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Mathematics is Biology’s next microscope, only better; Biology is Mathemat-
ics’ next Physics, only better. In biology, ensemble properties emerge at each
level of organization from the interactions of heterogeneous biological units at
that level and at lower and higher levels of organization (larger and smaller
physical scales, faster and slower temporal scales). New mathematics will be
required to cope with these ensemble properties and with the heterogeneity of
the biological units that compose ensembles at each level.
— Joel E. Cohen

The propagation of information through social networks bears many simi-
larities to the evolution and transmission of infectious diseases. Analysis of
transmission dynamics could therefore provide insight into how misinforma-
tion spreads and competes online.
—Adam Kucharski



S U M M A RY

Based on the ideas of disease spread dynamics, the thesis examines
the diffusion of information subject to certain psychological and socio-
logical situations. We consider two major models, namely a rejoinder
model in which there are two interacting pieces of information spread-
ing with a time lag between them and a threshold model in which a
person only begins to spread a piece of information after an acceptable
number of people have been spreading it. The analysis of the rejoin-
der model shows that there is a critical time frame within which an
individual, organization or government should release information to
properly correct misleading information that has been spreading in a
population for some time. In addition, the model shows that a critical
portion of a population should be targeted with corrective information
for it to be effective. From the threshold model, we discovered that the
final proportion of knowers of an information is uniquely determined
by the initial proportion of knowers in the population. There are also
critical proportions and threshold values which determine how well
an information spreads within a population. The models provide the-
oretical frameworks for the promotion of information literacy in order
to combat misinformation and disinformation. Information warfare
has become intense due to increasing social activities on the internet.
Keywords: Population dynamics; Rejoinder model; Granovetter’s
model; Threshold model; Information spread; Collective behavior;
Ordinary differential equations
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1
I N T R O D U C T I O N

1.1 the nature of information

The whole existence of nature is built on information and its trans-
mission; in fact, things hardly happen in the universe exclusive of the
concepts of information and communication. Parker [59] gives one of
the most fundamental definitions of information as ‘the pattern of or-
ganization of matter and energy’. In a sense, Bates [4] sees information
as something which exists objectively in our cosmos but is however
handled subjectively by individuals in the process of construction,
storage and acting upon it. In tandem with Goonatilake [27], the work
identifies forms of information as natural, represented (encoded and
embodied), experienced, enacted, expressed, embedded, recorded and trace.
These forms are believed to be germane to the information, curatorial
and collection sciences. In contrast to Bates concepts of objectivity
and subjectivity, Hjørland [37] thinks that information depends on
situations and is progressive.

An information philosopher, Luciano Floridi gives the fundamen-
tal life cycle of information as episodes of occurrence, transmission,
processing and management, and usage [22]. He would like us to see
information as meaningful data as well as a true factual semantic data
which increases knowledge. On the other hand, unintentional untruth
leads to misinformation while intentional untruth leads to disinforma-
tion. He also shows that information can be mathematical, semantic,
physical, biological, economic, etc. Floridi concludes by dealing with
the ethics of information with his RPT Model which takes care of
ethical issues by viewing information as a resource, a product and a
target.

Tracing the history of information, Gleick [26] points out that the
world is gradually getting to a point of information overload which
might lead to some kind of exhaustion. Satija [65] highlights the ubiq-
uity and necessity of information. Though it has no generally agreed
definition, it is seen as ranking after matter and energy. Since infor-
mation shapes the world, the article emphasizes the importance of
information literacy in empowering people globally. Going by Smi-
raglia [69], information is a dynamic process which alters the behavior
of those who interact with or perceive new knowledge in a given
context. Due to human interference in the information process, it is
quite troublesome that various forms of perversion arise, which may
lead to misinformation, namely rumors, gossips, fake news, among
others. We look at these information disorders in some depth.
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2 introduction

1.1.1 Rumor

The following are some definitions and descriptions of rumor.

“A rumor is a proposition for belief of topical reference, without secure
standards of evidence being present. It suffers such serious distortion through
the embedding process that it is never under any circumstances a valid guide
for belief or conduct.”-Allport and Postman [3]

“A rumor is unverified information, usually of local or current interest,
intended primarily for belief In other words, rumors are propositions or alle-
gations colored by various shades of doubt, because they are not accompanied
by corroborative evidence. Thus, rumors scamper about organizations like
some mischievous poltergeist, until skillful managers exorcise the allegations
or the allegations vanish into thin air.”-DiFonzo, Bordia, and Rosnow [16]

A rumor can be viewed as the result of a succession of individuals
transmitting a particular message. The level of accuracy of a rumor is
subject to the precision of the initial message as well as that with which
it is transmitted down the line. Being probably the first set of people
to approach the appraisal of proof scientifically, historians believed the
morality, sentiments and source of information of a witness determine
his/her reliability [36]. Rumors spread more easily in the face of
crises which threaten a ‘herd’, e.g., wars, earthquakes, and tsunamis.
Some are outright lies fabricated to push some hidden agenda. It is
important to consider why a rumor tends to have a generic character
and where the impulse to spread it comes from.

From the widely acclaimed work of Allport and Postman [3], the
importance as well as the ambiguity of a topic determines how far a
rumor about it spreads. They suggested that the credibility of sources
of information determines whether a rumor subsides or not. The goal-
gradient concept, which is a condition under which rumors in certain
special circumstances bring about hurried implementation of desired
objectives, was pointed out. It was highlighted that rumors spread
for the purpose of ‘explaining’ and ‘relieving’ people’s emotional
agitations against others. With reference to the rumors which followed
December 1941’s Battle of Pearl Harbor, the work showed that tracing
of rumor sources, proactive campaigns, rumor clinics and wardens
were means by which the United States of America tried to contain
the mischievous rumors. Based on their experiment, they identified
three inter-connected inclinations in rumors, namely leveling (the easy
to grasp version of a rumor), sharpening (the biased summary of
an original information) and assimilation (the influence of listener’s
whims and caprices on rumors). Overall, it was established that the
more the people involved with a rumor, the more it is subjected to
change until it becomes concise enough to be learned by rote.

DiFonzo, Bordia, and Rosnow [16] studied rumor dynamics in the
context of organizations viewing rumors as news without proof. They
highlighted the devastating effects of rumors in the workplace and
also how experts do not seem to agree on how to handle them. It
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was shown that rumors undermine firms’ tangible assets like sales
and mostly intangible ones like credibility. They stated the features
of rumors as lack of proof, group interests and intention to instill belief.
For organizations to swim against the tide of rumors in the cut throat
business environment, functional guidelines based on rumor theory
were summed up into prevention and neutralization of rumors. These
interventions cut across the entire rumor process. Alluding to the
research by Bordia and Rosnow [8], Bordia [7] established the fact that
computer-mediated communication networks (CMC) like the internet
have some advantages over face-to-face (FTF) method of sequential
transference of information previously used in studying rumors. Such
benefits include

• possibility of observing realistic transmission of rumors;

• easy retrieval of data due to automatic retention of discussions;

• availability of nonreactive data which enhances inconspicuous
observation.

It was observed that CMC facilitate unrestrained behavior as well
continuous, coordinated and relatively more elaborate articulations.
It was however instructive to pay serious attention to the issues of
privacy and informed consent when handling data from private CMC.

Investigating the impact of rumors on students subjected to a uni-
versity shutdown, Jones et al. [38] discovered that inconsistent infor-
mation was more available to those who depended on social media
in order to keep abreast of the situation. By extension, the students
who believed such unreliable news were more agitated than others.
Furthermore, they saw that the longer the gap between updates from
University officials, the more rumors and panic spread. In order to
have such situations under control, they recommend that administra-
tors should surveil social media networks, like Twitter, in times of
crises and provide accurate information to counter the rumors they
come across there.

1.1.2 Gossip

Grosser et al. [34] admits that there is just a thin line between rumor
and gossip while emphasizing that gossips do not necessarily need
to have negative effects in the work place. In that light, managers are
advised to use gossips to the advantage of their organizations. The pa-
per defines gossip as an “evaluative talk (i.e., concerned with making
judgments) between two or more persons about a third party that is
absent from the conversation". It was noted that a gossip can serve
one or more of the following functions: getting information, gaining
influence, releasing pent-up emotions, providing intellectual stimulation, fos-
tering interpersonal intimacy, and maintaining and enforcing group values
and norms. To manage gossips in an organization, the following were
suggested: communicating information formally; promoting a civil
culture; nurturing work place justice; enhancing means of dealing with
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stress and boredom; and handling excessive gossipers with discretion.
In the final analysis, gossips can help leaders to feel the pulse of their
firms so that they can act proactively.

In trying to understand the co-evolution of gossip and friendship in
organizations, Ellwardt, Steglich, and Wittek [19] found that gossiping
increases the likelihood of friendship (the evolutionary view) more
than friendship facilitates gossiping (the social capital view). Never-
theless, there is a threshold beyond which gossips limit friendship
formation as excessive gossipers are seen as undependable. One very
crucial discovery of the study is that discussing other colleagues in
their absence can help galvanize informal interactions between co-
workers. This in turn helps the organization to grow as there will be
greater mutual support and cooperation on a large scale.

Questioning the perception that gossips always have damaging
effects and that people tend to be more drawn to malicious gossips
about others, Tassiello, Lombardi, and Costabile [71] made an attempt
to see if given a valenced gossip (positive or negative; malicious or non-
malicious) would more likely spread in a workplace. They established
that a gossip is a transmission of unverified information about absent
third parties. All the parties concerned in a gossip are known as
opposed to what happens in the case of a rumor where the target may
not be known. Being a form of informal communication, the research
tries to understand whether a positive or negative gossip is likely
to be shared within an organization when all the actors concerned
have well defined connections. In order to understand how this plays
out, the researchers used the Kurland-Pelled model proposed in 2000.
The model differentiates types of gossip based on sign (positive or
negative), credibility (truth or falsehood) and relatedness (relationship
between the gossip receiver and the gossip target).

Using three experimental studies, they discovered that benevolent
gossips have better chances of being transmitted if the person whom
it is about is in the same social camp with the receiver and when the
receiver is likely to fact check the information. It was seen that people
are wont to create good impressions of themselves by sharing positive
gossips. In fact, the experiments show that gossip can be a tool for
building cohesive relationships at work. They concluded by suggesting
that some work is required in finding out if some particular group of
people derive pleasure from gossips compared to other groups.

1.1.3 Fake news

In this information age, fake news is a source of great concern in
different fields of human endeavor ranging from information science
to politics, health care and economics. Talking about its influence on
democratic processes, the following are cases in point: the ‘Brexit’
referendum of June 23, 2016; the surprise emergence of Donald Trump
as POTUS following the November 8, 2016 elections; and the canceled
August 8, 2017 Kenyan presidential elections.
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In order to get a proper perspective, Wardle and Derakhshan [73]
would rather not use the term ‘fake news’ because of its massive politi-
cization and inadequacy in describing the pollution of information.
As a result, they settled for ‘information disorder’ which manifests
as mis-information– sharing false information with no harm intended,
dis-information– sharing false information in order to wreak havoc and
mal-information– sharing genuine, mostly classified, information for
harmful intents. The work was instructive in giving thirty-four sugges-
tions for the consideration of various stakeholders towards managing
how wrong information is ‘consumed, interpreted and acted upon’.

Lazer et al. [45] define fake news as “fabricated information that
mimics news media content in form but not in organizational process
or intent”. Alongside fake news, they identified “misinformation (false
or misleading information)” and “disinformation (false information
that is purposely spread to deceive people)” as forms of information
irregularities. It was stated that fake news thrives by exploiting the
integrity of conventional news agencies. The ubiquity of the internet
was highlighted as a key factor in the erosion of virtues like balance
and objectivity that characterized journalism starting from the period
of the First World War. To curb the spread of fake news, the authors
propose (i) individual empowerment through proper education and pro-
vision of fact checking platforms, (ii) preemptive detection and prevention
by internet and social media firms like Facebook, Google and Twit-
ter. In all, a far reaching interdisciplinary approach is advocated for
handling the menace of fake news.

1.1.4 Spiral of silence

Elisabeth Noelle-Nuemann (1916-2010) was a German political sci-
entist and Founder/Director of the Public Opinion Research Center
in Allensbach, Germany who popularized the theory of spiral of si-
lence. The theory shows how people are coerced into silence about
their personal opinions when such opinions are not in consonance
with perceived public opinion. This silence tends to project those who
hold popular opinion as stronger than they really are while the silent
members of society come off as weaker than their population actually
suggests. The whole scenario is capable of leading to misinformation
about the stands of individuals on controversial issues in society.

Reviewing this interesting concept, Griffin [33] considered the ideas
surrounding it. He portrays public opinion as having the power to keep
people in line. The spiral of silence theory implies that humans have
a sixth sense which can be referred to as the quasi-statistical organ
through which people gauge public opinion. It was revealed that
the spiral of silence is propelled by the fear of isolation from one’s
community. The mass media is seen as playing a huge role in driving
unpopular opinions into oblivion. However, discriminatory exposure
to the media may lead to pluralistic ignorance, a condition in which
people erroneously feel that others think like them. Noelle-Nuemann’s
plane/train test helps to show if people would be willing to talk about
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burning societal situations. As helpful as the test might be, there
are popular researchers that question its reliability. As outliers to the
theory, hard-core nonconformists and avant-garde are identified as people
who hold on to contrary opinions no matter whose ox is gored. They
are radicals who have the capacity of changing the world by standing
their grounds against popular opinions.

With an overview of research on the spiral of silence, Yang [76]
emphasized the importance of reassessing the theory in view of the
reshaping of public opinion due to the advancement in technology
in the 21st century. The theory clearly came into existence at at time
when the traditional media (newspaper, radio and television) held
way as opposed to what is obtainable in modern times when such
media have been considerably disrupted by the Internet.

He highlighted the role of the conformity hypothesis which postulates
that individual opinions tend to give way for what is perceived as
public opinion due to the fear of isolation. This establishes Noelle-
Nuemann’s redefinition of public opinion as that which helps to keep
people in line unless they are defiant. The effect of the spiral is seen
to be hugely influenced by how emotive and ethical the matter under
consideration is. Such emotional issues are generally identified as
those related to political partisanship, ideas that threaten a particular group
of people and unconventional views. The spiral of silence is also massively
affected by the potency of discussion of the issues by popular media.
It is shown that further research is required in knowing how the spiral
plays out in divisive issues that have roughly equal supporters.

In cyberspace, Yang reveals that various studies show variations in
the application of the spiral. There is full applicability in some cases
while it is only partial in other scenarios. The theory of the spiral of
silence tends to breakdown totally in some cases and this seems to
lend credence to the reality of anonymity on the the Internet. In this
case, the diffusion theory is better at explaining the opinion climate.
Overall, a lot of work is still required to pinpoint the co-evolution
dynamics of the social media, individual and public opinion.

Kurambayev and Schwartz-Henderson [43] investigated the culture
of self-censorship online and offline in Kyrgyzstan, the Central Asian
so called ‘island of democracy’, as a result of perceived and real
consequences. The fuel for this behavior include the fear of isolation
like we see in the spiral of silence; power distance which is caused by
the uneven distribution of opportunities and wealth thereby rendering
the less privileged mute and helpless; and perceived audiences which
might be those who would rather fall in line with public opinion or
even the unfriendly prying eyes of government agents.

The white paper identified the repercussions of voicing out dissent-
ing opinions on political and social issues as insults/verbal attacks,
future professional/career jeopardy, ostracism, the stigma of bad rep-
utation and even physical harm. The powers that be, knowing the
impact of the social media, use them to misinform people by spreading
propaganda and by trying to suppress ideas that do not agree with
their political inclinations. The research finds it quite alarming that
tech savvy young people would rather not discuss political and social
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issues freely on the Internet, an exercise which would have promoted
free speech and deepened the democratic process. The authors made
it a point of duty to call on international organizations and external
bodies to ensure that the culture of silence is halted by providing
supports that will make the Kyrgyzstani express themselves without
fear thereby making room for an open society.

