. the true classification error for 95(= 19×5) Do’s (corrupted
Amazon images used for training the regressor f ; in green), 18 Dt’s (subsets of DSLR
and Webcam containing 50 samples each; in blue), and Ds (original Amazon images;
in red).

3.3.4 Analyses of the Results

We can summarize our findings in the following. i) Using a pre-trained network

has shown improvements in all the scenarios, confirming the report of [56]. ii) The de-
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tector using cosine similarity consistently works well throughout the three scenarios.

The method will be the first choice if it is acceptable to modify the network’s final

layer. iii) The Mahalanobis detector, a SOTA method, works well only for irrelevant

input detection. This is not contradictory with the previous reports, since they em-

ploy only this very scenario. The method fits a Gaussian distribution to ID samples

belonging to each class and uses the same covariance matrix for all the classes. This

strategy might work well on easy cases when incoming OOD samples are mapped

distantly from the Gaussian distributions. However, such a simple modeling method

will not work in more challenging cases. For instance, incoming OOD samples could

be mapped near the ID distributions, as in novel class detection. In such cases, the

ID sample distribution needs to be very precisely modeled, for which the assumption

of Gaussian distributions with a single covariance matrix is inadequate. iv) Domain

shift detection requires detecting classification accuracy deterioration, not detecting

a distributional shift of inputs, contrary to its name. This theoretically favors the

confidence-based methods; they (particularly MC dropout) indeed work well, when

used with a pre-trained network. However, the Mahalanobis detector is more like an

anomaly detection method, although its similarity with a softmax classifier is sug-

gested in [4]. An input sample for which the network can make a correct classification

can be detected as an ‘anomaly’ by the Mahalanobis detector.

3.4 Additional Results for Detection of Irrelevant

Inputs

In our experiment for irrelevant input detection, using five datasets, we consider

every pair of them, one for ID and the other for OOD. In Sec. 3.3.1, we reported only

the average detection accuracy over four such pairs for an ID dataset. We report here

the results for all the ID-OOD pairs. Tables 3.5 and 3.6 show the performance of

the compared methods for training from scratch and for fine-tuning of a pre-trained

network.
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Table 3.5: The OOD detection performance (AUROC) for networks trained from
scratch. D1=Dog, D2=Plant, D3=Food, D4=Bird, and D5=Cat.

Method OOD
In-Distribution

D1 D2 D3 D4 D5

Baseline

D1 - 78.1(1.1) 88.9(0.7) 59.2(1.0) 61.4(3.9)

D2 76.1(12.4) - 63.6(4.5) 32.7(5.6) 70.8(21.1)

D3 65.5(4.2) 75.9(4.6) - 54.1(1.2) 56.3(4.4)

D4 72.1(3.2) 74.8(2.1) 88.0(0.8) - 61.2(4.4)

D5 73.4(2.4) 79.5(5.4) 93.5(1.0) 53.0(0.9) -

Calib.

D1 - 76.1(1.3) 91.6(0.6) 65.1(0.6) 67.2(3.5)

D2 83.2(12.2) - 65.3(5.3) 39.6(3.9) 76.4(20.3)

D3 70.4(5.4) 73.6(7.6) - 58.2(1.5) 60.3(5.6)

D4 78.9(3.4) 72.8(1.9) 90.8(0.8) - 66.5(4.5)

D5 81.4(3.0) 77.7(6.4) 95.7(0.8) 54.4(1.7) -

MC dropout

D1 - 82.6(2.8) 89.3(0.2) 61.2(1.1) 67.0(1.9)

D2 82.5(9.9) - 67.4(7.7) 43.8(7.4) 84.4(8.8)

D3 68.6(1.6) 84.7(2.6) - 57.1(1.6) 61.3(2.8)

D4 73.7(1.6) 79.0(2.0) 88.3(0.4) - 67.3(1.4)

D5 75.9(2.4) 84.6(4.6) 94.7(0.0) 57.0(0.7) -

Cosine

D1 - 93.9(2.2) 96.9(0.2) 74.8(0.5) 89.7(2.3)

D2 96.6(1.8) - 94.1(0.5) 51.1(13.9) 98.1(1.4)

D3 85.0(1.4) 94.4(2.5) - 78.8(1.9) 81.7(4.7)

D4 90.9(0.7) 94.1(1.4) 97.6(0.1) - 90.6(2.7)

D5 92.5(0.5) 96.3(0.9) 99.5(0.0) 73.6(2.5) -

ODIN*

D1 - 55.8(16.6) 74.2(0.9) 54.5(2.1) 63.5(2.1)

D2 78.4(3.1) - 55.2(9.2) 58.6(11.8) 76.5(6.6)

D3 69.3(6.1) 54.9(21.9) - 62.5(3.0) 68.7(2.0)

D4 82.3(2.4) 48.9(15.1) 82.3(0.6) - 70.3(1.5)

D5 81.2(3.8) 57.0(18.1) 89.6(0.7) 51.6(2.7) -

Maha. (sum)

D1 - 99.7(0.1) 68.6(0.8) 67.5(1.8) 63.6(3.0)

D2 87.8(3.4) - 97.8(0.6) 75.7(4.5) 92.7(5.9)

D3 73.2(2.7) 99.8(0.1) - 87.1(1.4) 78.4(2.8)

D4 75.9(1.2) 99.7(0.1) 87.2(0.8) - 76.2(2.0)

D5 53.9(2.7) 99.8(0.1) 63.9(2.6) 83.2(1.8) -

Maha. (adv)

D1 - 80.9(10.8) 65.6(3.1) 59.8(3.6) 35.2(8.2)

D2 67.9(6.0) - 98.4(0.4) 58.2(8.5) 51.3(23.0)

D3 41.0(4.2) 87.0(8.2) - 59.2(3.5) 39.5(9.7)

D4 26.2(3.3) 87.3(6.1) 71.0(2.4) - 33.5(15.2)

D5 35.5(6.6) 70.9(19.4) 41.1(6.6) 74.2(9.7) -
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Table 3.6: The OOD detection performance (AUROC) for fine-tuned networks from
a pre-trained model. D1=Dog, D2=Plant, D3=Food, D4=Bird, and D5=Cat.

Method OOD
In-Distribution

D1 D2 D3 D4 D5

Baseline

D1 - 96.3(0.4) 91.4(0.5) 96.4(0.6) 99.3(0.5)

D2 100.0(0.0) - 54.3(8.2) 96.9(2.8) 87.4(4.1)

D3 99.7(0.0) 96.1(0.7) - 99.2(0.2) 97.1(0.6)

D4 99.0(0.2) 97.2(0.4) 91.1(0.5) - 97.6(0.6)

D5 100.0(0.0) 95.2(1.5) 95.9(1.2) 99.8(0.1) -

Calib.

D1 - 97.4(0.4) 92.3(0.5) 94.2(0.9) 98.4(1.1)

D2 100.0(0.0) - 55.0(8.3) 92.9(6.0) 73.0(6.2)

D3 99.4(0.1) 97.1(0.6) - 98.2(0.5) 94.2(1.1)

D4 98.1(0.5) 98.1(0.3) 91.8(0.5) - 94.7(1.1)

D5 100.0(0.0) 96.9(1.1) 96.4(1.1) 99.7(0.1) -

MC dropout

D1 - 95.7(1.8) 92.7(0.5) 96.8(0.4) 99.6(0.2)

D2 100.0(0.0) - 61.4(7.3) 99.3(0.4) 88.0(7.1)

D3 99.7(0.0) 96.1(0.9) - 99.3(0.2) 97.9(0.8)

D4 98.9(0.1) 97.2(0.7) 91.5(0.7) - 98.7(0.5)

D5 100.0(0.0) 96.4(1.1) 97.1(0.7) 99.9(0.0) -

Cosine

D1 - 99.3(0.5) 96.3(0.0) 97.5(0.2) 99.4(0.0)

D2 99.5(0.2) - 86.7(6.1) 100.0(0.0) 98.6(0.4)

D3 99.5(0.1) 99.5(0.2) - 99.4(0.1) 99.0(0.3)

D4 99.5(0.0) 99.6(0.3) 96.0(0.3) - 99.1(0.2)

D5 99.8(0.0) 99.8(0.1) 99.2(0.2) 99.6(0.0) -

ODIN*

D1 - 93.1(1.7) 86.2(0.7) 92.2(0.6) 99.8(0.1)

D2 99.6(0.2) - 53.5(16.5) 98.0(0.9) 91.8(2.8)

D3 96.6(0.6) 92.7(3.3) - 96.8(0.5) 98.2(0.2)

D4 97.2(0.6) 95.7(1.3) 90.0(0.3) - 99.6(0.1)

D5 100.0(0.0) 98.6(0.1) 96.2(0.7) 99.5(0.2) -

Maha. (sum)

D1 - 100.0(0.0) 93.2(0.5) 99.0(0.1) 99.6(0.0)

D2 99.7(0.0) - 97.5(0.2) 99.8(0.0) 99.9(0.0)

D3 98.9(0.0) 100.0(0.0) - 99.3(0.1) 99.8(0.0)

D4 97.4(0.1) 100.0(0.0) 96.4(0.1) - 99.5(0.0)

D5 98.1(0.0) 100.0(0.0) 92.8(0.4) 99.1(0.0) -

Maha. (adv)

D1 - 99.1(1.0) 86.9(1.5) 98.2(0.1) 99.6(0.0)

D2 99.7(0.0) - 82.7(6.2) 99.7(0.0) 100.0(0.0)

D3 98.5(0.1) 99.0(1.0) - 98.3(0.2) 99.8(0.0)

D4 92.2(1.1) 98.9(1.2) 92.7(1.1) - 99.5(0.0)

D5 98.1(0.1) 99.6(0.4) 88.1(1.3) 98.9(0.1) -
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Table 3.7: Classification accuracy for the two tasks, Dog (20 dog breeds classification)
and Food-A (46 food class classification), for which novel class detection is examined.

Dataset
Train-from-scratch Fine-tuning

Standard MC dropout Cosine Standard MC dropout Cosine

Dog 51.9(0.8) 51.1(0.8) 64.2(1.4) 95.7(0.1) 95.6(0.2) 96.0(0.1)

Food-A 83.4(0.3) 84.0(0.2) 83.6(0.1) 87.5(0.2) 87.5(0.2) 86.0(0.1)

3.5 Additional Results for Detection of Novel Classes

3.5.1 Classification Accuracy of the Base Tasks

In our experiments for novel class detection, we employ two datasets, Dog and

Food-A. Table 3.7 shows the classification accuracy for each of them. It is seen that

for Dog, using a pre-trained model boosts the accuracy. There is a tendency similar

to that seen in Table 3.1, that Cosine outperforms others in training from scratch.

For Food-A, using a pre-trained model shows only modest improvement due to the

availability of a sufficient number of samples.

3.5.2 Additional Results

In one of the experiments explained in Sec. 3.3.2, we use only dog classes from

the Oxford-IIIT Pet dataset. We show here additional results obtained when using

cat classes. Choosing nine from 12 cat breeds contained in the dataset, we train the

networks on classification of these nine breeds and test novel class detection using

the remaining three breed classes. In another experiment, we use Food-A for ID and

Food-B for OOD. We report here the results for the reverse configuration. Table 3.8

shows the classification accuracy of the new tasks. Table 3.9 shows the performance

of the compared methods on the novel class detection. A similar observation to the

experiments of Sec. 3.3.2 can be made.
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Table 3.8: Classification accuracy for Cat (9 cat breed classification) and Food-B (47
food class classification).

Dataset
Random Init. Fine-Tuning

Standard MC dropout Cosine Standard MC dropout Cosine

Cat 60.9(0.8) 57.8(1.2) 64.1(0.9) 89.5(0.3) 88.8(0.3) 88.9(0.5)

Food-B 83.6(0.3) 84.3(0.4) 83.7(0.3) 87.6(0.2) 87.4(0.1) 86.2(0.1)

Table 3.9: Novel class detection performance (AUROC) of the compared methods.
The OOD samples for Cat and Food-B are the held-out 3 cat breeds and Food-A,
respectively.

