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Abstract

It is well known that rate-independent linear damping (RILD) originates from the simu-
lation of the internal friction of engineering materials, which is thought to be one of the
main sources of the inherent damping in an actual building structure. Therefore, RILD is
expected to be a straightforward model for the simulation of structural inherent damping
without adopting the assumption of Rayleigh damping, which has been doubted for a long
time. Moreover, RILD is thought to have important applications for the seismic response
control of a low-frequency structure, because it is well established that RILD can achieve ef-
fective displacement reduction at the expense of lower damping force compared with other
damping types. This suggests that RILD can serve as a promising solution in protecting
a low-frequency structure from excessive response displacements without increasing floor-
response accelerations when the structure is subjected to extreme earthquake events, such as
the future expected Nankai mega-thrust earthquake in Japan and the Cascadia earthquake
in North America.

However, an ideal RILD model suffers an issue of noncausality, which hinders its use
for practical applications. On the one hand, the noncausal property makes it challenging to
numerically implement RILD in a nonlinear response history analysis for the performance
evaluation of a building structure subjected to extreme ground motions. On the other hand,
this property also suggests that it is impossible to physically realize an ideal RILD model
by using real-life devices, which can be installed in an actual building structure for seismic
protection purposes. In this dissertation, aimed at facilitating the practical applications of
RILD in the above two situations, novel causal models which can mimic the behavior of
RILD are pursued. The main contents of this dissertation are summarized as follows:

• Chapter 1 Introduction

The research background of this dissertation was illustrated first, and the urgent neces-
sity of suppressing the excessive response displacement of a low-frequency structure
subjected to the future expected extreme earthquake events and the potential problems
associated with the use of Rayleigh damping for the simulation of structural inherent
damping were pointed out. As a potential solution to addressing these issues, RILD
was then introduced and reviewed in detail. It follows the introduction of the pur-
poses and structure of this dissertation.

• Chapter 2 A Simple Model to Utilize the Benefit of RILD in Low-frequency Structures

The behavior of RILD in low-frequency structures subjected to strong ground motion
was discussed first. Comparisons between the transfer functions in terms of displace-
ment and damping force for RILD and linear viscous damping (LVD) separately incor-
porated into a single-degree-of-freedom (SDF) system were made. It is suggested that
RILD generates lower floor-response accelerations compared to LVD without increas-
ing the response displacements, when they are separately incorporated into a low-
frequency structure subjected to strong ground motion, which contains dominating
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high-frequency components. A base-isolated five-story building structure was used
as an analytical example, and the benefits of RILD were illustrated by using the results
of incremental dynamic analyses and parametric studies.

In order to utilize the benefit of RILD for practical applications, a causal model for
mimicking the behavior of RILD was derived and it can be passively implemented by
using a Maxwell and a negative stiffness (MNS) elements connected with each other in
parallel. Comparisons between the seismic responses of structures incorporated with
the MNS and LVD models showed that when excited by high-frequency-dominated
ground motion, the structure equipped with the proposed MNS model yielded lower
damping forces than those with LVD model. However, the two structures exhibited
similar isolator displacements. Moreover, the performance of the MNS model was
not compromised, even when excited by ground motion containing low-frequency
components. These comparisons exemplified the feasibility of the proposed method to
mimic RILD in reducing the response displacement without increasing floor-response
acceleration.

A linear negative stiffness element (LNSE) is thought to be essential in order to pas-
sively realize a causal model that mimics the behavior of RILD. A straightforward
way to creating an LNSE is achieved by equivalently reducing the horizontal stiffness
of primary structure (or isolators). Otherwise, a design example of negative stiffness
device was also given, and it provided an alternative for approximating a physical
LNSE within the displacement range of interest, making the proposed MNS model
more attractive for mimicking the performance of RILD. The MNS model is expected
to be a viable option for improving the seismic performance of low-frequency struc-
tures subjected to strong ground motion.

• Chapter 3 A Unified Framework of Causal RILD Models

For reference, some representative existing RILD models were first reviewed in detail.
It followed that a novel model which can mimic the behavior of RILD was proposed
in the frequency domain by generalizing a bilinear digital filter into a fractional-order
filter, and its causality was confirmed. In terms of physical representation of the pro-
posed model, a mechanical model consisting of a fractional-order Maxwell and a neg-
ative stiffness (FMNS) elements coupled in parallel was constructed, which can be
considered as a generalization of the MNS model proposed in Chapter 2. Both passive
and semi-active methods were proposed to realize the FMNS model by using real-life
devices for practical applications.

Comparisons between the FMNS model with those of the existing causal models for
RILD were made, and some subtle relationships between the FMNS model with those
existing models were revealed and proved. It was suggested that the FMNS model
can be considered as a unified causal model for RILD because it can encompass the
other existing causal models. On the basis of the newly revealed relationships in this
study, along with those well established ones, a unified framework of causal models
for mimicking the behavior of RILD was developed.
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In order to numerically implement the FMNS model in the time domain, a so-called
L1-algorithm-based internal variable method (labeled as L1-algorithm) was developed
by directly calculating the fractional derivative. Such a method was thought to be
convenient for application, because it required little calculations for the parameter es-
timation, and could also be readily embedded into established numerical integration
schemes for response history analyses. Moreover, the computational efficiency of the
developed method can be largely improved by applying the fixed memory principle
without significant loss of accuracy. Its effectiveness for a nonlinear response history
analysis was verified by using a base-isolated benchmark structure as an analytical
example. Comparisons between the seismic responses of the base-isolated structure
incorporated with different RILD elements were made, and it was further shown that
the MNS model can be used as a simpler option to mimic the behavior of RILD for
use in a nonlinear base-isolation system without significantly compromising the seis-
mic performance, when compared with other more complicated models in the unified
framework.

• Chapter 4 An Efficient Method for a Structural Model Incorporated with RILD

For further accelerating the dynamic analysis of a structure with the FMNS model, a
recursive method was developed by using a Prony series to approximate the damp-
ing kernel function in terms of Mittag-Leffler relaxation function, which can avoid the
calculation of the fractional derivative for response history analyses. For practical ap-
plications, both time- and frequency-domain methods were discussed to estimate the
characteristic parameters of a Prony series. The developed recursive method can be
readily embedded into the established numerical integration schemes for nonlinear
response history analyses, and it was also shown that this recursive method can be
more computationally efficient than the L1-algorithm-based method without compro-
mising the simulation accuracy.

Furthermore, the feasibility of the FMNS model to causally mimic the behavior of
RILD for simulating the structural inherent damping was verified by using a ten-story
benchmark building structure as an analytical example. First, linear time history anal-
yses were conducted to examine the seismic performance of the example structure
separately incorporated with the ideal RILD, Nakamura, and FMNS models, respec-
tively. Comparisons between the seismic responses of differently damped structures
suggested that the FMNS model can be used as a competitive candidate of mimick-
ing the behavior of ideal RILD for simulating the structural inherent damping when
compared with the Nakamura model. Furthermore, the FMNS model was compared
with the tangent stiffness proportional and nonlinear modal damping models when
they were incorporated into the example structure with the nonlinearities of structural
stiffness elements into account. It was suggested that the FMNS model can be superior
to the nonlinear modal damping model in terms of computational efficiency without
compromising the accuracy.
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Lastly, parametric studies were conducted to investigate the effect of the tunable pa-
rameter on the seismic performance of the FMNS system. It was suggested that in
terms of simulating the structural inherent damping in an MDF structure, a small frac-
tional tunable parameter was preferred for the FMNS model to provide an improved
approximation of the ideal RILD model.

• Chapter 5 Conclusions and future work

On the basis of the research work done in the previous chapters, some conclusions
were made and further challenges to be overcome in the future were pointed out in
Chapter 5.
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Chapter 1

Introduction

1.1 Research background

1.1.1 Lessons form the 2011 Tohoku earthquake

In the afternoon of March 11, 2011, the eastern Japan was hit by a devastating earthquake
(hereafter referred to as the Tohoku earthquake) with the moment magnitude of 9.0, which
is the strongest earthquake in Japan since the 1923 Kanto earthquake [1]. Huge losses of
property and life were caused by this earthquake and the tremendous tsunami.

Strong earthquake observation data show that the Tohoku earthquake induced severe
ground motions with high intensity and long duration, e.g., a ground motion recorded in
the K-NET Tsukidate station in Kurihara city, Miyagi prefecture, has a maximum recorded
acceleration of 3 000 gal, and a duration as long as nearly 6 minutes [2]. The damages directly
caused by these ground motions were not thought to be as severe as those caused by the
tsunami, partly because the dominant period of the main earthquake was at the range of 0.2
to 1.0 second. However, the following issues during the Tohoku earthquake still should be
paid enough attentions:

1) Large isolator deformations in seismically isolated structures

Large isolator deformations and resulting damages in lead dampers incorporated into
the isolation layer were reported in seismically isolated structures during the Tohoku
earthquake. For example, a maximum isolator deformation as large as 0.355 m was
observed in a seismically isolated building, which is located 1.0 km away from the K-
NET MYG013 station in Sendai city, Miyagi prefecture [3]. These large deformations
occurred in the isolation layer may cause damages of supplemental damping devices,
or severe impact between the isolated structure and the moat wall, consequently re-
sulting in failure of the isolation system. For example, the failure of a lead damper in a
seismically isolated hotel building near the K-NET Furukawa station (MYG006) in Osaki
city, Miyagi prefecture was reported due to the large deformation during this huge
earthquake [4].

2) Large-amplitude long-duration vibration of super high-rise building structures

Large-amplitude long-duration vibration of super high-rise building structures were
observed in mega cities like Tokyo and Osaka [1], which are relatively far away from
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the epicenter. For example, a 54-story building (height = 223 m, fundamental natural
period = 6.2 second in the short-span direction) retrofitted with passive oil dampers in-
cluding in the supporting bracing system in Shinjuku, Tokyo experienced a top-story
displacement of 0.54 m during the Tohoku earthquake, and the duration of vibration
was reported to be over 13 minutes. Another example is a 55-story super high-rise
building in Osaka (height=256 m, fundamental natural period = 5.3 second in the
short-span direction), which experienced a top-story displacement as large as 1.4 m
in the short-span direction during the Tohoku earthquake, even though it is located
far away from the epicenter (about 800 km).

The above observations made it urgently necessary to develop techniques to effectively
suppress the large deformation of low-frequency structures (e.g., seismically isolated or
super high-rise buildings) subjected to large-amplitude long-duration ground motions in-
duced by extreme earthquake events. On the basis of the experience obtained in the past
earthquake events, the community of earthquake engineering recently started to concern
that low-frequency structures, like seismically isolated or super high-rise building struc-
tures, might suffer excessive response displacements beyond the design limit in the event
of an extreme earthquake, such as the future expected Nankai mega-thrust earthquake in
Japan and the Cascadia earthquake in North America. These excessive deformations may
cause the damages of isolators and/or supplemental damping devices, and even result in
impact between the isolated structure and the moat wall. Consequently, damages of struc-
tural and/or nonstructural components at the upper floors of the structure may occur. This
research background is illustrated in Fig.1.1.

Indeed, in order to suppress those excessive response deformations in a seismically iso-
lated structure, more damping can be supplemented into the isolation layer by simply in-
creasing the number of traditional damping devices (e.g., oil damper, or metal yielding
dampers). However, excessive damping through high damping force provided by these
damping devices may result in increased floor-response accelerations, and consequently
compromises the effect of base isolation. To overcome this contradiction, novel damping devices
need to be developed so that both isolator deformations and floor-response accelerations in seismically
isolated structures can be simultaneously controlled, as shown in Fig.1.2. Rate-independent lin-
ear damping (RILD) is thought to be one of the most promising solutions to achieving this
goal [5], because it can benefit a low-frequency structure by reducing the response displace-
ment without increasing the floor-response acceleration when the structure is subjected to
the ground motion dominated by high-frequency components [6].

Despite of its important application for seismic protection of low-frequency structures,
RILD is also expected to be a straightforward model for the simulation of structural inherent
damping without adopting the mathematically convenient assumption of Rayleigh damp-
ing, as discussed below.
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FIGURE 1.1: Research background of this dissertation

FIGURE 1.2: Application of RILD for seismic control of structural responses

1.1.2 The simulation of structural inherent damping

In structural dynamics, damping is an idealized concept to represent a process by which
vibration steadily diminishes in amplitude [7]. Since its invention, damping has been one of
the most popular research topics in many engineering fields and several thousands of publi-
cations on damping have appeared [8]. In many practical applications, damping effect is an
unignorable and even critical factor, and thus should be carefully considered and properly
simulated.
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Several linear damping models are available to represent the damping effect for engi-
neering applications. A linear viscous damping (LVD) model has been often used to rep-
resent damping since its use by Lord Rayleigh [9]. This may be partly because it provides
great convenience to the mathematical analyses of structure in both the frequency and time
domains. However, the energy dissipated by this model in one cycle of sinusoidal defor-
mation is proportional to the vibration frequency, which violates the experimental results of
many engineering solid materials.

Indeed, in the structural level, the damping mechanism becomes much more compli-
cated than that in the level of material. The sources of the inherent damping of an actual
building structure may include the internal friction in the structural material, connections,
and nonstructural components, opening and closing of microcracks in concrete, and so on.
When used in a single-degree-of-freedom (SDF) system, the LVD model may be thought to
be appropriate for a general simulation of the structural inherent damping due to various
sources, if an equivalent viscous damping coefficient is properly defined so that the dissi-
pated energy is equal to that dissipated in a vibration cycle of the actual structure. However,
such a method is difficult to be applied for simulating the structural damping in a multi-
degree-of-freedom (MDF) system, especially in an actual multi-story or high-rise building
structure. Unlike the stiffness characteristic, the damping characteristics of a structural el-
ement are poorly understood, and thus, in most applications, it is impractical to measure
the damping coefficients of individual structural elements or calculate damping coefficients
from the dimensions and other physical properties, and then assemble those coefficients for
construction of the damping matrix, as one does for the stiffness matrix.

A more practical method of simulating the structural inherent damping in an MDF sys-
tem is achieved by generally specifying the numerical values of modal damping ratios,
which may be properly estimated from experimental data. Those modal damping ratios
may be sufficient for dynamic analyses of those classically damped structures by using the
modal superposition method. However, for those non-classically damped structures or for
nonlinear simulation problems, the classical modal superposition method doesn’t apply and
in such cases, a properly constructed damping matrix is of fundamental necessity for step-
by-step response history analyses.

Several methods are well established for construction of the damping matrix of an MDF
structural system. The mass- and stiffness-proportional damping models are thought to be
inappropriate for simulating the structural inherent damping, because the variations of the
estimated modal damping ratios from the above models are not consistent with the exper-
imental data that indicate roughly the same damping ratios for several vibration modes of
structure [7]. Consisting of both mass- and stiffness-proportional parts, the Rayleigh damp-
ing provides entrances to specify the modal damping ratios at arbitrary two modes, which
makes it possible to define the modal damping ratios somewhat consistent with the experi-
mental data. If the frequency range, over which the nearly constant modal damping ratios
are specified, is thought to be narrow, one may apply the Caughey damping to extend it
by specifying the damping ratios at more modes, but this may result in a numerically ill
conditioned problem and also significantly increase the computational burden due to the
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resulting full damping matrix. Therefore, Rayleigh damping is often assumed in practical
applications.

However, in the past decades, many papers [10–18] have been reported on the potential
problems associated with the use of Rayleigh damping for simulation of structural inherent
damping. For example, Bernal [10] warned that spurious damping forces may be yielded if
Rayleigh damping is used for inelastic analyses of a structural system with massless degree-
of-freedoms. Hall [11] pointed out that Rayleigh damping may result in an nonconservative
analysis due to the unrealistically overestimated damping forces during inelastic response,
and suggested a remedy to overcome this problem by imposing bounds on the damping
forces. Recently, Chopra and McKenna [14] recommended a viscous damping matrix which
is constructed by superposition of modal damping matrices for nonlinear response history
analyses so that the spurious damping forces can be eliminated.