1.2 the characteristics of information agents

1.2.1 Why people spread information

The attitude of people who have access to information is very vital
in its spread. For instance, it has been shown that when people have
vested interests in circumstances where there are information gaps,
they give in to rumors which go through the process of (i) generation
which is mainly fueled by uncertainty and anxiety, (ii) evaluation based
on the knowledge base of the hearers and (iii) dissemination inspired by
repetition-induced belief and evolution of rumors into more acceptable
forms [16]. Jones et al. [38] reported that in the course of active shoot-
ing with looming danger and lack of trustworthy information, there
is serious vagueness which leads people to seek information from
sources, like social media, whose authenticity may not be verifiable.
Wardle and Derakhshan [73] investigated the elements of information
disorder, namely agents, messages and interpreters while the phases were
identified as creation, production and distribution. They highlighted that
the spread of polluted information these days is amplified with the
help of social bots and cyborgs mimicking humans.

The Customer Insight Group [35] considered what influences peo-
ple to share information online in order to help marketers get their
content shared for increased productivity. They recognized sharing as
human nature which has been magnified and made real time as people
have transformed from being broadcasters to ‘sharecasters’. Sharing
is also seen as a means of managing information. The three-phase
study included ethnographies (in-person interviews), immersion/depriva-
tion (a sharing panel) and a quantitative survey of 2500 online sharers.
It was discovered that relationship building is the underlying factor
which make people share online as seen in motivations like valuable
entertainment, self definition, enhancing relationships, personal accomplish-
ment, the value of being first to share as well as support for causes and
brands. Based on behavior, the research identified six characters of
online sharers, namely altruists who mostly use emails and are sup-
portive, dependable and considerate; careerists commonly found on
LinkedIn, they are resourceful and insightful and they have a network
of like-minded people; hipsters who are not given to emails but they
are youthful, well-liked and creative front liners with a strong sense
of identity; boomerangs who are empowered Twitter and Facebook
users driven by likes, comments and controversies; connectors that
are e-mail and Facebook using planners, they are reflective, inventive
and temperate; selectives who are imaginative, cautious, instructional
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e-mail users. It was highlighted that for one’s content to get shared,
there is need to appeal to consumers’ need to connect with other
people rather than just the brand; sharers must be able to trust the
brand; simplicity will always win; the consumers’ sense of humor
must be appealed to; a sense of urgency is crucial; the brand must
have a reputation of ongoing engagement with consumers; the use
e-mails must be prioritized. The following consumer categories were
identified: entertainment, finance, retail and fashion, technology and travel.

1.2.2 Information agents as epidemic agents

Motivated by the dearth of literature on the connection between the
spread of information and the mode of dissemination among users, Pei
et al. [61] carried out in-depth investigation on the diffusion data and
social network structure of an online blog community. Amazingly, they
discovered that a lot of users show persevering attitude in line with
one of social spreading, self-promotion and broadcast. Social spreading is
particularly seen as preeminent and resulting to more people receiving
the information down the line. The study of the diffusion trees of each
kind of attitude reveals that most cases of information transmission
are confined to the first few cohorts. In order to advance research
in this direction, they suggest exploring the link between user traits,
content and the results of the information diffusion on one hand and
the dynamics of each behavioral pattern on the other.

The spread of false information through social networks looks so
much like the progression of communicable infections, they are both
enhanced by social connections. As such, analyzing the dynamics of
online propagation and competition of information disorder can be
quite insightful. With the growing interest among people to source
for news on social media primarily, transmission models together
with relevant data might be of great help in understanding this new
terrain [42]. From a somewhat psychoanalytic point of view, Linden
[50] considered the formation of echo chambers of like-minded beliefs
due to the increasing use of the internet as news source as well as
filter bubbles which arise from social media platforms targeting users
with information based on their previous online behavior. These were
found to reinforce extreme group behavior and polarization of views.
Just like in the case of epidemiology, the idea of vaccination was used
to mentally inoculate people against fake news and it was found that it
could help create herd immunity, thus drastically reducing the impact
of falsehood on the society.

Concerned about the readiness of people to believe fake news over
mainstream news, Lauzen-Collins [44] viewed the issue from a psy-
chological perspective. It was established that humans tend to believe
falsehood because we are naturally cognitive misers who like to process
information on the surface based on patterns and intuition. Rational,
logical thinking requires motivation and effort, as such, we would
rather follow the path of least resistance thereby increasing our gulli-
bility. When this tendency to take mental short cuts in problem solving



1.3 a mathematical background on information spread 9

and decision making is coupled with impractical self enhancement,
there is a perfect recipe for susceptibility to fake news.

1.3 a mathematical background on information spread

Claude Shannon (1916–2001), known as the Father of Information The-
ory, published a groundbreaking paper [66] where he laid a solid foun-
dation for a mathematical perspective on information. He identifies a
communication system as consisting of information source, transmitter,
channel, receiver and destination. Noise, which adds unnecessary data
to an original message, is also a prominent concept in his work. It
is possible to see noise in terms of electrical signals, cultural biases
or emotional disturbances which distort information. He presented
the idea of entropy which measures the mean rate of information
production by a stochastic data source expressed as

H = −k
n∑
i=1

pi log pi, (1.1)

where k is a positive constant; pi is the probability of occurrence of
the ith possible value of the source symbol and H is measured in bits
per symbol.

Going through literature, we identify three broad approaches in
the mathematical models used in representing the spread of infor-
mation, namely semi-network population dynamics as in Solomonoff
and Rapoport [70], Rapoport and Rebhun [62]; network dynamics as
in Lerman [46], Castillo, Chen, and Lakshmanan [11]; and population
dynamics as in Kermack and McKendrick [40], Chisholm et al. [13]. In
this section, we shall review some history of mathematical information
epidemics.

1.3.1 The semi-network population dynamics approach

One of the earliest works on the mathematical approach to the spread
of rumors was by Rapoport and Rebhun [62]. They demonstrated the
relationship between the theories of random nets and rumor spread
where weak connectivity in a net corresponds with a situation whereby
the spread of a rumor is very low. The evolution of rumors over time
was emphasized as important and analogous to the average number
of points reached every step of the tracing procedure in a random
net model. The following groups were identified in connection with
rumors: non-knowers, knowers, tellers, hearers and removes. The number
of knowers at the (t+ 1)th remove is derived as

x(t+ 1) = 1− (1− x0)e−ax(t), (1.2)

where x0 is the initial fraction of knowers; a is the average number
of links from each knower; and x(t) is number of knowers at the tth
remove.
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Building on the works of Rapoport and others, Skvoretz [68] set out
to strike a balance between the handiness of the simple approximate
models used in random and biased networks and their accuracy. These
models are used to try to establish connections between simple local
events and complex aggregate patterns. He identified connectivity
as a crucial statistical property of networks. This connectivity, often
represented as γ, is the limit of the sequence of the fractions of a
population reached by a random selection of starters of an epidemics,
information or innovation. It reveals the extent to which a particular
population is integrated by a network.

For a given population P in a network with a network density d

and element density a, we have d = a/(P − 1). Connectivity is mea-
sured by the sequence N0,N1,N2, ... where Ni is the proportion of the
population newly contacted i steps away from a set of randomly se-
lected starters or the related cumulative sequence X0,X1,X2, ... where
Xi =

∑i
j=0Nj , the proportion reachable from the starter set in i or

fewer steps and where γ = X∞ is the limiting fraction ever reached.
Following Skvoretz’s argument in the context of information spread,

we consider an arbitrary person who is informed about a piece of
information but is not in the starter population. The probability they
are newly informed at the i+ 1th step is a product of the probability
they have not been contacted on any of the previous steps which is (1−Xi)

and the probability that one of the newly informed persons on the ith step
targets this person.

The expected number of newly informed people on the ith step
is PNi and each of these has a connections, the targets of which are
chosen at random. aPNiXi and aPNi(1−Xi) of PNi are expected to
go to those that have already been informed and those who have not
been informed respectively. The expected number of those who are yet
to be informed is P (1−Xi) and the chance that a particular piece of
information goes to the uninformed is 1/[P (1−Xi)] and the chance
that it does not get to someone who is uniformed is 1− 1/[P (1−Xi)].

So, the chance that a piece of information directed to an uniformed
person fails to get to someone is {1− 1/[P (1−Xi)]}P (1−Xi)aNi and
the probability that at least one of the informed persons contacts an
uninformed person is one minus the above quantity such that we have

Ni+1 = (1−Xi)

[
1−

(
1− 1

P (1−Xi)

)P (1−Xi)aNi
]
. (1.3)

For large values of P (1−Xi), we have {1−1/[P (1−Xi)]}P (1−Xi) =

e−1 so that

Ni+1 = (1−Xi)
(
1− e−aNi

)
. (1.4)

Using (1.4), it can be shown that γ = X∞ = 1− (1−N0)e−aγ so that
if the starters N0 are a small fraction of the population γ ∼= 1− e−aγ
and this can be solved by numerical methods.
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1.3.2 The network dynamics approach

Lerman [46] considers the diffusion of activation on a graph, where
each activated node infects neighbors with some probability. In the
context of information spread, an activated node can be likened to
an individual who is in the know about a piece of information or
idea. Lerman points out that network studies based on data are now
easy to carry out because it is more convenient to obtain extensive,
time-resolved data on social media usage thereby enhancing deeper
understanding of social behavior. With such massive data, we can now
have better understanding of how information spread on networks,
the structure of networks, and how individual users influence the
communal attitude of others.

The work was focused on a social news site, Digg where news are
voted for such that the mostly voted ones get to the top news page; the
micro-blogging site, Twitter where tweets and retweets are analyzed
to identify popular trends was also considered. It was made clear
that information diffuses on networks through cascade effects. Some
typical cascades are identified as branching, chaining and community
with the possibilities of collision and degeneracy.

In order to quantify the evolution of cascades, the cascade generating
function is quite helpful and it is defined as

ϕ(j,α) =
∑

i∈friend(j)

αϕ(i,α) (1.5)

where j would be an informed person and i are j’s contact(s) who
introduce him to the information. For instance, given a network de-
fined by V = 7 people and E = 7 links for information transmission
expressed as

G(V ,E) = G(7, 7);

V = {1, 2, 3, 4, 5, 6, 7};
E = {(1, 3), (1, 4), (1, 6), (1, 7), (2, 4), (2, 5), (3, 6)},

(1.6)

we can evaluate the density generation functions for each person in
the network as follows

ϕ(1,α) = c1;

ϕ(2,α) = c2;

ϕ(3,α) = αϕ(1,α) = αc1;

ϕ(4,α) = αϕ(1,α) + αϕ(2,α) = α(c1 + c2);

ϕ(6,α) = αϕ(1,α) + αϕ(3,α) = α(α+ 1)c1.

(1.7)

It is seen that cascade sizes are constrained by factors like clustering
and degree heterogeneity in network structure as well as dynamics
such as social contagion mechanism and change in transmissibility.
The conservative and non-conservative diffusion classes are identified
for networks and their mathematical modeling can help to unify social
and epidemic dynamics. Alpha centrality, which measures the number
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of paths between nodes, each path attenuated by its length with
parameter α, is seen as a very important measure of an individual’s
influence in a network with epidemic or information diffusion. Alpha
centrality, as defined in line with Bonacich [6], is given as

rAlpha(α) = eA

∞∑
k=0

αkAk =
eA

I − αA
(1.8)

where I is an identity matrix with the same dimension as A which is
the adjacency matrix of the network, e is the eigenvector of A.

Castillo, Chen, and Lakshmanan [11] give very instructive ideas of
how information and influence spread on online social networking
sites like Facebook, Flickr, Flixster, Last.fm, MySpace, Orkut, Tumblr,
Twitter, Wikipedia and YouTube from a graph theoretic and data
mining point of view. They established that information is dispersed
on social networks as a result of the connection of people who perform
actions like creating, posting, sharing, liking, commenting on, rating,
linking or retweeting messages.

The basic data model comprises a graph G of V users and E

links/ties as well as a log A of users u1, actions a1 and times t1
respectively represented as

G = (V ,E);

A = {u1, a1, t1, ...}
(1.9)

With some staggering data, they listed the tremendous power of social
networks in making information go viral and provoking action ex-
tremely faster than in the last half of a century. Some example include
how our friends’ friends’ actions have bearings on us, Hotmail’s rapid
rise to the peak in the 90s, the 2008 Mumbai terror attacks and the
rags to riches story of the previously homeless voice over artist Ted
Williams in 2011 among others.

They highlighted the application of influence spread in areas like
viral marketing, the dispersion of falsehood and rumors, adoption of
innovations, human and animal epidemics, social search, etc. The roles
of influencers on social networks were identified as very important in
making information go viral and it will always be a useful strategy to
identify such influencers in order to propagate ideas speedily.

Based on some literature, the tutorial concludes that the idea of
influence on social networks can be questionable. For instance, it is
possible that people are simply attracted to their likes rather than been
influenced. Also, it was pointed out that influence on social networks
can be overrated.

1.3.3 The population dynamics approach

This approach employs the use of compartmental models in enhanc-
ing the understanding of contagions. It was introduced in the work
by Kermack and McKendrick [40] and countless studies have been
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undertaken based on it ever since. These models have been used
amply in fields as diverse as epidemiology, ecology, pharmacology,
sociology and a host of others in order to demystify relevant pop-
ulation dynamics. Simplicity and elegance are some properties that
make compartmental models quite endearing. Since the spread of
information follows a contagious process, models that look like the
classical Kermack-McKendrick susceptible-infected-removed (SIR) model
have been used to model it.

Looking at the spread of misinformation as some kind infection from
the SIR point of view, we can say that susceptible individuals are those
who have the tendency of being misinformed, infected people are
those who have been misinformed and are capable of misinforming
others, the removed ones are those who have found out the truth.
It is important to know if the misinformation dies out after every
unexposed person has got the wrong information or not. There is
typically a critical mass of unexposed people below whose population
wrong information seemingly dies out and above which it spreads.

Considering information spread from the perspective of the SIR
model and taking a constant unit time interval t and γ intervals such
that the number of newly misinformed individuals in a unit area
is mt,γ and the total number of those who are misinformed in this
interval is yt =

∑t
0mt,γ . we view mt as the number of those who

undergo the process of misinformation during the transition in the
interval (t− 1, t). Basically, mt,0 = mt except at the point where y0
individuals have just been misinformed, so that

m0,0 = m0 + y0. (1.10)

Suppose that αγ represents the rate at which misinformed people
get to find out the truth, then those who are correctly informed from
each γ group at the end of the interval t is αγmt,γ = mt,γ −mt+1,γ+1

and so

mt,γ = mt−1,γ−1(1− α(γ − 1))

= mt−2,γ−2(1− α(γ − 1))(1− α(γ − 2))

= mt−γ,0βγ

(1.11)

where βγ = (1− α(γ − 1))(1− α(γ − 2))...(1− α(0)).
The number of persons in unit area who got misinformed within

the interval t can be given as mt = xt
∑t

1 λγmt,γ where xt denotes the
number of individuals who are yet to come in contact with the wrong
information and λγ is the rate of misinformation at age γ. Unlike in the
SIR case, λ0 is not necessarily zero in the case of information spread
as a misinformed person can begin to spread the wrong information
as soon as it is received. However, just like for the SIR model, the
possibility of a person being misinformation is relative to the number
of those already misinformed as well as those who are still susceptible.
We can now see that

xt = N −
t∑
0

mt,0 = N −
t∑
0

mt − y0 (1.12)
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and xt + yt + zt = N where zt is the number of those who have found
out the truth; N is the initial population density which is considered
to be constant over the course of the information dispersion which
relatively takes place within a short time.