Method
Cat Food-B

From-scratch. Fine-Tune From-scratch Fine-Tune

Baseline 57.7(0.1) 72.1(1.9) 81.5(0.2) 84.2(0.2)

Calib. 58.6(0.4) 70.9(2.0) 82.5(0.2) 84.5(0.2)

MC dropout 57.6(1.3) 72.7(1.1) 82.0(0.2) 84.5(0.3)

Cosine 63.6(1.1) 73.7(2.1) 81.7(0.2) 84.8(0.3)

ODIN* 52.3(0.7) 72.6(0.7) 74.4(0.7) 73.6(0.3)

Maha. (sum) 43.9(0.5) 62.2(0.4) 51.8(0.2) 64.2(0.1)

Maha. (adv) 50.0(3.0) 61.1(2.1) 52.6(0.4) 52.8(9.8)
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Table 3.10: Classification accuracy on ImageNet for each network.

Dataset Standard MC dropout Cosine

ImageNet 74.6(0.1) 75.5(0.3) 72.4(0.1)

3.6 Additional Results for Detection of Domain

Shift (Image Corruption)

3.6.1 Classification Accuracy on ImageNet

Table 3.10 shows the accuracy of the three networks used by the compared OOD

detection methods for 1,000 class classification of the ImageNet dataset. We use

center-cropping at test time. The cosine network shows lower classification accuracy

here.

3.6.2 Scatter Plots of OOD Score vs. Classification Error

In Sec. 3.3.3, we showed experimental results of domain shift detection using

Food-A. Given a set Dt of samples, each of the compared methods calculates an OOD

score S for it, from which the average classification error err over samples from Dt
is predicted. Figure 3.4 shows scatter plots showing the relation between the OOD

score S and the true classification error for a number of datasets (i.e., Dt’s). We have

95(= 19×5) such datasets, each containing images undergoing one of the combinations

of 19 image corruptions and 5 severity levels. The method with a narrower spread

of dots should provide a more accurate estimation. These scatter plots well depict

which method works well and which does not, which agrees well with Table 3.3. The

same holds true for the plots for ImageNet shown in Fig. 3.5.
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Figure 3.4: OOD score vs. classification error for 95(= 19×5) datasets, i.e., Do’s and
Dt’s (corrupted Food-A images).
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Figure 3.5: OOD score vs. classification error for 95(= 19×5) datasets, i.e., Do’s and
Dt’s (corrupted ImageNet images).

3.7 Additional Results for Detection of Domain

Shift (Office-31)

3.7.1 Classification Accuracy of the Base Tasks

Table 3.11 shows the classification accuracy of the three networks used by the

compared methods for the different domain datasets of Office-31. These networks are

trained only on Amazon.

3.7.2 Additional Results

As with the experiments on image corruption, we evaluate how accurately the

compared methods can predict the classification error on incoming datasets, Dt’s.
Table 3.4 and Fig. 3.3 show the error of the predicted classification accuracy and the

scatter plots of the OOD score and the true classification accuracy, where Dt’s are

created by splitting DSLR and Webcam into sets containing 50 samples. We show

here additional results obtained for Dt’s created differently. Table 3.12 and Fig. 3.6
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Table 3.11: The classification accuracy of the three networks trained on Amazon for
Amazon, DSLR, and Webcam.

Dataset
Train-from-scratch Fine-tuning

Standard MC dropout Cosine Standard MC dropout Cosine

Amazon 63.0(1.3) 63.9(2.5) 67.1(1.8) 87.8(0.7) 87.1(0.1) 87.8(0.3)

DSLR 9.6(0.6) 7.8(1.6) 10.0(1.0) 77.1(1.2) 78.9(1.3) 74.2(0.9)

Webcam 7.2(1.9) 6.8(1.2) 11.1(0.6) 73.8(1.3) 74.1(2.2) 67.8(0.3)
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Figure 3.6: OOD score vs. classification error for 95(= 19 × 5) Do’s (corrupted
Amazon images used for training the regressor f ; in green), 32 Dt’s (subsets of DSLR
and Webcam containing 30 samples each; in blue), and Ds (original Amazon images;
in red).

show the prediction errors and the scatter plots for Dt’s containing 30 samples. Table

3.13 and Fig. 3.7 show those for Dt’s of 100 samples. Table 3.14 and Fig. 3.8 show

those for using the entire DSLR and Webcam for Dt’s; thus there are only two Dt’s.
The standard deviations are computed for 20 × 3 trials (20 for random splitting of

corruption types for train/val and 3 for network models trained from random initial

weights), as explained in Sec. 3.3.3.

3.8 Effectiveness of Ensembles

An ensemble of multiple models is known to performs better than MC-dropout we

considered in the main experiments for estimation of uncertainty etc. It is also known
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Table 3.12: Errors of the predicted classification error by the compared methods on
30 sample subsets of DSLR and Webcam. The CNN is trained on Amazon and the
regressor f is trained using corrupted images of Amazon.

Method
Train-from-scratch Fine-tuning

MAE RMSE MAE RMSE

Baseline 13.3(2.2) 17.5(2.7) 10.9(2.0) 12.8(2.2)

Calib. 9.8(2.4) 12.6(2.7) 9.9(2.1) 11.9(2.3)

MC dropout 9.7(2.4) 12.1(3.5) 10.0(1.6) 11.7(1.6)

Cosine 6.7(1.2) 8.3(1.5) 9.5(1.8) 11.5(1.8)

ODIN* 8.1(2.4) 9.3(2.6) 13.5(3.6) 16.1(3.8)

Maha. (sum) 19.5(3.8) 22.0(2.9) 9.1(1.9) 11.2(2.0)

Maha. (adv) 33.6(15.7) 40.0(22.5) 9.2(1.8) 11.3(1.9)

PAD 13.1(2.9) 14.7(3.2) 13.9(2.3) 16.2(2.3)
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Figure 3.7: OOD score vs. classification error for 95(= 19 × 5) Do’s (corrupted
Amazon images used for training the regressor f ; in green), 8 Dt’s (subsets of DSLR
and Webcam containing 100 samples each; in blue), and Ds (original Amazon images;
in red).
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Table 3.13: Errors of the predicted classification error by the compared methods on
100 sample subsets of DSLR and Webcam. The CNN is trained on Amazon and the
regressor f is trained using corrupted images of Amazon.

Method
Train-from-scratch Fine-tuning

MAE RMSE MAE RMSE

Baseline 11.1(3.2) 12.9(3.4) 10.2(2.7) 11.0(2.6)

Calib. 8.7(3.2) 10.4(3.7) 9.2(2.7) 10.0(2.6)

MC dropout 6.9(2.5) 8.2(2.9) 8.8(1.9) 9.7(2.0)

Cosine 4.6(1.6) 5.5(1.7) 7.9(2.1) 9.0(2.3)

ODIN* 6.8(3.1) 7.3(3.1) 13.4(3.8) 15.1(3.7)

Maha. (sum) 18.3(4.7) 19.9(3.9) 7.4(2.4) 8.5(2.4)

Maha. (adv) 33.6(15.3) 39.1(22.0) 7.7(2.2) 8.7(2.2)

PAD 8.6(2.3) 9.3(2.2) 18.7(3.7) 19.3(3.7)
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Figure 3.8: OOD score vs. classification error for 95(= 19 × 5) Do’s (corrupted
Amazon images used for training the regressor f ; in green), 2 Dt’s (the entire set of
DSLR and Webcam; in blue), and Ds (original Amazon images; in red).
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Table 3.14: Errors of the predicted classification error by the compared methods
on the entire set of DSLR and Webcam. The CNN is trained on Amazon and the
regressor f is trained using corrupted images of Amazon.

Method
Train-from-scratch Fine-tuning

MAE RMSE MAE RMSE

Baseline 9.1(2.1) 10.4(2.5) 10.0(2.1) 10.1(2.1)

Calib. 8.3(2.9) 9.6(3.5) 9.0(2.3) 9.0(2.2)

MC dropout 6.9(2.9) 7.8(3.5) 9.2(1.4) 9.2(1.4)

Cosine 4.0(1.8) 4.6(1.8) 7.5(2.2) 7.5(2.2)

ODIN* 6.5(3.0) 6.7(3.0) 12.7(3.5) 14.1(3.7)

Maha. (sum) 17.8(4.8) 19.2(3.7) 7.5(1.9) 7.6(1.9)

Maha. (adv) 27.7(14.0) 32.9(20.9) 7.7(1.9) 7.9(1.9)

PAD 6.3(1.9) 6.5(1.8) 19.1(2.5) 19.3(2.6)

to be better approximation to Bayesian networks. Thus, we experimentally evaluate

ensembles. We consider an ensemble of five models and train each model in two ways,

i.e., “from-scratch” and “fine-tuning.” We randomly initialize all the weights of each

model for the former. We initialize the last layer randomly and other layers with the

pre-trained model’s weights for the latter. We evaluate ensembles for Baseline and

Cosine. Tables 3.15, 3.16, 3.17, and 3.18 show the results for the three scenarios. In

the tables, “(con.)” means confidence is used as an ID score, or equivalently, negative

confidence is used as an OOD score. “(en.)” means the entropy is used as an OOD

score.

We can observe the following from the tables:

• An ensemble of models performs better than a single model. This is always true

for Baseline. The same is true for Cosine except for domain shift detection. (The

reason is not clear.)

• An ensemble of Baseline models still performs lower than a single Cosine model
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Table 3.15: Irrelevant input detection performance of the ensemble models.

Method From-scratch Fine-Tune

Baseline (con.) 61.4(12.1) 97.7(3.1)

Ensemble (con.) 67.8(13.7) 98.3(2.2)

Baseline (en.) 64.8(13.7) 99.2(0.9)

Ensemble (en.) 73.4(15.3) 99.5(0.5)

Cosine 83.9(11.4) 99.0(0.7)

Ensemble cosine 85.7(12.9) 99.1(0.7)

Table 3.16: Novel class detection performance of the ensemble models.

Method
Dog Food-A

From-scratch Fine-Tune From-scratch Fine-Tune

Baseline (con.) 61.1(0.8) 88.7(1.0) 82.5(0.1) 84.6(0.2)

Ensemble (con.) 64.7 89.5 84.3 86.0

Baseline (en.) 61.6(0.7) 90.0(1.0) 83.3(0.1) 85.4(0.2)

Ensemble (en.) 65.7 90.8 85.0 86.8

Cosine 68.8(1.3) 94.1(0.8) 83.7(0.1) 85.7(0.3)

Ensemble cosine 72.0 94.4 85.2 86.8

for most cases. It sometimes shows better performance for fine-tuned models,

but the margin is small.

• Using entropy as OOD score tends to show slightly better performance than

using confidence.

We conclude that Cosine’s superiority remains true even when we take ensembles into

consideration.
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Table 3.17: Errors of the predicted classification error by the ensemble models.

Method
Food-A (From-scratch) Food-A (Fine-tuning) ImageNet

MAE RMSE MAE RMSE MAE RMSE

Baseline (con.) 15.8(3.0) 20.5(3.7) 6.4(1.3) 7.9(1.6) 4.6(0.8) 6.3(1.0)

Ensemble (con.) 12.9(2.3) 17.1(2.4) 5.6(1.3) 7.0(1.8) 4.0(0.8) 5.5(1.1)

Baseline (en.) 16.8(3.2) 21.6(3.6) 6.6(1.0) 8.4(1.3) 4.7(0.8) 6.7(1.1)

Ensemble (en.) 14.6(2.0) 19.3(2.5) 6.0(0.9) 7.5(1.3) 3.9(0.4) 5.7(0.6)

Cosine 6.6(1.3) 8.2(1.6) 6.1(1.6) 7.5(2.2) 3.8(0.9) 4.7(1.1)

Ensemble cosine 7.3(1.3) 9.0(1.4) 6.4(1.6) 8.0(2.2) 4.2(1.0) 5.2(1.3)

Table 3.18: Errors of the predicted classification error by the ensemble models on 50
sample subsets of DSLR and Webcam.

Method
Train-from-scratch Fine-tuning

MAE RMSE MAE RMSE

Baseline (con.) 12.1(3.1) 14.6(3.1) 10.6(2.3) 11.7(2.3)

Ensemble (con.) 10.4(2.2) 11.8(2.2) 9.0(1.1) 10.9(1.2)

Baseline (en.) 11.5(2.5) 12.7(2.4) 11.4(2.9) 13.7(2.9)

Ensemble (en.) 11.2(2.2) 12.6(2.1) 7.5(1.0) 8.7(1.1)

Cosine 5.6(1.5) 6.8(1.7) 8.5(2.0) 10.0(2.2)

Ensemble cosine 5.3(1.1 7.1(1.5) 8.6(1.6) 10.3(1.8)
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Table 3.19: Specifications of the datasets used in the experiments.