Alternatively, to comply with the experimental data that indicate roughly the same damp-
ing ratios for several vibration modes of structure [7], one may use RILD to construct the
damping matrix for simulation of the structural inherent damping. Such a method is thought
to be more straightforward than the above methods (i.e., Rayleigh damping, Caughey damp-
ing, or superposition of modal damping matrices), because RILD indeed originates from the
simulation of the internal friction of solid materials, which is one of the main sources of the
structural inherent damping. Moreover, the resulting damping matrix can be readily con-
structed because it only consists of a stiffness-proportional part, and more importantly, it is
independent on the modal characteristics of the structure. Therefore, no effort is required to
calculate the structural modal characteristics, which may be computationally expensive for
large-scale structures.

In summary, Fig. 1.3 classifies different types models for the simulation of structural
inherent damping. Except for the above mentioned damping models, some causal approxi-
mated models of RILD are also shown and to be introduced in the next section.

FIGURE 1.3: Different models for simulating structural inherent damping
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1.2 State of the art of rate-independent linear damping

It is well known that RILD originated from the simulation of internal friction in engineering
materials. Actually, it is dated back to the late of 1800s that the internal friction in solids has
been treated the same as the LVD in viscous fluid. After his experiments on the torsional
vibration of wires, Lord Kelvin [19] concluded that the internal friction in a vibrating elastic
solid doesn’t follow the law of viscosity of fluids, i.e., a simple vibrator experiences a resis-
tance force simply proportional to the velocity of its motion. Similar observations were also
later reported by Hopkinson and Williams [20], Rowett [21], Lindsay [22], and others.

In 1927, Kimball and Lovell [23] reported that, from tests on eighteen solids with dif-
ferent physical properties, the energy loss per sinusoidal strain cycle is proportional to the
square of strain amplitude, but independent on the strain rate over a considerable frequency
range. Similar observations were also reported and confirmed by Lazan [24]. These early ob-
servations led to the introduction of an idealized concept of rate-independent linear damp-
ing (RILD) to represent the internal friction in solids, also referred to as structural damping,
complex stiffness, linear hysteretic damping, or ideal hysteretic damping [25–28]. In this dis-
sertation, the terminology of "rate-independent linear damping" is preferred over the other
candidates, because it can transfer the clear damping characteristics, and avoid unneces-
sary confusions with the existing damping models in the field of earthquake engineering
(e.g., hysteretic damping is often interpreted as the energy dissipation behavior of a metal
yielding damper). After the discovery of Kimball and Lovell, the concept of RILD was suc-
cessfully applied to aircraft flutter problems for several decades [29, 30].

In the field of structural dynamics, a large number of publications have been reported
on RILD in the past decades. Crandall [28] investigated the dynamic responses of struc-
ture incorporated with RILD under an impulse and a stationary random excitations, and
found that a precursor response occurs before the application of the impulse, which implies
that an ideal RILD model is noncausal. The first causal model which exhibits nearly rate-
independent dissipation behavior was proposed by Biot [31]. Caughey [32] investigated
the dynamic responses of structure with the Biot model, and suggested that this model can
be constructed by arranging a spring element and an infinite number of Maxwell elements
connected with each other in parallel, as shown in Fig. 1.4. Such a model is sometimes
referred to as a Maxwell-Wiechert model [33, 34]. It should be noted that some attempts
were also made to approximate the behavior of RILD by adopting the fractional derivative
concept [35, 36].

Furthermore, an analytical expression of the impulse response function of an system
with ideal RILD was derived by Milne [37]. On the basis of convergent calculations us-
ing the Hilbert transform, a time-domain iterative technique for response analyses of struc-
tures with ideal RILD was proposed by Inaudi and Kelly [38], and later by using analytical
(complex-valued) signals, a less computationally demanding method was proposed by In-
audi and Makris [39]. However, in both methods, the explicit use of the Hilbert transform
are necessary, and this may compromise their capabilities of dealing with those cases where
residual displacements occur in nonlinear structural systems. More specifically, to apply the
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FIGURE 1.4: A physical representation of the Biot model

Hilbert transform to determine the RILD force, the whole deformation history from the past
to the infinite future are required, and thus a residual deformation may lead to an infinitely
large damping force, resulting in the failure of convergence. Makris [40] proposed a causal
hysteretic model which yields exact rate-independent dissipation behavior and showed that
this model is actually a high-frequency limiting case of the Biot model. Later, Makris and
Zhang [41] claimed that the Biot model is the simplest, causal and physically realizable RILD
model to approximate the nearly frequency-independent cyclic behavior of soil.

More recently, Spanos and Tsavachidis [42] developed two techniques for dynamic anal-
yses of structure incorporated with the Biot model: a recursive one developed by apply-
ing the Prony method, and another aoto-regression-moving-average method developed by
conducting nonlinear regression analyses. Muscolino et al. [43] applied the Laguerre poly-
nomial approximation method to the prediction of the dynamic response of different RILD
models under deterministic and random excitations. Nakamura [44, 45] suggested a method
for transforming the complex stiffness with large hysteretic damping to the time domain by
applying a linear regression technique and then proposed an approximated RILD model
which satisfies the condition of causality. This model can be readily used and efficiently
calculated in the time domain, but in the frequency domain, a closed-form analytical rep-
resentation is not available, and numerical evaluation of the Hilbert transform is required
instead to determine the dynamic stiffness at discrete frequency data points. Genta and Am-
ati [33] proposed a method of tuned Maxwell-Wiechert (TMW) model with a finite number
of Maxwell branches, so that it can approximate the loss modulus of the ideal RILD over
a frequency range of interest. A similar concept was used by Makris and Zhang [41] with
the Biot model as a reference model. Reggio et al. [46] proposed a methodology to identify
modal and physical parameters of linear non-viscous damped MDF systems on the basis of
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recorded time-histories of structural dynamic responses.
Ikago and Inoue [6] first pointed out the potential benefit of RILD in the seismic pro-

tection of low-frequency structures. Keivan et al. [47, 48] proposed semi-active methods
to mimic the behavior of RILD by using a first-order all-pass filter, which is further pas-
sively realized by using a mechanical system consisting of a negative stiffness element and
a Maxwell element connected with each other in parallel [49, 50]. Huang et al. [51] presented
a damping algorithm which can realize frequency-insensitive energy dissipation over a fre-
quency range of interest. Mastroddi et al. [52] extended the use of the Biot model to vis-
coelastic MDF systems for application to practical aerospace systems.

1.3 Structure of this dissertation

On the basis of the above background investigation, one can summarize that RILD has im-
portant applications in the following two aspects:

1) RILD is thought to provide a promising solution to simultaneously controlling both
the response displacement and floor-response acceleration in a low-frequency struc-
ture subjected to strong ground motions.

2) RILD is expected to be a straightforward model of simulating the structural inherent
damping without adopting the mathematically convenient assumption of Rayleigh
damping, which has been doubted for a long time.

However, it is well known that an ideal RILD model is noncausal, which makes it impos-
sible to be physically realized by using real-life devices, and also makes it challenging to
be numerically analyzed in nonlinear simulation problems. The purpose of this dissertation
is to pursue causal models which can mimic the behavior of ideal RILD and facilitate their practical
applications in the above two situations.

Although some causal models have been proposed to approximate the behavior of RILD,
and computationally efficient time-domain techniques are available for the dynamic re-
sponse analysis of a structural model with RILD, the following issues yet remain to be con-
sidered and thus to be discussed in this dissertation:

1) Lack of a simple and physically realizable model for utilizing the benefit of RILD in a base-iso-
lated building structure subjected to strong ground motions

Motivation: The existing causal RILD models are thought to be relatively complex in
the sense of their physical realization by using real-life devices for practical applica-
tions in low-frequency structures. For example, in order to physically realize the Biot
model, an infinite number of Maxwell elements are required to be arranged in paral-
lel [32]. Even though the number of Maxwell elements can be adequately reduced by
using the TMW model, it may be no less than a certain number to control the approxi-
mation error below a threshold.

Solution: In Chapter 2, following the illustration of the potential benefit of RILD for
seismic protection of a low-frequency structure, a simple and physically realizable
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model is to be proposed for utilizing this benefit. This model requires only one Maxwell
element connected in parallel with an ideal linear negative stiffness element (LNSE) (referred
to as Maxwell-negative-stiffness (MNS) model), which creates a physical implemen-
tation of the bilinear digital filter used by Keivan et al. [47] (hereafter referred to as
Keivan model). For applications into a base-isolation system, one can readily connect
an oil damper in series with a coil spring to realize the Maxwell element, and equiva-
lently reduce the horizontal stiffnesses of isolators to create the ideal LNSE. Otherwise,
a passive device which can create linear negative stiffness is to be designed for the
same purpose. The effectiveness of the MNS model for seismic protection of a 5-story
base-isolated benchmark building structure is also to be examined.

2) Lack of a novel causal model to connect the existing models and enable the development of a
unified framework of approximating the behavior of RILD

Motivation: Although the mathematical relation between the Makris and Biot models
has been established, more subtle connections between existing models remain to be
unveiled for the development of a unified framework of causally approximated RILD
models. For example, although both the Keivan and Biot models can be constructed
by using Maxwell element(s), the potential relation between these two models is still
poorly understood.

Solution: In Chapter 3, to achieve an improved approximation of the ideal RILD model
in the sense of an extended frequency range, over which the rate-independent dissi-
pation behavior may be mimicked, a novel fractional-order digital filter is generalized
from the bilinear digital filter used by Keivan et al. [47]. The novel filter can be physi-
cally constructed by arranging a fractional Maxwell element [53, 54] and an LNSE cou-
pled in parallel (hereafter referred to as fractional-Maxwell-negative-stiffness (FMNS)
model). The subtle relations between the FMNS model with the existing causal mod-
els are to be discussed and mathematically proved. A unified framework of causally
approximated RILD models is to be constructed. Furthermore, for the time-domain
implementation of the FMNS model, a numerical analysis technique is to be devel-
oped by directly calculating the fractional derivative on the basis of so-called L1-
algorithm [55], so that with little calculations associated with the coefficient estima-
tion, it can be readily embedded into the established numerical integration schemes
for nonlinear response history analyses of a structural model with RILD.

3) Lack of a computationally efficient method of analyzing the fractional-order RILD model for
simulating structural damping without adopting the assumption of Rayleigh damping

Motivation: RILD is expected to be a straightforward model for simulating the struc-
tural inherent damping without adopting the mathematically convenient assumption
of Rayleigh damping, but its noncausality hinders its application in a nonlinear simu-
lation problem. Causal approximations of RILD may be used to overcome this short-
coming, but typically suffer heavy computational burden associated with their time-
domain interpretations in terms of convolution integral. Some methods have been
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suggested to accelerate the analysis of a structural model with RILD in the time do-
main, but still limited effort has been made to develop a computationally efficient
method of analyzing the FMNS model, which is thought to be a unified causal RILD
model.

Solution: In Chapter 4, a recursive method is to be developed by using a Prony series
to approximate the Mittag-Leffler relaxation function, which is the damping kernel of
the FMNS model. Both time- and frequency-domain methods are to be discussed for
the parameter estimation of a Prony series. Compared with the L1-algorithm-based
method developed in Chapter 3, the above recursive method can be more computa-
tionally efficient without significant loss of simulation accuracy. Comparison stud-
ies are to be made between the developed method with the existing methods, e.g.,
the Nakamura method [45], and a method of superposition of modal damping ma-
trices [7] when they are separately applied to simulate the inherent damping of a
ten-story benchmark building model with the nonlinearities of structural stiffness ele-
ments taken into account.

On the basis of the research work in the previous chapters, some conclusions are to be
drawn, and more problems and further directions to be discussed in the future are to be
pointed out in Chapter 5. The structure of this dissertation is summarized in Fig.1.5.

FIGURE 1.5: Structure of this dissertation
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Chapter 2

A Simple Model to Utilize the Benefit
of RILD in Low-frequency Structures

2.1 Introduction‡

It is well known that a rate-independent damping element improves the performance of a
low-frequency structure by reducing the floor-response acceleration without increasing the
displacement when subjected to strong ground motion. Indeed, Makris [56, 57] indicated
that the presence of a friction-type damper in the isolation layer contributes to reducing
the isolator displacement and the floor-response acceleration simultaneously when a seis-
mic isolated structure is subjected to near-source ground motion containing a long-duration
pulse. He et al. [58] proposed a semi-active friction damper to reduce both the peak drift
and the peak acceleration of isolators by introducing a boundary layer around the switching
of the controller. Inaudi [59] proposed a semi-active control law designated modulated ho-
mogeneous friction (MHF) in which the control force is operated such that it is proportional
to the local peak deformation of the device. It can also be shown [59] that a linearized model
of the MHF is rate-independent linear damping (RILD). For example, Fig. 2.1 compares the
hysteresis loops of RILD and MHF, which are designed with the same amount of energy
dissipated in a sinusoidal deformation cycle.

RILD represents the frequency-independent dissipation characteristics of structural ele-
ments (or materials). It is also referred to as structural damping, complex stiffness, linear
hysteretic damping, or ideal hysteretic damping [25–27]. Ikago and Inoue [6] pointed out
that RILD benefits low-frequency structures by generating a lower restoring force and accel-
eration response than other damping types with similar displacement reduction. However,
owing to the non-causality of RILD [28], a linear elastic system equipped with RILD re-
quires the entire time history of the input ground motion in the analysis, and is thus most
conveniently calculated in the frequency domain [60].

Nevertheless, many attempts have been made to conduct time-domain analysis of RILD.
Reid [26] proposed a time-domain representation for RILD to solve the free vibration of a
single-degree-of-freedom (SDF) system. This model was later found to be nonlinear [61]
and impractical, because of the difficulty in the frequency-domain analysis of non-linear
models. The first successful viscoelastic model for RILD was presented by Biot [31]. In

‡Part of this chapter is reported in the publication (H. Luo et al., 2019)
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FIGURE 2.1: Hysteresis loops of RILD and MHF subjected to sinusoidal de-
formation

Biot’s model, an infinite number of Maxwell elements are arranged in parallel with a linear
spring. Time-domain analysis methods to solve the Biot model were pursued by Spanos
and Tsavachidis [42] and Muscolino et al. [43].

Crandall [62] investigated the impulse responses of an ideal viscous damper, an ideal
hysteretic damper (RILD), and a band-limited hysteretic damper, and concluded that a
damper with frequency independent energy dissipation responds prior to the application of
the impulsive excitation, violating causality requirements. Inaudi and Kelly [63] proposed a
time-domain analysis method based on convergent calculations using the Hilbert transform
in a repetitive manner. Inaudi and Makris [39] proposed a less computationally demanding
time-domain analysis method using complex-valued signals. Makris [40] proposed adding
an adjustable real term based on the Kramers–Kronig relations to the complex-value stiff-
ness of an ideal RILD model to satisfy the causality requirements. The model was shown to
be the high-frequency limiting case of the linear viscoelastic model proposed by Biot [31].
However, these causal representations of RILD are considered to be relatively complex for practical
applications. One of the major contributions in this work is the derivation of a simpler approximation
of RILD and its realization through the active control method and as a passive mechanical model.

The remainder of this chapter is organized as follows. In Section 2.2, the governing equa-
tion for a structure incorporated with RILD is given, followed by a description of the advan-
tages of RILD over linear viscous damping (LVD) in low-frequency structures. To further
illustrate the benefits of RILD in reducing floor-response acceleration without increasing
the displacements, Section 2.3 presents a model of a five-story structure employed for com-
parison between different energy-dissipating devices by conducting incremental dynamic
analysis and parametric studies. Furthermore, both active and passive models are proposed
to approximate RILD for practical applications in Section 2.4. Finally, some conclusions are
presented.