If we assume the special case where λ and α are constant, we have
the system

dx

dt
= −λxy;

dy

dt
= λxy− αy;

dz

dt
= αy,

(1.13)

with x+ y+ z = N . This system is simple but quite insightful.
An in-depth review of the mathematical modeling of rumor spread

was carried out by Ndii, Carnia, and Supriatna [57] so that they could
pinpoint vital results and aspects that are necessary to further under-
stand the spread of rumors. It is generally understood that rumors
tend to shape public opinion and affect individual behavior. The 620

works examined cover a period of 26 years (1990–2016). The models
observed can be generally categorized into network and non-network
models. It is seen that the diffusion of rumors is of interest in various
subject areas with the most attention coming from Computer Science,
Mathematics, Physics, Engineering and Social Sciences respectively.
The assessment shows that most rumor mathematical models are
based on compartmental epidemic models where the populations are
classified into ignorants (X) who are not aware of the rumor; spreaders
(Y ) who who know and spread the rumor; and stiflers (Z) who know
but do not spread the rumor. One of the most common representations
of the model is given by the deterministic version of the Daley-Kendall
rumor model proposed by Citrón-Arias and Castillo-Chávez and given
by

dX

dt
= −λY

N
X;

dY

dt
= λ

Y

N
X − αY + Z

N
Y ; (1.14)

dZ

dt
= α

Y + Z

N
Y ,

where X(t) + Y (t) + Z(t) = N , λ is the rate at which ignorants
become spreaders and α is the rate at which spreaders become stiflers.
Most of the papers analyzed show that rumors can be managed
through proper education of individuals and public enlightenment by
relevant governmental and non-governmental organizations. Based on
the literature observed, the role of cliques in the spread of rumors in a
network is an area that requires some consideration.

Escalante and Odehnal [20] tried to establish the correspondence
in the dynamics of infection-vaccination models and a model of two
counteracting rumors by using SIRS type models with short term
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immunity. The first rumor serves as the infection while the second
rumor serves as the vaccination which reduces susceptibility to the
first. Owing to the fact that electronic devices are now amply em-
ployed to transmit information, the propagation rumor (PR) model,
whose standard stochastic form was first introduced by Daley and
Kendall [14], was adopted. It is shown that stochastic models depend
on probabilities rather than defined rates and they are very good for
individual-level modeling though they are not easy to formulate and
they require a lot of computational effort so they can give helpful re-
sults. On the flip side, deterministic models are easier to develop, they
require less data and are user friendly since there are quite a number
of software to simulate them. Overall, they give fair representations of
large populations.

The PR model which is made up of proportion of the total pop-
ulation who are ignorant about the first rumor (s); the proportion
that know and spread the first rumor (i) and the proportion of the
population with reduced susceptibility to the first rumor by being
exposed to the second (v) such that

ds(t)

dt
= −βs(t)i(t)− φs(t) + γ(n− i(t)− s(t));

di(t)

dt
= βs(t)i(t) + σβv(t)i(t)− αi(t); (1.15)

dv(t)

dt
= φs(t)− σβv(t)i(t),

with the initial condition s(0), i(0), v(0) and parameters n = s(t) +

i(t) + v(t) (constant population size), β (the rate at which the ignorant
get to know and spread the first rumor), α (the rate at which spreaders
stop spreading the first rumor), φ (fraction of the ignorant class to
the first rumor which knows the second rumor per unit time), γ
(proportionality rate of loss of immunity to the first rumor) and σ :
0 ≤ σ ≤ 1 (susceptibility reduction factor to the first rumor caused by
the second rumor).

An alternative PR model consisting of two subpopulations n1 and
n2, with variables and parameters corresponding to the first model,
was also formulated for the sake of comparison. Here, it is assumed
that those who know both rumors have the lessened propensity to
spread the first rumor by a factor of η while those who know the
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second rumor have their susceptibility to the first rumor decreased by
a factor of σ. This new model is expressed as

ds1(t)

dt
= −β1s1(t)[i1(t) + ηi2(t)];

di1(t)

dt
= β1s1(t)[i1(t) + ηi2(t)]− α1i1(t); (1.16)

ds2(t)

dt
= −σβ2s2(t)[i1(t) + ηi2(t)];

di2(t)

dt
= σβ2s2(t)[i1(t) + ηi2(t)]− α2i2(t),

with initial condition s1(0), i1(0), s2(0), i2(0) such that s1(0)+ i1(0) =

n1, s2(0) + i2(0) = n2 and n1 + n2 = n.
Based on the two models, parameters were estimated and numerical

simulations were carried out based on people types, circumstances of
rumor spread and quality of rumor. The alternative model is seen to
provide a better fit for the estimated data compared to the original
infection-vaccination model. The paper lends credence to the fact that
rumors can be easily managed by reducing people’s susceptibility
through the introduction of accurate counter information.

1.4 mathematical modeling of information warfare

In a world of rumors, gossips, urban legends, political propaganda
and commercial advertisements, there are always loads of information
competing for human attention. Many a time, the nature of some
information can be quite divisive and get people polarized as they
hold on tenaciously to their respective view points. Mathematical
modelers have been interested in such warfare in recent times.

Chisholm et al. [13] developed an infectious disease model for
the diffusion of two competing opinions of a polarizing view which
integrates outside elements and person-to-person connections. The
model is derived from both epidemiological and competing species
models to understand how members of America’s Republican Party
supported or were skeptical about the greenhorn candidates in their
2016 primary polls.

The study developed and analyzed two skeptic, unexposed, proponent
(SUP) models, one basic and one modified. The modified model is
applied to a case study using the poll results for candidates Carson,
Fiorina, and Trump to fit parameters. The base SUP model is given as

U ′ = −aSU − bPU

S′ = aSU

P ′ = bPU ,

(1.17)

where U (t), S(t) and P (t) are the unexposed, skeptic, and proponent
populations, respectively, at time t and a, b ≥ 0 are the respective per-
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suasion rates of skeptics and proponents transmitting their viewpoint
to the unexposed population.

The modified model known as the conviction-debate SUP model
was used to understand the population dynamics of competition
between support for and opposition to a political candidate in the
party primaries. The model is expressed as

U ′ = −aSU − bPU − cU − dU

S′ = aSU + αPS + cU − eS + fP

P ′ = bPU − αPS + dU − fP + eS,

(1.18)

where a, b ≥ 0 are the respective persuasion rates of skeptics and
proponents transmitting their viewpoint to the unexposed population;
c, d ≥ 0 are the respective personal conviction rates of the unexposed
group to skeptics and proponents; e, f ≥ 0 are respective mind change
conviction rates of skeptics and proponents; α is the debate persuasion
rate which may be positive, negative or zero. The authors wish that
the model can promote general understanding about the spread of
competitive ideas.

The work by Mikhailov, Pronchev, and Proncheva [56] takes a deep
dive into various dimensions of an information battle process in which
two opposite views about a particular information item spread in
the environment. They started by establishing the main difference
between the Daley and Kendall [14] and Maki and Thompson [52]
rumor models which is that when two spreaders meet in the former,
they both become stiflers while in the latter only one of them become
a stifler. The interest is to know how many ignorants remain in the
long run. Though the models form a basis for an interesting area
of research at the interface of mathematics and the social sciences,
the stiffling-effect in them has been found not to be realistic so it is
ignored in the work. They regard the models by Osei and Thompson
[58] and Escalante and Odehnal [20] as good examples of competing
rumor models. The impact of mass media and rumor propagation by
individuals in the dastardly 1994 Rwanda genocide was highlighted.
In an information battle, the winning one is the one with the higher
number of spreaders in the long run.

The basic information attack model bears resemblance with the single
rumor model. Here, an item of information can come from the mass
media with the intensity α > 0 or by word of mouth with intensity
βX(β > 0) where X(t) is the number of spreaders at time t and N is
the total population such that

dX

dt
= (α+ βX)(N −X); X(0) = x0. (1.19)

The basic model can be expanded considering a case where the
mass media does not fully cover the society. In this case, there are two
homogeneous subpopulations N1 and N2 where N1 gets the message
from both the mass media and rumors from individuals while N2 only
get it through rumors. The number of spreaders X1 and X2 correspond
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with the two subgroups with no crossing between them. Also, the
spreaders are not differentiated in the way they spread information so
they are considered together as X1 +X2 so that we have

dX1

dt
= [α+ β(X1 +X2)](N1 −X1);

dX2

dt
= β(X1 +X2)(N2 −X2).

(1.20)

In some situations, repeated campaigns are needed to make igno-
rants become spreaders. For instance, if people get to be spreaders in
two steps, that is, from ignorants to pre-spreaders x(t) to spreaders
X(t) such that

dx

dt
= (α+ βX)(N − 2x−X);

dX

dt
= x(α+ βX).

(1.21)

If it is possible for spreaders to forget the information thereby
behaving like ignorants again, with parameter γ > 0 as the strength
of forgetfulness, we have

dX

dt
= (α+ βX)(N −X)− γX. (1.22)

A model which takes into consideration the three factors of limited
mass media coverage, two-step transition from ignorants to spreaders,
and forgetfulness of pre-spreaders and spreaders with intensities δ
and γ respectively, we have the model

dx1
dt

= [α+ β(X1 +X2)](N1 − 2x1 −X1)− δx1 + γX1;

dX1

dt
= x1[α+ β(X1 +X2)]− γX1;

dx2
dt

= β(X1 +X2)(N2 − 2x2 −X2)− δx2 + γX2;

dX2

dt
= βx2(X1 +X2)− γX2.

(1.23)

subject to the initial condition x1(0) = X1(0) = x2(0) = X2(0) = 0.
The information battle model in which two contrasting messages are

sent out with intensities α1, α2 and the messages are propagated by
individuals with intensities β1, β2 so that there are two subgroups of
competing spreaders X(t) and Y (t). It is assumed that the spreaders
do not cross from one group to another so each group is only increased
by recruitment from the group of ignorants given as N −X(t)− Y (t).
The model then becomes

dX

dt
= (α1 + β1X)(N −X − Y ), X(0) = 0;

dY

dt
= (α2 + β2X)(N −X − Y ), Y (0) = 0.

(1.24)
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As stated earlier, the condition for the victory of the first group is
limt→∞X(t) > limt→∞ Y (t) so that

β1

ln

(
1+

β1N0

2α1

) >
β2

ln

(
1+

β2N0

2α2

)
and vice versa. A generalization of the information battle over m
arbitrary groups give

dXi

dt
= (αi + βiXi)

(
N −

m∑
i=1

Xi

)
, Xi(0) = 0, i = 1, 2, ...,m.

(1.25)

The model has also been expanded to cater for partial media coverage,
two step transition from ignorants to spreaders as well as the factor of
forgetfulness.

Brody [9] considers the complexity of the circumstances arising from
the spread of disinformation as it relates to elections. By deriving poll
statistics as the outputs of his model, a means of forecasting election
results in the face of information disorder was provided. The predic-
tions take into account best ways of minimizing false information.
With some attention on the spread of rumors on networks that are
heterogeneous, Li, Hu, and Jin [48] nonlinear differential equations
are derived via probability generating function and pair approxima-
tion techniques to demonstrate rumor spread. The favorable results
show that the diversity of the network speed up rumor breakout but
suppresses the concentration of spreaders. The disparities in rumor
and disease dispersion were also investigated.

Kostka, Pignolet, and Wattenhofer [41] show that the ubiquity of
social networks impacts a great deal on the spread of information. In
addition, it determines the kind of choices people make when they are
confronted with multiple options. They reveal that the goal of each
information driver is to identify the critical mass of initiators that will
drive their agenda as much as possible. In their very interesting trials,
Ecker, Lewandowsky, and Tang [18] discovered that people continue
to be influenced by wrong information even if they are later corrected.
This simply implies that no matter how hard efforts are made to
eliminate the effects of false information, it is most likely impossible
to achieve that aim completely. As such, the adage that ’prevention
is better than cure’ also holds true in the case of misinformation.
Highlighting the influence of the internet on communication and
diffusion of misinformation, Lewandowsky et al. [47] pointed out that
individuals, organizations and governments now have a lot more of
damage control jobs to do. This is more so because efforts directed
towards setting records straight in the public space do not usually
yield the desired results. However, there are suggestions on how
to deal with undesired information such that an acceptable level of
correction can be achieved, at the least.





2
A M AT H E M AT I C A L M O D E L F O R T H E S P R E A D O F
T W O I N T E R A C T I N G P I E C E S O F I N F O R M AT I O N

2.1 general model formulation

We seek to model the spread of two pieces of information who have
some kind of relationship with the following variables and parameters.

U(t): population of those who have not been exposed to any of the
two pieces of information at time t;

P1(t): population of those who know and transmit only the first piece
of information at time t;

P2(t): population of those who know and transmit only the second
piece of information at time t;

V1(t): population of those who know both but transmit only the first
piece of information at time t;

V2(t): population of those who know both but transmit only the
second piece of information at time t;

W0(t): population of those who transfer directly from the state U to a
state in which they know and transmit both pieces of information
t;

W1(t): population of those who transfer from the states P1 and P2 to
a state where they know and transmit both pieces of information
t;

W2(t): population of those who transfer from the states V1 and V2 to
a state where they transmit both pieces of information t;

Λ1: coefficient of interaction between U and either of P1 or V1 leading
to U knowing and transmitting only the first piece of informa-
tion;

Λ2: coefficient of interaction between U and either of P2 or V2 lead-
ing to U knowing and transmitting only the second piece of
information;

Λ3: coefficient of interaction between U and any of W0, W1 or W2

leading to U knowing both but transmitting only the first piece
of information;

Λ4: coefficient of interaction between U and any of W0, W1 or W2

leading to U knowing both but transmitting only the second
piece of information;

21
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Λ5: coefficient of interaction between U and any of W0, W1 or W2

leading to U knowing and transmitting both pieces of informa-
tion;

Γ1: coefficient of interaction between P1 and any of P2, V2, W0, W1 or
W2 leading to P1 knowing both pieces but transmitting only the
first piece of information;

Γ2: coefficient of interaction between P1 and any of P2, V2, W0, W1 or
W2 leading to P1 knowing both pieces but transmitting only the
second piece of information;

Γ3: coefficient of interaction between P1 and any of P2, V2, W0, W1

or W2 leading to P1 knowing and transmitting both pieces of
information;

Ξ1: coefficient of interaction between P2 and any of P1, V1, W0, W1

or W2 leading to P2 knowing both pieces but transmitting only
the first piece of information;

Ξ2: coefficient of interaction between P2 and any of P1, V1, W0, W1

or W2 leading to P2 knowing both pieces but transmitting only
the second piece of information;

Ξ3: coefficient of interaction between P2 and any of P1, V1, W0, W1

or W2 leading to P2 knowing and transmitting both pieces of
information;

Ψ1: coefficient of behavioral change in V1 leading to them transmitting
only the second piece of information;

Ψ2: coefficient of behavioral change in V2 leading to them transmitting
only the first piece of information;

Φ1: coefficient of behavioral change in V1 leading to them transmit-
ting both pieces of information;

Φ2: coefficient of behavioral change in V2 leading to them transmit-
ting both pieces of information;

where Λi, Γi,Ξi,Ψi,Φi are coefficients related to transition of states
and they are functions of relevant subpopulations.
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From the foregoing, we formulate the general model as follows

dU

dt
= −Λ1U −Λ2U −Λ3U −Λ4U −Λ5U ;

dP1

dt
= Λ1U − Γ1P1 − Γ2P1 − Γ3P1;

dP2

dt
= Λ2U − Ξ1P2 − Ξ2P2 − Ξ3P2;

dV1
dt

= Λ3U + Γ1P1 + Ξ1P2 −Ψ1V1 + Ψ2V2 −Φ1V1;

dV2
dt

= Λ4U + Γ2P1 + Ξ2P2 + Ψ1V1 −Ψ2V2 −Φ2V2;

dW0

dt
= Λ5U ;

dW1

dt
= Γ3P1 + Ξ3P2;

dW2

dt
= Φ1V1 + Φ2V2.