Dataset # of classes # of samples Ave. image size Used in

Dog Breeds 120 10,222 443 × 387 Section 3.1

Plant Seeding 12 5,544 357 × 356 Section 3.1

Food-101 101 101,000 496 × 475 Sections 3.1, 3.2, and 3.3.2

CUB-200 200 11,788 468 × 386 Section 3.1

Stanford Car 196 16,185 700 × 483 Section 3.1

Oxford-IIIT Pet 37 7,393 437 × 391 Section 3.2

ImageNet 1000 1,281,167 482 × 418 Section 3.3.2

Office-31 31 4,110 418 × 418 Section 3.3.3

3.9 Additional Details of Experimental Settings

3.9.1 Training of the Networks

As is mentioned in Sec. 3.3, we employ Resnet-50 in all the experiments. For the

optimization, we use SGD with the momentum set to 0.9 and the weight decay set

to 10−4. The learning rate starts at 0.1, and then is divided by 10 depending on the

performance of the validation dataset.

To fine-tune a pre-trained network, we use the learning rate of 0.001 for the

standard network and that with MC dropout. For the network used with Cosine, we

use the learning rate of 0.001 to the backbone part and a higher learning rate of 0.1

to the fully-connected layer; the weight decay for the fully-connected layer is set to

0, following [74] and [5].

3.9.2 Datasets

Table 3.19 shows the specification of the datasets used in our experiments. Note

that we modify some of the dataset and use them in several experiments. In the exper-

iments of domain shift detection, we employed image corruption to simulate/model

domain shift. The example of the corrupted images are shown in Fig. 3.9.
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Figure 3.9: Examples of the corrupted images obtained by applying different types
of image corruption [6].

3.10 Related Work

Many studies of OOD detection have been conducted so far, most of which are

proposals of new methods; those not mentioned above include [25–27,38,89]. Exper-

imental evaluation similar to our study but on the estimation of the uncertainty of

prediction is provided in [18].

In [5], the authors present a scheme for conceptually classifying domain shifts in

two axes, semantic shift and non-semantic shift. Semantic shift (S) represents OOD

samples coming from the distribution of an unseen class, and non-semantic shift (NS)

represents to OOD samples coming from an unseen domain. Through the experiments

using the DomainNet dataset [90], they conclude that OOD detection is more difficult

in the order of S > NS > S+NS.

In this study, we classify the problems into three types from an application per-

spective. One might view this as somewhat arbitrary and vague. Unfortunately, Hsu

et al.’s scheme does not provide help. For instance, according to their scheme, novel

class detection is S, and domain shift is NS. However, it is unclear which to classify

irrelevant detection between S and S+NS. Moreover, their conclusion (i.e., S > NS >

S+NS) does not hold for our results; the difficulty depends on the closeness between

classes and between domains. After all, we think that only applications can determine
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what constitutes domain and what constitutes classes. Further discussion will be left

for a future study.

As mentioned earlier, the detection of domain shift in the context of deep learning

has not been well studied in the community. The authors are not aware of a study

for image classification and find only a few [75] even when looking at other fields.

On the other hand, there are a large number of studies of domain adaptation (DA);

[77, 78, 91–93] to name a few. It is to make a model that has learned a task using

the dataset of a particular domain adapt to work on data from a different domain.

Researchers have been studied several problem settings, e.g., closed-set, partial, open-

set, and boundless DA [92]. However, these studies all assume that the source and

target domains are already known; no study considers the case where the domain of

incoming inputs is unidentified. Thus, they do not provide a hint of how to detect

domain shift.

3.11 Summary and Conclusion

In this chapter, we first classified OOD detection into three scenarios from an

application perspective, i.e., irrelevant input detection, novel class detection, and

domain shift detection. We have presented a meta-approach to be used with any

OOD detection method to domain shift detection, which has been poorly studied in

the community. We have experimentally evaluated various OOD detection methods

on these scenarios. The results show the effectiveness of the above approach to domain

shift several as well as several findings such as which method works on which scenario.
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Chapter 4

Bridging In- and

Out-of-distribution Samples for

Their Better Discriminability

4.1 Introduction

Detecting out-of-distribution (OOD) samples, i.e., samples from a distribution

other than the distribution of the samples used for training (called ‘in-distribution

(ID)’ samples), is a vital problem to cope with when deploying neural networks in

real-world applications. There are many studies on the problem so far. The difficulty

with the OOD detection lies in the requirement to distinguish ID and OOD samples by

learning only ID samples. A natural approach is to formulate the problem as anomaly

detection. Several methods [4,25,26,89] utilize the intermediate layer activation of a

network that is trained on ID samples; they model the distribution of ID samples in

the feature space and detect OOD samples as anomalies. They perform fairly well in

some cases but show limitations [1, 5, 74].

To gain further performance, it seems necessary to have a better feature space, in

which OOD samples are more clearly distinguished from ID samples. Evidence for

the necessity is that using a network pre-trained on a large dataset (e.g., ImageNet)

makes OOD detection easier [56]. Furthermore, a method using cosine similarity to

model class probabilities, as with metric learning methods, has been proposed [5,74],
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showing promising results. There are several methods [3, 25–27] that map the layer

activation from a trained network into a good feature to enable more accurate OOD

detection.

Outlier Exposure (OE) [7] is yet another approach to OOD detection that can be

thought of as aiming at the same goal. It uses an available OOD dataset at training

time, which hypothetically does not need to match the OOD sample distribution we

will encounter in practice. A network is trained to classify an input to its true class if

it is ID and ‘none of the classes,’ (i.e., identical probabilities for all the ID classes) if

it is OOD. It aims to learn a better internal representation that helps identify unseen

OOD samples accurately. While it shows good experimental performance, its success

inevitably depends on the (dis)similarity between the assumed and the real OOD

samples, which is hard to quantify in experiments; thus, its real-world performance

remains unclear.

In this chapter, we question the premise of previous studies that ID and OOD sam-

ples are separated distinctly, proposing a new OOD detection method. As mentioned

above, OE regards any sample as either an ID or an OOD sample in an exclusive

manner. In contrast, we consider samples in the intermediate between the two, i.e.,

those having an OOD likelihood between 0 to 100%. We consider these samples to

have soft labels and train a network using them.

The problem is how to get such intermediate samples as well as their soft labels.

To do this, we apply synthetic image corruption to ID samples, creating new samples

lying between ID and OOD. The underlying thought is that applying very severe

image corruption to ID samples will make them turn to OOD, as their semantic

contents will be lost. On the other hand, less severe corruption will create samples

maintaining their contents; their ID/OOD likelihoods will be in the range of 0 to 1.

To provide soft labels for these intermediate samples, we use a network trained

on the ID samples alone in the standard fashion. Specifically, we apply an image

corrupting transformation to all the samples of the ID training set and then input

the transformed samples to the above network, calculating their mean classification

accuracy. We then use it to create a soft label. Concretely, we design the soft label

for a sample to have the mean classification accuracy as the probability of its true

class and a constant probability for all other classes. This method creates a single
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0.01 0.20 0.40 0.60 0.80 1.00

Proposed method (TNR = 95.6%)

CIFAR-100 (ID) TINr (OOD)

Figure 4.1: Histogram of the predicted confidence (i.e., maximum softmax proba-
bility) by a network (i.e., Wide Resnet 40-4) for in-distribution (ID) and out-of-
distribution (OOD) samples. First row: The network with the vanilla training. Sec-
ond row: Outlier exposure [7]. Third row: Proposed method. ID and OOD are
CIFAR-100 and the resized Tiny ImageNet (TINr). TNR at TPR 95% are shown in
the parentheses.

soft label for a single corrupting transformation. Ideally, we want to create soft

labels distributing uniformly in the range between ID and OOD. For this purpose,

we employ image corrupting methods that were developed to create the ImageNet-C

dataset [6], which consists of fifteen different types of image corruption, each with

five severity levels, i.e., 75 corruption methods in total. Leveraging their diversity, we

create multiple soft labels sampling as densely as possible in the intermediate region

between ID and OOD.

Training a standard CNN using the generated training samples with soft labels

along with the original ID samples makes the CNN learn an improved internal repre-

sentation, which separates ID samples and unseen OOD samples more clearly. Figure

4.1 shows the distributions of ID samples and OOD samples in the space of the pre-

dicted confidence of the same network trained differently. As a result, our method

achieves state-of-the-art performance in the standard benchmark tests of OOD de-

tection.
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4.2 Related Work

4.2.1 OOD Detection

The maximum softmax probability (MSP), also called confidence, can be thought

of as an estimate of the prediction’s uncertainty. Using it with simple thresholding is a

strong baseline for OOD detection [2], and many studies have proposed its extensions

to improve detection accuracy. [3, 7, 20, 27,38].

It is shown that the addition of a small perturbation to input that maximizes

the confidence improves OOD detection accuracy [3, 5]. A method adding a sepa-

rated branch to the network learning to predict the confidence of prediction is pro-

posed [20]. It is also proposed to use the cosine similarity to compute logits instead

of the ordinary linear transformation before softmax function [5, 74], yielding high

performance. Other studies consider an ensemble of networks [17, 38], or considers a

different problem setting [27].

Another group of methods formulates OOD detection as anomaly detection. They

model the distribution of normal data (i.e., ID samples) in the space of some feature,

which is intermediate layer activation [4] or its transformation by some mapping

[25,26,89]. They then detect outliers of the distribution as OOD.

Some of the above methods (e.g., [3, 4, 89]) assume the accessibility to the true

OOD samples if only a few. These methods have a few hyperparameters, which

often significantly impact the final performance; thus, they determine them using the

available OOD samples. Recent studies question this approach, as the true OOD

samples are usually not accessible in practice [1, 5, 25–27,74,94].

There are also studies treating OOD detection more like anomaly detection; they

do not use the model that has learned the ID class classification task. These studies

model the distribution of ID samples using generative models, such as GAN [21],

PixelCNN [55], and Normalizing Flow [22]. In [24], the authors synthetically blur

input images and use the Random Network Distillation [95] to detect the OOD.

However, these methods generally show inferior performance than the above methods

that utilize the representation learned through the ID task training.

Yet another approach to detect OOD samples is to use the uncertainty of the pre-

diction. We can think of the confidence-based methods mentioned above as following
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this approach. Methods with a more solid theoretical foundation are those based

on Bayesian neural networks [13, 47, 48, 96]. However, these approaches do not show

competitive performance to the above methods.

4.2.2 Soft Labels

In the standard setting of multi-class classification, target labels are represented

as hard labels and used for training. While this is reasonable considering the na-

ture of classification tasks, researchers have employed soft target labels for several

purposes. One is the label smoothing. Since it was introduced to train Inception-

v2 [97, 98], many studies have employed this trick, aiming at performance improve-

ment; [99,100], to name a few. Recently, Müller et al. [101] showed detailed analyses

of the (in)effectiveness of label smoothing. Another use of soft target labels is seen in

Knowledge Distillation [37]. A student network learns the soft labels provided by its

teacher. It is shown in [101] that training the teacher with label smoothing worsens

the student’s performance. Soft labels are also used in the methods for dealing with

label noise. Several methods estimate the confusion matrix defined between the net-

work prediction and the provided noisy labels [102]. Others estimate the true labels

of training samples during the training of a network [103, 104]. We may think these

methods train networks using soft target labels. Some methods for data augmenta-

tion also use soft target labels. An example is Mixup [105], which interpolate two

training samples by computing the weighted sum of not just inputs but their labels,

yielding soft labels.

4.3 Proposed Method

4.3.1 Revisiting Outlier Exposure

Outlier Exposure (OE) is a method for OOD detection proposed by Hendrycks

et al. [7]. It uses available OOD datasets for the training of a model to increase

its sensitivity to unseen OOD samples. It is a general framework and they consider

multi-class classification and density estimation. We consider the former here.

The method considers three distributions of samples, Din, Dout, and DOE
out. Samples
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from Din are in-distribution (ID). Samples from other distributions are OOD. Dout

is an unknown distribution for OOD samples, which we will encounter at test time.