2.2. Equation of motion 13

2.2 Equation of motion

First, one considers a single-degree-of-freedom (SDF) shear building structure containing
an LVD element subjected to harmonic ground excitation ẍg(t) = Aeiωt, where i, ω, and
A are the imaginary unit, excitation circular frequency, and ground acceleration amplitude,
respectively. The equation of motion for the SDF model whose mass, stiffness, and damping
coefficient are m, k, and c, respectively, is

m · 1 ẍ(t) + c · 1 ẋ(t) + k · 1x(t) = −mẍg(t) (2.1)

where 1x(t) is the response displacement of the mass relative to the ground, and the left
subscript “ 1 ” indicates the response of the LVD system. The fundamental natural circular
frequency and damping ratio for this system are ω0 =

√
k/m and h = c/(2mω0), respec-

tively. Substituting 1x(t) = 1Xeiωt into Eq. (2.1) yields

(−ω2 + 2hiωω0 + ω2
0) · 1Xeiωt = −Aeiωt (2.2)

Second, the equation of motion for an SDF structure equipped with a RILD element
having a loss factor 2β is considered as follows,

(−ω2 + 2βiω2
0sgn(ω) + ω2

0) · 2Xeiωt = −Aeiωt (2.3)

where the left subscript “ 2 ” indicates the response of the RILD system and sgn(ω) is the
signum function, i.e. sgn(ω) = 1 if ω > 0; sgn(ω) = 0 if ω = 0; otherwise, sgn(ω) = −1.

Let the damping forces of LVD and RILD in the frequency domain be 1Ff (iω) and 2Ff (iω),
respectively.

1Ff (iω) = 2ih
ω

ω0
k · 1X (2.4)

2Ff (iω) = 2iβksgn(ω) · 2X (2.5)

Provided that β = h, and the difference between 1X and 2X is negligibly small and
thereby 1X = 2X = X, then the following relationship between the damping forces of LVD
and RILD holds:

HT(iω) =
2Ff (iω)

1Ff (iω)
=

ω0

|ω| (2.6)

which suggests that under the above mentioned assumption, the damping force of RILD
is lower than that of LVD when the excitation frequency is higher than the fundamental
natural frequency of the structural system.

2.2.1 Transfer functions of LVD and RILD systems

Solving Eqs.(2.2) and (2.3) with respect to the displacement amplification factor X/A yields
the transfer functions for the linear viscous damped system 1H(iω) and the rate-independent
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linear damped system 2H(iω), respectively:

1H(iω) = − 1
−ω2 + 2hiωω0 + ω2

0
(2.7)

2H(iω) = − 1
−ω2 + {1 + 2βisgn(ω)}ω2

0
(2.8)

The absolute acceleration transfer functions for the linear viscous damped system 1Ha(iω)

and the rate-independent linear damped system 2Ha(iω) can be obtained, respectively:

1Ha(iω) =
2hiωω0 + ω2

0

−ω2 + 2hiωω0 + ω2
0

(2.9)

2Ha(iω) =
{1 + 2βisgn(ω)}ω2

0

−ω2 + {1 + 2βisgn(ω)}ω2
0

(2.10)

For the damping forces, the following quantities are defined as damping force coefficient
transfer functions:

1H f (iω) = − 2hiωω0

(−ω2 + 2hiωω0 + ω2
0)g

(2.11)

2H f (iω) = − 2βiω2
0sgn(ω)[

−ω2 + {1 + 2βisgn(ω)}ω2
0

]
g

(2.12)

where g is the acceleration due to gravity.

FIGURE 2.2: Squared resonance curves

As shown in Fig. 2.2, the squared displacement transfer functions for the two systems are
similar at any frequency, whereas those for the damping forces are substantially different.
In the frequency region higher than the fundamental natural frequency, the control force of
the LVD is higher than that of RILD, while the opposite holds true in the frequency region
lower than the fundamental natural frequency. This suggests that LVD in a low-frequency
structure subjected to high-frequency ground motion may generate higher damping forces
compared to RILD, which can result in higher floor-response accelerations.
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FIGURE 2.3: Power spectral density (JMA Kobe 1995 N–S)

For example, let the SDF structure be a long-period base-isolated structure with a funda-
mental natural period of 4 second and containing two different types of damping elements
with the same damping ratio of 0.2: 1ξ = h = 0.2 and 2ξ = β = 0.2. Fig. 2.3 shows
the analytical results of the two differently-damped structures. The north–south compo-
nent of the ground motion recorded by the Japan Meteorological Agency (JMA) during the
1995 Kobe Earthquake was employed. Figs. 2.3(a) and 2.3(b) show the Fourier amplitude
spectrum and power spectral density of the ground motion, respectively. Because the dis-
placement transfer functions are equally similar for the two differently-damped structures
(Fig. 2.3(c)), the displacement power spectral densities are similar (Fig. 2.3(f)). Although
the absolute acceleration transfer functions of the two differently-damped systems are also
similar (Fig. 2.3(d)), the differences between their power spectral densities for absolute accel-
erations (Fig. 2.3(g)) in the frequency region higher than the fundamental natural frequency
become noticeable when excited by high-frequency components in the ground motion. In
addition, the damping forces show substantial differences (Figs. 2.3(e) and (h)). In frequency
regions higher than the fundamental natural frequency, the power spectral density of the
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FIGURE 2.4: Responses of linear viscous damped and rate-independent linear
damped systems(JMA Kobe 1995 N–S)

damping force for the LVD system contains higher frequency components (dashed line)
than those of the RILD system (solid line).

Furthermore, Fig. 2.4 compares the time histories of the two differently-damped struc-
tures. It should be pointed out that due to the non-causality of the RILD model in the time
domain, in this study, the time history analyses of structure incorporated with RILD are con-
ducted in the frequency-domain with the entire time history of input ground motion pro-
vided. The two exhibit almost identical displacement and velocity time histories, whereas
the maximum damping force yielded by RILD is roughly half that of LVD. In addition, there
is a small reduction in the acceleration response for the system with RILD. Although one
cannot fully explore the effect of higher modal responses in acceleration using an SDF sys-
tem, the lower damping forces of RILD are expected to result in lower floor-response accel-
erations than those yielded by LVD. The effect of higher modes in a multi-degree-of-freedom
system (MDF) is discussed in Section 2.3.
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2.2.2 Fundamental circular frequency and response central circular frequency

Assume that the ground motion xg(t) is a stationary random process with a zero mean
value and a one-sided power spectral density S(ω), the response kx(t) can also be assumed
to be a stationary random process with power spectral densities described by the following
equation:

kG(ω) = |k H(iω)|2S(ω) (k = 1, 2) (2.13)

where k = 1 and k = 2 indicate LVD and RILD, respectively.
Here, the n-th spectral moments kλn and central frequencies kωn are defined as follows:

kλn =
∫ ∞

0
ωn · kG(ω)dω (k = 1, 2; n = 0, 1, 2) (2.14)

kωn =

(
kλn

kλ0

) 1
n

(k = 1, 2; n = 1, 2) (2.15)

According to Parseval’s theorem, kλ0 and kλ2 are identical to the mean square values of
the response displacements and velocities, respectively:

kσ2
x =

1
T

∫ T

0
kx(t)2dt = kλ0 (2.16)

kσ2
ẋ =

1
T

∫ T

0
k ẋ(t)2dt = kλ2 (2.17)

where 1x(t) and 2x(t) are the relative displacements of the LVD and RILD systems, respec-
tively. Let kω1 denote the first central frequency of kG(ω). Then, one has∫ ∞

0
(ω− kω1) · kG(ω)dω = 0 (2.18)

The second central moments k I are

k I =
∫ ∞

0
(ω− kω1)

2 · kG(ω)dω (2.19)

Thus, the second spectral moments with respect to the frequency origin are∫ ∞

0
ω2 · kG(ω)dω = kω2

1 · kλ0 + k I (2.20)

Because kG(ω) are narrow-band processes, one can assume that the second central mo-
ments k I on the right-hand side of Eq. (2.20) are relatively small compared to those of the
first term. Thus, one can substitute kω2 for the central frequency kω1 [64], neglecting the
second term on the right-hand side of Eq. (2.20) to obtain

kω2
2 = kω2

1 +
k I

kλ0
≈ kω2

1 (2.21)
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If the ground excitation is the white noise with a constant power spectrum density
S(ω) ≡ S0, then

1σ2
x =

S0

4hω3
0

(2.22)

1σ2
ẋ =

S0

4hω0
(2.23)

1σ2
ẍ+ẍg

=
S0ω0(1 + 4h2)

4h
(2.24)

2σ2
x =

√
1 +

√
1 + 4β2

2(1 + 4β2)

S0

4βω3
0

(2.25)

2σ2
ẋ =

√
1 +

√
1 + 4β2

2
S0

4βω0
(2.26)

2σ2
ẍ+ẍg

=

√
(1 +

√
1 + 4β2)(1 + 4β2)

2
S0ω0

4β
(2.27)

Provided that h = β, the following equations hold

kσẍ+ẍg = ω2
0

√
(1 + 4h2) · kσx (2.28)

2σẍ+ẍg

1σẍ+ẍg

=
2σx

1σx
=

4

√
1 +
√

1 + 4h2

2(1 + 4h2)
(2.29)

It should also be noted that for h > 0,

4

√
1 +
√

1 + 4h2

2(1 + 4h2)
< 1 (2.30)

Therefore, one can conclude that with equal damping ratios h = β > 0, the displacement
variance 2σ2

x and absolute acceleration variance 2σ2
ẍ+ẍg

of the RILD system are lower than
those of the LVD system, 1σ2

x and 1σ2
ẍ+ẍg

, respectively, when excited by the white noise with
a constant power spectrum density.

Alternatively, when h and β are relatively small (< 0.05), the following approximations
hold

kσẍ+ẍg ≈ ω0 · kσẋ ≈ ω2
0 · kσx (2.31)

Let kSD(ω0), kSV(ω0), and k,pSV(ω0) denote the maximum displacement spectra, maxi-
mum velocity spectra, and pseudo-velocity spectra, respectively:

kSD(ω0) = max
t
{|kx(t)|} (2.32)

kSV(ω0) = max
t
{|k ẋ(t)|} (2.33)

k,pSV(ω0) = ω0 · kSD(ω0) (2.34)
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If the fundamental circular frequency ω0 is close to the dominant circular frequency of the
ground motion and thus to the central frequency, the following relationship holds:

kSV(ω0) ≈ k,pSV(ω0) = ω0 · kSD(ω0) (2.35)

Eqs.(2.31) and (2.35) are especially useful for practicing structural engineers designing
rate-dependent devices when they are exclusively provided with maximum displacement
spectra. However, these hold in limited cases. Indeed, Pekcan, Mander, and Chen [65]
pointed out that the pseudo-velocity spectrum underestimates the force generated by a
rate-dependent device and proposed an alternative simple estimation procedure that in-
corporates equivalent linear damping based on actual velocities.

The root mean square (RMS) values of the damping force coefficients kσF defined as the
ratios of the damping forces to the total weight of the structure mg are

1σF =
2hω0 · 1ω2 · 1σx

g
(2.36)

2σF =
2βω2

0 · 2σx

g
(2.37)

Provided that h = β and 1σx ≈ 2σx,
1σF

2σF
≈ 1ω2

ω0
(2.38)

Similarly, the coefficients of the maximum damping forces kC f defined as the ratios of
the damping forces to the total weight of the structure are

1C f =
2hω0 · kSV(ω0)

g
(2.39)

2C f =
2βω0 · k,pSV(ω0)

g
(2.40)

Provided that h = β,
1C f

2C f
= kSV(ω0)

k,pSV(ω0)
(2.41)

Eqs. (2.38) and (2.41) explain the difference between the damping forces in the two
differently-damped systems. Table 2.1 lists the ratios of RMS damping forces and maximum
damping forces for the example structures subjected to the Kobe record; these demonstrate
that the maximum rate-independent linear damping force is approximately half the value
of the maximum linear viscous damping force.

TABLE 2.1: RMS and maximum damping force coefficients

1σF: 0.106 1ω2: 2.881 1C f : 0.524
2σF: 0.058 2ω2: 1.571 2C f : 0.234

1σF/2σF: 1.82 1ω2/2ω2: 1.83 1C f /2C f : 2.24
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2.3 Comparisons with other energy-dissipating devices

To further illustrate the benefit of RILD in reducing floor-response accelerations without
increasing displacements, a base-isolated five-story shear building was employed as an an-
alytical example. Fig. 2.5 depicts this analytical model while Table 3.4 lists its properties. The
total horizontal stiffness of the isolators is designed such that the fundamental undamped
natural period of the structure is 4.0 s. The inherent damping of the superstructure with its
base fixed is 2% of the critical damping value for the first mode, and the inherent damping
at the isolation level was ignored.
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FIGURE 2.5: Benchmark structure

TABLE 2.2: Properties of the analytical model

Floor Mass (t) Stiffness (kN/m) Damping coefficient (kN·s/m)
R 1 739 — —
5 1 800 2 291 000 9 770
4 1 807 2 488 000 10 610
3 1 928 1 939 000 8 270
2 2 335 2 038 000 8 690
1 3 057 1 760 000 7 510

Isolation level — 31 250 —

For comparison, four types of damping devices were incorporated into the isolation
level: LVD, RILD, nonlinear viscous damping, and hysteretic damping. Each damping de-
vice is identified by a number, as denoted in Table 2.3.

Fig. 2.6 shows the characteristics of the nonlinear viscous and hysteretic dampers, where
C1 and C2 respectively denote the initial damping coefficient and the slope of the damping
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TABLE 2.3: Damper properties

Number Type Property
1 Linear viscous h = 0.25
2 Rate-independent linear β = 0.28
3 Nonlinear viscous C1 = 12, 590 kN·s/m, C2 = 853.1 kN·s/m
4 Hysteretic α = 0.028

force with respect to the velocity after the relief valve of the fluid damper is activated, and α

is the yield load coefficient of the hysteretic damper.
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FIGURE 2.6: Properties of nonlinear dampers

Three types of recorded ground motion and three types of synthetic ground motion
were employed as design earthquakes, in accordance with the practice in Japan. The three
recorded ground motions were scaled such that their peak ground velocities (PGVs) were
0.5 m/s. Table 2.4 lists the details of the ground motion.

The spectral accelerations of the synthetic ground motions were compatible with the
target spectrum, as shown in Fig. 2.7(b). The amplification properties of a typical surface
subsoil were considered to determine the target spectrum in accordance with building de-
sign codes in Japan. The phase properties of the ground motion listed in Table 2.5 were used
to synthesize the ground motion. Each ground motion is identified by a number, as shown
in Tables 3 and 4. It should be mentioned that the time history analyses of the MDF struc-
ture with RILD were also conducted in the frequency-domain with the entire time history
of input ground motion provided.

TABLE 2.4: Recorded ground motions

Number Earthquake Station Component PGV (m/s)
1 Imperial Valley, USA, 1940 El Centro N–S 0.5
2 Kern County, USA, 1952 Taft E–W 0.5
3 Tokachi-oki, Japan, 1968 Hachinohe Harbor N–S 0.5
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FIGURE 2.7: Target spectral acceleration

TABLE 2.5: Ground motions used to determine the phase properties

Number Earthquake Station Component
4 Imperial Valley, USA, 1940 El Centro N–S
5 Kern County, USA, 1952 Taft E–W
6 Kobe, Japan, 1995 JMA Kobe N–S

Let kxs
j (t) denote the relative displacement at time t of the jth floor of the model contain-

ing the damping device k subjected to ground motion labeled by s. The four types of damp-
ing devices were designed such that the maximum isolator displacements max

s,t
{kxs

1(t); s =

1, 2, . . . , 5, 6, 0 ≤ t ≤ T}, were 0.3 m. Table 2.3 lists the properties of the dampers that
achieve this performance. For example, Figs. 2.8 and 2.9 show the time history seismic
responses of the four differently-damped systems under synthetic ground motion with the
Kobe record phase (s = 6). Fig. 2.10 shows the corresponding hysteresis loops for different
dampers. In Figs. 2.8 and 2.9, it should be mentioned that although the nonlinear viscous
and hysteretic damping systems generate relatively lower damping forces than that gener-
ated by linear viscous damping system, they generate larger maximum floor-response accel-
erations. This is partly because under the excitation of ground motion, the two nonlinearly
damped systems experience phase transitions due to changes in the damping or stiffness
parameters in the nonlinear damping devices. During transition from one phase to another,
internal force redistributions may occur, along with an increase in the floor-response acceler-
ations in the two systems. This can obviously be observed from the time history responses of
the hysteretic damping system in Figs. 2.9(b) and (c). Fig. 2.11 shows the maximum seismic
responses of the four differently-damped systems under each ground motion.