(2.1)

2.2 a rejoinder model

In our context, a rejoinder is a reply issued to correct an incomplete
or misleading piece of information that is already in circulation in a
population. According to a study by Akpabio [2] on the direction of
rejoinders in two of Nigeria’s famous newspapers, it was discovered
that the noble attribute of balanced reporting was lacking among
some journalists. As a result, there were more of adversarial than
mild rejoinders to some news items published about some individuals,
organizations and governments.

We hereby propose a rejoinder model in order to understand the
nuances of counteracting pieces of information spreading among a
population in a typical internet-based social media setting. We intro-
duce the possibility of human skepticism or deliberate negligence
towards the corrective information such that some people continue
to spread falsehood even after getting the accurate information. This
mathematical framework is imperative in this internet-enabled infor-
mation and post-truth age as multidisciplinary research is required to
help contain falsehood in the society.

2.3 assumptions for modeling

two pieces of information The two pieces of information are
such that the first one is incomplete and misleading whereas the
second one is a rejoinder which is complete and corrective to the first.

transmission and spread of information The accurate piece
of information is only shared alongside the wrong one such that a
non-knower either gets to know and transmit only the first piece or
both pieces of information at any given time. We assume that interac-
tions on the Internet tend to happen very fast and do not significantly
rely on the detailed structure of networks. So, complete mixing is
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Figure 2.1: Stage transition of individuals and their relation according to
information transmission in the rejoinder model.

assumed among those who are unexposed and transmitters who are
either misinformed or correctly informed.

two stages of the information spread We consider the spread
of information in two steps as shown in Figure 2.1: first is the primary
stage when the misinformation is introduced and begins to spread till
a given time t = ts; afterwards, we have the interaction stage after the
complete piece of information is introduced at t = ts. In the interac-
tion stage, the complete piece of information spreads together with
the wrong piece of information from time ts which is the moment of
rejoinder introduction.

different attitudes towards the rejoinder Of those who
get to know the complete information after being misled initially, some
get reinforced in transmitting the misleading information thereby
going into the subpopulation V while the rest go directly into the
subpopulation W+ where they transmit the complete information (see
Figures 2.1 and 2.2). We assume that the wrongly informed people
are expected to keep transmitting the incomplete and misleading
information with probability b even after knowing the complete one
(the transition to V ). Further, we assume a strengthened motivation
for V to be dogmatic and not want to stop transmitting the misleading
information after getting to know the second piece. As such, the
wrongly informed person comes to believe and transmit the complete
information with a probability 1− b after getting it (the transition to
W+).

2.4 model

Primary stage

When the first piece of information, which is misleading, is the only
one in circulation, we have the following dynamics of information
spread for t ∈ [0, ts):

dU

dt
= −β P

N
U ;

dP

dt
= β

P

N
U (2.2)
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Figure 2.2: State transition in the population dynamics for the spread of two
interacting pieces of information. In the primary stage, we have
the system (2.2) consisting of U and P , and at the interaction
stage, we have (2.5).

with initial condition (U(0),P (0)) = (U0,P0). It is assumed that
the total population size N is constant independently of time, so
that the system (2.2) satisfies U (t) + P (t) = N for any t ∈ [0, ts).
U = U(t) is the population size of those who have not been exposed
to the considered piece of information at time t, while P = P (t) is
the population size of those who come to know and transmit the
misleading information at time t with transmission coefficient β >

0. We can derive the following closed one-dimensional differential
equation in terms of P from (2.2):

dP

dt
= β

P

N
(N − P ) (2.3)

with initial condition P0 = N −U0 > 0. The solution is easily obtained
as

P (t) =
N

1+ U0
P0
e−βt

, (2.4)

so that U(t) = N −P (t) for t ∈ [0, ts]. This is monotonically increasing
towards N in time.

Interaction stage

After the rejoinder is introduced at time t = ts, we have the following
dynamics of information spread for t > ts (see Figure 2.2):

dU

dt
= −β P

N
U − (1+ ε)β

V

N
U − α0

W0

N
U − α+

W+

N
U ;

dP

dt
= β

P

N
U + (1+ ε)β

V

N
U − α0

W0

N
P − α+

W+

N
P ;

dV

dt
= bα0

W0

N
P + bα+

W+

N
P − σV ;

dW0

dt
= α0

W0

N
U + α+

W+

N
U ;

dW+

dt
= (1− b)α0

W0

N
P + (1− b)α+

W+

N
P + σV ,

(2.5)
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with U(t) + P (t) + V (t) +W0(t) +W+(t) = N for any t > ts. Every
parameter is a positive constant whose meaning is explained in the
following part.

As the continuity between the primary and the interaction stages,
we define

U(ts − 0) = lim
t→ts−0

U(t); U(ts + 0) = lim
t→ts+0

U(t) (2.6)

as well as the other variables. It marks the end of the primary stage
(represented by ts − 0) on the interval [0, ts) and the beginning of the
interaction stage (given by ts+ 0). With θ (0 < θ < 1) representing the
portion of people that get to learn about the complete information at
time ts, we define the initial condition at t = ts + 0 as

(U (ts + 0),P (ts + 0),V (ts + 0),W0(ts + 0),W+(ts + 0))

= ((1− θ)U(ts − 0), (1− θ)P (ts − 0), bθP (ts − 0), θU(ts − 0), (1− b)θP (ts − 0)),

(2.7)

where

θN = θ[U (ts − 0) + P (ts − 0)] = V (ts + 0) +W0(ts + 0) +W+(ts + 0).

(2.8)

The values of P (ts − 0) and U(ts − 0) are given by (2.4):

P (ts − 0) =
N

1+ U0
P0
e−βts

; U(ts − 0) = N − P (ts − 0). (2.9)

At this stage, as shown in Figure 2.2, the non-knowers of U may
get either the misleading information only or the complete one. After
an individual of U gets the complete information, such a person is
assumed to always come to transmit it; this is defined as the transition
from the state U to W0. W0(t) is the population size of those who have
not been misled but transit from the state U to the state in which they
know and transmit the complete (correct) information at time t.
P (t) is the population size of those who know ONLY the misleading

information and transmit it at time t. W+(t) is the population size of
those who get misled before knowing and transmitting the complete
information at time t. V (t) is the population size of those who know
the second piece of information but transmit ONLY the first piece of
information at time t. It is now assumed that even such an individual,
after getting the complete information, may get hardened in spreading
the misleading information with a probability b, which is now defined
as the transition from the state P to V .

The coefficient α0 is for the transmission of complete information to
U by those of W0; α+ is for the transmission of complete information
to U by those of W+; σ is the transition rate from V to W+. It repre-
sents the change of thoughts to transmit the complete information
after insisting on spreading the misleading first piece of information
despite knowing the complete one before. ε is the increment of the
transmission coefficient for the individuals of V , because of their
tendency for information transmission psychologically stimulated or
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excited by receiving the second piece of information as mentioned in
Section 2.

With a set of non-dimensionally transformed variables and param-
eters u := U/N , p := P/N , v := V /N , w0 := W0/N , w+ := W+/N ,
τ := βt, τs := βts, a0 := α0/β, a+ := α+/β, and c := σ/β, the system
(2.5) becomes the following non-dimensionalized system for τ > τs:

du

dτ
= −pu− (1+ ε)vu− a0w0u− a+w+u;

dp

dτ
= pu+ (1+ ε)vu− a0w0p− a+w+p;

dv

dτ
= ba0w0p+ ba+w+p− cv;

dw0

dτ
= a0w0u+ a+w+u;

dw+

dτ
= (1− b)a0w0p+ (1− b)a+w+p+ cv,

(2.10)

with u(τ ) + p(τ ) + v(τ ) +w0(τ ) +w+(τ ) = 1 for any τ > τs, and from
(2.7) and (2.9), the initial condition

(u(τs + 0), p(τs + 0), v(τs + 0),w0(τs + 0),w+(τs + 0))

= ((1− θ)u(τs − 0), (1− θ)p(τs − 0), bθp(τs − 0), θu(τs − 0), (1− b)θp(τs − 0)),

(2.11)

where

p(τs − 0) =
1

1+ U0
P0
e−τs

; u(τs − 0) = 1− p(τs − 0). (2.12)

2.5 terminal state

The system (2.10) has three equilibrium states: (u∗, p∗, v∗,w∗0,w
∗
+) =

(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), and (0, 0, 0,w∗0, 1−w∗0). By the standard local
stability analysis, it can be easily shown that the first two equilibrium
states are always unstable. In Appendix A.1, we show that the system
necessarily converges to the third equilibrium state as indicated by the
numerical calculations given in Figure 2.3. Thus, the terminal state of
the information spread in our model is characterized by the terminal
population size w∗0 of non-misinformed people, or alternatively the
size w∗+ of misinformed people.

The introduction of rejoinder is to correct the misinformation. How-
ever, it is far more important to ensure that as many people as possible
escape from being misinformed in the first place. This makes preven-
tion our ultimate goal so that the value of w∗0 at the equilibrium state
is a critical estimator of the efficiency of rejoinder introduction. The
smaller w∗0 is, the more unfavorable it is owing to the aim for rejoinder
introduction.
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Figure 2.3: Temporal variation showing the primary stage for the spread
of the misleading information as represented by (2.12) and the
interaction stage after the rejoinder is introduced at τ = τs repre-
sented by the system (2.10) with (2.11). (a) τs = 8.0; (b) τs = 12.0.
Commonly, p(0) = 0.0001, u(0) = 1− p(0), θ = 0.1, ε = 0.05,
a0 = 2.00, a+ = 1.10, b = 0.33, c = 0.30.

2.6 instantaneous response to the rejoinder introduc-
tion

In this section, we consider the response of the misled population just
after the rejoinder introduction at τ = τs. In many cases involving
the news media, the efficiency of an operation taken against a wrong
information is likely to be estimated/criticized by a relatively short-
term response following the introduction of such an action. However,
we will show later that such short-term response could not be an
appropriate index to estimate the efficiency of rejoinder introduction
in our model.

For dp(τ )/dτ < 0 at τ → τs+ 0 such that p(τ ) declines immediately
after the rejoinder is introduced, we can get the following necessary
and sufficient condition from (2.10):

p(τs+ 0)[u(τs+ 0)−a0w0(τs+ 0)−a+w+(τs+ 0)]+ (1+ ε)v(τs+ 0)u(τs+ 0) < 0.

From the initial condition (2.11) with (2.12), this condition can be
rewritten as follows:

1

θ
− 1

θc
< a+(1− b)

P0

U0
(eτs − 1) , (2.13)

where

θc :=
1

a+(1− b)P0
U0

+ a0 + (1− b)− εb
. (2.14)

If 0 < θc ≤ θ, the inequality (2.13) holds independently of τs, so
that the introduction of the rejoinder is highly efficient to immediately
reduce the size of the misinformed subpopulation. When 0 < θ < θc,
the misled population size increases or decreases depending on τs (see
Figure 2.4(a-2)). If θc < 0, that is, if

a+(1− b)
P0

U0
+ a0 < εb− (1− b),
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such that ε or b is sufficiently large, there are sufficiently many misled
people to actively spread the misleading information after knowing
the complete one. In such a situation, the population size of misled
individuals still increases after the introduction of the rejoinder in-
dependently of θ, if the rejoinder is introduced before the following
critical moment τc, that is, when τs < τc (Figures 2.3(a) and 2.4(a-1)):

τc := ln

∣∣∣∣1+ 1

a+(1− b)
θc − 1

θc

U0

P0

∣∣∣∣ . (2.15)

It is interesting that for sufficiently small τs in such a case, the misled
population size increases, no matter how small. That is, no matter how
early the rejoinder is introduced and no matter how large the portion
of people who get the correct information at that moment, the misled
population size continues to increase even after rejoinder introduction.

Figure 2.4(b-1,2) shows the dependence of the instantaneous re-
sponse on parameters ε and b, where εc := a0 − 1/θ and

bc := 1−
1
θ − a0

1+ a+
P0
U0
eτs

. (2.16)

These results clearly imply that human psychological and sociological
tendencies like skepticism or deliberate negligence towards the correc-
tive information would contribute significantly to the instantaneous
social response.

2.7 efficiency of rejoinder introduction on the termi-
nal state

The numerical calculation as shown in Figure 2.5 indicates the exis-
tence of a specific range of τs for which a pronounced switch over
of the value of w∗0 can be observed. Such a prominent range could
not be identified for the dependence of the value of w∗0 on any other
parameter, though the value of w∗0 depends on the other parameters in
a much more moderate manner. As we can intuitively expect from the
meanings of the parameters, the value of w∗0 monotonically increases
in terms of θ, while it monotonically decreases in terms of b and ε (see
numerical results given in Figure 2.6).

This result implies that the aim of keeping people away from being
misinformed is significantly achieved when the rejoinder is introduced
earlier than a certain critical period. Otherwise, when the rejoinder is
launched later, it has little or no impact in suppressing the population
of misinformed people. The critical period for the moment of rejoinder
introduction depends on the other parameters as numerically shown
in Figures 2.6(a–c), though the dependence appears rather weak. This
implies that the moment of rejoinder introduction itself is the most rel-
evant factor which affects the extent to which misinformation spreads.

Our result conjectures that introducing the rejoinder after a crit-
ical period leads to little effect on the terminal population size of
non-misinformed people. In contrast, introducing it earlier than the
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Figure 2.4: Parameter dependence of the instantaneous response to the intro-
duction of rejoinder, based on the inequality (2.13): (a-1) θc < 0 or
θc ≥ 1; (a-2) 0 < θc < 1; (b-1) a0θ < 1; (b-2) a0θ ≥ 1. The shaded
parts are regions of decrease while the unshaded parts are regions
of instantaneous increase of the misled population size just after
the introduction of rejoinder.

0

0

1

τs

w0
*

Figure 2.5: Dependence of the equilibrium value w∗0 on the moment of rejoin-
der introduction τs. A numerical result with θ = 0.10, b = 0.33,
ε = 0.05, p(0) = 0.0001, u(0) = 1− p(0), a0 = 2.00, a+ = 1.10,
and c = 0.30. w∗+ is given by 1−w∗0 .
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Figure 2.6: Contour plot of the dependence of w∗0 on (a) (τs, θ) with b = 0.33

and ε = 0.05; (b) (τs, b) with θ = 0.10 and ε = 0.05; (c) (τs, ε)
with θ = 0.10 and b = 0.33; (d) (ε, b) with θ = 0.10 and τs = 5.
Numerically drawn commonly with p(0) = 0.0001, u(0) = 1−
p(0), a0 = 2.00, a+ = 1.10, and c = 0.30.



32 the spread of two interacting pieces of information

critical period may result in a rather large terminal population size of
non-misinformed people. Releasing the rejoinder within the critical
period, that is, the specific critical range of τs, the terminal population
size of non-misinformed people is sensitively determined by the ac-
tual moment, so that the earlier introduction of rejoinder can result
in significantly larger terminal population size of non-misinformed
people.

2.8 discussion

The model proposed by Liu, Zeng, and Luo [51] shows that when
there is increased spread of truth, the propagation of rumor can be
obliterated; it was also seen that the rumor and the truth can coexist
for long given certain circumstances. To some extent, these findings
tend to agree with the results from our model since the introduction
of a rejoinder and the possible cynicism of potential spreaders can
accelerate or delay the elimination of misleading information. Feria
et al. [21] established the importance of the early introduction of truth
by relevant spreaders to make it endemic in a population. This seems
to correspond with the early rejoinder introduction in our model,
with similar effect. The instantaneous response of the population
dynamics just after the rejoinder introduction does not match up
to the consequence of interaction between pieces of information as
shown by Figures 2.4 and 2.6. Although the earlier introduction of
rejoinder can result in the more preferable consequence of saving
people from being misinformed in the long run, it tends to cause such
an instantaneous response that the misled people still increase after
the rejoinder is introduced. This implies that the short-term response
to rejoinder introduction would not be an appropriate index about its
efficiency eventually.