DOE
out is a known distribution of OOD samples, but it is unknown how similar to or

different from Dout it is. A particular dataset is assumed to be available for DOE
out

and utilized for training the model. The idea of the method is to train a model

using samples from both Din and DOE
out so that the model classifies the Din samples

correctly, whereas it predicts a uniform probability distribution for all the classes for

DOE
out samples. Specifically, denoting the model by ŷ = f(x) for K-class classification,

the method minimizes the following loss:

E(x,y)∼Din
[CE(f(x), y)] + λEx∼DOE

out
[CE(f(x),UK)], (4.1)

where CE is cross-entropy; y is the target distribution represented as a hard label (i.e.,

a one-hot vector) of the true class; UK represents uniform distribution over K classes,

i.e., y = [1/K, 1/K, · · · , 1/K]. The method aims to “learn a more conservative

concept of the ID samples and enable the detection of novel forms of anomalies”.

Their paper reports experimental results that show good performance of the

method. The major issue with the method is that it is unclear how to specify DOE
out

(or precisely a dataset for DOE
out). It easy to specify an arbitrary dataset, but it is not

guaranteed to lead to good results. Although it is formally distinguished from Dout

in their experiments, the result will inevitably depend on their similarity. It is hard

to examine how their (dis)similarity affects the performance. Therefore, it remains

unclear if the method works well for various problems in the real world.

4.3.2 Corrupted Images as OOD Samples

It is ideal not to assume any specific OOD distribution or dataset. The problem

is how to achieve good performance without it. An approach is to synthesize OOD

samples from ID samples. Indeed, several previous studies [4, 89] propose to create

adversarial examples from ID samples and use them as imaginary OOD samples.

However, they only use the created samples to adjust hyperparameters to maximize

OOD detection performance; the adversarial examples are not used for the training

of networks.
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Instead, we consider using corrupting and distorting images to synthesize OOD

samples. Specifically, we corrupt ID samples in various ways, as shown in Fig. 4.2,

and regard the corrupted images as OOD samples. The underlying thought is that

severely corrupted ID images will become OOD samples.

Shot Noise Fog Brightness Contrast Elastic

Figure 4.2: Examples of corrupted images. Images from CIFAR-10 are coruppted by
the method of [6].

Such image corruption has been considered a data augmentation method, where

the corrupted images are treated as ID samples. It is widely recognized [6] that

CNNs trained only on clean images tend to fail to classify corrupted images correctly.

Researchers have paid attention to generalizing the models to such image corruption

[106–108]. It is then natural to use image corruption as a data augmentation method,

requiring the created data to maintain the original samples’ semantic contents.

To test the idea of using corrupted images as OOD samples, we conducted pre-

liminary experiments. Concretely, we use the method to create the ImageNet-C

dataset [6], which is publicly available by the authors1 to synthesize various types of

image corruption. It can synthesize 19 types of corruption, for each of which we can

specify 5 severity levels. We choose 15 out of 19 corruption types that are originally

assumed for training uses.

Choosing CIFAR-100 for ID samples, we train a network (i.e., Wide Resnet 40-4)

in the following four settings. The first is to train the model using only the original,

clean images. We apply the standard data augmentation (i.e., random crop and

horizontal flip), which is also the case with the rest of the three. The second is

train the model with the corrupted images, where image corruption is treated as data

1https://github.com/hendrycks/robustness
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Figure 4.3: Comparison between classification and OOD detection performance of
three models. ”Plain” indicates the model trained with the standard training, while
”Corrupt as ID” and ”Corrupt as OOD” apply the ImageNet-C corruptions to the
training dataset and utilize them as ID and OOD, respectively. OOD detection
performance is evaluated by TNR at TPR 95%.

augmentation; in other words, the model is trained so as to classify the corrupted

images to their original ground truth classes. The third is to train the model with

1:1 population of clean images and corrupted images, in which the clean images are

treated as ID samples and the corrupted images are treated as OOD samples, and

then the loss (4.1) is minimized as in Outlier Exposure (OE). The image corruption

employed in the last two settings is randomly chosen from the 5 severity levels of

the 15 corruptions. For the sake of comparison, we also consider another setting for

OE, where we create adversarial examples from ID samples and use them as OOD

samples, as in done in many studies on OOD detection [4, 89].

We tested the four models in terms of ID classification accuracy and OOD detec-

tion performance. We assumed the standard datasets (i.e., CIFAR-10, TIN, LSUN,

iSUN, SVHN, and Food-101) for OOD, following previous studies; see Sec. 4.4.1 for

details of the experiments. Figure 4.3 shows the results. It is observed that the two

models trained with corrupted images lose the ID classification accuracy whereas they

achieve better OOD detection performance.

These results have several implications. On the one hand, we can confirm some of

the corrupted images do work as OOD samples as we intend, as the third model (i.e.,

OE using the corrupted images) improves OOD detection performance. This is also

supported by the fact that the second model (i.e., the one trained using corrupted
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images as augmented data) loses ID classification accuracy. This performance dete-

rioration is understandable because the second model uses all the corrupted images

as ID samples, but some do not preserve the original semantic contents due to their

severity; learning them as ID samples will harm the classification accuracy. On the

other hand, some of the corrupted images work as ID samples; those with mild cor-

ruption levels preserve the image contents. This is verifiable by the fact that the third

model loses ID classification accuracy (i.e., 79.2% → 76.6%). It is also noted that

the last model using adversarial examples as OOD does not perform well on OOD

detection compared with the third model using corrupted images as OOD samples.

Based on the above results and discussion, we pose the following conjectures:

• First, we should treat some of the corrupted images as ID samples and some of

them as OOD samples. It will not be wise to treat all of them as either ID or

OOD as we do in the above experiments.

• The employed image corruption will continuously cover the spectrum between

ID and OOD samples due to the five severity levels of 15 corruptions.

These suggest that we could make further improvements by considering the interme-

diate region between ID and OOD. If we can assign intermediate labels to them, we

could extend the OOD detection performance while maintaining the ID classification

accuracy.

4.3.3 Soft Labels for Intermediate between ID and OOD

The question is how to assign soft labels to the intermediate samples between ID

and OOD. Our solution is based on two ideas. One is to use a model f(x) trained

on the ID classification task using Din to obtain the soft labels. The other is to

assign a soft label to a corrupted image x′ = T (x) according to the image corrupting

transformation T , which is one of the predefined transformations. This is a natural

extension of the above finding.

We denote an image corrupting transformation by x′ = Ti(x), where i(= 1, . . . , 75(=

15× 5)) is an index indicating one of the 15 image corruption types with five severity

levels. We apply Ti to each sample of Din. Let D∗in,i be the set of the corrupted images.
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Making the model f(x) trained with clean images classify each sample of D∗in,i, we

calculate the classification accuracy acci as

acci =
1

N

N∑
n=1

1(k̂n = kn), (4.2)

where N = |Din| = |D∗in,i|; k̂n and kn are the predicted and true class indexes, respec-

tively. We use acci for obtaining a soft label as explained below.

We train a new model f ∗ usingDin and their corrupted images in the following way.

Choosing a sample x from Din, we first decide whether we apply image corruption to

it according to a probability γ. If not, we use the original hard label y and employ

the loss − log fk(x), where k is the true class index. If yes, we choose and apply a

transformation Ti to x and obtain a corrupted image x′ = Ti(x). We set the soft

target label t ∈ RK for x′ as follows:

tj =


acci if j = k,

1−acci
K−1 otherwise,

(4.3)

where j = 1, . . . , K and k is the true class index of x. This soft label is considered to

be an interpolation between the hard label for the true class and the uniform label

for OOD, as shown in Fig. 4.4.

When choosing Ti for each x ∈ Din, we choose one so that the soft label t dis-

tributes as uniformly in the label space as possible over Din. Rigorously, the maximum

element of t (i.e., argmaxl tl), which is given by acci as in (4.3), distributes uniformly

in the range [1/K, 1]. To do this, we sample a random number α from a uniform

distribution of the range [1/K, 1] and search the nearest neighbor acci to α from the

pre-computed set {acci}i=1,...,75 and choose the corresponding transformation Ti.

The procedure of creating a sample (x, y) with or without image corruption from

Din is summarized in Algorithm 1; (x, y) is either the pair of an original image and

a hard label or the pair of a corrupted image and a soft label (i.e., yj ← tj for

j = 1, . . . , K). To train f ∗, we minimize the cross entropy loss between a sample
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Figure 4.4: Illustration of how target labels are assigned to ID and OOD samples
in the case of three-class classification for (a) Outlier Exposure (OE) [7] and (b) our
method. In OE, the target class probabilities for ID samples are 1 for the true class
and 0 for others; those for OOD are all 1/3. In our method, there are intermediate
samples lying between ID and OOD, which are created by applying image corrupting
transformation Ti to ID samples. Their target labels are set to constants determined
for each Ti.

(x, y) created as above and the prediction ŷ = f ∗(x):

CE(f ∗(x), y) = −
K∑
j=1

yj log f ∗j (x). (4.4)

Algorithm 1: Obtaining a training sample (x, y)

Input: Dataset D, probability γ of applying image corruption, and
{acci}i=1,...,75

Output: An input image x and its label y
Sample (x, y) from D;
β ∼ Bernouli(γ);
if β = 0 then

α ∼ U(1/K, 1);
i← argminj|accj − α|;
x← Ti(x);
Set t according to (4.3);
y ← t;

end
return (x, y)

There are two choices with how to train f ∗. One is to initialize f ∗ ← f , where f

is the model trained using Din on the ID class classification. The other is to train f ∗
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from scratch. We found in our experiments that the latter consistently works better

and thus we will report its performance.

Previous studies employ the maximum softmax probability (MSP), i.e., maxl fl(x),

or its variant for detecting OOD samples [2, 3]. Our experiments show that the pre-

dicted entropy −
∑K

j=1 fj(x) log fj(x) shows slightly better performance consistently.

Thus, we will report the results obtained using the entropy. Specifically, we classify

an input providing the entropy higher than a threshold as OOD.

In our method, the probability γ of applying image corrupting transformation to

each sample is a hyperparameter. As will be shown later, the performance of the

proposed method is not sensitive to its γ; it is stable in the range [0.01, 0.4]. We

set γ = 0.2 in our experiments based on the ID classification performance on the

validation data.

4.4 Experiments

We conduct experiments to evaluate the proposed method and compare it with

existing methods.

4.4.1 Experimental Settings

We consider an image classification task, for which its training dataset Din is given.

Each OOD detection method first trains a network f so that f will accurately classify

an ID input image x as ŷ = f(x). Then the method judges whether a new input x is

ID or OOD. We evaluate how accurately it can detect OOD samples.

Datasets In the experiments, we choose four ID datasets, i.e., CIFAR-10/100 [73],

SVHN [66], and Food-101 [67]. We use one of the four datasets for ID and treat all

others for OOD. Following Liang et al. [3], we also use Tiny ImageNet [64] (cropped

and resized), LSUN [65] (cropped and resized), and iSUN [57] for OOD. CIFAR-

10 and 100 [73] are datasets of 10 and 100 object categories, respectively, and each

contains 50,000 and 10,000 samples for training and testing, respectively. SVHN [66]

is a dataset of digit classification containing of 73,257 and 26,032 samples for training

and testing. Food-101 [67] is a dataset of 101 food categories with 75,750 and 25,250
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samples for training and testing. We resize the images of Food-101 to 32× 32 pixels;

the images of other datasets are of the same size.

Networks and Training We use DenseNet [72] and Wide Resnet [71]. More

specifically, we use a 100-layer DenseNet with the bottleneck block and the growth

rate of 12, denoted by DenseNet-100-12. We train it on an ID dataset for 300 epochs

with mini-batch size of 64. For Wide Resnet, we use the 40-layer Wide Resnet with a

widen factor of 4, denoted by WRN-40-4. We train it for 200 epochs with mini-batch

size of 128. We employ weight regularization with factor 0.0001 for the former and

with 0.0005 for the latter.

Evaluation Metrics Following previous studies [2–4, 25–27], we employ three

standard metrics for evaluating OOD detection performance, i.e., true negative rate

at true positive rate 95% (TNR at TPR 95%), area under the ROC curve (AUROC),

and area under the precision-recall curve (AUPR). Note that for all these metrics, a

higher value indicates better performance.

4.4.2 Compared Methods

We compare our method with the following five methods. Following the recent

studies [1,5,25–27,74], we confine ourselves to the methods that do not need explicit

OOD samples for training, if they are only a few. An exception is Outlier Exposure [7],

which uses OOD samples for training but does not assume the similarity between them

and the real OOD samples we encounter at test time.