Furthermore, to understand the benefits of RILD incorporated into long-period struc-
tures, a number of incremental dynamic analyses (IDA) were performed. The six types of
ground motion mentioned above were used as input ground motion in conducting the IDA,
where the scale factor (SF) was varied from 0.5 to 1.5 at the interval of 0.05. All types of
ground motion employed here were scaled such that their PGVs were 0.5 m/s when the
scale factor SF = 1.0. In the design practice used in Japan, scale factors of SF = 0.5 and
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FIGURE 2.8: Time history responses of the nonlinear and linear viscous damp-
ing systems (synthetic ground motion(phase property: JMA Kobe 1995 NS))
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FIGURE 2.9: Time history responses of the hysteretic damping and RILD sys-
tems (synthetic ground motion(phase property: JMA Kobe 1995 NS))

SF = 1.0 correspond to design level and maximum considerable level earthquakes, respec-
tively. If the performance of the structures against an excessive level earthquake beyond
the maximum considerable level is to be examined, a scale factor of SF = 1.5 is commonly
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FIGURE 2.10: Hysteresis loops (synthetic ground motion(phase property:
JMA Kobe 1995 NS))
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FIGURE 2.11: Maximum responses under each ground motion

used in Japanese practice. Fig. 2.12 plots the maximum floor-response accelerations for the
differently-damped structures max

j,t,s
{k ẍs

j (t); j = 1, 2, . . . , 5, R, s = 1, 2, . . . , 6, 0 ≤ t ≤ T}

against the maximum isolator displacements max
t,s
{kxs

1(t); s = 1, 2, . . . , 6, 0 ≤ t ≤ T}.



2.4. Proposed models of rate-independent linear damping 25

Among all of the scale factors, RILD showed the best performance. Nonlinearly damped
systems (k = 3, 4) suffer large displacements as the scale factor increases, because the equiv-
alent damping decreases as the response displacements increased in nonlinear damping
devices.

Fig. 2.13 plots the maximum floor-response accelerations max
s,j,t
{k ẍs

j (t); s = 1, 2, . . . , 6, j =

1, 2, . . . , 5, R, 0 ≤ t ≤ T} against the maximum isolator displacements max
s,t
{kxs

1(t); s =

1, 2, . . . , 6, 0 ≤ t ≤ T}, where the damper parameter varies and the scale factor is fixed to
SF = 1. In the case of nonlinear viscous damping device, the damping parameters C1 and
C2 vary proportionally to each other. Fig. 2.13 shows the influence of damper parameter se-
lections on the tradeoff between the isolator displacement and maximum floor-response ac-
celeration (e.g., as achieved by varying an individual damper or a number of dampers). The
figure reveals that there is an optimum damper parameter to minimize the maximum floor-
response acceleration for each damping device. Adding more than the optimum damper
parameter reduces the isolator displacements at the expense of increased floor-response ac-
celerations. The reduction in floor-response acceleration of the structure with RILD becomes
greater than that obtained from other damping devices as the damper parameters increase.
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FIGURE 2.12: Incremental dynamic analysis

2.4 Proposed models of rate-independent linear damping

Although causal representations of RILD have been proposed by many researchers, they are
considered to be relatively complex for practical applications. This section pursues a simpler
and therefore more practical representations of RILD as active control and passive models.

2.4.1 Active control system

Here, we derive a first-order causal digital filter to determine the control force for a diagram
of active control system [66–69]. Fig. 2.14 shows an active controlled base-isolated system.
Multiplying the damping force of LVD 1Ff (iω) by the target filter, as in Eq. (2.6), yields the
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ideal desired control force to achieve rate-independent linear damping for the control device
Fc(iω):

Fc(iω) = 2Ff (iω) = HT(iω) · 1Ff (iω) (2.42)

First-order Butterworth filter

Because the ideal target filter HT(iω) cannot be implemented owing to its noncausality, we
employ a first-order Butterworth filter to approximate it, inspired by the insight that the am-
plitude of the Butterworth filter approaches the target amplitude as the excitation frequency
increases in the frequency region beyond the cut-off frequency. A first-order Butterworth
filter with a cutoff circular frequency of ω0 is expressed as follows:

HB(iω) =
1

1 +
iω
ω0

(2.43)

Fig. 2.15(b) depicts the Bode plot of the target filter and the Butterworth filter with a
cut-off frequency of 0.25 Hz. As shown in Fig. 2.15(b), the phase lags throughout the entire
frequency region. In particular, the phase delay at the cut-off frequency is 45 degrees (π/4
rad).

Phase compensating filter

Because the ideal control force should be in phase with the velocity, we can predict the
unknown future velocity t̄ seconds after the current time t0 using an undamped SDF system
with a fundamental circular frequency of ω0.

If we assume that the future ground motion after time t0 is a stationary random process
with a zero mean, as we did in Section 2.2.2, the ensemble mean of the future unknown
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FIGURE 2.14: Diagram of active controlled base-isolation system
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ground excitation is
E[ẍg(t)] = 0 (t0 < t) (2.44)

The expected velocity at time t = t0 + t̄ is obtained as follows:

E[ẋ(t)] = −
∫ t0

0
ẍg(τ) cos ω0(t− τ)dτ + E

[
−
∫ t

t0

ẍg(τ) cos ω0(t− τ)dτ

]
= −

∫ t0

0
ẍg(τ) cos ω0(t0 + t̄− τ)dτ

= ẋ(t0) cos ω0 t̄−ω0x(t0) sin ω0 t̄

(2.45)

To compensate for the phase lag of π/4 rad, the time difference t̄ is

t̄ = π/(4ω0) (2.46)
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Therefore, Eq. (2.45) reduces to

E[ẋ(t)] =
1√
2
{ẋ(t0)−ω0x(t0)} (2.47)

Thus, the phase compensating filter is

HPC(iω) =
F [E[ẋ(t)]]
F [ẋ(t0)]

=
1√
2
(1− ω0

iω
) (2.48)

where F [ ] is the Fourier transform.
As shown in Fig. 2.15(a), the phase of HPC(iω) at ω0 is 45 degrees (π/4 rad), compen-

sating for the phase lag of the Butterworth filter. Another benefit to this filter is that it raises
the amplitude in an inversely proportional manner at low frequencies, compensating for the
difference between the target filter and the Butterworth filter.

Proposed filter

As shown in Fig. 2.15(c), the amplitude of HB · HPC has the same form as the target filter, ex-
cept for its scale. It can be observed that the phase is adjusted to zero at ω0, as one intended.
Thus, the proposed filter is obtained as follows:

Hv(iω) = cF · HB(iω) · HPC(iω) (2.49)

where cF is a modulating factor. The modulating factor is determined such that the ampli-
tude of the proposed filter is identical to that of the target filter at ω0:

|Hv(iω0)| =
1√
2

cF = 1 (2.50)

Hence, Eq. (2.49) reduces to

Hv(iω) =
ω0

iω
iω−ω0

iω + ω0
(2.51)

Because it is practical to determine the control force using the measured displacement
obtained by a local sensor, one can further reduce Eq. (2.42) to the following expression,
provided that h = β and the measured displacement in the frequency domain Xm = X =

1X = 2X:

Fc(iω) =
iω
ω0

Hv(iω) · 2hk 1X =
iω−ω0

iω + ω0
2βkXm (2.52)

The first-order all-pass filter (iω − ω0)/(iω + ω0) in Eq. (2.52) is identical to that pro-
posed by Keivan et al. [47], in which the performance of the filter against various types
of ground motion was compared to the approaches proposed by Biot and Makris [31, 40].
The filter of Eq. (2.52) can be implemented as the control law for an active control system.
Passive methods will be explored next.
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2.4.2 Passive rate-independent model

Consider a Maxwell element [70] with a stiffness of kM and a damping coefficient of cM, as
shown in Fig. 2.16. The transfer function from the measured displacement Xm to the control
force FM has one pole and one zero, as shown in Fig. 2.17(a):

FM(iω)

Xm(iω)
=

iω
iω + kM

cM

kM (2.53)

Adding ideal linear negative stiffness in parallel with the Maxwell element, as shown in
Fig. 2.18, shifts the zero to a positive real value so as to passively implement the first-order
all-pass filter, as shown in Fig. 2.17(b) and Eq. (2.52).
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FIGURE 2.18: Conceptual model of passive RILD

The resultant force of the ideal linear negative stiffness and Maxwell elements, FP(iω),
can be expressed in the frequency domain as follows,

FP(iω) = (kN +
iωkM

iω + kM
cM

) Xm (2.54)
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where kN is the stiffness of the negative stiffness element arranged in parallel with the
Maxwell element. These parameters are determined as follows,

kN = −2βk, kM = 4βk, cM = 4βmω0, (2.55)

and thus Eq. (2.54) reduces to

FP(iω) =
iω−ω0

iω + ω0
2βkXm. (2.56)

From Eq. (2.56), it can readily be seen that the control force provided by the proposed
model is expressed exactly the same way as that in Eq. (2.52), implying that the first-order
all-pass filter can be represented by an ideal linear physical model.

To investigate the performance of the passive RILD model proposed in this study, the
seismic responses of the base-isolated five-story building (described in Section 3) incorpo-
rated with the proposed and LVD models were investigated by conducting time history
analyses. For the RILD model, a passive rate-independent model with an ideal linear neg-
ative stiffness element was used because the damping force generated by the passive RILD
model is identical to that of the active control model using the first-order all-pass filter. For
this purpose, one employed the north–south component of the ground motion recorded
at the JMA in the 1995 Kobe Earthquake and the east–west component of ground motion
recorded at the CDAO site during the 2003 Tokachi-oki Earthquake. The damping ratios for
the linear viscous damping and passive rate-independent damping models are determined
such that they were the same: 1ξ = h = 0.2 and 2ξ = β = 0.2. The properties of the two
damping models are listed in Table 2.6.

TABLE 2.6: Properties of LVD and passive RILD models

Property Linear viscous Passive rate-independent linear
Damping coefficient (kN·s/m) 8 036 16 072
Positive stiffness (kN/m) — 25 004
Negative stiffness (kN/m) — -12 502

The time-history responses of the structure incorporated with the proposed RILD and
LVD models are shown in Figs. 2.19 and 2.20, and the corresponding hysteresis loops for the
two models under each type of ground motion are shown in Fig. 2.21.

From Fig. 2.19(a), it can be seen that under the ground motion induced by the Kobe
Earthquake, the isolator displacements of the structure yielded by the two linear damping
models are similar. Conversely, the rooftop response accelerations of the structure with the
proposed model are lower than those of the structure with the LVD model. This is because
the damping forces of the proposed model are lower than those of the latter, whereas the
isolator displacements are similar, as shown in Fig. 2.21(a).
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FIGURE 2.21: Hysteresis loops of different damping models

For the Tokachi-oki Earthquake, where the ground motion is dominated by low-frequency
components, the two damping models exhibit similar energy dissipation behaviors, as shown
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in Fig. 2.21(b). Thus, in Fig. 2.20, both the isolator displacements and rooftop response ac-
celerations of the two differently-damped structures are similar, supporting the conclusions
obtained in Section 2.2. This implies that the performance of the proposed model is not com-
promised, even when it is excited by ground motion containing low-frequency components.
It should also be pointed out that in this case, because the ground motion contains domi-
nant low-frequency components, whose frequencies are close to the isolation frequency, the
seismic responses of the structures are dominated by these components. Thus, the damp-
ing devices show less dependency on the excitation frequency, resulting in ellipse-shaped
hysteresis loops, as shown in Fig. 2.21(b).

2.4.3 Nonlinear effect of negative stiffness device

To realize the passive rate-independent model proposed in the above section, it is crucial
to create a linear negative stiffness element. In this regard, the most straightforward way
for creating effective linear negative stiffness is simply achieved by reducing the horizontal
stiffness of the isolators. Alternatively, the use of the mechanical devices developed by Sarlis
et al. [71] and Sun et al. [72] may be a suitable means for implementing negative stiffness.
Proper design on these devices is required for use in the proposed rate-independent model
because they can exhibit strong nonlinearity under large deformations.

Here, for example, a simple available NSD introduced in reference [71] is considered, as
shown in Fig. 2.22.

FIGURE 2.22: A simple negative stiffness device under large deformation

The NSD consists of a precompressed spring used to generate a horizontal force in the
direction of displacement and thus create the negative stiffness, and a double chevron self-
containing system to resist the preload in the spring and prevent the vertical component of
the preload from transferring to the structure. Ignoring the height loss of the system due to
the pendulum motion of the hinged column, the horizontal displacement-force relationship
of the NSD can be expressed as follows [71],

F = −(
Pin + Kslp√

l2
p + u2

− Ks)
L− lp

L
u (2.57)
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where F and u are the horizontal force and lateral displacement of the device, respectively;
Pin and Ks are the preload and spring rate of the compressed spring, respectively; lp and L
are the spring length and the height of the hinged column, respectively.

It should be pointed out that Eq. (2.57) holds when u is relatively small compared to the
column height. However, when used in a base-isolation system, the NSD may suffer a large
displacement, resulting in a relatively large rotation of the hinged column. In such cases,
the height loss of the device should be considered. When the device is displaced by u at the
top, the height of the hinged column becomes

√
L2 − u2, and thus the spring length becomes√

(lp +
√

L2 − u2 − L)2 + u2. After some calculations, the horizontal force provided by the
NSD can be expressed as follows,

F = (
Pin + Kslp√

(lp +
√

L2 − u2 − L)2 + u2
− Ks)

u(lp − L)
√

L2 − u2
(2.58)

It should be noted that when u is small relative to the column height h, the above equa-
tion reduces to Eq. (2.57). To further illustrate the differences between the forces obtained
by Eqs. (2.57) and (2.58), for example, an NSD is designed to generate a tangent stiffness
at u = 0 equal to the desired linear negative stiffness listed in Table 2.6. The properties of
the designed NSD are listed in Table 2.7. Although the values of preload and compressed
spring stiffness used here are much larger than those given in reference [71], it is still possi-
ble to realize the designed NSD because one can increase the number of NSDs and arrange
them in parallel in the isolation layer so that the designed preload and compressed spring
stiffness are achieved. A detailed method for designing the NSD for the implementation of
the proposed rate-independent damping model is explored in reference [73].

TABLE 2.7: Properties of the designed NSD

Property Symbol Value
Preload Pin 18 752 kN
Spring stiffness Ks 37 505 kN/m
Spring length lp 0.75 m
Hinged column height L 1.50 m

Figure 2.23(a) shows the displacement-force relations of the designed NSD obtained by
Eqs. (2.57) and (2.58), respectively, as well as that of the desired linear negative stiffness
listed in Table 2.6, while Figure 2.23(b) shows the normalized forces of the three NSDs
divided by that of the linear NSD against the displacement. It should be noted that at u = 0,
the normalized force F/(kNu) equivalently represents the ratio of the tangent stiffness of the
nonlinear NSD to the linear negative stiffness. Therefore, the values shown in Figure 2.23(b)
is unity at u = 0 even though the force provided by the NSDs are both equal to zero.

Comparing the forces obtained by Eqs. (2.57) and (2.58) in Figure 2.23, it can be seen
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FIGURE 2.23: Deformation-force relations of different NSDs

that when the displacement u is small, the forces obtained by the two equations are sim-
ilar, and are both close to the force provided by the desired linear NSD. However, given
relatively large displacements, the forces obtained by Eq. (2.57) are obviously lower than
those obtained using Eq. (2.58), implying that ignoring the height loss due to the pendulum
motion of the hinged column may lead to underestimation of the forces provided by the
nonlinear NSD under large deformations. Comparing the forces obtained by Eq. (2.58) and
the ideal linear NSD, it can be seen that within the displacement range of interest (e.g. lower
than 0.3 m), the nonlinear and linear NSDs behave similarly, and the relative differences
between their forces are below 10% at a displacement of 0.3 m and below 20% at a displace-
ment of 0.45 m, implying that using a linear negative stiffness element would provide a
good approximation of the behavior of the designed nonlinear NSD when the displacement
is within the displacement range of interest. To verify this observation, a passive nonlin-
ear rate-independent model was designed by replacing the ideal linear negative stiffness
element as the designed nonlinear NSD given in Table 2.7, while the seismic performance
of the base-isolated five-story building (described in Section 3) incorporating a nonlinear
rate-independent model was investigated by conducting nonlinear time history analyses.
For this purpose, one employed the north–south component of the ground motion recorded
at the JMA in the 1995 Kobe Earthquake and the east–west component of ground motion
recorded at the CDAO site during the 2003 Tokachi-oki Earthquake. Figure 2.24 shows the
hysteresis loops of the nonlinear rate-independent model represented by Eq. (2.58) and the
ideal rate-independent linear model used in Section 2.4.2 under each type of ground motion.