A special case of the rejoinder model is that of cyber criminals who
send phishing emails to customers of established organizations in
order to harvest vital data. This case is special because b = 0 as every
misinformed person will almost surely accept the correct information
from the organization about the activities of fraudsters. It should be
noted that b measures the effect of personal belief in the correctness of
a rejoinder.

The rejoinder model has some similarities with the classical Kermack-
McKendrick SIR model about the population dynamics of transmis-
sible diseases. For instance, the population sizes of non-knowers (U ),
knowers and transmitters of the misleading piece of information (P ,
V ), knowers and transmitters of the complete information (W0, W+)
in the rejoinder model correspond respectively with the population
sizes of susceptibles (S), infectives (I), removed (R) in the SIR model.
The population size W0 can be considered, for example, as those who
are shielded from infection through vaccination while W+ are like
those who develop natural immunity having been previously infected.
Though the two models are similar in structure, they are different in
dynamics. This is demonstrated by the fact that the population size
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R in the SIR model has no effect on the population sizes S and I .
However, in the rejoinder model, the population sizes W0, W+ have
direct impact on the population sizes U , P and V .

Our model shows the effect of mass action that better estimates
interactions on the Internet in comparison with earlier rumor models
which are more biased towards network theory. This is because peo-
ple are not necessarily connected following the traditional theory of
networks [12]. On social media platforms like Facebook, Instagram,
Twitter, etc., there are lots of misleading information about governmen-
tal and non-governmental organizations. Sometimes, there are also
misleading information from such institutions in form of propaganda
[43]. So, it has become imperative to be able to tell apart correct and
wrong information. It has been widely agreed that the problems of
misinformation and disinformation can be mitigated by promoting
information literacy through multidisciplinary collaborations (see [44,
45, 73]).

The extension of our information spread model to accommodate
human heterogeneity in the handling of information is shown in the
threshold model in Chapter 4. The concept is based on Granovetter’s
threshold model discussed in Chapter 3.





3
G R A N O V E T T E R ’ S T H R E S H O L D M O D E L

Granovetter [28, 30] highlight the strength of weak ties by reviewing
many interesting studies in that line. The overall idea is that, in certain
scenarios, strong ties which exist in closely-knitted relationships (e.g.
family, friends) may not be as important as weak ties which exist in
loose relationships (e.g. acquaintances, friends of friends). For instance,
close friends have a tendency to always access the same kind of ideas
and as such they are apparently closed up. However, weak ties may
be important in injecting new ideas into such circles, thereby making
them better aware. The importance of weak ties can be seen in the
spread of information about innovation, jobs, culture, goods, services
as well as integration of diverse groups.

Granovetter [29] developed the models of collective behavior for
circumstances where people have to make one of two clearly different
choices such that the merit or demerit of each choice depends on the
number of individuals who decide for or against it. The whole idea is
that of a threshold proportion of people taking a course of action before
a particular person does the same. When this threshold is reached, the
advantages of taking the decision begin to outweigh the disadvantages
for the given individual. Threshold here is analogous to credulity and
vulnerability in the spread of rumors and diseases respectively. The
models find application in areas like diffusion of innovation, public
protests, migration, voting, market trends and information spread. For
instance, a radical who is capable of single-handedly starting a riot
can be said to have a threshold of 0% as they are able to riot even if
nobody else toes that line. On the other hand, a conservative might
have a threshold close to 100% depending on their level of reluctance
to join a riot. As a sociological concept, the Granovetter model has
some similarities with the idea of behavioral contagion in psychology
and the cultural phenomenon of bandwagon effect.

As an extension of the 1978 work, Granovetter and Soong [31] em-
phasized the reality of complex heterogeneity in collective behavior
as opposed to the earlier simplifying assumptions of homogeneous
individuality and mixing in the adoption and spread of ideas. They
showed the importance of threshold models as lying in the not-so-
simple connection between individual choices and overall steady re-
sults. The work also refers to the importance of bandwagon effect in
which people adopt a new concept because a given number of people
are into it and a snob effect in which some people drop the idea once a
certain number of people sign up. In this case, there are two threshold
values: one minimum inspiring the bandwagon and one maximum
leading to snobbish behavior.

The relevance of threshold models in economics is seen in the oc-
currence of interpersonal influence on the demand for goods and
services as highlighted by Granovetter and Soong [32]. They showed

35
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that someone may buy or not buy depending on the demand of people
around them for the same commodities. A model was formulated by
assuming disparities in individuals in the way they react to the behav-
ior of others. The impact of price changes on these threshold behaviors
was also considered. It was discovered that markets could still be
unpredictable in spite of perfect competition. [75] presents a difference
equation model that mathematically represents Granovetter’s idea as

r(k+ 1) = F (r(k)), (3.1)

where r is the percentage of members of a group who can take a
decision, F (ξ) is the cumulative distribution of members who have
threshold value less than ξ.

From the foregoing, the overarching assumption of the Granovetter
model is that the strength Q = Q(P ) of social effect on decision
making is proportional to the ratio P of those who have already taken
the decision within the population, that is Q(P ) = αP where α is a
positive constant and 0 ≤ αP ≤ α since 0 ≤ P ≤ 1. We assuming that
Q(P ) is always increasing though that is not always the case. More so,
there is a certain threshold value ξ for the strength Q(P ) such that

ξ ≤ Q(P ) =⇒ decision may be made;

ξ > Q(P ) =⇒ decision is not made.
(3.2)

The cumulative distribution function (CDF) for individual threshold
value ξ in the population can be expressed as

F (z) = Prob(ξ ≤ z) =
∫ z

−∞
f(ξ)dξ. (3.3)

F (z) is the proportion of individuals with threshold value less than z
and f(ξ) is the frequency distribution function (FDF) of the threshold
value.

Let us assume a total population size N ; proportion Pt of those who
have made the decision at time t; Q(Pt) = αPt which is the strength
of the social effect at time t and F (αPt), the proportion of individuals
with threshold value less than αPt. Also, let

P0 =

∫ ∞
−∞

θ(ξ)f(ξ)dξ (3.4)

which is the proportion of decision takers at time t = 0 and 0 ≤ θ(ξ) ≤
1 is the ratio/proportion of initial decision takers with threshold value
ξ.

Suppose that γ is the probability of decision making by an individual
under the condition that the threshold is less than the strength of social
effect of the decision and B(Pt) is the probability or likelihood of an
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individual to have a chance of making the decision, the increase in the
number of decision takers in the interval [t, t+ 1) can be expressed as

Pt+1N − PtN = γB(Pt)

[
NF (αPt)−N

∫ αPt

−∞
θ(ξ)f(ξ)dξ −N(Pt − P0)

]

Pt+1 − Pt = γB(Pt)

[
F (αPt)−

∫ αPt

−∞
θ(ξ)f(ξ)dξ − (Pt − P0)

]

= γB(Pt)

[
F (αPt)−

∫ αPt

−∞
θ(ξ)f(ξ)dξ − Pt +

∫ ∞
−∞

θ(ξ)f(ξ)dξ

]

= γB(Pt)

[
F (αPt) +

∫ ∞
αPt

θ(ξ)f(ξ)dξ − Pt
]
. (3.5)

If we assume uniform distribution such that the FDF is given as

f(ξ) =


0, ξ ≤ 0;

1
α , 0 < ξ < α;

0, ξ ≥ α

(3.6)

with the corresponding CDF

F (z) =


0, z ≤ 0;

z
α , 0 < z < α;

1, z ≥ α.

(3.7)

Going by (3.7), we have F (αPt) = αPt/α = Pt. In addition, if θ(ξ)
takes a uniform value θ0 meaning that initial decision takers are set up
for each threshold value independently of the threshold value, then
(3.5) becomes

Pt+1 = Pt + γB(Pt)

[
Pt + θ0

∫ ∞
αPt

f(ξ)dξ − Pt
]

= Pt + γB(Pt)θ0

[∫ ∞
αPt

f(ξ)dξ

]

= Pt + γB(Pt)θ0

[∫ α

αPt

1

α
dξ

]
= Pt + γB(Pt)θ0(1− Pt). (3.8)

Assuming that B(Pt) is proportional to Pt meaning that the higher
the proportion of decision takers at time t, the higher the likelihood
of others to have a chance to make the decision, that is, B(Pt) = kPt
(0 < k ≤ 1) so that we have

Pt+1 = Pt + kγθ0Pt(1− Pt). (3.9)
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Furthermore,

Pt+1 = kγθ0

(
1+

1

kγθ0

)
Pt

(
1− Pt

1+ 1
kγθ0

)

so that if Xt = Pt/
(
1+ 1

kγθ0

)
, we now have the logistic map

Xt+1 = AXt(1−Xt) (3.10)

where A = 1+ kγθ0 and 0 < A < 2. We see that as t → ∞, Xt →
X∗ = 1− 1

1+kγθ0
and Pt → P ∗ = 1. Logistic maps like (3.10) find

applications in the biological and social sciences and they have an
array of interesting dynamical behaviors like stable points, stable
cycles and chaos [54, 55].

Kaempfer and Lowenberg [39] pointed out the importance of indi-
viduals contributing their quota in collective action towards public
good. It was also highlighted that free riders are liabilities when it
comes to the collective action. The crux of the work was to find out
how international persuasion is capable of inspiring collective action
in target countries. The authors tried to see how foreign economic
policies can raise critical masses for desired change in countries of
interest. They observed a myriad of ways in which influences from
abroad catalyze local groups to overcome barriers in organizing col-
lective action for political change. Taking a cue from the Ryan-Gross
adopter categories, Valente [72] formulated a social network thresh-
old model of innovation spread. The model used social networks for
categorizing early adopters, early majority, late majority and laggards.
It was established that these four adopter categories can be based on
the entire social system or an individual’s personal network. Overall,
it was shown that network threshold models can explain the success
or failure of collective action and the diffusion of innovations. Delre,
Jager, and Janssen [15] emphasized the possibility of formalizing the
spread of novel products and technologies through social networks as
the diffusion of infectious diseases. They presented a model of spread
of decision making influenced by social connections and word of
mouth. They revealed that the speed of transmission changes with the
the degree of randomness in social networks. It was also shown that
population heterogeneity enhances diffusion. These discoveries are
seen to be quite helpful to marketing experts who want to introduce
new products and services in unpredictable and stylish markets.

With a discrete dynamical system, Bischi and Merlone [5] mod-
eled two-way choice games with external influences. They introduced
an explicit adjustment technique for the analysis of some oscillatory
time sequence and problems regarding selection of equilibrium. They
were able to carry out analyses that explained extreme situations in
social systems and the attendant cyclical behaviors. [10] highlights
the relevance of statistical physics to other areas of learning apart
from physics. The application of concepts in the field to the study
of collective behavior in social systems was seen to be fast emerging.
The work delved into many interesting areas of social dynamics like
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how hierarchies come about, how people spread out and how lan-
guages evolve. Their model results were compared with empirical
data from social systems. Assuming a network that is random and
non-finite with weak connections, Whitney [74] tried to understand
diffusion (of information or innovation) on the network using generat-
ing functions. The theory proposed is based on a threshold rule which
ensures that a node only changes state after a fraction of nearby nodes,
surpassing a particular limit, have previously flipped over. Some of
the results obtained from the Markov model show behaviors that are
novel compared to previous simulations.

Working on a generalized linear threshold model, which happens
to be a quickly blending Markov process, Pathak, Banerjee, and Sri-
vastava [60] examined multifarious cascades in a grid which allows
switching of nodes. The equilibrium states are used to gauge the most
possible situations of the diffusion of cascades in the network. The
results are seen to perform very well in actual circumstances. In order
to make sense of the concept of social influence, Dodds and Watts [17]
reasoned that it can be viewed as a result of making decisions based
on a series of binary possibilities. They showed that binary choices re-
ceive a lot attention by many social scientists compared to other choice
types. This has led to popular sociological and economic models like
diffusion, segregation, coordination, social learning, Welch, threshold
and generalized contagion models. Most of these models, however,
were seen to not provide an encompassing framework for theoreti-
cal studies. As such, it was necessary to clarify model assumptions
and how models are inter-related. They concluded that Granovetter’s
model was more generalizable compared to others since they allow
for the heterogeneity of each individual and their equilibrium states
can easily be found.

Akhmetzhanov, Worden, and Dushoff [1] extended the Granovet-
ter model to consider a network of individuals in a square lattice
with each one having a state and a specified threshold for change in
behavior. Asynchronous system simulation was done by picking an in-
dividual at random and updating its state or switching it with another
individual selected at random, thereby giving rise to mixing. The evo-
lution of the system is described analytically in the fast-mixing limit
via mean-field approximation and it is checked numerically under
finite mixing. The dynamics was seen to approach a state space mani-
fold determining possible equilibrium states. It was revealed that the
impact of the network can be grouped under finite-neighborhood ef-
fects and finite-mixing-rate effects which are equally prone to making
the system move to the ground state from a less desirable equilib-
rium. Changes in attitude and the impact of information diffusion
on the persistence of antisocial practices can be better understood by
their results. A utility-psychological threshold model based on the
Granovetter’s threshold model was introduced by Li and Tang [49].
They studied the critical shift in phase of group behavior by taking
into account rational utility and psychological thresholds under the
influence of space and intensity of social network. They discovered
that the model shows more stability in phase transition compared to
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classic models. It was also seen that space and social network have
negligible influence on the steady state of group actions.

With a simple social behavior model, Shrestha and Moore [67]
considered the manner in which fads and viewpoints advance in net-
works in which an individual only embraces the trend after being
informed by a threshold number of adopter neighbors. A reliable
method which provides complete time evolution of each person’s
chance of adopting the trend in a random network was developed
using a message-passing procedure. The technique is robust enough
to accommodate different types of scenarios. Robertson [63] points
out that personal and group inclinations determine a person’s involve-
ment with social trends. It is emphasized that dispositions towards
the likes of the Arab Spring uprising, Kickstarter promotions and
online memes can be modeled according to Granovetter’s model of
collective behavior in which each individual require a critical level of
engagement by others before they can join. The spread of thresholds as
determined by the mean and standard deviation of thresholds are seen
to determine the variety of results obtainable. The work establishes
that for a social movement to thrive or wane, instigators are needed to
drive the process. The shape of the threshold distribution also has a
huge role to play. A methodical appraisal of seven threshold models
of transitions in technology was carried out by Zeppini, Frenken, and
Kupers [77]. They considered economic factors like price, performance
and profit vis-à-vis social factors like expectations, verbal referrals and
influence that explain technological transitions. The models (which
may serve as bases for specific models of interest) for such evolution in
technology are identified to include hyperselection, increasing returns,
informational cascades, coordination game, co-evolution, percolation
and social influence. Specific to each model is a transition threshold
which is determined by a critical mass, a fitness value or a critical
price.

Garulli, Giannitrapani, and Valentini [24] considers the asymptotic
behaviors of threshold models of collective action in social systems
in which each agent is confronted with a binary decision. The chosen
option depends on the decision made by neighboring agents as well
as a constantly updated threshold. A measure of self-confidence is
introduced in the model which has impact on threshold changes and
decision making by individuals. The limiting characteristics of the
network and their causative conditions are observed. As highlighted
by Gao et al. [23], the behavior of a cascade is critically determined by
the given cascade model or societal impact as well as the topology of
the social network. They examined the general threshold model which
captures many models that have been studied in the past, namely
independent cascade model, the linear threshold model and the k-
complex model, among others. They gave analytical and empirical
results for cascades from the model to diffuse in a growing network
with preferential attachment and generalized cases, showing that if
initial seeds are taken as early arriving nodes, contagion can spread
to a critical proportion of the network determined by the stationary
points of a function obtained exclusively from the given distribution.
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It was established that the stochastic attachment graph model was a
better estimator of contagion behavior on real data sets compared to
configuration models.