Baseline Method [2] This method trains the network using Din in the standard

way. We call the resulting model the vanilla model. The method threshold the

maximum softmax probability (MSP), also known as confidence, provided by the

vanilla model for an input x to judge if it is OOD. We use the predicted entropy from

the same output in our experiments, because we found that it yields slightly better

performance than MSP.

Cosine Similarity [5] This method uses a scaled cosine similarity instead of the

dot product to yield logits in the final layer of the networks. Thus, it needs to change

the layer design. It also employs a variant of input perturbation [3] for improved

detection that is feasible without explicit OOD samples.
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Gram Matrices [25] This method utilizes the Gram matrix calculated from the

intermediate layer features of the vanilla model. It learns its statistics from Din and

use it to detect OOD inputs.

MALCOM [26] This method extends the Mahalanobis detector by the compression

distance. The feature vectors are extracted both from the global average pooling

(GAP) and the compression complexity pooling (CCP). All vectors are combined

through the concatenation and are used to model the Mahalanobis distance.

Outlier Exposure [7] We have explained this method in Sec. 4.3.1. Following the

study, we use 80 Million Tiny Images datasets [109] for DOE
out in our experiments. We

use the entropy instead of MSP due to the same reason as above.

4.4.3 Results

Out-of-Distribution Detection

We evaluate the OOD detection performance of the above methods for each ID

dataset. Tables 4.1 and 4.2 show the performance measured by TNR at TPR 95%

and AUROC, respectively. They show the mean and standard deviation over all the

OOD datasets and over five trials of training. Those measured by AUPR and the

detailed results showing the performance on each OOD dataset separately are given

in Sec. 4.5.

It is seen that the proposed method achieves the best performance in almost all

cases and in any evaluation metrics. We treat Outlier Exposure separately, as it uses

external datasets; its performance should depend on their choice, although they are

different from the true OOD datasets in our experiments. Nevertheless, our method

performs comparably well and yields better results in several cases, i.e., when ID is

CIFAR-100 and Food-101.

In-Distribution Classification

Some of the compared methods change either the network architecture or its

training method [5,7,74] for OOD detection. These changes sometimes result in lower

ID classification accuracy than the original network trained in the standard fashion.
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Table 4.1: The OOD detection accuracy of the compared methods measured by TNR
at TPR 95%. Outlier Exposure (OE) is treated separately, as its performance depends
on the OOD dataset it assumes.

Net ID Baseline Cosine Gram MALCOM Ours OE

D
en

se
N

et

CIFAR-10 51.61(9.71) 88.07(13.73) 78.28(31.52) 74.64(30.39) 91.59(17.19) 93.83(8.65)

CIFAR-100 27.47(7.45) 80.46(20.87) 68.80(34.01) 56.65(32.82) 85.69(27.83) 51.81(15.93)

SVHN 68.53(4.40) 74.27(10.70) 93.39(6.69) 98.70(1.50) 99.32(0.82) 99.92(0.15)

Food-101 12.45(4.44) 88.62(7.82) 73.68(27.46) 82.15(22.97) 89.71(8.80) 63.46(28.98)

W
R

N

CIFAR-10 53.78(7.29) 81.53(15.40) 80.90(29.06) 80.58(25.89) 92.05(16.86) 95.28(6.51)

CIFAR-100 25.19(7.05) 67.06(16.22) 70.61(32.89) 63.97(28.39) 86.04(27.33) 42.82(17.18)

SVHN 73.35(3.27) 75.99(11.31) 94.00(6.35) 98.42(1.66) 99.44(0.69) 99.97(0.08)

Food-101 11.77(3.05) 77.47(8.94) 75.62(27.67) 82.88(22.90) 85.44(14.51) 80.02(17.49)

Table 4.3 shows the ID classification accuracy for the standard model, the scaled

cosine similarity, the proposed method, and Outlier Exposure. It is observed that the

proposed method yields comparable performance to the standard model, whereas the

cosine similarity underperforms slightly. All the other compared methods i.e., Gram

Matrices [25] and MALCOM [26], use the standard model.

Calibration Errors

It is well recognized [11] that modern neural networks tend to be over-confident

with their prediction for classification tasks. Specifically, when they classify an input,

the confidence of the prediction (i.e., the maximum softmax probability) tends to be

larger than the expected prediction accuracy. It is said to be “calibrated” when the

two are well aligned. How well a model is calibrated is evaluated by the expected

calibration error (ECE). We calculate ECE for the model trained in each method.

Table 4.4 shows the results. It is seen that the proposed method achieves the smallest

ECE in most cases.
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Table 4.2: The OOD detection accuracy of the compared methods measured by AU-
ROC.

Net ID Baseline Cosine Gram MALCOM Ours OE

D
en

se
N

et

CIFAR-10 92.08(3.53) 97.29(3.23) 92.56(11.48) 92.80(9.99) 97.86(4.52) 98.54(1.69)

CIFAR-100 80.00(4.04) 95.30(6.43) 89.78(13.23) 86.23(17.49) 96.10(8.22) 88.91(4.53)

SVHN 92.05(2.15) 94.06(2.76) 98.44(1.56) 99.57(0.40) 99.79(0.21) 99.98(0.04)

Food-101 64.36(4.91) 97.82(1.45) 91.66(10.16) 95.46(5.90) 97.00(2.69) 87.43(10.78)

W
R

N

CIFAR-10 90.96(2.64) 95.98(3.68) 94.76(8.21) 95.64(5.98) 97.81(4.67) 98.36(1.06)

CIFAR-100 78.05(4.38) 92.81(5.80) 91.34(11.25) 91.80(8.73) 95.82(8.98) 89.51(4.43)

SVHN 93.06(1.29) 94.56(2.76) 98.61(1.43) 99.58(0.41) 99.78(0.16) 99.98(0.02)

Food-101 66.46(2.59) 95.84(1.71) 92.54(9.41) 95.53(6.16) 95.85(4.24) 93.10(6.18)

Table 4.3: The ID classification performance.

ID Standard Cosine Ours OE

D
en

se
N

et

CIFAR-10 95.13(0.09) 94.89(0.13) 95.37(0.12) 94.99(0.09)

CIFAR-100 76.94(0.37) 75.39(0.50) 77.71(0.17) 75.93(0.33)

SVHN 96.36(0.10) 95.98(0.18) 96.63(0.04) 96.49(0.06)

Food-101 42.42(0.23) 40.53(0.24) 42.88(0.36) 46.88(0.23)

W
R

N

CIFAR-10 95.54(0.13) 95.10(0.18) 95.59(0.12) 95.79(0.10)

CIFAR-100 79.28(0.30) 76.66(0.30) 79.21(0.11) 76.58(0.23)

SVHN 96.67(0.03) 96.40(0.10) 96.83(0.06) 96.69(0.04)

Food-101 44.92(0.15) 43.22(0.19) 44.76(0.20) 45.00(0.23)

4.4.4 Analyses

What Image Corrupting Transformation Is Good?

In the above experiments, we used 15 image corrupting transformations. The

following questions will arise. Which corrupting transformations are more effective?

How many transformations are necessary? To analyze these, we examine how the

results will change depending on the number of transformations or a particular com-

bination of selected corrupting transformation. We choose CIFAR-100 for the ID

dataset and employ the Wide Resnet, which corresponds to a row in Table 4.1.
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Table 4.4: Calibration errors of the models of the compared methods measured by
the expected calibration error (ECE). A lower value is better.

Net ID Standard Cosine Ours OE

D
en

se
N

et

CIFAR-10 2.93(0.13) 4.30(0.14) 1.01(0.21) 2.07(0.15)

CIFAR-100 12.12(0.44) 20.48(0.61) 3.63(0.44) 4.51(0.16)

SVHN 2.39(0.05) 3.04(0.15) 0.90(0.14) 1.00(0.09)

Food-101 33.85(0.36) 44.84(1.09) 25.03(1.78) 10.39(0.49)

W
R

N

CIFAR-10 2.86(0.13) 4.14(0.10) 0.58(0.08) 6.29(0.10)

CIFAR-100 10.68(0.17) 19.12(0.26) 4.76(0.10) 17.24(0.28)

SVHN 2.18(0.07) 2.93(0.11) 1.56(0.55) 1.91(0.02)

Food-101 28.34(0.18) 47.59(0.54) 19.26(1.41) 32.09(0.24)

Table 4.5 shows OOD detection performance obtained for selected combinations

of one to five corrupting transformations. The number(s) in {·} indicates the index

of the 15 corruption types; see Sec. 4.6 for their details. Roughly speaking, using a

combination of more corruption types tends to yield better performance. That said,

some combinations of a few corruption types work much better than others. If we

choose only a single corruption type, the best performer is Elastic transform (denoted

by {12} in the table); its performance (i.e., 77.88) is still better than other existing

methods; see Table 4.1. Overall, we suggest to use an ensemble of all the corruption

types, as it yields the best performance in the combinations we tested.

Sensitivity to γ

The proposed method has a hyperparameter γ, which is the probability of applying

image corruption to each sample at training time. We evaluate the sensitivity of the

results to its choice. Figure 4.5 shows the ID classification accuracy and the OOD

detection accuracy for different γ’s ranging in [0, 1]. We can observe the following.

First, fortunately, the results are not sensitive to γ, especially for the range of [0, 0.5].

Second, they show similar tendencies; both decrease as γ increases. From the result, it

seems reasonable to choose it depending on the ID classification accuracy. Note that

we cannot determine γ based on the OOD detection accuracy, as it is not available

without OOD samples. We chose γ = 0.2 based on this consideration in the above
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Table 4.5: The OOD detection result in TNR at TPR 95% utilizing different set of
the image-corrupting transformatoins in the training.

Corruption TNR

{0} 37.20

{1} 39.19

{2} 25.87

{3} 34.94

{4} 37.20

{5} 37.88

{6} 32.79

{7} 26.89

{8} 34.90

{9} 30.44

{10} 30.23

{11} 26.75

Corruption TNR

{12} 77.88

{13} 31.22

{14} 62.98

{0, 1, 2} 59.70

{3, 4, 5} 48.65

{6, 7, 8} 76.84

{9, 10, 11} 64.98

{12, 13, 14} 58.44

{0, 1, 2, 3, 4} 78.80

{5, 6, 7, 8, 9} 63.79

{10, 11, 12, 13, 14} 83.06

All 86.04

experiments. The results do not change that much if we choose γ = 0.1 or 0.3, due

to the above insensitivity.

4.5 Additional Result in AUPR

Table 4.6 shows the OOD detection accuracy measured by AUPR, which we omit

from Sec. 4.4.3. The same observation holds as the evaluation by TNR at TPR 95%

and by AUROC.

4.6 List of Image-Corrupting Transformations

We used ImageNet-C module [12] for the image-corrupting transformations. We

used the code publicly available at https://github.com/hendrycks/robustness.
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Table 4.6: The OOD detection accuracy of the compared methods measured by
AUPR.

Net ID Baseline Cosine Gram MALCOM Ours OE

D
en

se
N

et

CIFAR-10 90.66(9.45) 96.13(4.84) 87.24(20.05) 91.28(12.19) 97.36(5.01) 98.35(1.82)

CIFAR-100 79.30(6.30) 94.06(7.69) 85.78(17.96) 85.42(17.82) 95.95(7.37) 87.97(3.78)

SVHN 94.55(3.95) 96.71(2.40) 96.56(3.69) 99.83(0.14) 99.89(0.12) 99.99(0.02)

Food-101 80.22(5.76) 98.94(0.64) 95.03(6.06) 97.90(2.71) 98.36(1.47) 93.69(4.98)

W
R

N

CIFAR-10 87.58(6.64) 94.52(5.60) 91.76(13.24) 94.61(7.44) 97.27(5.51) 98.52(1.08)

CIFAR-100 75.40(5.49) 91.47(6.77) 88.40(14.21) 91.25(8.93) 95.25(9.24) 90.52(3.16)

SVHN 95.44(1.58) 97.15(1.73) 97.08(3.30) 99.83(0.16) 99.90(0.08) 99.99(0.01)

Food-101 81.62(6.23) 97.88(1.11) 95.67(5.48) 97.92(2.87) 97.77(2.18) 96.25(3.35)

Table 4.7: The OOD detection result in TNR at TPR 95% utilizing different set of
the corruption(s) in the training.