In Figure 2.24, small differences can be observed between the hysteresis loops of the two
types of rate-independent models under each type of ground motion, even though these two
models experience a maximum displacement over 0.4 m under the Tokachi-oki Earthquake.
This means that the ideal linear negative stiffness element provides a good approximation of
the well designed nonlinear NSD, consistent with the observation on the displacement-force
relations shown in Figure 2.23. Therefore, even though the designed NSD is indeed nonlin-
ear, the nonlinear effect of the NSD can be neglected within the deformation of interest if
properly designed. In this case, it can be approximated as a linear negative stiffness element
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for realizing the proposed rate-independent damping model. The NSD design example
given in this section provides a design alternative for creating a physical linear negative
stiffness element within the displacement range of interest, making the proposed passive
model more attractive for approximating the performance of RILD.
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FIGURE 2.24: Hysteresis loops of different rate-independent models

2.5 Chapter conclusions

In this chapter, we discussed the behavior of RILD in long-period structures subjected to
strong ground motion. RILD is known to yield almost identical response displacements and
velocities to those of LVD, whereas the damping forces generated are substantially different,
resulting in substantially different floor-response accelerations. This is because the values
of the damping force transfer function for RILD in the frequency region higher than the
fundamental natural frequency of the structure are lower than those of LVD, whereas the
displacement and velocity transfer functions of the two linear damping elements are almost
identical.

In particular, when a long-period structure is subjected to ground motion containing
high-frequency components, RILD yields lower floor-response accelerations compared to
other damping devices without increasing the response displacements. The results of the
incremental dynamic analyses and performance curves obtained in Section 2.3 by using an
example base-isolated MDF structure subjected to strong ground motion illustrated the ben-
efits of RILD.

In terms of practical applications, both active and passive methods were proposed to
implement the derived model for RILD. Comparisons between the seismic responses of
structures incorporated with the proposed and LVD models show that when excited by
high-frequency-dominated ground motion, the structure equipped with the proposed rate-
independent model yielded lower damping forces than those with LVD model. However,
the two structures exhibited similar isolator displacements. Furthermore, the performance
of the proposed passive model was not compromised, even when excited by ground mo-
tion containing low-frequency components. Thus, this study exemplified the feasibility of
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the proposed method to mimic RILD in reducing the floor-response acceleration without in-
creasing the displacement. A design example of negative stiffness device given in this study
provides an alternative for approximating a physical linear negative stiffness element within
the displacement range of interest, making the proposed passive model more attractive for
mimicking the performance of RILD. The passive rate-independent mechanical model pro-
posed in this study is expected to be a viable option for improving the seismic performance
of low-frequency structures subjected to strong ground motion.

Passive control does not rely on external power, requires less maintenance in general,
and is more readily accepted by the design industry.
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Chapter 3

A Unified Framework of Causal RILD
Models

3.1 Introduction

In this chapter, some established RILD models are first reviewed in detail, and then a novel
causal filter is generalized from the bilinear digital filter used by Keivan et al. [47], in order
to achieve an improved approximation of ideal RILD in the sense of an extended frequency
range, over which the rate-independent dissipation behavior can be mimicked. The novel
filter is characterized by a real-valued tunable parameter (say α), which is confined to the
range from zero to unity in this study. When interpreted from the frequency domain into the
time domain, the novel filter is found to correspond to a mechanical model, whose consti-
tutive law is mathematically described by using the concept of fractional derivative. Such a
concept was introduced by Gemant [74] for describing the dynamic properties of viscoelas-
tic bodies several decades ago. The main advantage of the fractional-order derivative over
the conventional integer-order derivatives is that much reduced number of empirical pa-
rameters can be used to accurately describe the dynamic properties of many engineering
materials [75, 76]. Indeed, some attempts have already been made to approximate RILD
by virtue of similar concepts [35, 36], however, to the best knowledge of the author, there
are still few discussions on the relationships between a fractional-order model with exist-
ing causal models for approximating the behavior of RILD (e.g., Biot, Makris, and tuned
Maxwell-Wiechart (TMW) models). In this chapter, some subtle relationships between the
proposed model with the existing models are to be revealed. This contributes to the devel-
opment of a unified framework of causally approximated RILD models and facilitates the
theoretical understanding of RILD from a more general viewpoint.

For numerical implementation of the proposed model, a time-domain technique is to
be developed by directly calculating the fractional derivative on the basis of the so-called
L1 algorithm [55]. Such a method is thought to be useful and convenient for application,
because with little calculations associated with the coefficient estimation, it can be readily
embedded into established numerical integration schemes, e.g., the Newmark’s integration
scheme, and thus used for response history analyses of structural systems incorporated with
RILD elements. The computational efficiency of this technique can be largely improved
without significant loss of simulation accuracy if the fixed memory principle is applied.
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The remainder of this chapter is organized as follows. In Section 3.2, some representa-
tive existing models for RILD are to be reviewed in detail. The frequency- and time-domain
representations of the proposed model are to be derived, and the relations between the pro-
posed model with those existing causal models for RILD are to be discussed and mathe-
matical proved in Section 3.3. Then, in Section 3.4, an L1-algorithm-based internal variable
method is to be developed for nonlinear dynamic analyses of structural systems incorpo-
rated with RILD elements, and in Section 3.5, the effectiveness of the developed method is
verified by using numerical examples. Finally, some conclusions are presented.

3.2 Some representative existing models of RILD

3.2.1 An ideal RILD model

A popular model for RILD is known as complex stiffness which consists of a linear spring
and an ideal RILD element coupled in parallel, as shown in Fig. 3.1. It is usually represented
in terms of dynamic stiffness, which is defined as a transfer function from deformation to
resistive force, i.e.,

HI(iω) =
F(iω)

X(iω)
= k0 [1 + ηZI(iω)] (3.1)

where k0 is spring stiffness; η denotes loss factor; ZI(iω) denotes the normalized dynamic
stiffness of the ideal RILD element, defined as a damping function as follows,

ZI(iω) = 0 + i sgn(ω) (3.2)

where i =
√
−1 and sgn(·) denotes the signum function. Applying inverse Fourier trans-

formation to Eq.(3.2) gives [77]

zI(t) = F−1[ZI(iω)] = − 1
πt

(3.3)

where F−1[·] denotes the inverse Fourier transform. The above equation implies that this
model is noncausal because it yields a non-zero force prior to the application of an impulsive
deformation, i.e., zI(t < 0) 6= 0.

FIGURE 3.1: A noncausal RILD model

The damping kernel function of this model is obtained by applying inverse Fourier trans-
form to the impedance function, which is defined as the transfer function from velocity to
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damping force, as follows,

qI(t) = F−1
[
ZI(iω)

iω

]
= − 1

π
ln |t| (3.4)

which can also be obtained by applying an infinite integration of zI(t) in Eq.(3.3) with respect
to t, because the property of Fourier transform suggests the relation q̇I(t) = zI(t), where the
overdot denotes the derivative with respect to t.

The response force generated by this noncausal model from an input deformation x(t)
can be expressed as follows,

fI(t) = k0x(t) ∗ [δ(t) + η zI(t)] = k0 [x(t) + η x̂(t)] (3.5)

where the asterisk ∗ denotes a convolution integral; δ(t) denotes the Dirac’s delta function,
which is defined as the inverse Fourier transform of unity; the hat ′ ˆ ′ denotes Hilbert trans-
form, which can be expressed as follows,

x̂(t) = x(t) ∗ zI(t) = −
1
π

∫ ∞

−∞

x(τ)
t− τ

dτ (3.6)

which again implies that this model is noncausal because its response force depends on
not only the past input deformations, but also those in the future. This noncausal model
is impossible to be physically realized by using real-life devices and also challenging to
be numerically implemented in a nonlinear simulation problem, therefore, causal models
which can approximate ideal RILD in some sense were pursued for practical applications.

3.2.2 Biot model

The first viscoelastic model yielding approximated rate-independent dissipation behavior
was proposed by Biot [31]. A mechanical representation of Biot model can be constructed
by using an infinite number of Maxwell elements [32], which is thought to be a special
case of the Maxwell-Wiechert model [33, 46] shown in Fig. 3.2, where cj and k j denote the
damping coefficient and stiffness of the j-th Maxwell branch, respectively; vj is an internal
valuable, denoting the deformation of the j-th dashpot.

For a Maxwell-Wiechert model, the dynamic stiffness is written as follows,

H (iω) = k0 +
n

∑
j=1

k j
iω

iω + rj
(3.7)

where rj denotes the ratio of the spring stiffness and damping coefficient of the j-th Maxwell
element, i.e., rj = k j/cj, which is also known as a relaxation frequency or the inverse of a
relaxation time.

Provided that the damping coefficient cj of each dashpot (j = 1, 2, . . . , n) is constant and
two neighboring springs have stiffnesses of k j and k j−1, respectively, which are related with
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FIGURE 3.2: Maxwell-Wiechert model

each other by Eq.(3.8)

k j =
2ηk0

π

k j − k j−1

k j
= k1

∆k j

k j
= k1

∆rj

rj
(3.8)

with j = 2, 3, . . . , n, and k1 = 2ηk0/π, then one can rewrite Eq.(3.7) as follows,

H (iω) = k0

(
1 +

2η

π

n

∑
j=1

iω
iω + rj

∆rj

rj

)
(3.9)

Letting n → ∞ and rj (j = 1, 2, . . . , n) continuously vary from ε to ∞, and replacing rj as r,
one can express the dynamic stiffness as follows,

H (iω) = k0

[
1 +

2η

π

∫ ∞

ε

(
ω2/r

ω2 + r2 +
iω

ω2 + r2

)
dr
]

(3.10)

Performing the integral in Eq.(3.10) gives the dynamic stiffness of Biot model as follows,

HB(iω) = k0

{
1 +

2η

π

[
ln

√
1 +

(ω

ε

)2
+ i arctan

(ω

ε

)]}
(3.11)

where arctan(·) is the inverse tangent function. By introducing the complex logarithm func-
tion ln(1 + iω/ε) ∗, defined over the principal branch −π/2 ≤ arctan(ω/ε) ≤ π/2 on the
complex-plane, one can alternatively rewrite Eq.(3.11) in a more compact form as follows,

HB(iω) = k0

[
1 +

2η

π
ln
(

1 +
iω
ε

)]
(3.12)

∗Strictly speaking, the complex logarithm function is a multi-valued function, which is different from the
single-valued natural logarithm function defined in the real axis. However, the same symbol of ln(·) is used
here for both the two cases for convenience.
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Corresponding to Eq.(3.1), the above equation can be expressed as follows,

HB(iω) = k0 [1 + ηZB(iω)] (3.13)

where the damping function of Biot model is given as follows,

ZB(iω) =
2
π

[
ln

√
1 +

(ω

ε

)2
+ i arctan

(ω

ε

)]
=

2
π

ln
(

1 + i
ω

ε

)
(3.14)

Applying inverse Fourier transform to Eq.(3.14) gives

zB(t) =
2
π

∫ ∞

ε

(
u̇(t)

r
− u(t)

ert

)
dr = − 2

π

d
dt

[Ei(−εt)u(t)] (3.15)

where u(t) denotes Heaviside’s unit step function (i.e., u(t) = 0, if t ≤ 0; otherwise, u(t) =
1); Ei(−εt) denotes the exponential integral, which can be expressed as follows [78],

Ei(−εt) =
∫ ∞

ε

−1
ert

dr
r

= ln |εt|+ γ0 +
∞

∑
n=1

(−1)n(εt)n

n n!
(3.16)

where γ0
.
= 0.577 denotes the Euler constant. The damping kernel function of Biot model is

defined as follows,

qB(t) = F−1
[
ZB(ω)

iω

]
= − 2

π
Ei(−εt)u(t) (3.17)

Thus, the response force provided by Biot model can be obtained as follows,

fB(t) = k0[x(t) + η ẋ(t) ∗ qB(t)] (3.18)

Substituting Eq.(3.17) into the above equation gives

fB(t) = k0

{
x(t)− 2η

π
ẋ(t) ∗ [Ei(−εt)u(t)]

}
(3.19)

which coincides with the time-domain representation of Biot model given in reference [32].

3.2.3 Makris model

An alternative explanation for the noncausality of the ideal RILD model is that the real and
imaginary parts of its dynamic stiffness fail to relate with each other by Hilbert transform.
Such relations, often referred to as Kramers-Kronig relations, are known as the sufficient
and necessary conditions for a strictly proper transfer function to ensure the causality in
the strict sense [79]. By modifying the real part of Eq.(3.2) into the Hilbert transform of its
imaginary part, Makris [40] constructed a causal RILD model having a dynamic stiffness as
follows,

HM(iω) = k0 [1 + η ZM(iω)] (3.20)
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where the damping function of the Makris model is given as follows,

ZM(iω) =
2
π

ln
∣∣∣ω

ε

∣∣∣+ i sgn
(ω

ε

)
(3.21)

It may be noticed that Eq.(3.14) approaches to Eq.(3.21) when ω � ε, which means that
Makris model is a high-frequency limiting case of Biot model. Applying inverse Fourier
transform to Eq.(3.21) gives

zM(t) = F−1 [ZM(iω)] = −2u(t)
πt

(3.22)

A damping kernel function of this model is given as follows [40],

qM(t) = F−1
[
ZM(iω)

iω

]
= − 2

π
(ln |εt|+ γ0) u(t) (3.23)

It may be noted that Eq.(3.17) reduces to the above equation as εt tends to zero (so that the
last term in Eq.(3.16) vanishes). The response force provided by the Makris model from an
input deformation x(t) can be obtained as follows,

fM(t) = k0 [x(t) + η ẋ(t) ∗ qM(t)] (3.24)

Substituting Eq.(3.23) into the above equation gives

fM(t) = k0

{(
1− 2η

π
γ0

)
x(t)− 2η

π
ẋ(t)∗[ln |εt|u(t)]

}
(3.25)

which includes a negative constant term in the displacement-dependent part. This suggests
a negative stiffness element may be used for physical approximation of RILD [49, 73].

3.2.4 Nakamura model

The above approximated causal RILD models can be simply expressed in the frequency do-
main, but their time-domain representations are thought to be relatively complex, because
they are involved with calculations of convolution integrals, which may compromise their
computational efficiencies for some practical applications. To reduce the computational bur-
den for analyzing the RILD system involved with the transformation from the frequency
domain into the time domain, Nakamura [45] proposed a causal approximation of RILD
having dynamic stiffness as follows,

HN(iω) = k0 [1 + η ZN(iω)] (3.26)

where the damping function of the Nakamura model is given as follows,

ZN(iω) = Ẑ′(ω) + iZ′(ω) + i
2ω

ωm
(3.27)
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with the auxiliary function Z′(ω) defined as follows,

Z′(ω) = (2n− 1)− 2ω

ωm
(3.28)

for n = 1(0 ≤ ω < ωm), n = 2(ωm ≤ ω < 2ωm), n = 3(2ωm ≤ ω < 3ωm), ..., where
ωm denotes the length of each subinterval over the positive frequency axis. This model is
thought to be causal because the first two terms in the r.h.s of Eq.(3.27) are the Hilbert trans-
form pairs, i.e., satisfying the Kramers-Kronig relations, whereas the remaining irregular
term corresponds to the derivative of the Dirac’s delta function in the time domain, which
is thought to be causal.