Gavrilets and Richerson [25] designed a model in which individu-
als who decide to take part in a collective action try to maximize a
situation which depends on the possibility of imbibing the prevailing
norms. It is found that cooperation seemingly becomes second nature
when participation is encouraged and non-compliant members of the
group are punished. While average levels of norm acceptance are
more common, there are extreme cases of under-socialization and
over-socialization, not minding the cost of such behaviors. For wide
reaching collaboration among humans, it is seen that norm internal-
ization ability is imperative. Rossi, Como, and Fagnani [64] pointed
out that the diffusion of new ideas in socio-economic systems are
usually directed by cascading effects thereby following the principle
of contagion. With attention to the threshold model of cascades based
on Granovetter’s work, they analyzed threshold model dynamics on
large-scale networks with nonhomegenous agents. By using a local
mean-field approach, a one-dimensional, non-linear recursive equation
was obtained to estimate the changing states of the system dynamics
of networks of given sizes, degrees of distribution and thresholds.
They obtained numerical results that quite agree with their theory
that on most networks which become trivial with increase in size, the
proportion of adopters of an action is randomly near the output of
the observed recursion. Owing to the fact that the idea of collective
behavior is complicated due to the non-linear interactions that occur
between individuals, Marshall, Reina, and Bose [53] designed a frame-
work which would not only be accessible to sophisticated experts.
Their modeling tool known as MuMoT (Multiscale Modeling Tool)
is designed to facilitate experts’ rigorous analysis and to make such
near-elusive modeling accessible to people with basic knowledge.





4
T H R E S H O L D D I S T R I B U T I O N M O D E L F O R T H E
D Y N A M I C S O F I N F O R M AT I O N S P R E A D

Based on the idea of Granovetter’s model, we proceed to formulate a
population dynamics threshold model for information spread.

4.1 set-up of the model

Given a group of persons

Each person k has a
threshold of Tk persons

Person k accepts an idea if
Tk persons already accepted

People with low Tk easily ac-
cept the idea while those with
high Tk are hard to convince

4.1.1 Assumptions

H1 There is a piece of information spreading within a population
with a given strength of social recognition effect Q;

H2 The strength of social recognition effect Q increases with the
proportion/frequency P of knowers of the information;

H3 Each individual has a threshold value ξ which determines whether
the information is accepted or ignored by that individual;

H4 The threshold value ξ, which characterizes each individual, is
constant independently of time and social situation;

H5 Every knower keeps transmitting the information at any time t;

H6 Knowers never return to being non-knowers.

4.1.2 Model formulation

Q = Q(P ): the strength of the social recognition effect, which is a
function of the frequency P of knowers in the population. It is assumed
to be non-decreasing in terms of P ; Q(0) = 0, Q ≥ 0.
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ξ: the threshold value for Q, specifying the individual independently
of time.
ξ ≤ Q −→ The individual may accept the information to transmit to others;

ξ > Q −→ The individual ignores the information.

The value of ξ is generally defined on (−∞,∞). Persons with negative
threshold values always satisfy the first rule thereby being prone to
the possibility of accepting the information.

F (x): the cumulative distribution function (CDF) of the threshold
value ξ in the population.

F (x) =

∫ x

−∞
f(ξ)dξ

where f(ξ) is the frequency distribution function (FDF) of the thresh-
old value ξ in the population, such that f(ξ)∆ξ with sufficiently small
∆ξ > 0 means the frequency of individuals with the threshold in
the range [ξ, ξ + ∆ξ] in the population. The value F (x) means the
frequency of individuals with the threshold value ξ not beyond x in
the population.

If we assume that f(ξ) = 0 for any ξ > ξm with a finite value ξm,
then ξm is the upper bound for the threshold value ξ.

The functions F and f satisfy the conditions:

• F and f are independent of time t;

• f(ξ) is non-negative and integrable for any ξ ∈ R;

• F (x) is non-negative, non-decreasing, and continuous for any
x ∈ R;

• lim
x→∞

F (x) =

∫ ∞
−∞

f(ξ)dξ = 1 and lim
x→−∞

F (x) = 0;

• lim
ξ→∞

f(ξ) = 0 and lim
ξ→−∞

f(ξ) = 0.

P (t): the frequency of knowers in the population at time t.

P (t) =

∫ ∞
−∞

p(ξ, t)dξ,

where p(ξ, t) is the FDF of knower’s threshold value ξ in the popula-
tion, such that p(ξ, t)∆ξ with sufficiently small ∆ξ > 0 is the frequency
of knowers with the threshold in the range [ξ, ξ + ∆ξ] at time t in the
population.

U(t): the frequency of non-knowers in the population at time t.

U (t) =

∫ ∞
−∞

u(ξ, t)dξ,
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P (t) + U(t) = 1

independently at time t, and further

p(ξ, t) + u(ξ, t) = f(ξ)

for any ξ ∈ R and any t.

Ξ(P ): the set of threshold values satisfying ξ ≤ Q(P ), defined as
follows:

Ξ(P ) := {ξ | ξ ≤ Q(P )},

and the complementary set of Ξ(P ), Ξ(P ), is defined by

Ξ(P ) := {ξ | ξ > Q(P )}.

B(ξ,P )∆t: the transition probability that the non-knower with the
threshold value ξ gets the information and transits to the knower
population in [t, t + ∆t] with sufficiently small ∆t. B(ξ,P ) is the
coefficient of information transmission under the situation with the
knower frequency P given by

B(ξ,P ) =


B(P ), ξ ∈ Ξ(P );

0, ξ ∈ Ξ(P ).

Now, B(P ) is the coefficient of information transmission for the non-
knower with the threshold value of Ξ(P ) with B(0) = 0, B(P ) > 0

for P ∈ [0, 1].

4.1.3 Temporal change of the non-knower frequency

From the above setup, we can immediately get the following equation

u(ξ, t+ ∆t)∆ξ − u(ξ, t)∆ξ = −B(ξ,P (t))∆t · u(ξ, t)∆ξ,

where the left side means the change of the frequency of non-knowers
during [t, t+ ∆t] with sufficiently small ∆t, with the threshold value
in the range [ξ, ξ+∆ξ] with sufficiently small ∆ξ. It corresponds to the
number of non-knowers becoming knowers by getting the information,
so that it should be equal to the right hand side given the expected
reduction of the non-knower frequency by the transition probability
defined above.

From the above equation, we can get the following equations as
∆t→ 0,

∂u(ξ, t)

∂t
= −B(ξ,P (t))u(ξ, t).

Therefore, integrating both sides in terms of ξ over R, we have

d

dt

∫ ∞
−∞

u(ξ, t)dξ =
dU(t)

dt

= −
∫ ∞
−∞

B(ξ,P (t))u(ξ, t)dξ = −
∫

Ξ(P (t))
B(P (t))u(ξ, t)dξ.
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4.1.4 Temporal change of the knower frequency

dP (t)

dt
= −dU(t)

dt
= B(P (t))

∫
Ξ(P (t))

u(ξ, t)dξ

We do not assume the knower stops transmitting information at any
time or under any condition. That is, the knower remains at the knower
state for any time t, and the frequency of knowers does not decrease
in time. Hence, correspondingly the frequency of non-knowers does
not increase with time.

4.1.5 Initial condition

As the initial condition at t = 0, we assume a portion of knowers in
the population, who play the role of initial transmitters of information.
We now assume that the initial knowers are given independently of
their threshold values, aside how they become knowers.

We give the initial distribution of the knower frequency by

p(ξ, 0)∆ξ = θ(ξ)f(ξ)∆ξ,

where θ(ξ) determines the ratio of initial knowers in the subpopulation
with the threshold value ξ, such that 0 ≤ θ(ξ) ≤ 1. Since p(ξ, 0)∆ξ +
u(ξ, 0)∆ξ = f(ξ)∆ξ, we have the following about the intial distribution
of the non-knower frequency at the same time:

u(ξ, 0)∆ξ = {1− θ(ξ)}f(ξ)∆ξ.

Consequently, we have

P (0) =

∫ ∞
−∞

θ(ξ)f(ξ)dξ; U(0) =

∫ ∞
−∞
{1− θ(ξ)}f(ξ)dξ = 1− P (0).

(4.1)

4.1.6 Non-knower frequency of Ξ(P )

When there are such non-knowers that have the threshold value over
the value of Q at time t, the frequency is given by

U (t)−
∫

Ξ(P (t))
u(ξ, t)dξ =

∫
Ξ(P (t))

u(ξ, t)dξ,

with a non-empty set Ξ(P (t)). From the assumption H6, P (t) is non-
decreasing in time. Since P (t) is non-decreasing in time and Q(P ) is
non-decreasing in terms of P , we note that the non-empty set Ξ(P (t))
identifies all non-knowers who have not experienced any moment at
which the value of Q(P (t)) is more than the threshold value until time
t. Thus, the above integral gives the frequency of such non-knowers at
time t when Ξ(P (t)) is non-empty.

Therefore, when Ξ(P (t)) is non-empty, the non-knowers belonging
to the above integral is only those who remain at the non-knower state
from the initial time to time t. That is,

u(ξ, t) = u(ξ, 0) for ξ ∈ Ξ(P (t)),
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so that∫
Ξ(P (t))

u(ξ, t)dξ =

∫
Ξ(P (t))

u(ξ, 0)dξ =

∫
Ξ(P (t))

{1− θ(ξ)}f(ξ)dξ.

4.1.7 Closed equation for the knower frequency

From the preceding modeling arguments, we have

dP (t)

dt
= B(P (t))

∫
Ξ(P (t))

u(ξ, t)dξ

= B(P (t))

{
U(t)−

∫
Ξ(P (t))

u(ξ, t)dξ

}

= B(P (t))

{
U(t)−

∫
Ξ(P (t))

{1− θ(ξ)}f(ξ)dξ

}

= B(P (t))

[
1− P (t)−

∫
Ξ(P (t))

{1− θ(ξ)}f(ξ)dξ

]
. (4.2)

The equation is closed in terms of P (t), which can be regarded as
an autonomous ordinary differential equation to describe the temporal
change of knower frequency in the population.

Now we note that the more concrete formula of the above equation
depends on the limit lim

P (t)→1
Q(P (t)) which is now formally equal to

sup
P (t)

Q(P (t)) because the function of Q(P (t)) is assumed to be non-

decreasing in terms P (t). Here we take account of the case when
lim

P (t)→1
Q(P (t)) =∞.

If lim
P (t)→1

Q(P (t)) < ∞, that is, if Q(1) is a finite value, the set

Ξ(P (t)) becomes empty for a certain value of P (t) = Pc ≤ 1, when
f(ξ) = 0 for any ξ > ξm with a finite value ξm, and Q(Pc) ≥ ξm. In
such a case, the integral in the last formula of the above equation nec-
essarily becomes zero because f(ξ) = 0 for any ξ ≥ Q(Pc). Therefore,
the above equation holds even when the set Ξ(P (t)) is empty. Now,
we can express (4.2) as

dP (t)

dt
=


B(P (t))

[
1− P (t)−

∫ ξm

Q(P (t))
{1− θ(ξ)}f(ξ)dξ

]
, Q(P (t)) < ξm;

B(P (t))
[
1− P (t)

]
, Q(P (t)) ≥ ξm.

(4.3)

4.2 invariance of P (t)

To guarantee the limits of P (t) for the reasonableness of (4.2), we have
the following theorem (Appendix B.1).

Theorem 4.2.1. For any P (0) such that 0 ≤ P (0) ≤ 1, P (t) satisfies the
condition that 0 ≤ P (t) ≤ 1 for all t > 0.
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ξ 2ξ
ξ

f(ξ)

Figure 4.1: Graph of the frequency distribution function f(ξ) against the
threshold value ξ of the social recognition effect given by (4.4).

4.3 the case of compact support uniform distribution

In this case, the distribution of ξ is uniform with f(ξ) given as

f(ξ) =


0, ξ < 0;

1
2ξ
, 0 ≤ ξ ≤ 2ξ;

0, ξ > 2ξ,

(4.4)

with mean ξ. The graph of this frequency distribution is seen in Figure
4.1.

Based on this f(ξ), (4.3) can be expressed as

dP (t)

dt
=


B(P (t))

[
1− P (t)− (1− θ0)

(∫ 2ξ

Q(P (t))

1

2ξ
dξ

)]
, Q(P (t)) ≤ 2ξ;

B(P (t))[1− P (t)], Q(P (t)) > 2ξ,

so that

dP (t)

dt
=


B(P (t))

[
θ0 − P (t) +

1

2ξ
(1− θ0)Q(P (t))

]
, Q(P (t)) ≤ 2ξ;

B(P (t))[1− P (t)], Q(P (t)) > 2ξ.

If we define Q(P (t)) := αP (t), we have

dP (t)

dt
=


B(P (t))

[
θ0 −

(
1− α

2ξ
(1− θ0)

)
P (t)

]
, αP (t) ≤ 2ξ;

B(P (t))[1− P (t)], αP (t) > 2ξ.

(4.5)
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P
*

(b)
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α
0

P(0)

1

P
*

Figure 4.2: Bifurcation diagram for P ∗ with parameter (a) θ0, ξ/α > 1/2 and
(b) ξ/α based on (4.6) and (4.8). P (0) = θ0.

For P (t) ≤ 2ξ
α , the equilibrium state in the interval

(
0, 2ξα

]
is deter-

mined by

H1(P ) = θ0 −
(
1− α

2ξ
(1− θ0)

)
P = 0 (4.6)

such that

P = P ∗ =
θ0

1− α
2ξ
(1− θ0)

. (4.7)

It is necessary that ξ/α > (1− θ0)/2 for this equilibrium state to be
positive as required.

For P (t) > 2ξ
α , the equilibrium state in the interval

(
2ξ
α , 1

]
is deter-

mined by

H2(P ) = 1− P = 0 (4.8)

and it is P = P ∗ = 1.

Lemma 4.3.1. When ξ/α > 1/2, the equilibrium state (4.7) exists in (0, 1)

and it is necessarily locally asymptotically stable.

Lemma 4.3.2. When ξ/α ≤ 1/2, there is no equilibrium state in (0, 2ξ/α) ⊆
(0, 1). On the other hand, there is the equilibrium state P = P ∗ = 1. P
increases monotonically with time so that P = P ∗ = 1 is globally stable.

Theorem 4.3.3. The system (4.5) has a unique equilibrium state which is
globally asymptotically stable.

Proof. When ξ/α > 1/2, (4.7) is always positive. Since H1(0) = θ0 > 0,
then P ∗ is locally asymptotically stable. It is clear that there is no
equilibrium state in [2ξ/α, 1] since ξ/α > 1/2.

When ξ/α ≤ 1/2, the equilibrium state (4.7) is non existent since it
becomes negative. As such the equilibrium state is in [2ξ/α, 1]. For all
P < 1, H2(P ) is positive and so P is monotonically increasing with
time.
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Given that ξ/α ≤ 1/2 and that P is monotonically increasing with
an upper bound P = 1, then we have the equilibrium state P = P ∗ = 1

which is asymptotically stable.
Overall, we have a unique global equilibrium state for the system

(4.5) depending on 2ξ/α. For ξ/α > 1/2, P → P ∗ given by (4.7). For
ξ/α ≤ 1/2, P → P ∗ = 1.

ξ/α > 1/2 represents a high threshold value for knowing and
accepting the information. People with such high threshold values
are so difficult to convince that they never accept the information.
This may be due to a high level of education or the perceived lack of
trustworthiness of the source of information. On the other hand, with
ξ/α ≤ 1/2, everyone gets to know the information in the long run due
to their low threshold values of acceptance. This may be a result of
gullibility on the part of the population or the reliability of the source.
This tends to correspond to Granovetter’s conceptual model and the
dynamics is similar to the logistic map.

4.4 the case of everywhere positive distribution

For mathematical simplicity, we assume that initial knowers are dis-
tributed independently of the threshold value ξ. Further, θ(ξ) is given
as a constant value θ0. This means that initial knowers are randomly
given with probability θ0. We also assume that Q(P ) is continuous
and differentiable in terms of P .