# Corruption # Corruption

0 Gaussian noise 8 Frost

1 Shot noise 9 Fog

2 Impulse noise 10 Brightness

3 Defocus blur 11 Contrast

4 Frosted glass blur 12 Elastic transform

5 Motion blur 13 Pixelate

6 Zoom blur 14 JPEG compression

7 Snow
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95%) vs. the probability γ of applying corruption to each image.
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4.7 Results with Individual OOD Datasets

In Sec. 4.4.3, we report only the average of the detection scores for the multiple

OOD datasets we employed in the experiments. Tables 4.8 - 4.13 report individual

detection scores (i.e., TNR at TPR 95%, AUROC, and AUPR) for each OOD dataset.

Each score is the average of five trials.

4.8 Conclusion

In this chapter, we have presented a new method for OOD detection. Questioning

the premise of previous studies that ID and OOD samples are separated distinctly,

we consider samples lying in the intermediate of the two and use them for training a

network. We generate such samples using multiple image transformations that corrupt

input images in various ways and with different severity levels. Specifically, applying

one of the image transformations to ID samples, we assign the generated samples a

soft target label representing how distant they are from the ID region. We compute

the distance by using a network trained on clean ID samples for classifying those

samples; we calculate their mean classification accuracy and use it to create the soft

label. We then train the same network from scratch using the original ID samples and

the generated samples with soft labels. The trained network can classify ID samples

accurately. We detect OOD samples by thresholding the entropy of the predicted

softmax probability. The experimental results show that our method outperforms

the previous state-of-the-art in the standard benchmark tests widely employed in

previous studies. We have also analyzed the effect of the number and particular

combinations of image corrupting transformations on the performance.
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Table 4.8: The OOD detection performance in TNR at TPR 95%. The network
architecture is DenseNet-100-12.

ID OOD Baseline Cosine Gram MALCOM Ours OE

C
IF

A
R

-1
0

CIFAR-100 41.22(1.10) 60.59(1.20) 26.90(0.26) 24.86(0.40) 47.23(0.47) 71.55(0.72)

Food-101 47.96(1.93) 69.06(4.28) 21.13(0.67) 20.33(1.19) 88.50(3.18) 93.67(0.82)

iSUN 59.66(4.76) 96.08(1.19) 98.75(0.26) 94.12(0.57) 99.71(0.13) 98.63(0.42)

LSUNc 55.13(2.09) 95.74(0.53) 88.82(0.72) 81.39(2.07) 99.27(0.20) 98.65(0.40)

LSUNr 63.64(3.66) 96.18(1.52) 99.32(0.12) 95.36(0.68) 99.76(0.15) 98.85(0.33)

TINc 56.01(3.91) 94.96(0.35) 96.65(0.47) 91.40(1.00) 99.45(0.19) 96.86(1.12)

TINr 54.20(5.27) 94.17(0.56) 98.41(0.28) 94.71(0.61) 99.44(0.21) 95.12(1.67)

SVHN 35.04(4.77) 97.76(0.22) 96.27(0.46) 94.98(0.80) 99.37(0.10) 97.31(1.44)

C
IF

A
R

-1
00

CIFAR-10 20.22(0.74) 29.96(2.38) 10.55(0.43) 1.34(0.08) 12.88(0.81) 17.57(0.74)

Food-101 39.42(2.40) 68.01(4.59) 14.29(1.31) 3.70(0.33) 85.96(3.52) 49.98(2.37)

iSUN 25.85(6.36) 92.87(0.45) 96.23(0.63) 82.96(1.81) 97.60(0.65) 59.53(3.48)

LSUNc 28.16(1.88) 84.61(2.56) 67.16(1.30) 53.05(1.25) 96.38(1.02) 72.87(1.49)

LSUNr 29.07(7.10) 93.39(0.75) 97.59(0.39) 85.12(2.06) 98.65(0.70) 61.90(3.36)

TINc 30.11(5.32) 93.28(0.84) 90.65(0.97) 74.45(1.79) 97.95(0.92) 52.03(4.22)

TINr 27.06(6.31) 93.68(0.88) 95.96(0.39) 84.26(1.43) 98.22(0.96) 46.25(4.88)

SVHN 19.85(3.09) 87.86(3.19) 77.94(1.95) 68.30(3.35) 97.87(0.28) 54.35(11.76)

S
V

H
N

CIFAR-10 65.90(2.55) 69.44(8.53) 81.82(0.58) 96.68(0.42) 98.47(0.47) 99.96(0.03)

CIFAR-100 64.67(2.28) 67.73(8.77) 83.96(0.91) 97.73(0.42) 97.77(0.42) 99.89(0.02)

Food-101 64.32(5.90) 68.66(13.45) 91.87(1.33) 99.38(0.08) 99.18(0.30) 99.99(0.00)

iSUN 70.55(1.66) 78.05(8.73) 99.28(0.29) 99.99(0.01) 100.00(0.00) 100.00(0.00)

LSUNc 68.18(4.14) 79.67(7.43) 93.27(0.88) 96.20(0.47) 99.22(0.16) 99.54(0.07)

LSUNr 69.71(1.82) 74.38(8.83) 99.47(0.20) 99.99(0.01) 100.00(0.00) 100.00(0.00)

TINc 72.40(1.97) 78.90(10.00) 98.34(0.54) 99.67(0.06) 99.96(0.01) 99.98(0.00)

TINr 72.51(2.40) 77.33(10.19) 99.11(0.34) 99.95(0.03) 99.99(0.01) 100.00(0.00)

F
o
o
d

-1
01

CIFAR-10 13.81(1.58) 76.34(3.56) 22.37(0.88) 36.37(0.64) 84.03(6.59) 99.92(0.01)

CIFAR-100 12.30(1.09) 76.07(3.67) 31.57(0.54) 50.41(0.37) 86.45(5.58) 99.75(0.04)

iSUN 10.67(3.51) 94.04(2.84) 93.20(1.16) 98.33(0.32) 96.86(1.48) 39.73(10.71)

LSUNc 20.34(2.80) 93.41(1.59) 79.20(0.96) 86.14(0.71) 74.80(2.40) 64.09(1.83)

LSUNr 11.76(4.43) 92.80(3.30) 94.10(1.30) 98.39(0.36) 98.22(0.84) 35.97(10.52)

TINc 10.88(2.59) 91.73(2.40) 85.96(1.71) 93.09(0.43) 85.18(4.05) 40.75(7.04)

TINr 8.24(2.83) 90.59(2.91) 90.89(1.31) 96.12(0.22) 92.71(2.64) 33.13(9.00)

SVHN 11.56(3.31) 94.00(2.63) 92.16(1.44) 98.30(0.50) 99.46(0.13) 94.37(1.95)
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Table 4.9: The OOD detection performance in TNR at TPR 95%. The network
architecture is WRN-40-4.

ID OOD Baseline Cosine Gram MALCOM Ours OE

C
IF

A
R

-1
0

CIFAR-100 42.85(1.03) 56.42(2.64) 31.97(0.69) 35.05(0.89) 48.31(1.64) 78.48(0.47)

Food-101 45.64(1.20) 58.92(6.52) 29.53(1.65) 37.07(4.97) 89.94(1.54) 97.16(0.22)

iSUN 55.33(2.18) 89.82(5.75) 99.51(0.06) 97.68(0.35) 99.83(0.11) 98.21(0.47)

LSUNc 61.08(1.71) 92.76(2.29) 92.14(0.57) 90.26(0.98) 99.60(0.09) 99.12(0.20)

LSUNr 59.73(1.81) 91.81(4.17) 99.62(0.05) 98.33(0.38) 99.88(0.10) 98.46(0.50)

TINc 53.83(1.94) 84.87(8.26) 97.81(0.15) 95.44(0.43) 99.73(0.12) 96.85(0.62)

TINr 48.70(2.22) 82.53(8.69) 99.07(0.09) 96.47(0.35) 99.65(0.14) 94.85(1.00)

SVHN 63.07(3.73) 95.12(2.89) 97.57(0.26) 94.37(1.44) 99.45(0.08) 99.16(0.23)

C
IF

A
R

-1
00

CIFAR-10 22.42(0.71) 27.65(1.31) 11.74(0.74) 9.06(1.16) 14.37(0.97) 18.02(0.67)

Food-101 42.92(0.98) 66.70(1.27) 19.92(1.07) 23.30(6.37) 87.40(2.20) 47.73(1.95)

iSUN 19.97(1.94) 71.00(6.47) 96.42(0.11) 81.17(5.21) 97.25(0.96) 39.35(6.75)

LSUNc 22.26(1.79) 72.45(2.48) 69.24(1.25) 71.82(0.89) 97.37(1.05) 68.10(0.79)

LSUNr 22.86(2.24) 70.31(6.09) 97.69(0.12) 81.24(6.84) 98.44(0.65) 43.89(6.90)

TINc 25.68(1.19) 77.90(5.80) 91.20(0.22) 78.51(4.40) 98.46(0.76) 31.98(3.76)

TINr 23.41(1.57) 74.97(6.40) 95.97(0.39) 82.81(4.09) 98.35(0.59) 27.32(4.71)

SVHN 22.02(1.98) 75.52(9.10) 82.66(0.53) 83.88(2.80) 96.68(0.35) 66.13(5.96)

S
V

H
N

CIFAR-10 72.46(1.17) 71.63(10.81) 84.12(1.70) 96.23(0.40) 99.03(0.10) 99.99(0.00)

CIFAR-100 72.52(1.51) 69.07(10.59) 84.71(1.55) 96.28(0.30) 98.07(0.29) 99.98(0.01)

Food-101 76.25(1.57) 74.39(10.54) 91.08(1.70) 98.74(0.05) 99.57(0.07) 100.00(0.00)

iSUN 72.08(3.97) 78.10(10.64) 99.78(0.06) 99.99(0.00) 100.00(0.00) 100.00(0.00)

LSUNc 71.37(2.37) 81.98(6.99) 94.07(0.31) 96.56(0.37) 98.94(0.51) 99.77(0.04)

LSUNr 71.57(3.65) 74.16(12.45) 99.87(0.04) 99.99(0.00) 100.00(0.00) 100.00(0.00)

TINc 75.71(2.93) 80.44(10.55) 98.80(0.17) 99.65(0.09) 99.96(0.02) 100.00(0.00)

TINr 74.86(3.12) 78.12(10.79) 99.57(0.12) 99.93(0.03) 99.97(0.02) 100.00(0.00)

F
o
o
d

-1
01

CIFAR-10 13.62(0.24) 67.86(2.41) 24.16(0.63) 37.98(1.27) 64.90(11.29) 99.99(0.01)

CIFAR-100 12.74(0.53) 65.73(1.83) 33.27(0.76) 49.83(1.02) 68.25(10.00) 100.00(0.00)

iSUN 10.90(3.16) 80.31(8.28) 94.57(0.97) 98.15(0.70) 98.00(0.59) 78.38(6.39)

LSUNc 14.87(2.19) 88.20(0.98) 79.27(0.56) 89.23(0.60) 73.23(3.02) 59.19(2.93)

LSUNr 11.49(2.99) 78.11(8.84) 95.26(0.98) 98.38(0.62) 98.40(0.42) 76.63(8.16)

TINc 12.16(2.17) 81.79(5.08) 88.52(1.09) 94.18(0.86) 88.21(2.04) 59.22(6.04)

TINr 10.57(2.43) 77.87(7.15) 92.88(0.92) 96.19(0.84) 94.51(1.23) 67.18(8.29)

SVHN 7.80(2.72) 79.85(5.21) 96.99(0.80) 99.12(0.32) 98.05(0.68) 99.57(0.17)
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Table 4.10: The OOD detection performance in AUROC. The network architecture
is DenseNet-100-12.