Different from the other approximations of RILD, the dynamic stiffness of Nakamura
model is discontinuous with respect to the frequency. Thus, an analytical expression of
further simplifying Eq.(3.27) is not available in a general case, and numerical algorithms
for conducting the Hilbert transform are necessary to determine the dynamic stiffness at
discrete frequency points. The obtained discrete data are then used for regression analyses
in order to determine the coefficients used for the following approximation [44]:

HN(iω) ≈ H̄N(iω) = −ω2m0 + iωc0 + k0 +

(
iω

N−2

∑
j=1

cje−iωTj +
N−1

∑
j=1

k je−iωTj

)
(3.29)

where a bar denotes the approximated value to distinguish from the exact one; m0, cj, and k j

(j = 0, 1, 2, ...) denote the coefficients to be estimated; N denotes the number of sample data;
Tj denotes the delayed time. Then, the response force provided by the Nakamura model can
be approximated in the time domain as follows,

fN(t) ≈ f̄N(t) = m0 ẍ(t) + c0 ẋ(t) + k0x(t) +

[
N−2

∑
j=1

cj ẋ(t− Tj) +
N−1

∑
j=1

k jx(t− Tj)

]
(3.30)

The above method is thought to reduce the computational burden involved with the con-
volution integral, when time-domain analysis techniques are preferred to conduct dynamic
analyses for structural systems incorporated with RILD, as to be discussed in Chapter 4.
However, it is still challenging to find a mechanical representation of the Nakamura model,
so that it may be realized by using real-life devices, which can be installed in an actual
building structure for seismic protection purposes.

3.2.5 Tuned Maxwell-Wiechert model

For numerical implementation, a Prony series with a finite and limited number of relaxation
functions was used by Makris and Zhang [41] to approximate the behavior of Biot model.
Such a series is also known as the relaxation modulus of a Maxwell-Wiechert model, as
shown in Fig. 3.2. Furthermore, a Prony series was used by Spanos and Tsavachidis [42]
to develop a recursive procedure for dynamic analysis of structural systems incorporated
with Biot model. To the best knowledge of the author, it was Genta and Amati [33] who first
proposed the concept of tuned Maxwell-Wiechert (TMW) model so that its loss moduli can
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fit those of the reference noncausal RILD over a frequency range of interest. Similar concept
was later used by Reggio et al. [34, 46] for system identification and used by Huang et al. [51]
for nonlinear analysis of rate-independently damped structures.

The dynamic stiffness of a TMW model is given as follows,

HT(iω) = k0 (1 + ηZT(iω)) (3.31)

where the damping function of the TMW model is given as follows,

ZT(iω) =
n

∑
j=1

φj
iω

iω + rj
(3.32)

where φj is a tunable parameter with respect to a discrete frequency point ω = rj, or phys-
ically represents the normalized stiffness of the j th Maxwell element with a relaxation fre-
quency of rj. The damping kernel function of a TMW model is written as follows,

qT(t) =
n

∑
j=1

φje−rjtu(t) (3.33)

With sufficient terms, Eq.(3.33) can be used to approximate any physical relaxation process.
To let the imaginary part of Eq.(3.31) approach the reference ideal RILD over a frequency
range, Huang et al. [51] suggested an analysis algorithm to determine the parameters φj,
rj, and value of n. With Eq.(3.33), the response force generated by a TMW model can be
expressed as follows,

fT(t) = k0

[
x(t) + ηẋ(t) ∗

n

∑
j=1

φje−rjtu(t)

]
(3.34)

The above model is thought to be suitable for numerical implementation of a structural
model with RILD, because available commercial softwares, like ABAQUS, provide entrances
to setting the parameters φj and rj (j = 1, 2, . . . , n), and also state-space formulations are
available for numerically analyzing the dynamic behavior of a structural system incorpo-
rated with the TMW model.

3.3 A unified causal RILD model

3.3.1 The proposed model for RILD

To approximate the ideal RILD element defined in Eq.(3.2), an alternative way is to use a
first-order all-pass filter [47] as follows

Z1(iω) =
iω− ε

iω + ε
(3.35)

which can provide an amplitude of unity all over the frequency and also a phase advanced
to the deformation by π/2 rad at ω = ε. Such a filter was found to be a viable option to
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mimic the behavior of ideal RILD for seismic protection of low-frequency structures [48,
50]. However, the above filter is thought to suffer a strongly rate-dependent loss modulus,
which may compromise its capability to simulate the structural inherent damping.

Here, the first-order all-pass filter is generalized and extended to a fractional-order filter
defined in the following form,

Zα(iω) = βα
(iω)α − εα

(iω)α + εα
(3.36)

where the real variable α is defined as a tunable parameter of the proposed filter (0 ≤ α ≤ 1);
(iω)α is uniquely defined as (iω)α = |ω|αexp[i α sgn(ω) π/2]; βα is a real-valued modulat-
ing function with respect to α. Letting the amplitude of the filter be modulated as unity (i.e.
the same as the ideal RILD) at ω = ε gives

βα = cot(απ/4) (3.37)

where cot(·) denotes the cotangent function. Then, a fractional-order filter for approxima-
tion of RILD is proposed as follows,

Zα(iω) = cot
(απ

4

) (iω)α − εα

(iω)α + εα
(3.38)

which reduces to Eq.(3.35) as α tends to unity. Corresponding to Eq.(3.1), one can construct
a fractional-order RILD model having a dynamic stiffness as follows,

Hα(iω) = k0[1 + η Zα(iω)] (3.39)

which reduces to Keivan model [47] in the case of α = 1.
Compared with the first-order all-pass filter, the proposed filter can provide a less rate-

dependent loss modulus, as shown in Fig. 3.3, where the real and imaginary parts of the
proposed filter (e.g., α = 0.1), the first-order all-pass filter, and ideal RILD are compared.
It is shown that the proposed filter (e.g., α = 0.1) provides an improved approximation of
ideal RILD in terms of loss modulus, while yielding similar storage moduli as those of a
first-order all-pass filter over a frequency range near ω = ε.

3.3.2 Causality of the proposed model

Here, the causality of the proposed model is first investigated. To this end, letting 0 < α < 1,
the damping function of the proposed RILD model is expressed as follows,

Zα(iω) = βα
(iω)α − εα

(iω)α + εα
= βα [2iωG (iω)− 1] (3.40)

where an auxiliary function G (iω) = (iω)α−1/[(iω)α + εα] is introduced.
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FIGURE 3.3: Comparison between the damping functions of different RILD
elements: (a) real and (b) imaginary parts.

Applying inverse Fourier transform to Eq.(3.40) gives

zα(t) = F−1[Zα(iω)] = βα [2ġ(t)− u̇(t)] (3.41)

where g(t) denotes the inverse Fourier transform of G (iω), i.e.

g(t) = F−1[G (iω)] =
1

2π

∫ ∞

−∞

(iω)α−1

(iω)α + εα
eiωtdω (3.42)

Note that, for 0 < α < 1, the complex term (iω)α + εα = |ω|αexp[iαsgn(ω)π/2] + εα has
positive real and imaginary parts, i.e., (iω)α + εα 6= 0 for any ω. Therefore, the integrand
G (iω) has no pole, and thus the residual terms vanish when Cauchy integration theorem is
applied to evaluate the integral in Eq.(3.42).

In the case of t < 0, one can readily verify g(t < 0) vanishes by virtue of the Jordan’s
lemma [80], and thus one has zα(t < 0) ≡ 0. This means that the proposed model is indeed
causal, and can be realized by using physical systems.

Next, for t > 0, the damping kernel function of the proposed model is pursued by de-
riving the analytical expression of g(t). To this end, letting iω = lim

γ→0+
(γ + iω) = lim

γ→0+
s, by

applying the Cauchy integration theorem, one has

g(t > 0) = lim
γ→0+

1
2πi

∫ γ+i∞

γ−i∞

sα−1

sα + εα
estds

= − 1
2πi

lim
γ→0+

∫
CR1+l1+Cρ+l2+CR2

sα−1

sα + εα
estds

(3.43)

where CR1 and CR2 denote the two large circle arcs with a radius of R, respectively; Cρ

denotes the small circle arc with a radius of ρ; l1 and l2 denote the two lips parallel to the
negative real axis, as shown in Fig. 3.4.

The integration along the large circle arc vanishes as R → ∞ (by virtue of the Jordan’s
lemma [80]), and it can also be readily verified that the integration along the small circle arc
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FIGURE 3.4: Integration contour (t > 0)

vanishes as ρ→ 0. Then, as γ→ 0+, calculating the integrations along l1 and l2 gives

g(t) =
1
π

∫ ∞

0

rα−1εα sin(απ)

r2α + 2rαεα cos(απ) + ε2α
e−rtdr = Eα(−εαtα) (3.44)

for t > 0. In the above equation, the latter equality holds because the second term is known
as an alternative representation of the Mittag-Leffler relaxation function Eα(−εαtα) [81].
Therefore, for arbitrary t, one can obtain

g(t) = Eα(−εαtα)u(t) (3.45)

Substituting Eq.(3.45) into Eq.(3.41) gives the inverse Fourier transform of the damping func-
tion of the proposed model as follows,

zα(t) = F−1 [Zα(iω)] = βα
d
dt
{[2Eα(−εαtα)− 1] u(t)} (3.46)

Corresponding to Eq.(3.17), the damping kernel function of the proposed model can be ob-
tained as follows,

qα(t) = F−1
[
Zα(iω)

iω

]
= βαu(t) [2Eα(−εαtα)− 1] (3.47)

The response force fα(t) provided by the proposed model is obtained as follows,

fα(t) = k0 [x(t) + η ẋ(t) ∗ qα(t)] (3.48)

Substituting Eq.(3.47) into the above equation gives

fα(t)= k0{(1−ηβα)x(t)+2ηβα ẋ(t)∗[Eα(−εαtα)u(t)]} (3.49)
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As α→ 1, one has Eα(−εαtα) = e−εt and βα = 1, thus it follows that

fα(t)= k0
{
(1− η)x(t) + 2ηẋ(t) ∗

[
e−εtu(t)

]}
(3.50)

which coincides with the response force provided by the Keivan model. It is worth noting
that the negative constant term −η in the displacement dependent part correspond to a
negative stiffness element used in the physical realization of RILD discussed in Chapter 2.

3.3.3 A mechanical representation

Here, it is assumed there is a physical device that can be modeled by using a fractional order
element [53, 54, 82]. Then, a physical realization is derived for the proposed model. To this
end, a mechanical system is constructed by arranging a linear spring, negative stiffness, and
fractional-order Maxwell elements coupled in parallel, as shown in Fig. 3.5, where kN and kα

denote the stiffness of the negative stiffness element and that of fractional-order Maxwell el-
ement, respectively; v(t) is an internal valuable, denoting the deformation of the fractional-
order dashpot. It is worth noting that the damping model consisting of the fractional-order
Maxwell element coupled in parallel with a negative stiffness element (thereafter referred
to as factional-Maxwell-negative-stiffness (FMNS) model) is a generalization of the MNS
model, proposed in Chapter 2.

FIGURE 3.5: The proposed RILD model

The fractional-order Maxwell element is represented by a linear spring in series with a
fractional-order dashpot. The equation of motion of such a fractional-order element can be
expressed as follows,

Dα
0+v(t) + εαv(t) = εαx(t) (3.51)

where Dα
0+v(t) denotes an α-order derivative of v(t) with respect to t. Here, the Riemann-

Liouville’s definition [83] of the fractional derivative is used and defined as follows,

Dα
0+v(t) :=

1
Γ(1− α)

d
dt

∫ t

0

v(τ)
(t− τ)α

dτ (3.52)
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where Γ(·) is Euler’s Gamma function. By using the property of fractional derivative [83],
one has

F [Dα
0+v(t)] = (iω)αF [v(t)] = (iω)αV(iω) (3.53)

Thus, applying Fourier transform to Eq.(3.51) gives

V(iω) =
εα

(iω)α + εα
X(iω) (3.54)

The total response force provided by this mechanical system is written as follows,

f (t) = (k0 − kN)x(t) + kα[x(t)− v(t)] (3.55)

Applying Fourier transform to Eq.(3.55) gives

F(iω) = (k0 − kN)X(iω) + kα[X(iω)−V(iω)] (3.56)

With kN = ηβαk0 and kα = 2ηβαk0, substituting Eq.(3.54) into Eq.(3.56) gives its dynamic
stiffness as follows,

H (iω)= k0

[
1 + η βα

(iω)α − εα

(iω)α + εα

]
(3.57)

which coincides with the dynamic stiffness of the proposed model expressed in Eq.(3.39).
This verifies that the proposed model can be represented by this mechanical system, and
equivalently, the fractional-order filter can be represented by the FMNS model.

In terms of physical realization of the FMNS model, the negative stiffness element can be
conceptually created by equivalently reducing the horizontal stiffness of the primary struc-
ture (or of isolators), or physically realized by using some passive negative stiffness devices,
as discussed in Chapter 2. With respect to the fractional-order Maxwell element, many en-
gineering solid materials [75, 76] and some damping devices [53, 82] have been reported to
be accurately simulated by using fractional-order damping elements. Therefore, a straight-
forward method of passively realizing the fractional-order Maxwell element is achieved by
directly using those damping devices or developing novel damping devices on the basis of
the experiments on those solid materials. However, challenges still remains to be overcome
in the future in order to develop real-life damping devices designed with desired damping
characteristics and apply them in practical engineering projects.

Except for the above method, at present, two types of alternative methods are thought
to be promising to physically realize the FMNS model: (i) one may develop a passive sys-
tem consisting of multiple damping devices, which can be equivalent to the FMNS model
in some sense (as to be discussed in next subsection, a modified TMW model is thought to
be a viable option), or (ii) one can employ semi-active devices, which can generate the de-
sired damping force by the FMNS model. For this latter, an efficient time-domain analysis
technique is required to numerically implement the FMNS model.
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3.3.4 Comparison with existing models

For comparison, Table 3.1 summarizes the damping functions and kernel functions of differ-
ent RILD models introduced above. In the following subsections, the relationships between
the proposed and those existing causal RILD models are to be discussed.

TABLE 3.1: Comparison of different RILD elements

Model Damping function Z(iω) Damping kernel F−1[Z(iω)/(iω)] Causality

Ideal RILD i sgn (ω) − 1
π

ln |t| Noncausal

Biot
2
π

ln
(

1 + i
ω

ε

)
−2u(t)

π
Ei(−εt) Causal

Makris
2
π

ln
∣∣∣ω

ε

∣∣∣+ i sgn
(ω

ε

)
−2u(t)

π
(ln |εt|+ γ0) Causal

TMW
n

∑
j=1

φj
iω

iω + rj

n

∑
j=1

u(t)φje−rjt Causal

Keivan
iω− ε

iω + ε
u(t)

[
2e−εt − 1

]
Causal

Proposed βα
(iω)α − εα

(iω)α + εα
βαu(t) [2Eα(−εαtα)− 1] Causal

Generalization of the Makris model

Here, it is proved that the proposed model can include the Makris model as a special case
of α = 0. Recall that (iω)α = |ω|α [cos(απ/2) + i sgn(ω) sin(απ/2)] and let λ = ω/ε, one
can respectively obtain the real and imaginary parts of Eq.(3.38) as follows,

R[Zα(iλ)] = cot(
απ

4
)

λ2α − 1
1 + λ2α + 2|λ|α cos(απ/2)

I [Zα(iλ)] = cot(
απ

4
)

2sgn(λ)|λ|α sin(απ/2)
1 + λ2α + 2|λ|α cos(απ/2)

(3.58)

which suggest that the real and imaginary parts are even and odd functions with respect to
λ (and ω), respectively.