4.4.1 Existence of equilibrium states

In this case, we assume that f(ξ) > 0 for any ξ such that (4.2) becomes

dP (t)

dt
= B(P (t))G(P (t)), (4.9)

where

G(P ) := 1− P − (1− θ0)
∫ ∞
Q(P )

f(ξ)dξ (4.10)

with G(P ) continuous in terms of P . At the equilibrium state P = P ∗

where dP (t)/dt = 0, we have G(P ∗) = 0 since B(P ) > 0.

Theorem 4.4.1. There is at least one equilibrium state P = P ∗ for (4.9)
such that 0 < P ∗ ≤ 1.

Proof. Since G(P ) is continuous, we see that

G(0) = 1− (1− θ0)
∫ ∞
Q(1)

f(ξ)dξ > 0

for Q(1) ≥ 0. On the other hand, if Q(1) <∞, then

G(1) = −(1− θ0)
∫ ∞
Q(1)

f(ξ)dξ < 0 (4.11)
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since
∫ ∞
Q(1)

f(ξ)dξ > 0. So, there is at least one value of P = P ∗ such

that 0 < P ∗ < 1.
If Q(1) =∞, then

∫ ∞
Q(1)

f(ξ)dξ = 0 so that

G(1) = −(1− θ0)
∫ ∞
Q(1)

f(ξ)dξ = 0.

This is sufficient condition that there is one equilibrium value P =

P ∗ = 1 because
dP

dt

∣∣∣∣
P=1

= 0. Conversely, we have the necessary

condition that if G(1) = 0,
∫ ∞
Q(1)

f(ξ)dξ = 0 due to the fact that f(ξ)

is everywhere positive for ξ <∞, then Q(1) =∞. Overall, there is at
least one equilibrium state P = P ∗ for (4.9) such that 0 < P ∗ ≤ 1.

Furthermore, given that Q(1) <∞, from (4.11) it is clear that P = 1

cannot become an equilibrium state.

We have the following corollaries from the theorem.

Corollary 4.4.2. P = 1 can become an equilibrium state if and only if
Q(1) =∞.

Corollary 4.4.3. If Q(1) <∞, P = 1 cannot become an equilibrium state
and there is at least one equilibrium state P = P ∗ such that 0 < P ∗ < 1.

From the idea of standard local stability, we have the following
result for an equilibrium state P = P ∗ ∈ (0, 1).

Theorem 4.4.4. Suppose that there is an equilibrium state P = P ∗ for
(4.9) such that 0 < P ∗ < 1, then it is locally asymptotically stable if
(1− θ0) dQ(P ∗)

dP f(Q(P ∗)) < 1.

Proof. Given that such a P ∗ < 1 exists, then from (4.9), we have

L(P ) =
dP (t)

dt
= B(P )G(P ) (4.12)

such that P ∗ is asymptotically stable if dL(P ∗)/dP < 0. Now,

dL(P )

dP
=
dB(P )

dP
G(P ) +B(P )

dG(P )

dP

dL(P ∗)

dP
=
dB(P ∗)

dP
G(P ∗) +B(P ∗)

dG(P ∗)

dP

= B(P ∗)
dG(P ∗)

dP
.
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dL(P ∗)/dP < 0 implies that dG(P ∗)/dP < 0 since B(P ) > 0. So, we
have

dG(P )

dP
= −1− (1− θ0)

d

dP

∫ ∞
Q(P )

f(ξ)dξ

= −1− (1− θ0)
dQ(P )

dP

d

dQ

∫ ∞
Q

f(ξ)dξ

= −1− (1− θ0)
dQ(P )

dP
[−f(Q(P ))]

= −1+ (1− θ0)
dQ(P )

dP
f(Q(P ))

such that dG(P ∗)/dP < 0 results to

(1− θ0)
dQ(P ∗)

dP
f(Q(P ∗)) < 1.

This completes the proof for the establishment of sufficient condition
for local stability.

More so, we have the following result for the stability of the equilib-
rium state P = P ∗ = 1.

Theorem 4.4.5. If P = 1 is an equilibrium state for (4.9), then it is neces-
sarily locally asymptotically stable.

Proof. Since 0 ≤ P (t) ≤ 1 from Theorem 4.2.1, it is satisfactory to
consider the pertubation such that P (t) = 1− ε(t) with 0 < ε � 1.
Then around P = 1, we have

dP (t)

dt
=
d(1− ε(t))

dt
= −dε

dt
= B(1− ε(t))G(1− ε(t)). (4.13)

Again, the sign of G(1− ε(t)) determines the sign of dε(t)
dt since B(1−

ε(t)) > 0 by definition. Going by (4.10), we have

G(1− ε(t)) = ε(t)− (1− θ0)
∫ ∞
Q(1−ε(t))

f(ξ)dξ.

Taking the limit of the integral as s→ 1+ 0, then

G(1− ε(t)) = ε(t)− (1− θ0) lim
s→1+0

∫ ∞
Q(s−ε(t))

f(ξ)dξ.

The Taylor expansion of the integral gives

G(1− ε(t)) = ε(t)− (1− θ0) lim
s→1−0

[∫ ∞
Q(s)

f(ξ)dξ − f(Q(s))ε(t) + o(ε(t))

]
.

The first two terms of the expansion vanish because lim
s→1−0

∫ ∞
Q(s)

f(ξ)dξ =

0 sinceQ(s)→∞ as s→ 1−0 from Corollary 4.4.2 and lim
s→1−0

f(Q(s)) =

0 from the nature of function f . Consequently,

G(1− ε(t)) = ε(t)− (1− θ0)o(ε(t)) > 0.

Since G(1− ε(t)) > 0, then dε/dt < 0 in (4.13). As such, P = 1 is a
locally asymptotically stable equilibrium state.
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ξ
ξ

f(ξ)

Figure 4.3: Graph of the frequency distribution function f(ξ) against the
threshold value ξ of the social recognition effect given by (4.14).

4.4.2 A specific model

We consider the distribution defined as

f(ξ) =
1

σ
√
2
e−
√
2
|ξ−ξ|
σ =


1

σ
√
2
e
√
2
(ξ−ξ)
σ , ξ < ξ;

1
σ
√
2
e−
√
2
(ξ−ξ)
σ , ξ ≥ ξ,

(4.14)

with mean ξ and variance σ2. The graph of this function is found in
Figure 4.3.

In addition, we define Q(P ) = αP (α > 0), Q(1) = α <∞. Follow-
ing Corollary 4.4.3, there is at least one equilibrium state P = P ∗ such
that 0 < P ∗ < 1 since Q(1) <∞. In terms of (4.9) and (4.10), we now
have

G(P ) =


G1(P ) := θ0 − P + 1

2 (1− θ0)e
√
2α
σ

(
P− ξ

α

)
, P < ξ/α;

G2(P ) := 1− P − 1
2 (1− θ0)e

−
√
2α
σ

(
P− ξ

α

)
, P ≥ ξ/α.

(4.15)

This function is continuous since

lim
P→ ξ

α

G(P ) = lim
P→ ξ

α
−0
G1(P ) = lim

P→ ξ
α
+0

G2(P ) =
1

2
(1+ θ0)−

ξ

α
. (4.16)

The continuity of G(P ) is further demonstrated in Figure 4.4. A de-
tailed analysis of (4.15) for the existence and number of equilibrium
states is found in Appendix B.2 and the summary of the result is
shown in Figure 4.5.

The symbol 〈i, j〉 in Figures 4.4 and 4.5 represents the respective
numbers of equilibrium states in each of the intervals (0, ξ/α) and
[ξ/α, 1]. This means that the total number of equilibrium states in
the complete interval (0, 1] is given by i+ j. We have the following
necessary and sufficient conditions for 〈i, j〉 based on the conditions
given in Appendix B.2.
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Figure 4.4: Graph of G(P ) against P . In each figure, 〈i, j〉 represents the
pair of numbers of equilibrium states i and j in the intervals
(0, ξ/α) and [ξ/α, 1] respectively. P ∗S , P ∗M , P ∗L are equilibrium
states formally obtained in each case.

• For 〈0, 1〉, we have either of

σ

α
<

1√
2
(1− θ0) and

ξ

α
< θ0 +

σ

α
√
2

[
1+ ln

1− θ0√
2
− ln

σ

α

]
,

(4.17)

σ

α
≥ 1√

2
(1− θ0) and

ξ

α
<

1

2
(1+ θ0). (4.18)

• For 〈2, 1〉, we have

σ

α
<

1√
2
(1− θ0) and θ0 +

σ

α
√
2

[
1+ ln

1− θ0√
2
− ln

σ

α

]
<
ξ

α
<

1

2
(1+ θ0).

(4.19)

• For 〈1, 2〉, we have

σ

α
<

1√
2
(1− θ0) and

1

2
(1+ θ0) <

ξ

α
< 1− σ

α
√
2

[
1+ ln

1− θ0√
2
− ln

σ

α

]
.

(4.20)

• For 〈1, 0〉, we have either of

σ

α
<

1√
2
(1− θ0) and

ξ

α
> 1− σ

α
√
2

[
1+ ln

1− θ0√
2
− ln

σ

α

]
,

(4.21)

σ

α
≥ 1√

2
(1− θ0) and

ξ

α
>

1

2
(1+ θ0). (4.22)
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Figure 4.5: Parameter dependence for the formal existence of equilibrium

states. (a)
(
θ0,

ξ
α

)
with σ

α < 1√
2

, (b)
(
θ0,

ξ
α

)
with σ

α ≥
1√
2

, (c)(
σ
α ,

ξ
α

)
. θ∗ = 1− σ

√
2

α , ξ∗α = σ
α
√
2

(
1+ ln α

σ
√
2

)
, ξ∗∗α = 1− σ

α
√
2

,
σ∗
α = 1√

2
(1− θ0) and ξθ0 = 1

2 (1+ θ0). The respective numbers of

equilibrium states i and j in the intervals
(
0, ξα

)
and

[
ξ
α , 1

]
are

given by 〈i, j〉.
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Stability of equilibrium states

Based on Theorem 4.4.4, we can obtain the sufficient condition for
local asymptotic stability for the specific model given by (4.14) and
(4.15). Since Q(P ) = αP , we have

f(Q(P )) =
1

σ
√
2
e
−
√
2α
σ

∣∣∣P− ξ
α

∣∣∣
=


1

σ
√
2
e
√
2α
σ

(
P− ξ

α

)
, P < ξ/α;

1
σ
√
2
e
−
√
2α
σ

(
P− ξ

α

)
, P ≥ ξ/α.

As such, for P ∗ < ξ/α, P = P ∗ is locally asymptotically stable if

P ∗ < Pc− =
ξ

α
− σ

α
√
2
ln

α

σ
√
2
(1− θ0)

defined in (B.3). Otherwise, for P ∗ ≥ ξ/α, P = P ∗ is locally asymp-
totically stable if

P ∗ > Pc+ =
ξ

α
+

σ

α
√
2
ln

α

σ
√
2
(1− θ0)

defined in (B.4).
Furthermore, we consider the global stability analysis based on

(4.15). From Figure 4.4, we have equilibrium states 〈0, 1〉, 〈2, 1〉, 〈1, 2〉
and 〈1, 0〉 in the intervals (0, ξ/α) and [ξ/α, 1] respectively. We see
that when there is only one equilibrium state in the whole interval
(0, 1], it is always globally asymptotically stable. On the other hand,
when there are three equilibrium states, the smallest and the largest
are necessarily stable while the middle one is unstable. The results
obtained for local asymptotic stability correspond with the global
stability of (4.15).

Critical parameter values

The bifurcation branches with parameter θ0 is obtained by first solving
G1(P ∗) = 0 and G2(P ∗) = 0 for θ0. This gives

θ0 = F1(P
∗) =



F11(P ∗) := P ∗− 1
2
e

√
2ασ

(
P∗− ξα

)

1− 1
2
e

√
2ασ

(
P∗− ξα

) , P ∗ < ξ/α;

F12(P ∗) := P ∗−1+ 1
2
e
−
√
2ασ

(
P∗− ξα

)

1
2
e
−
√
2ασ

(
P∗− ξα

) , P ∗ ≥ ξ/α.

(4.23)

In order to obtain P ∗c for (4.23), we solve dF1(P ∗)/dP ∗ = 0 which
results to

√
2(1− P ∗c ) +

σ

α

(
1− 2e

−
√
2α
σ

(
P ∗c −

ξ
α

))
= 0, P ∗ < ξ/α;

P ∗c := 1− σ

α
√
2
, P ∗ ≥ ξ/α.

(4.24)
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From this, we obtain critical values of θ0 as

θc =


F11(P ∗c ), P ∗ < ξ/α;

1− σ
√
2

α
e
√
2α
σ

(
1− σ

α
√
2
− ξ
α

)
, P ∗ ≥ ξ/α.

(4.25)

With respect to ξ/α as bifurcation parameter, we have

ξ

α
= F2(P

∗) =


F21(P ∗) := P ∗ − σ

α
√
2
ln
[
2(P ∗−θ0)

1−θ0

]
, P ∗ < ξ/α;

F22(P ∗) := P ∗ − σ

α
√
2
ln
[

1−θ0
2(1−P ∗)

]
, P ∗ ≥ ξ/α

(4.26)

with

P ∗c =


θ0 +

σ

α
√
2
, P ∗ < ξ/α;

1− σ

α
√
2
, P ∗ ≥ ξ/α

(4.27)

so that we obtain the critical values of ξ/α to be

ξc
α

=


θ0 +

σ

α
√
2

[
1+ ln

α(1−θ0)
σ
√
2

]
, P ∗ < ξ/α;

1− σ

α
√
2

[
1+ ln σ

√
2

α(1−θ0)

]
, P ∗ ≥ ξ/α.

(4.28)

With respect to σ/α as bifurcation parameter, we have

σ

α
= F3(P

∗) =



F31(P ∗) :=

√
2
(
P ∗ − ξ

α

)
ln
[
2(P ∗−θ0)

1−θ0

] , P ∗ < ξ/α;

F32(P ∗) :=

√
2
(
P ∗ − ξ

α

)
ln
[

1−θ0
2(1−P ∗)

] , P ∗ ≥ ξ/α

(4.29)

with the implicit functions of P ∗c given by
ln

2(P ∗c −θ0)
1−θ0 =

(
P ∗c −

ξ
α

)
P ∗c −θ0

, P ∗ < ξ/α;

ln 1−θ0
2(1−P ∗c )

=

(
P ∗c −

ξ
α

)
1−P ∗c

, P ∗ ≥ ξ/α

(4.30)

so that we obtain the critical values of σ/α to be

σc
α

=


F31(P ∗c ), P ∗ < ξ/α;

F32(P ∗c ), P ∗ ≥ ξ/α.

(4.31)

The bifurcation of the system with respect to parameters θ0, ξ/α
and σ/α are shown in Figures 4.6, 4.7, 4.8.
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Figure 4.6: Bifurcation diagram for P ∗ with parameter θ0 given by (4.23). (a)
0 < ξ/α < ξ∗/α, (b) 0.5 < ξ/α < 1− ξ∗/α, (c) ξ/α = 1− ξ∗/α,

(d) 1− ξ∗/α < ξ/α < 1.0. Commonly, ξ∗α = σ
α
√
2

(
1+ ln α

σ
√
2

)
,

P (0) = θ0 and σ/α =
√
2/10. θc is defined by (4.24) and (4.25).
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Figure 4.7: Bifurcation diagram for P ∗ with parameter ξ/α given by (4.26).
(a) P (0) = 0.10, (b) P (0) = 0.50, (c) P (0) = 0.75, (d) P (0) = 0.90.
Commonly, σ/α =

√
2/10. ξc/α is defined by (4.27) and (4.28).
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Figure 4.8: Bifurcation diagram for P ∗ with parameter σ/α given by (4.29).
(a) ξ/α = 0.25, (b) ξ/α = 0.55, (c) ξ/α = 0.75, (d) ξ/α = 1.50.
Commonly, P (0) = θ0 = 0.30. σc/α is defined by (4.30) and
(4.31).
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Figure 4.9: Temporal variation of P (t) based on (4.15) with varying initial
values P (0) = θ0. Commonly, we have B(P ) = 0.011P , σ/α =√
2/10 and ξ/α = 0.50.