ID OOD Baseline Cosine Gram MALCOM Ours OE

C
IF

A
R

-1
0

CIFAR-100 89.48(0.15) 90.21(0.22) 72.63(0.43) 71.15(0.30) 86.06(0.42) 94.19(0.13)

Food-101 91.75(0.48) 93.74(1.06) 72.79(0.54) 81.03(1.08) 97.68(0.65) 98.57(0.09)

iSUN 94.44(0.78) 99.10(0.25) 99.73(0.05) 98.78(0.10) 99.88(0.03) 99.45(0.13)

LSUNc 93.52(0.50) 99.09(0.12) 97.46(0.09) 96.46(0.41) 99.82(0.04) 99.56(0.07)

LSUNr 95.10(0.53) 99.09(0.31) 99.84(0.03) 98.92(0.12) 99.89(0.04) 99.50(0.11)

TINc 93.66(0.87) 98.87(0.08) 99.23(0.08) 98.30(0.17) 99.85(0.05) 99.10(0.23)

TINr 93.30(1.06) 98.72(0.12) 99.63(0.06) 98.88(0.11) 99.84(0.05) 98.79(0.32)

SVHN 85.36(4.85) 99.47(0.07) 99.15(0.09) 98.86(0.16) 99.83(0.03) 99.22(0.30)

C
IF

A
R

-1
00

CIFAR-10 77.86(0.28) 78.68(1.04) 63.93(0.47) 45.32(0.32) 74.46(0.46) 78.98(0.45)

Food-101 86.97(0.69) 94.76(0.64) 70.86(0.95) 71.24(1.52) 97.27(0.65) 91.36(0.53)

iSUN 80.25(1.61) 98.48(0.09) 99.14(0.10) 97.04(0.32) 99.47(0.15) 90.21(1.01)

LSUNc 80.44(0.84) 96.89(0.56) 92.43(0.25) 91.54(0.49) 99.23(0.18) 94.02(0.40)

LSUNr 81.99(1.55) 98.64(0.15) 99.45(0.06) 97.25(0.36) 99.69(0.13) 90.98(1.19)

TINc 81.94(1.53) 98.60(0.20) 97.97(0.14) 95.61(0.37) 99.55(0.17) 88.04(1.34)

TINr 80.87(2.17) 98.66(0.20) 99.10(0.05) 97.18(0.30) 99.62(0.18) 86.17(1.64)

SVHN 77.28(2.12) 97.70(0.49) 95.39(0.38) 94.68(0.39) 99.46(0.05) 91.52(2.30)

S
V

H
N

CIFAR-10 91.55(1.35) 93.14(1.93) 95.61(0.18) 98.99(0.06) 99.57(0.10) 99.99(0.00)

CIFAR-100 90.95(1.18) 92.60(2.16) 96.38(0.19) 99.17(0.06) 99.39(0.09) 99.97(0.00)

Food-101 90.33(3.62) 92.58(3.88) 98.03(0.35) 99.63(0.02) 99.71(0.06) 99.99(0.00)

iSUN 92.88(0.93) 95.04(2.19) 99.80(0.08) 99.96(0.01) 99.97(0.02) 100.00(0.00)

LSUNc 91.23(2.38) 94.81(2.33) 98.57(0.15) 99.07(0.09) 99.77(0.05) 99.88(0.02)

LSUNr 92.70(1.16) 94.14(2.33) 99.84(0.05) 99.96(0.01) 99.97(0.02) 100.00(0.00)

TINc 93.32(1.13) 95.32(2.52) 99.55(0.11) 99.85(0.02) 99.96(0.02) 99.99(0.00)

TINr 93.43(1.35) 94.86(2.59) 99.76(0.08) 99.93(0.01) 99.97(0.02) 100.00(0.00)

F
o
o
d
-1

0
1

CIFAR-10 67.71(1.13) 95.57(0.62) 71.75(0.70) 83.55(0.54) 95.56(1.95) 99.98(0.00)

CIFAR-100 65.13(0.82) 95.46(0.67) 76.99(0.23) 87.41(0.33) 96.07(1.69) 99.92(0.02)

iSUN 62.06(4.88) 98.83(0.51) 98.53(0.25) 99.49(0.08) 99.18(0.34) 79.95(7.14)

LSUNc 70.21(1.73) 98.73(0.29) 94.36(0.28) 96.92(0.14) 92.10(0.91) 88.06(0.67)

LSUNr 63.85(4.67) 98.62(0.58) 98.60(0.26) 99.47(0.09) 99.54(0.19) 79.00(6.89)

TINc 61.37(3.28) 98.38(0.49) 96.87(0.38) 98.48(0.10) 95.72(1.04) 78.89(4.43)

TINr 58.90(4.24) 98.18(0.55) 97.87(0.30) 99.09(0.07) 97.92(0.62) 75.42(6.11)

SVHN 65.62(4.69) 98.82(0.44) 98.33(0.21) 99.30(0.10) 99.86(0.04) 98.20(0.58)
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Table 4.11: The OOD detection performance in AUROC. The network architecture
is WRN-40-4.

ID OOD Baseline Cosine Gram MALCOM Ours OE

C
IF

A
R

-1
0

CIFAR-100 86.54(0.13) 88.87(0.81) 79.50(0.24) 83.03(0.68) 85.56(0.29) 95.65(0.07)

Food-101 88.16(0.40) 91.54(1.71) 81.71(0.66) 88.15(1.29) 98.00(0.27) 98.85(0.05)

iSUN 91.99(0.60) 98.02(1.00) 99.85(0.01) 99.35(0.08) 99.84(0.06) 98.75(0.12)

LSUNc 93.43(0.41) 98.57(0.43) 98.39(0.09) 98.17(0.18) 99.83(0.05) 99.11(0.04)

LSUNr 93.26(0.53) 98.39(0.72) 99.89(0.01) 99.41(0.09) 99.85(0.07) 98.77(0.12)

TINc 90.98(0.51) 97.06(1.60) 99.50(0.03) 98.97(0.09) 99.84(0.05) 98.64(0.10)

TINr 89.22(1.06) 96.47(1.76) 99.77(0.02) 99.18(0.06) 99.80(0.07) 98.21(0.15)

SVHN 94.09(0.73) 98.94(0.72) 99.47(0.06) 98.88(0.27) 99.81(0.03) 98.91(0.26)

C
IF

A
R

-1
00

CIFAR-10 78.82(0.43) 77.84(0.85) 67.34(0.21) 70.57(1.11) 72.16(1.33) 81.89(0.12)

Food-101 88.24(0.37) 94.41(0.15) 78.05(0.46) 86.33(1.95) 97.50(0.38) 92.46(0.19)

iSUN 74.04(1.22) 94.52(1.29) 99.10(0.03) 96.40(0.88) 99.41(0.15) 89.53(1.87)

LSUNc 78.34(0.80) 94.46(0.68) 93.39(0.20) 94.97(0.25) 99.41(0.18) 94.59(0.18)

LSUNr 75.45(1.03) 94.48(1.27) 99.39(0.02) 96.44(1.12) 99.63(0.11) 90.83(1.56)

TINc 76.43(1.11) 95.92(1.07) 98.09(0.08) 96.11(0.68) 99.64(0.13) 86.90(1.64)

TINr 74.20(1.23) 95.26(1.31) 99.05(0.07) 96.66(0.71) 99.60(0.10) 85.34(1.95)

SVHN 78.87(1.30) 95.62(1.58) 96.34(0.17) 96.94(0.53) 99.21(0.08) 94.52(0.76)

S
V

H
N

CIFAR-10 92.56(0.48) 93.62(2.62) 96.34(0.41) 99.01(0.09) 99.67(0.05) 99.99(0.00)

CIFAR-100 92.49(0.59) 92.61(2.68) 96.59(0.37) 99.04(0.07) 99.45(0.06) 99.99(0.00)

Food-101 94.04(0.62) 94.40(2.14) 97.88(0.37) 99.56(0.04) 99.82(0.02) 99.99(0.00)

iSUN 92.92(1.43) 95.14(2.69) 99.92(0.02) 99.98(0.01) 99.92(0.03) 99.99(0.00)

LSUNc 92.12(1.00) 95.65(1.76) 98.73(0.02) 99.20(0.07) 99.69(0.10) 99.93(0.00)

LSUNr 92.44(1.51) 94.08(3.47) 99.94(0.01) 99.99(0.00) 99.90(0.03) 99.99(0.00)

TINc 94.09(1.15) 95.76(2.44) 99.66(0.05) 99.88(0.02) 99.92(0.02) 99.99(0.00)

TINr 93.83(1.08) 95.22(2.42) 99.85(0.03) 99.95(0.01) 99.90(0.03) 99.99(0.00)

F
o
o
d
-1

0
1

CIFAR-10 68.62(0.13) 94.06(0.50) 74.00(0.44) 83.32(0.64) 90.23(3.54) 100.00(0.00)

CIFAR-100 67.00(0.32) 93.40(0.47) 79.18(0.51) 86.75(0.52) 90.90(3.12) 100.00(0.00)

iSUN 66.28(2.72) 96.53(1.45) 98.81(0.22) 99.53(0.15) 99.49(0.14) 92.90(2.27)

LSUNc 68.23(2.91) 97.78(0.20) 94.44(0.29) 97.63(0.15) 91.92(0.93) 85.89(0.98)

LSUNr 66.29(2.41) 96.13(1.61) 98.90(0.20) 99.52(0.16) 99.61(0.11) 92.35(2.73)

TINc 66.55(1.49) 96.64(0.86) 97.44(0.27) 98.72(0.16) 96.68(0.63) 85.36(2.59)

TINr 65.36(1.84) 95.92(1.31) 98.32(0.23) 99.10(0.19) 98.51(0.37) 88.41(3.10)

SVHN 63.36(2.73) 96.25(1.15) 99.23(0.17) 99.68(0.10) 99.49(0.17) 99.87(0.07)
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Table 4.12: The OOD detection performance in AUPR. The network architecture is
DenseNet-100-12.

ID OOD Baseline Cosine Gram MALCOM Ours OE

C
IF

A
R

-1
0

CIFAR-100 90.64(0.11) 88.44(0.44) 62.57(0.68) 69.23(0.37) 84.77(0.50) 93.96(0.18)

Food-101 87.50(0.80) 87.36(2.25) 44.41(1.04) 71.27(1.66) 95.24(1.35) 97.37(0.21)

iSUN 95.95(0.55) 99.15(0.24) 99.72(0.05) 99.01(0.08) 99.90(0.02) 99.58(0.10)

LSUNc 94.79(0.44) 98.99(0.14) 96.21(0.20) 96.74(0.39) 99.81(0.04) 99.60(0.07)

LSUNr 96.10(0.41) 99.05(0.32) 99.81(0.02) 99.05(0.10) 99.90(0.03) 99.58(0.09)

TINc 94.92(0.75) 98.81(0.08) 98.85(0.10) 98.42(0.17) 99.85(0.05) 99.21(0.19)

TINr 94.61(0.85) 98.62(0.10) 99.46(0.14) 98.94(0.10) 99.84(0.05) 98.91(0.29)

SVHN 70.78(14.06) 98.65(0.11) 96.86(0.20) 97.56(0.28) 99.55(0.06) 98.60(0.43)

C
IF

A
R

-1
00

CIFAR-10 80.41(0.29) 74.76(1.33) 60.99(0.50) 49.47(0.25) 76.94(0.44) 81.96(0.31)

Food-101 80.20(0.83) 91.52(0.90) 50.39(1.22) 61.04(2.36) 94.65(1.22) 86.62(0.77)

iSUN 83.84(1.22) 98.57(0.07) 99.05(0.11) 97.68(0.24) 99.49(0.15) 90.87(0.93)

LSUNc 82.32(0.75) 96.66(0.64) 91.15(0.29) 92.68(0.53) 99.21(0.18) 93.82(0.47)

LSUNr 84.11(1.18) 98.66(0.14) 99.38(0.08) 97.68(0.30) 99.69(0.15) 90.87(1.34)

TINc 83.86(1.55) 98.57(0.18) 97.54(0.17) 96.12(0.35) 99.54(0.17) 87.86(1.16)

TINr 83.08(1.97) 98.62(0.16) 98.92(0.05) 97.46(0.28) 99.60(0.20) 86.05(1.28)

SVHN 66.54(3.26) 95.13(0.82) 88.85(1.00) 91.21(0.54) 98.45(0.15) 85.74(3.22)

S
V

H
N

CIFAR-10 95.28(1.25) 96.84(0.88) 89.36(0.49) 99.66(0.02) 99.82(0.05) 99.99(0.00)

CIFAR-100 94.69(1.19) 96.48(1.06) 91.46(0.41) 99.72(0.02) 99.71(0.06) 99.99(0.00)

Food-101 87.14(6.69) 92.51(3.88) 97.62(0.46) 99.72(0.02) 99.74(0.06) 100.00(0.00)

iSUN 96.43(0.74) 97.90(1.00) 99.31(0.26) 99.99(0.00) 99.99(0.00) 100.00(0.00)

LSUNc 94.40(2.42) 97.30(1.37) 97.09(0.31) 99.67(0.03) 99.90(0.02) 99.95(0.01)

LSUNr 95.95(0.99) 97.22(1.21) 99.48(0.18) 99.99(0.00) 99.99(0.01) 100.00(0.00)

TINc 96.20(1.11) 97.82(1.24) 98.85(0.30) 99.95(0.00) 99.99(0.01) 100.00(0.00)

TINr 96.29(1.24) 97.59(1.27) 99.30(0.24) 99.98(0.00) 99.99(0.01) 100.00(0.00)

F
o
o
d
-1

0
1

CIFAR-10 84.13(0.53) 98.03(0.27) 83.10(0.51) 92.46(0.31) 97.67(1.03) 99.99(0.00)

CIFAR-100 82.47(0.35) 97.97(0.28) 86.38(0.27) 94.18(0.19) 97.89(0.90) 99.95(0.01)

iSUN 82.43(2.65) 99.53(0.20) 99.37(0.11) 99.83(0.02) 99.62(0.15) 91.30(3.31)

LSUNc 84.66(0.86) 99.41(0.13) 96.58(0.21) 98.56(0.08) 95.60(0.53) 93.47(0.34)

LSUNr 82.01(2.50) 99.39(0.25) 99.33(0.12) 99.80(0.03) 99.77(0.09) 90.17(3.35)

TINc 80.06(1.82) 99.26(0.23) 98.36(0.21) 99.35(0.05) 97.67(0.53) 89.33(2.18)

TINr 78.94(2.38) 99.17(0.24) 98.89(0.17) 99.62(0.03) 98.86(0.29) 87.98(2.97)

SVHN 67.02(4.30) 98.74(0.43) 98.22(0.23) 99.41(0.09) 99.82(0.05) 97.34(0.80)
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Table 4.13: The OOD detection performance in AUPR. The network architecture is
WRN-40-4.