Note that as α → 0, one has 1 + λ2α + 2|λ|α cos(απ/2) → 4, and then it follows that the
limit of the real part is

lim
α→0

R[Zα(iλ)]= lim
α→0

λ2α − 1
4 tan(απ/4)

= lim
α→0

λ2α − 1
4 sin(απ/4)

= lim
α→0

2 ln |λ|λ2α

π cos(απ/4)
=

2
π

ln |λ| (3.59)

where the l’Hôpital’s rule is used for the derivation.
With respect to the imaginary part, one has

lim
α→0

I [Zα(iλ)]=sgn(λ)lim
α→0

2|λ|α sin(απ/2)
4 tan(απ/4)

=sgn(λ)lim
α→0
|λ|α cos2(απ/4)=sgn(λ) (3.60)
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Thus, recall that λ = ω/ε, as α→ 0, one can obtain

Zα(iω) =
2
π

ln
∣∣∣ω

ε

∣∣∣+ i sgn
(ω

ε

)
(3.61)

which coincides with the damping function of the Makris model, defined in Eq.(3.21). The
coincidence between the damping function of the two models in the frequency domain also
suggests that the damping kernel function of the proposed model in the case of α = 0 can
be expressed as Eq.(3.23). Furthermore, because the dynamic stiffness and damping kernel
function of the proposed model vary continuously with the value of α, it can also be pre-
dicted that the proposed model with a small tunable parameter α (e.g., α = 0.1) can provide
a good approximation of the Makris model, as least over a frequency range of interest.
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FIGURE 3.6: Comparison between the normalized dynamic stiffnesses of dif-
ferent models for RILD (η = 0.1)

For example, letting η = 0.1, Fig. 3.6 compares the normalized dynamic stiffness of the
proposed model (e.g., α = 0.1) with those of the Makris, and Biot models. It is shown in
Fig. 3.6 that the differences between the dynamic stiffness of the proposed model with α =

0.1 and that of Makris model are negligible over a frequency range of interest. This means
that the proposed model with a small tunable parameter α can be used to approximate the
Makris model without significant loss of accuracy. It should be mentioned that in some
cases, such an approximation seems to be necessary and useful.

For example, when a mechanical system to physically represent the Makris model is of
interest, the one shown in Fig. 3.5 may be alternatively considered by letting α → 0. How-
ever, to this end, one needs to let the parameters kN = ηk0 cot (απ/4) and kα = 2kN be
infinitely large, which may be impossible to be realized in practical applications and also
hard to be used for numerical implementations. Instead, the proposed model with a small
tunable parameter may be used for approximation, so that those parameters can be de-
signed within a reasonable range. This suggests that compared with the Makris model, the
proposed model having an additional tuning parameter α may be more flexible for practical
applications.
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Relationship with the Biot model

Here, it is first shown that the proposed model is equivalent to a first-order approximation
of the Biot model in terms of dynamic stiffness as the tunable parameter α tends to unity
(i.e., reducing to the Keivan model). To this end, one can rewrite Eq.(3.14) as follows,

ZB(iω)=
2
π

ln
(

1+
iω
ε

)
=

2
π

[
ln 2−ln

(
1− iω− ε

iω + ε

)]
(3.62)

By using the Mercator series to expand the last term of the above equation, one can obtain
the following expansion

ZB(iω) =
2
π

[
ln 2 +

∞

∑
n=1

1
n

(
iω− ε

iω + ε

)n
]

(3.63)

Then, substituting Eq.(3.63) into Eq.(3.13) gives a novel expansion for the dynamic stiffness
of the Biot model as follows,

HB(iω)= k0

[
1+

2η

π
ln 2+

2η

π

∞

∑
n=1

1
n

(
iω− ε

iω + ε

)n
]

(3.64)

Let k̄0 = k0[1 + (2η ln 2)/π] and η̄ = 2η/(π + 2η ln 2), one can rewrite Eq.(3.64) as follows,

HB(iω) = H
(N)

B (iω) + η̄ k̄0

∞

∑
n=N+1

1
n

(
iω− ε

iω + ε

)n

(3.65)

where H
(N)

B (iω) is defined as the Nth-order truncated approximation of HB(iω),

H
(N)

B (iω) = k̄0

[
1 + η̄

N

∑
n=1

1
n

(
iω− ε

iω + ε

)n
]

(3.66)

Letting N = 1, one has

H
(1)

B (iω) = k̄0

(
1 + η̄

iω− ε

iω + ε

)
(3.67)

which has the same form as the dynamic stiffness of the proposed model expressed in
Eq.(3.39) with α = 1 (i.e., the Keivan model). This means that the Keivan model is actu-
ally equivalent to a first-order approximation of the Biot model.

To further investigate the effect of N on the accuracy to approximate the dynamic stiff-
ness of the Biot model, for example, let η = 0.1, Fig. 3.7 compares the Nth-order approxi-
mation H

(N)
B (iω)/k̄0 with N = 1, 10, 100, and ∞, respectively. It is shown in Fig. 3.7 that

a first-order approximation exhibits similar characteristics of the dynamic stiffness of Biot
model at small values of ω/ε; in order to capture the high-frequency characteristics of the
Biot model, a much higher-order approximation is required. Alternatively, the proposed
model with a small tunable parameter (e.g., α = 0.1) may be used, at the expense of dis-
torted low-frequency characteristics.

As mentioned in Section 2, the dynamic stiffness of the Biot model approaches to that of
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FIGURE 3.7: Approximation of the dynamic stiffness of Biot model by using
Mercator series (η = 0.1)

the Makris model when ω � ε. Thus, from the revealed relation between the proposed and
the Makris models, it is implied that the proposed model with a small tunable parameter
(e.g., α = 0.1) can also be used to approximate the high-frequency characteristics of the Biot
model. As shown in Fig. 3.6, the dynamic stiffness of the proposed model approaches to
that of the Biot model at large values of ω/ε.

Equivalence to a modified TMW model

Here, it is shown that the proposed model can be equivalent to a TMW model with its
storage modulus modified by a rate-independent term, over a frequency range of interest.
To this end, quantified comparisons between the TMW and proposed models are made,
and the analysis algorithm suggested by Huang et al. [51] is used to determine the tuning
parameters of TMW model, φj, with respect to a given set of rj, j = 1, 2, ..., n, logarithmically
spaced over a frequency range from 0.01ε to 100ε. Two values of n are considered: n = 5,
and n = 7, respectively, and the results are shown in Table 3.2.

TABLE 3.2: Characteristic parameters of TMW models

j
n = 5 n = 7

φj rj/ε φj rj/ε

1 1.676 0.010 1.468 0.010
2 1.473 0.100 0.828 0.046
3 1.449 1.000 1.081 0.215
4 1.473 10.000 0.880 1.000
5 1.676 100.000 1.081 4.642
6 — — 0.828 21.544
7 — — 1.468 100.000

In order to approximate the noncausal model represented by Eq.(3.1) at a specified fre-
quency ω = ε, here, the dynamic stiffness of TMW model is modified as follows,

H ′
T (iω) = k0 [1− ηZMod(ε) + ηZT(iω)] (3.68)
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where ZMod(ε) is a rate-independent modification term, i.e.,

ZMod(ε) = R [ZT(iω)|ω=ε] =
n

∑
j=1

φjε
2

ε2 + r2
j

(3.69)

The above modification is physically interpreted as connecting the TMW model with a neg-
ative stiffness element having a stiffness (absolute value) of ηk0ZMod(ε) in parallel. It should
be mentioned that such a modification by adding a rate-independent term to the real part
does not affect the causality of the original model. e.g., see [45].
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FIGURE 3.8: Comparison between the TMW and proposed models (η = 0.1)

For example, let η = 0.1, Fig. 3.8 depicts the dynamic stiffnesses of the original and
modified TMW models, as well as those of the noncausal model and proposed model (α =

0.1) for comparison. It is shown that as the number n increases, the accuracy of TMW model
for approximating the loss modulus of noncausal model increases at the frequency range
of investigation. Furthermore, modifying the storage modulus of TMW model to fit the
noncausal model at ω = ε leads to a good fit to the proposed model all over the frequency
range of investigation.

On the one hand, for approximating the behavior of the noncausal model, the modified
TMW model can be equivalently represented by the proposed model. Such kind of approxi-
mation may be preferable in some applications because much reduced empirical parameters
are used for simulations. In this example, for the proposed model, only one additional tun-
ing parameter α is used, whereas n = 7 tuning parameters φj, j = 1, 2, ..., 7 are used for the
(modified) TMW model so that the dynamic stiffness of the TMW is equivalent to that of the
proposed model over the frequency range of investigation. This is actually the advantage of
a fractional-order operator over integer-order operators used in a constitutive law [75, 76].

On the other hand, it is also suggested that if necessary, one can modify the storage
modulus of a TMW model with a rate-independent term of −ηk0ZMod(ε) (i.e., equivalently
realized by supplementing a linear negative stiffness element), so that the proposed model
can be approximated by using the modified TMW model without compromising the per-
formance. As mentioned in Sub-subsection 3.3.3, in terms of physical implementation of
the FMNS model, it may be still challenging to directly develop real-life damping devices,
which exhibit exactly the same damping characteristics as the FMNS model does. However,
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one may alternatively construct a passive system consisting of multiple available damping
devices, which can be equivalent to the FMNS model in some sense. In this regard, the
above equivalence suggests that the TMW model can be considered to be a viable option to
achieve this goal. A Maxwell element can be readily realized by connecting an oil damper
in series with a coil spring, as discussed in Chapter 2. Thus, multiple Maxwell elements
can also be readily realized in a similar manner, and then they can be used to construct a
TMW model for passively realizing the FMNS model in an equivalent way. Furthermore,
this method also enables the development of an efficient analysis algorithm for dynamic
analyses of a structural model with RILD, as to be discussed in Chapter 4.

In summary, the relationships between different causal models for RILD are shown in
Fig. 3.9. The proposed model can include both the Keivan and Makris models as its spe-
cial cases with α = 1 and α = 0, respectively, and the proposed model with a fractional
order (e.g., α = 0.1) can be equivalent to a (modified) TMW model, which is able to approx-
imate the Biot model for practical applications. In this regard, the proposed model can be
considered as a unified causal RILD model. Furthermore, the Keivan model is found to be
equivalent to a first-order approximation of the Biot model. These newly revealed relation-
ships between different models, along with the established ones, enable the development of
a unified framework of causal RILD models, as shown in Fig. 3.9.

FIGURE 3.9: A unified framework of causal RILD models (dashed arrows in-
dicate the established relations, solid ones indicate those revealed here)

3.4 An L1-algorithm-based internal variable method

In this section, for numerical implementation of the proposed RILD element (i.e., the FMNS
model) in the time domain, a dynamic analysis method is developed by directly calculating
the fractional derivative on the basis of the so-called L1-algorithm [55].
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3.4.1 Governing equation of motion

First, one considers a linear single-degree-of-freedom (SDF) system incorporated with the
FMNS model, as shown in Fig. 3.10, where p(t) denotes the exciting force. The governing
equation of motion of such a system is expressed as follows,

mẍ(t)+(k0+kα−kN)x(t)−kαv(t)= p(t) (3.70)

where v(t) denotes the deformation of the fractional-order dashpot, which is coupled with
the displacement of the mass x(t) by the following equation:

Dα
0+v(t)+εαv(t)= εαx(t) (3.71)

For the above system, one can carry out dynamic analysis by using frequency-domain re-
sponse analysis method by virtue of fast Fourier transform (FFT) algorithm. However, time-
domain methods may be preferred in some cases, e.g., where nonlinearities of the structural
components and/or supplemental energy dissipation devices are involved.

FIGURE 3.10: A linear SDF system incorporated with the FMNS model

Here, a time-domain technique for dynamic analysis of the above system is developed
by directly evaluating Riemann-Liouville’s type of fractional derivative on the basis of the
so-called L1-algorithm [55]. To this end, the definition given in Eq.(3.52) is equivalently
expressed as follows [55],

Dα
0+v(t) =

1
Γ(1− α)

[
v(0)

tα
+
∫ t

0

1
τα

dv(t− τ)

dτ
dτ

]
(3.72)

Letting the time axis be divided into N subintervals with equal length h = t/n and t = tn =

nh (1 ≤ n ≤ N = tmax/h), the above equation can be expressed as follows,

Dα
0+v(tn) ≈

1
Γ(1− α)

[
v(0)
(nh)α

+
n

∑
j=1

∫ jh

(j−1)h

dv(t− τ)

ταdτ
dτ

]
(3.73)
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Approximating the integral over the j-th subinterval as follows,

∫ jh

(j−1)h

dv(t−τ)

ταdτ
dτ≈

v(tn−j+1)−v(tn−j)

hα(1− α)

[
j1−α−(j− 1)1−α

]
(3.74)

With Γ(2− α) = (1− α)Γ(1− α), one can numerically evaluate the fractional derivative as
follows,

Dα
0+v(tn) ≈

1
Γ(2− α)hα

n

∑
j=0

w̄jv(tn−j) (3.75)

where w̄j is a weighting factor independent on the function v(t), with w̄0 = 1 and

w̄j =

(j + 1)1−α−2j1−α+(j− 1)1−α, j = 1, 2, ..., n− 1;

(1− α)j−α− j1−α+(j− 1)1−α, j = n.

Recall that kN = ηβαk0 and kα = 2ηβαk0, letting x(tn) = x(t), and then substituting Eq.(3.75)
into Eq.(3.71) gives the relationship between v(tn) and x(tn) as follows,

v(tn) =
ψ

1 + ψ
x(tn)−

1
1 + ψ

q(tn−1) (3.76)

where ψ = εαhαΓ(2− α) and q(tn−1) = ∑n
j=1 w̄jv(tn−j). Assuming the values of v(t) at the

past (n − 1) steps are known so that q(tn−1) is given, and v(tn) is explicitly related with
x(tn) by Eq.(3.76). Substituting Eq.(3.76) into Eq.(3.75) gives

Dα
0+v(tn) ≈

εα

1 + ψ
[x(tn) + q(tn−1)] (3.77)

By using Eq.(3.76), Eq.(3.70) is rewritten as follows,

mẍ(tn) + (k0 + k′α − kN)x(tn) = p(tn)− k′αq(tn−1) (3.78)

where k′α = kα/(1 + ψ). The above equation can be readily solved by using established
numerical integration schemes, e.g., the Newmark integration scheme.

It should be mentioned that time-domain techniques are available for dynamic analy-
ses of structural systems incorporated with fractional-order elements [53, 54, 82]. In the
pioneering work done by Koh and Kelly [82], the L1-algorithm is employed for dynamic
analysis of an oscillator consisting of a mass and a fractional-order Kelvin element, which
is used to simulate elastomeric bearings for base isolation systems. In references [53, 54],
a Gl-algorithm is used for dynamic analyzing a structure equipped with a fractional-order
Maxwell element.
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3.4.2 Acceleration of the computation

Generally speaking, both the L1- and G1-algorithms result in a computational complex of
O(N2) for dynamic analyses of fractional-order systems. However, the computational com-
plex can be reduced to O(N) if the fixed memory principle [84] is employed for the evalua-
tion of fractional derivative, i.e.,

Dα
0+v(n) ≈ 1

Γ(2− α)hα

N0

∑
j=0

w̄jv(n− j) (3.79)

where v(n) = 0 is assumed for n = −N0,−N0 − 1, ...,−1, due to the causality; N0 is a cutoff
number, indicating the length of a fixed memory. This principle is used because of the fading
memory property of the kernel of the fractional convolution integral. For its application, one
can simply update q(tn−1) in Eq.(3.78) as q̄(tn−1) = ∑N0

j=1 w̄jv(tn−j).
It is also useful to realize the approximation in Eq.(3.79) by constructing a length-N0

finite-duration impulse response (FIR) filter as follows,

Zl(iω) =
1

Γ(2− α)hα

N0

∑
j=0

w̄je−iω·jh (3.80)

which is used to approximate a fractional derivative operator in the frequency domain

Zl(iω) ≈
F [Dα

0+v(t)]
F [v(t)]

= (iω)α (3.81)

By using the designed FIR filter, one can recover the damping function of the FMNS model
as follows,

Zl
α(iω) ≈ βα

Zl(iω)− εα

Zl(iω) + εα
(3.82)

where the superscript ’l’ denotes the damping function recovered from the approximation
of the L1 algorithm.