Equilibrium value of P

Going by (4.1) and our assumption that θ(ξ) = θ0, we see that
P (0) = θ0 and it determines the equilibrium state to which the system
converges in the case of seeming bistability. The equilibrium state is
uniquely determined by the initial condition. As stated in subsection
4.1.4, the frequency of knowers does not decrease in time. The tem-
poral variation, showing the convergence of the system, for various
initial conditions is shown in Figure 4.9.

Theorem 4.4.6. The system converges to the equilibrium state at which the
equilibrium value of P is greater than ξ/α only in the case of 〈0, 1〉. In any
other case, the equilibrium value of P is necessarily smaller than ξ/α.

Proof. For the case of 〈1, 2〉, the second condition for its existence is
given as expressed in the second part of (4.20). Since θ0 < (1+ θ0)/2
for any θ0 ∈ (0, 1), this condition requires that θ0 < ξ/α. This means
that the case of 〈1, 2〉 is only valid for the initial value satisfying that
θ0 < ξ/α.

Next, for the case of 〈2, 1〉, the second condition for its existence is
expressed in the second part of (4.19). From the first condition for its
existence, we have

ln
1− θ0√

2
− ln

σ

α
> 0,

so that the second condition for its existence requires that θ0 < ξ/α
similar to the previous case. Therefore, the case of 〈2, 1〉 is also only
valid for the initial value satisfying that θ0 < ξ/α. Further, the first
inequality of the second condition in (4.19) can be rewritten to be

θ0 +
σ

α
√
2
< Pc−.

Hence we find the other necessary condition for the case of 〈2, 1〉 that
θ0 < Pc−.
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Figure 4.10: Parameter dependence for the convergence of P . (a)
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(
σ
α ,

ξ
α

)
with σ∗

α = 1√
2
(1− θ0),

P (0) = θ0 and ξθ0 = 1
2 (1+ θ0).

Now, since G(θ0) = G(P (0)) > 0, we can find that the value of P
necessarily converges to the smallest equilibrium state P ∗s given by
the smaller root of G1(P ) = 0 in both cases of 〈1, 2〉 and 〈2, 1〉.

From Figure 4.4 in the case of 〈1, 2〉, it is clear that P must converge
to it since P (0) = θ0 < ξ/α as shown in the above argument. Similarly,
for the case of 〈2, 1〉 in Figure 4.4, since P (0) = θ0 < Pc− as shown in
the above argument, it is clear that P must converge to the smallest
equilibrium state.

In Figure 4.10, we represent the convergence profile of P based on
the dependence of the key parameters of the model. Figure 4.11 shows
the numerically obtained convergence for P with parameters θ0, ξ/α
and σ/α. Figure 4.12 is the three-dimensional representation of the
dependence of P ∗ on θ0 and ξ/α.

From our analyses, we found a mathematically bistable situation
for P , however, P always converges to a unique equilibrium state
depending on the initial value θ0. Figure 4.10 shows that P converges
to the smallest equilibrium state P ∗S when the mean threshold value
is sufficiently large. For small mean threshold values, P converges
to the largest equilibrium state P ∗L. 4.10(a) shows that a sufficiently
large initial value θ0 is required for a higher information spread.
From 4.10(b), we see that there is a higher chance of an information
spreading among just a small proportion of the population if the
variance is below a critical value.

4.4.3 Discussion

The general model with everywhere positive distribution shows that
the proportion of the population that ends up knowing an information
largely depends on the strength of social recognition effect. A very
large value of this effect on the population leads to the circulation of
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Figure 4.11: Numerically obtained convergence for P with parameter (a) θ0
with ξ/α = 0.55, σ/α =

√
2/10, (b) ξ/α with θ0 = 0.3, σ/α =√

2/10, (c-1) σ/α with θ0 = 0.3, ξ/α = 0.55, (c-2) σ/α with
θ0 = 0.3, ξ/α = 0.75. Here, we assume the function B(P ) = P .

Figure 4.12: Dependence of P ∗ on
(
θ0,

ξ
α

)
. B(P ) = P and σ/α =

√
2/10.
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the information among a lower proportion of the population in the
long run. Conversely, a large proportion of the population will end up
knowing the information if the strength of the social recognition effect
on the population is relatively small.

From the model with specific distribution, the most important pa-
rameters are θ0, ξ and σ. θ0, the proportion of initial knowers, rep-
resents those who have the task to carry out an initial operation to
circulate a certain information within a population. From our model
dynamics, it is worthy of note that the final level of spread of a piece
of information depends largely on the specific value of the initial
proportion of knowers even when there is apparent bistability of equi-
librium states. Coincidentally, this proportion corresponds with the
initial condition for our model. As such, it is both a parameter and
an initial value from which the proportion of knowers continue to
increase since we do not consider forgetfulness on the part of knowers.
The initial proportion of knowers depends on the nature and situation
of information. For instance, a single person can begin to spread a
rumor; a syndicate may be the initiator of a fake news; a new idea can
begin with a pilot group within a population (e.g., the use of masks
in preventing epidemics); top security secrets are known by very few
people; and information from the mass media can be known initially
by a large proportion of a population.

The mean threshold value of a population’s social recognition effect,
given as ξ, characterizes how a community reacts to a specific kind of
information. It is a kind of peak/mode behavior that is representative
of the community. A large mean threshold indicates that a society is
closed or conservative towards a particular kind of information, e.g.,
old people’s attitude towards a hip hop concert. On the other hand,
a small threshold mean shows that a society freely transmits a given
information. The standard deviation, σ, is a measure of the degree
of scattering or variance of threshold values within the population.
A small variance shows that the threshold values are steeply spread
while a large one implies that the threshold values are wide apart.
In our analyses, ξ and σ describe the heterogeneity of the threshold
values of individuals in the community. These two parameters are
re-scaled by α which characterizes the strength of social response to a
piece of information.

For each of the parameters, there are critical values which determine
whether a substantial proportion of the population gets to know the
information or whether it is confined to an insignificant proportion.

The system of ordinary differential equations describing the thresh-
old model is special because it explicitly depends on the initial value
P (0). This means that the temporal variation of proportion of knowers
P is affected by the initial condition. As such, the equilibrium state
of the system is determined by the given initial value so that the
equilibrium state varies for different initial values as seen in Figure
4.9.
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The results show that each of the model parameters (initial value,
mean threshold value for social response and standard deviation/-
variance) have critical values which determine the equilibrium state
to which the system converges. However, the effect of variance is not
as significant as that of the other two. From Figure 4.11, it is seen
that the proportion of knowers is increases in terms of initial knowers
and decreases in terms of mean threshold value of the social recogni-
tion effect. On the other hand, the effect of variance depends on the
mean threshold value. For a relatively small mean threshold value,
the proportion of knowers drastically increase once a critical variance
is exceeded. A decrease of the proportion of knowers is then seen for
large values of variance. For relatively large mean threshold value, the
proportion of knowers rises continuously and peaks moderately.

Figure 4.6 reveals that, in case of seeming bistability (b,c), the system
always converges to the lower equilibrium state for initial values below
the critical value while it goes to the upper equilibrium state for initial
values which exceed the critical value. This means that a very large
proportion of the population gets to know the information when there
is a large enough proportion of initial knowers.

Figure 4.7 shows there is a critical mean threshold value ξc for the
population. So, a mean threshold value below the critical one, makes
the system converge to the upper equilibrium state while any one
above it makes the system converge to the lower equilibrium state.
This is understandable since the mean threshold value measures the
acceptability of the information to the population. The proportion of
knowers becomes drastically small when the community has a high
mean threshold value thereby making the information highly unac-
ceptable. A low mean threshold value indicates that the information
is readily welcome in the society.

When bistability seems to appear in Figure 4.8 as seen in (b), there
is a critical variance. So, at a variance below the critical variance, the
system converges to the lower equilibrium state. A variance above the
critical variance drives the system to the upper equilibrium state with
some decrease afterwards.

From the results discussed, it may be possible to control the initial
proportion of knowers in order to achieve a purpose which involves the
spread of information. On the other hand, individual threshold values
and their distribution within a population can hardly be controlled.
Such a control may only be possible under special conditions.

The analyses show that people can be stubborn in accepting a
piece of information until a critical threshold value is reached. When
the mean threshold value falls below the critical mean threshold
value, there is a drastic increase in the frequency of knowers of the
information due to an increasing level of sociability/acceptability.
This scenario is commonly seen in the way people respond to most
innovative ideas. Individuals always tend to resist potential changes
to their ways of life but over time, with persistent awareness, they
embrace change and the new idea becomes well circulated within the
population.





5
C O N C L U D I N G R E M A R K S

This thesis shows that the ways in which individuals think (Psychol-
ogy) and the attitude of the societies to which they belong (Sociology)
play important roles in the way they interact with information in terms
of acceptance and spreading.

The nature of the information under consideration and the world-
view of the society in which it is introduced are vital in determining
how it spreads. News about sports and hip hop music will do well
among youths compared to aged people, for instance. Furthermore, it
is easier for misinformation to spread in a society with low literacy
rate compared with one with high literacy rate.

From the foregoing, we can infer that demographic groupings (e.g.
age) and education have impact on an individual’s thought process.
An educated person is prone to thinking better thoughts and when
there are many people having that high quality of thinking in a society,
their collective behavior is well informed.

More so, there are situations where an otherwise stubborn society
becomes favorably disposed towards accepting a piece of information
if they had had encounter with a similar piece of information. For
example, it is easy to get people to take quick measures against the
spread of a virus when they have been confronted with a similar
situation.

In terms of future research, possible extensions to the threshold
model can be done by reformulating the model to introduce

• a second piece of information; or

• a change of individual behavior by modifying the strength of
social recognition effect Q(P ); or

• another threshold such that we have lower and upper thresholds
as seen in [75].
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A
A P P E N D I X F O R T H E R E J O I N D E R M O D E L

a.1 convergence to the equilibrium state for rejoinder

model

Since u(τs + 0) > 0 and w0(τs + 0) > 0 from the initial condition
assumed in our model, and since dw0/dτ > 0 for any τ ∈ (τs,∞), we
have w0(τ ) > 0 for any τ > τs. This argument can also be applied for
w+, so that w+(τ ) > 0 for any τ > τs. As long as u is positive for (2.10)
and any of p, w0 and w+ is also positive, du/dτ is always negative.
This is contrary if u→ u∗ > 0, as such, u→ 0. So, as u→ 0, the right
hand side of dp/dτ must become negative since the first term becomes
significantly small compared to the other terms, for sufficiently large
τ > τs. It is now clear that p decreases such that p → 0 and v → 0.
From this analysis, we have (u, p, v,w0,w+)→ (0, 0, 0,w∗0,w

∗
+) as the

convergence state.
Since u+ p+ v + w0 + w+ = 1 for any τ > τs, the convergence

as τ → ∞ means that w0 and w+ converge to some positive values
w∗0 and w∗+ such that w∗0 + w∗+ = 1. The convergent value w∗0 or w∗+
depends on the initial condition at τ = τs + 0, which we could not
determine analytically.

As an extremal mathematical supposition, if u(τs − 0) = 1 and
p(τs − 0) = 0, then u(τs + 0) ≤ 1 and p(τs + 0) = 0 so dp/dτ = 0

and p(τ ) = 0 for any τ > τs at the interaction stage. This means that
dw+/dτ = 0 for any τ > τs at this stage since w+(τ ) = w+(τs+ 0) = 0

for any τ > τs, so w∗+ = 0 and w∗0 = 1. On the other hand, if we assume
the extremum situation where u(τs − 0) = 0 and p(τs − 0) = 1, then
u(τs+ 0) = 0 and p(τs+ 0) ≤ 1 since du/dτ = 0 and u(τ ) = 0 for any
τ > τs at the interaction stage. This means that dw0/dτ = 0 for any
τ > τs at this stage since w0(τ ) = w0(τs + 0) = 0 for any τ > τs so
w∗0 = 0. Overall, w∗0 ∈ (0, 1].
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B
A P P E N D I X F O R T H E T H R E S H O L D M O D E L

b.1 proof for theorem 4.2.1

If P = 0, B(0) = 0 and

∣∣∣∣∣
∫

Ξ(0)
{1− θ(ξ)}f(ξ)dξ

∣∣∣∣∣ < ∞, so from (4.2),

dP (t)

dt

∣∣∣∣
P=0

= 0. As such, P ≡ 0 is a solution for (4.2). From the

uniqueness of solution for (4.2), if P (0) = 0, then P (t) = 0 for all
t > 0.

If P (0) > 0, then P (t) > 0 for all t > 0 since P (t) is non decreasing
in time.

More so,

dP (t)

dt

∣∣∣∣
P=1

= −B(1)

∫
Ξ(1)
{1− θ(ξ)}f(ξ)dξ ≤ 0. (B.1)

In addition,

dP (t)

dt

∣∣∣∣
P>1

= B(P )

[
1− P −

∫
Ξ(P )
{1− θ(ξ)}f(ξ)dξ

]
< 0 (B.2)

since 1− P (t) < 0.
This establishes the invariance of P (t) such that 0 ≤ P (t) ≤ 1 for

all t > 0.

b.2 analysis for the existence and number of equilibrium

states for G(P )

Suppose there is an equilibrium state P ∗ < ξ/α, it must satisfy

G1(P ) = 0. We see that G1(0) = θ0 +
1
2 (1 − θ0)e

−
√
2 ξ
σ > 0. When

σ
α < 1√

2
(1− θ0), the function G1(P ) is concave in terms of P with

minimum point

P = Pc− =
ξ

α
− σ

α
√
2
ln

α

σ
√
2
(1− θ0) (B.3)

so that G1(Pc−) = θ0 +
σ

α
√
2

[
1+ ln α

σ
√
2
(1− θ0)

]
− ξ

α . On the other

hand, G1(P ) is monotonically decreasing when σ
α ≥

1√
2
(1−θ0). G1(Pc−) =

0 results to ξc
α = θ0 +

σ
α
√
2

[
1+ ln α

σ
√
2
(1− θ0)

]
which is the same in

(4.28).
The equilibrium state P ∗ ≥ ξ/α, if any exists, has to satisfy G2(P ) =

0. We see that G2(1) = −1
2 (1− θ0)e

−
√
2α
σ

(
1− ξ

α

)
< 0. When σ

α <
1√
2
(1−

θ0), the function G2(P ) is convex in terms of P with maximum point
at

P = Pc+ =
ξ

α
+

σ

α
√
2
ln

α

σ
√
2
(1− θ0) (B.4)
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and G2(Pc+) = 1− σ
α
√
2

[
1+ ln α

σ
√
2
(1− θ0)

]
− ξ

α . On the other hand,

G2(P ) is monotonically decreasing when σ
α ≥

1√
2
(1− θ0).

From Figure 4.4, we have the following conditions for the existence
of 〈i, j〉, where i and j are the numbers of equilibrium states in the
intervals (0, ξ/α) and [ξ/α, 1] respectively.

When σ
α <

1√
2
(1− θ0),

• 〈0, 1〉: G1(Pc−) > 0.

• 〈2, 1〉: G1(Pc−) < 0 and G
(
ξ
α

)
> 0.

• 〈1, 2〉: G
(
ξ
α

)
< 0 and G2(Pc+) > 0.

• 〈1, 0〉: G2(Pc+) < 0.

When σ
α ≥

1√
2
(1− θ0),

• 〈0, 1〉: G
(
ξ
α

)
> 0.

• 〈1, 0〉: G
(
ξ
α

)
< 0.

These equilibrium states agree with theorem 4.4.1 and corollaries
4.4.2 and 4.4.3.
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