ID OOD Baseline Cosine Gram MALCOM Ours OE

C
IF

A
R

-1
0

CIFAR-100 83.29(0.16) 86.81(0.94) 74.26(0.45) 82.88(0.80) 83.03(0.39) 95.81(0.08)

Food-101 72.55(1.34) 84.01(2.99) 64.32(1.61) 80.89(2.02) 96.38(0.65) 98.39(0.05)

iSUN 92.56(0.79) 98.20(0.89) 99.85(0.01) 99.48(0.06) 99.88(0.05) 99.20(0.07)

LSUNc 93.19(0.52) 98.43(0.46) 98.19(0.11) 98.38(0.15) 99.84(0.05) 99.37(0.03)

LSUNr 93.26(0.72) 98.40(0.68) 99.88(0.01) 99.50(0.07) 99.87(0.06) 99.18(0.09)

TINc 90.08(0.85) 96.98(1.62) 99.44(0.04) 99.08(0.07) 99.86(0.05) 99.00(0.08)

TINr 87.95(1.76) 96.31(1.76) 99.71(0.05) 99.24(0.05) 99.82(0.07) 98.54(0.12)

SVHN 87.76(2.46) 97.03(2.03) 98.45(0.16) 97.44(0.57) 99.54(0.07) 98.69(0.20)

C
IF

A
R

-1
00

CIFAR-10 80.00(0.75) 74.53(1.46) 65.28(0.29) 71.71(1.11) 71.17(1.74) 85.51(0.07)

Food-101 80.92(0.69) 90.60(0.29) 63.42(0.81) 81.47(2.34) 95.11(0.73) 89.94(0.17)

iSUN 75.65(1.40) 95.04(1.06) 99.00(0.04) 97.05(0.68) 99.48(0.14) 92.24(1.47)

LSUNc 79.43(1.01) 94.23(0.81) 92.49(0.19) 95.54(0.29) 99.40(0.17) 95.47(0.17)

LSUNr 75.08(0.79) 94.64(1.17) 99.36(0.02) 96.82(0.96) 99.64(0.11) 92.73(1.28)

TINc 75.13(2.66) 95.95(0.98) 97.81(0.08) 96.53(0.56) 99.64(0.13) 89.06(1.62)

TINr 72.70(2.85) 95.26(1.22) 98.92(0.07) 96.87(0.62) 99.60(0.10) 87.62(1.79)

SVHN 64.30(4.74) 91.52(2.61) 90.93(0.48) 94.01(0.98) 97.97(0.20) 91.60(0.93)

S
V

H
N

CIFAR-10 95.39(0.44) 97.10(1.20) 91.23(0.85) 99.66(0.03) 99.87(0.02) 100.00(0.00)

CIFAR-100 95.34(0.57) 96.48(1.27) 92.04(0.80) 99.67(0.02) 99.77(0.02) 100.00(0.00)

Food-101 92.42(1.20) 94.46(1.79) 97.56(0.43) 99.64(0.03) 99.84(0.02) 99.99(0.00)

iSUN 96.38(1.00) 98.02(1.16) 99.75(0.06) 99.99(0.00) 99.97(0.01) 100.00(0.00)

LSUNc 95.21(0.93) 97.89(0.86) 97.41(0.07) 99.72(0.02) 99.87(0.04) 99.96(0.00)

LSUNr 95.50(1.22) 97.26(1.70) 99.83(0.03) 99.99(0.00) 99.97(0.01) 100.00(0.00)

TINc 96.75(0.95) 98.11(1.10) 99.21(0.12) 99.96(0.01) 99.97(0.01) 100.00(0.00)

TINr 96.52(0.90) 97.85(1.08) 99.63(0.07) 99.98(0.01) 99.97(0.01) 100.00(0.00)

F
o
o
d
-1

0
1

CIFAR-10 84.66(0.13) 97.36(0.23) 84.80(0.37) 92.28(0.38) 95.03(1.77) 100.00(0.00)

CIFAR-100 83.56(0.20) 96.97(0.26) 88.02(0.44) 93.76(0.31) 95.29(1.62) 100.00(0.00)

iSUN 85.07(1.36) 98.65(0.56) 99.47(0.10) 99.84(0.05) 99.77(0.07) 96.50(1.09)

LSUNc 84.01(1.81) 98.98(0.09) 96.68(0.23) 98.93(0.07) 95.52(0.50) 92.33(0.50)

LSUNr 83.73(1.28) 98.32(0.70) 99.45(0.10) 99.81(0.06) 99.81(0.06) 95.85(1.40)

TINc 83.39(0.83) 98.49(0.38) 98.64(0.16) 99.45(0.07) 98.19(0.36) 91.96(1.37)

TINr 82.98(0.92) 98.18(0.57) 99.10(0.12) 99.61(0.09) 99.21(0.20) 93.58(1.60)

SVHN 65.59(2.17) 96.06(1.28) 99.19(0.17) 99.69(0.09) 99.35(0.23) 99.80(0.11)
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Chapter 5

Conclusion

In this dissertation, we discuss the OOD detection in the classification problem.

We first point out the importance of the OOD detection method independent of the

hyperparameter tuning in Chapter 2. In the experiments, we show that the methods

that rely on the hyperparameter tuning have compromised detection performance

when the validation OOD is drawn from the different data distribution. This re-

flects the real-world assumption where it is difficult to guarantee the effectiveness

of the OOD validation dataset. Our proposed method, i.e., cosine network, uti-

lizes the scaled cosine softmax for training and uses cosine similarity for detecting

OOD samples; it does not require the hyperparameter tuning. The proposed method

outperforms the others in the less-biased evaluation [1] and shows competitive per-

formance in the conventional evaluation, i.e., the validation dataset is allowed for the

compared method. Although it performs well in OOD detection, its ID classification

performance deteriorates. This problem can be alleviated using two networks, i.e.,

the standard network for classification and the cosine network for OOD detection.

We further question the existing OOD detection methods toward their effective-

ness on the realistic image in Chapter 3. We divide the experiments into three scenar-

ios, i.e., irrelevant inputs detection, novel class detection, and domain shift detection.

Irrelevant input detection is similar to the OOD detection evaluation that is the most

widely studied in the literature. It considers the case when the sample belongs to the

class not included in the training dataset. Novel class detection resembles irrelevant

input detection in that the sample belongs to the unknown class. However, it consid-
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ers a more difficult case where the OOD samples are visually similar to the training

dataset. Domain shift detection covers a different case when the model encounters

the sample that belongs to the known classes; however, it is OOD due to the differ-

ence in the sample domain. In this scenario, the OOD score is expected to convey

the expected deterioration of the model. We adopt the synthesized corrupted images

to represent the domain shift detection. We train a small model to learn to predict

the classification error w.r.t. the OOD score. As a result, we observe that the cosine

network shows consistently good performance in all cases. Unexpectedly, we observe

that the synthesized image has a similar deterioration trend to the realistic domain

shifting, i.e., Office-31. This indicates that we can simulate the deterioration from

the synthesized images.

Inspired by the observation in Chapter 3 about the synthesized corrupted images,

we utilize them to train the model to improve the OOD detection result in Chapter 4.

In Hendrycks et al. [7], the auxiliary dataset, i.e., outlier, is utilized to represent the

seen OOD samples in training. This knowledge of the OOD is expected to be bene-

ficial for detecting OOD in the inference time. The detection performance arguably

depends on how to construct the outlier dataset. The decreasing of the classification

performance is also observed in their method. We proposed to use the corrupted

images to represent the OOD samples. As shown in Chapter 3, the corrupted images

can be considered shifted dataset from the clean images. We apply each corruption

to the original training dataset and record the classification accuracy. The recorded

accuracy is then used to construct the soft-label target for training in the second at-

tempt. We re-train the model and allow it to see the clean images and the corrupted

images with soft-label mixed in the training batch. The re-trained model shows high

performance in both classification and OOD detection, all-in-one. We also provide

the analyses to show the effectiveness when the factors are varied and prove that

having the validation OOD dataset is not necessary.

There are remaining problems in the study of OOD detection. Although many

OOD detection methods have been proposed in the research community, the concrete

understanding of the cause of the OOD sample is limited. It possibly gives more

understanding to the other related problem as well, e.g., calibration and domain

shifting. This understanding would be a crucial contribution to the community. The
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domain adaptation using more effective measurement to estimate the shift might

contribute to performance improvement. These research fields would encourage the

DNN to have more variety of applications with trust and safety in utilizing AI agents

in the real world.
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[76] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. A survey on concept drift adaptation. ACM computing surveys

(CSUR), 46(4):1–37, 2014.

[77] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by

backpropagation. In Proceedings of the International Conference on Machine

Learning, 2015.

[78] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial dis-

criminative domain adaptation. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, 2017.

[79] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[80] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training.

In Proceedings of the International Conference on Computer Vision, 2019.

121



[81] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, 2016.

[82] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei.

Novel dataset for fine-grained image categorization: Stanford dogs. In Proceed-

ings of the Conference on Computer Vision and Pattern Recognition Workshop

on Fine-Grained Visual Categorization, 2011.

[83] Thomas Mosgaard Giselsson, Rasmus Nyholm Jørgensen, Peter Kryger Jensen,

Mads Dyrmann, and Henrik Skov Midtiby. A public image database for bench-

mark of plant seedling classification algorithms. arXiv:1711.05458, 2017.

[84] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florain Schroff,

Serge Belongie, and Pietro Perona. Caltech-UCSD Birds 200. Technical report,

California Institute of Technology, 2010.

[85] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object repre-

sentations for fine-grained categorization. In Proceedings of the International

Workshop on 3D Representation and Recognition, 2013.

[86] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats

and dogs. In Proceedings of the Conference on Computer Vision and Pattern

Recognition, 2012.

[87] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis

of representations for domain adaptation. In Advances in Neural Information

Processing Systems, 2007.

[88] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual

category models to new domains. In Proceedings of the European Conference

on Computer Vision, 2010.

[89] Ev Zisselman and Aviv Tamar. Deep residual flow for out of distribution de-

tection. In Proceedings of the Conference on Computer Vision and Pattern

Recognition, June 2020.

122



[90] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and

Bo Wang. Moment matching for multi-source domain adaptation. In Pro-

ceedings of the International Conference on Computer Vision, 2019.

[91] Yang Zhang, Philip David, and Boqing Gong. Curriculum domain adaptation

for semantic segmentation of urban scenes. In Proceedings of the International

Conference on Computer Vision, 2017.

[92] Marco Toldo, Andrea Maracani, Umberto Michieli, and Pietro Zanut-

tigh. Unsupervised domain adaptation in semantic segmentation: a review.

arXiv:2005.10876, 2020.

[93] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confi-

dence regularized self-training. In Proceedings of the International Conference

on Computer Vision, 2019.

[94] Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon,
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