For example, letting α = 0.1, Fig. 3.11 compares the recovered damping function from
the above approximation with the exact damping function of the FMNS model. It is shown
that a high-order FIR filter can be used to improve the approximation of the damping func-
tion in low frequency range (e.g., ω/ε ≤ 1), whereas has limited effect in the high frequency
range (e.g., ω/ε ≥ 10). Moreover, with N0 = 0.1N, the recovered damping function from the
FIR filter well approximates that of the exact one over the frequency range 0.1 ≤ ω/ε ≤ 100
(provided that ε = structural fundamental frequency, such a frequency range may cover
the dominant frequency ranges of most ground motions). This suggests that for the time-
domain implementation of the FMNS model, one can use an FIR filter with a length of
N0 = 0.1N to approximate the fractional derivative operator so that the computational
complexity can be reduced from O(N2) to O(N) without significantly compromising the
simulation accuracy.

Indeed, some attempts [85–87] have been made to permit the variation of the step length.
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FIGURE 3.11: Recovered damping function in terms of (left) storage modulus
and (right) loss modulus.

For example, instead of the fixed memory principle, Ford and Simpson [86] suggested a log-
arithmic memory principle to acceleration the calculation of fractional derivative, so that
the order in accuracy of the quadrature method can be preserved at a reasonable computa-
tional cost. More recently, it is worth noting that some spectral methods [88–91] have been
suggested to numerically solve the fractional derivative equation, so that computationally
efficient and spectrally convergent algorithms can be developed. However, these methods
are thought to be relatively complicated for applications in structural dynamic simulation
problems. Study on how to embed these computationally efficient and high-order (in accu-
racy) methods into the established numerical integration schemes (e.g., Newmark integra-
tion scheme) is one of the future topics.

3.4.3 Computational speed and accuracy

Here, the applicability of the L1-algorithm-based internal method for the structural dynamic
analysis is discussed in terms of both computational speed and accuracy. For this purpose,
an SDF system (T0 = 4.0 s, and η = 0.1) is first considered as an analytical example. Time
history analyses are conducted by using the El Centro wave recorded in the 1940 Imperial
Valley Earthquake with a fixed step length of 0.002 second.

Fig. 3.12 compares the recorded times of central processing unit (CPU) taken by the
developed method with respect to different cutoff numbers (left) and tunable parameters
(right), respectively. It is shown that a small cutoff number (e.g., N0/N ≤ 0.1) results in sig-
nificant reduction on the computational cost, whereas the tunable parameter α has limited
effect on the computational cost.

Fig. 3.13 compares the percentage errors of the developed method in terms of the dis-
placement peak values (left) and root-mean-square (RMS) values (right), compared to the
case of N0 = N (full memory principle). It is shown that the percentage errors in terms
of displacement peak value and RMS value can both be reduced to negligible levels if
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N0/N ≥ 0.1. This is in good agreement with the prediction from the comparison studies
made in the frequency domain, as shown in Fig. 3.11.

Furthermore, letting α = 0.1, Fig. 3.14 compares the percentage errors of the fixed mem-
ory principle with respect to the variation of structural period T0 in terms of the displace-
ment peak values (left) and RMS values (right), compared to the case of N0 = N. It is shown
that in all cases, the percentage errors in terms of displacement peak value and RMS value
can both be reduced to negligible levels if N0/N ≥ 0.1. Therefore, in the following compar-
ison studies, N0 = 0.1N is used to apply the above method for structural dynamic analyses
if no specification is given.
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FIGURE 3.12: Computational cost with respect to the variations of (left) cutoff
number (α = 0.1) and (right) tunable parameter (N0 = 0.1N).
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FIGURE 3.13: Percentage error in terms of displacement (left) peak value and
(right) RMS value with respect to the variation of the tunable parameter.

The above parametric studies suggest that although the conventional L1-algorithm-based
internal variable method has a computational complex of order O(N2), the fixed memory
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FIGURE 3.14: Percentage error in terms of displacement (left) peak value and
(right) RMS value with respect to the variation of structural period T0.

principle can be used to significantly reduce the computational cost (resulting in a com-
putational complex of order O(N)) without compromising the simulation accuracy, and
consequently it can be used as a computationally efficient tool for the dynamic analysis
of structure with RILD.

3.4.4 Extension to MDF structural systems

Here, the developed time-domain analysis method is extended to an MDF structural model
incorporated with the FMNS model. Here, for brevity, a two-degree-of-freedom structural
model is considered, and the governing equation of motion is expressed in matrix as follows,

mẍ(tn) + (k + k′α − kN)x(tn) = p(tn)− kqq̄(tn−1) (3.83)

where m and k denote the mass and primary stiffness matrices, respectively; k′α and kN

denote additional stiffness matrices from the fractional-order Maxwell and negative stiffness
elements, respectively; x(tn) and p(tn) denote the response displacement and exciting force
vectors at the n-th time step, respectively; q̄(tn−1) = ∑N0

j=1 w̄jv(tn−j), where v(tn) denote the
deformation vector of the dashpots at the n-th time step. Those matrices and vectors are
respectively expressed as follows,

m =

[
m1

m2

]
, k =

[
k1 + k2 −k2

−k2 k2

]
, k′α =

[
1k′α + 2k′α −2k′α
−2k′α 2k′α

]
,

kq =

[
1k′α −2k′α

2k′α

]
, kN =

[
1kN + 2kN −2kN

−2kN 2kN

]
, x =

{
x1

x2

}
, p =

{
p1

p2

}
.

Alternatively, Eq.(3.83) can also be expressed in the following form

mẍ(tn) + kx(tn) + f f (tn) = p(tn) (3.84)
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where f f (tn) denotes the damping force provided by the FMNS models at the n-th time step,
which can be expressed as follows,

f f (tn) = (k′α − kN)x(tn) + kqq̄(tn−1) (3.85)

Assume that the relaxation parameter, the tunable parameter, and loss factor of the
FMNS model for each degree of freedom are fixed, respectively, i.e. ε j = ε, αj = α, and
ηj = η, j = 1, 2, so that the auxiliary quantities ψj = ψ = εαhαΓ(2− α), j = 1, 2, for each
degree of freedom are equal. By letting jkN = ηβα · k j and jk′α = 2 · jkN/(1 + ψ), one can
simplify Eq.(3.83) as follows,

mẍ(tn) + (1 + ηe)kx(tn) = p(tn)− kqq(tn−1) (3.86)

where ηe = ηβα(1− ψ)/(1 + ψ).
It should be noted that Eq.(3.83) can be readily solved by using established numerical in-

tegration schemes. For example, the established Newmark’s method [7] can be readily used
to solve Eq.(3.83), and thus response history analysis of such an MDF structural system can
be carried out with minor modification on the conventional procedures. For convenience
of application, Table 3.3 summarizes the main procedures for response history analyses of
a linear MDF structural system incorporated with the FMNS models. When nonlineari-
ties of structural components or supplemental energy dissipation devices are involved, one
can readily combine the Newton-Raphson iterative method with the developed method for
nonlinear response history analyses.

3.5 Application into a base-isolated structure

Here, the application of the FMNS model for mimicking the behavior of ideal RILD is
discussed when it is supplemented into a base-isolated structure for providing additional
damping to constraint the isolator displacement.

To this end, a benchmark base-isolated five-story shear building model is used as an
analytical example for response history analyses, as shown in Fig. 3.15. Table 3.4 lists the
structural specifications. The fundamental natural period and the inherent damping ratio
of the first mode of the upper structure with a fixed base are approximately 0.67 s and 2%,
respectively. The damping matrix of the upper structure is assumed to be proportional to
the stiffness matrix. The natural rubber bearings are designed to have the isolation period
of 4.0 s. However, the inherent damping of the isolators is neglected (i.e., c0 = 0).

For providing supplemental damping to constraint the isolator displacement, a hys-
teretic damper (HD) and a RILD element are simultaneously incorporated into the isolation
layer, as shown in Fig. 3.15. Letting the yielding deformation be assumed as 0.035 m, and µ

denote the ratio of yielding force to the total weight of the structural system (including the
base weight).
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TABLE 3.3: Newmark’s method modified for an MDF structure incorporated
with the FMNS model

1.0 Initial calculations
1.1 Assume ε j, αj, and ηj, j = 1, 2, ..., l.
1.2 Select h and N0.
1.3 Determine ψj = ε

αj
j · h

αj · Γ(2− αj); jkN = ηj · βαj · k j;

jkα = 2 · jkN ; and jk′α =
jkα

1 + ψj
, j = 1, 2, ..., l.

1.4 Assemble matrices m, k, kα, kN , kq.
1.5 Solve p0 − kqq̄0 − (k + k′α − kN)x0 = mẍ0 ⇒ ẍ0.

1.6 a1 =
1

βh2 m; a2 =
1

βh
m; and a3 = (

1
2β
− 1)m.

1.7 k̄ = a1 + k + k′α − kN .
2.0 Calculations for each time step, n = 0, 1, 2, ...

2.1 w̄j = (j + 1)1−α − 2j1−α + (j− 1)1−α, if j = 1, 2, ..., n;
w̄j = (1− α)(n + 1)−α − (n + 1)1−α + n1−α, if j = n + 1.

2.2 q̄n = ∑N0
j=1 w̄jvn+1−j.

2.3 p̄n+1 = pn+1 + a1xn + a2ẋn + a3ẍn − k′αq̄n.
2.4 Solve k̄ xn+1 = p̄n+1 ⇒ xn+1.

2.5 ẋn+1 =
γ

βh
(xn+1 − xn) +

(
1− γ

β

)
ẋn +

(
1− γ

2β

)
hẍn.

2.6 ẍn+1 =
1

βh2 (xn+1 − xn)−
1

βh
ẋn +

(
1− 1

2β

)
ẍn.

2.7 vn+1 =
ψ

1 + ψ
xn+1 −

1
1 + ψ

q̄n.

3.0 Repetition for the next time step. Replace n by n + 1 and implement steps
2.1 to 2.7 for the next time step.

3.5.1 Linear response history analyses

In order to verify the applicability of the FMNS model to causally approximate the behavior
of ideal RILD, three different types of elements are considered for comparison, as shown
in Table 3.5. Letting µ = 0 (so that the structural system remains linearly elastic), the re-
sponse history analysis of the base-isolated structure incorporated with RILD can be readily
conducted by using frequency response analysis method with the entire time history of in-
put ground motion provided. For the modified TMW element, available formulations for
time-domain dynamic analyses can be found in references [33, 46]. For the FMNS model,
letting α = 0.1, the time-domain technique developed in the above section is employed for
response history analyses.

For example, Fig. 3.16 compares the response histories of the example structure sepa-
rately incorporated with different models when the system is subjected to the ground mo-
tion recorded at the El Centro station in the 1940 Imperial Valley earthquake (Peak ground
acceleration (PGA) = 3.417 m/s2, N–S component). Furthermore, Fig. 3.17 compares the
hysteresis loops of different damping models. This example verifies that the FMNS model
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FIGURE 3.15: A base-isolated structure incorporated with RILD

TABLE 3.4: Structural properties of the analytical model

j Mass mj (ton) Stiffness k j (kN/m) Damping cj (kN·s/m) Height (m)
5 1 739 2 291 000 9 770 3.8
4 1 800 2 488 000 10 610 3.8
3 1 807 1 939 000 8 270 4.4
2 1 928 2 038 000 8 690 4.4
1 2 335 1 760 000 7 510 5.45
0 3 057 31 250 — 2.73

TABLE 3.5: Different rate-independently damping elements

No. Damping Loss factor Parameters
1 Ideal RILD η = 0.4 kc = i η k0sgn(ω)

2 Modified TMW η = 0.4 k′c,TMW = η k0

7

∑
n=1

φn

(
iω

iω + rn
− ε2

ε2 + r2
n

)
3 FMNS η = 0.4 kc,P = η k0 · βα

(iω)α − εα

(iω)α + εα

(with α = 0.1) performs similarly to the modified TMW model, in consistence with the pre-
diction from the frequency-domain comparison in Fig. 3.8, and and both of the two models
can be used to causally approximate ideal RILD without significant loss of accuracy.
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FIGURE 3.16: Response histories of linear base-isolated structural systems in-
corporated with different models (1940 El Centro)
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FIGURE 3.17: Hysteresis loops of different RILD elements (1940 El Centro)

3.5.2 Nonlinear response history analyses

It is established that due to its noncausality, the ideal RILD element is difficult to be used
for dynamic analyses when structural components and/or supplemental energy dissipation
devices yield and exhibit strong nonlinear behavior. In such cases, the FMNS model may be
used instead to provide a causal approximation.

In order to verify the effectiveness of the developed time-domain method for nonlinear
dynamic analyses, the base-isolated structure simultaneously incorporated with the FMNS
model and an HD is used as an analytical example. Besides its dissipation capability, an HD
is also used in base-isolated structures to provide sufficient initial stiffness to resist wind
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loads. Following the standard practice in Japan, the HD should be designed not to yield
against the wind load of a 500-years return period. For satisfying this demand, the HD is
designed with a yielding force of 4 011 kN, and the ratio of HD yielding force to the total
weight is µ = 3.2%.

Two different cases are considered for nonlinear time history analyses, as shown in Ta-
ble 3.6. In case 1, the FMNS model with α = 1.0 is used to represent Keivan RILD element
(MNS model), whereas in case II, the FMNS model with α = 0.1 is used to approximate a
causal RILD element in the Makris model (or the modified TMW model). Such a combined
damping system consisting of a RILD element and an HD may be used to constraint the
excessive isolator deformations induced by those ground motion records with large ampli-
tudes. For example, Fig. 3.18 shows the response histories of the example structure subjected
to a ground motion recorded at the Sylmar County Hospital station in the 1994 Northridge
earthquake (PGA = 8.26 m/s2, N–S component).

TABLE 3.6: Two cases for nonlinear time history analyses

Case Tuning parameter Loss factor HD yielding force/total weight
I α = 1.0 η = 0.4 µ = 3.2%
II α = 0.1 η = 0.4 µ = 3.2%
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FIGURE 3.18: Seismic responses of a base-isolated structure incorporated with
the FMNS model and hysteretic damper (1995 Sylmar County Hospital)

It is observed from Fig. 3.18 that the differences between the seismic responses of the ex-
ample structure in the two cases are negligible. This occurs because the hysteresis loops of
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the damping elements are similar in the two cases, as shown in Fig. 3.19. This example veri-
fies that by using the developed time-domain method, the FMNS model can be numerically
implemented in nonlinear dynamic analyses, which is hard for the ideal RILD element. Fur-
thermore, it is shown in Fig. 3.19(a) that when incorporated into a base-isolated structure,
the MNS model can behave similarly to the FMNS model with a fractional tunable param-
eter, whereas the former is much simpler in the senses of both numerical implementation
and physical realization. This quantitative comparison suggests that the MNS model can be
used as a simple option to causally approximate the behavior of RILD for application into
a nonlinear base-isolation system without significantly compromising the structural seismic
performance, when compared with other more complicated models for RILD.
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FIGURE 3.19: Hysteresis loops of different damping elements (1995 Sylmar
County Hospital)

3.6 Chapter conclusions

In this chapter, a novel model is proposed to approximate the behavior of RILD by extend-
ing and generalizing a first-order all-pass filter into a fractional-order filter. The causality
of the proposed model is confirmed and its time-domain representation is derived and ex-
pressed in terms of the Mittag-Leffler relaxation function. For physical representation of the
proposed model, a mechanical system consisting of a fractional-order Maxwell and a nega-
tive stiffness elements coupled in parallel is constructed (referred to as fractional-Maxwell-
negative-stiffness (FMNS) model), which is a generalization of the MNS model proposed
in Chapter 2. Both passive and semi-active methods are suggested to physically realize the
FMNS model for practical engineering applications.

The relationships between the proposed model with existing causal RILD models (e.g.,
Biot, Makris, TMW, and Keivan models) are discussed in detail. It is shown that the pro-
posed model can include both Makris and Keivan models as its special cases with α = 0 and
α = 1, respectively, and the proposed model with a fractional order (e.g., α = 0.1) can be
equivalent to a TMW model, which is able to approximate the Biot model for practical appli-
cations. Therefore, the proposed model can be considered as a unified causal RILD model.
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Furthermore, the Keivan model is found to be equivalent to a first-order approximation of
the Biot model if the dynamic stiffness of the latter is expanded by using a Mercator series.
These newly revealed relationships between different models, along with the established
ones, enable the development of a unified framework of causal RILD models.

A time-domain analysis method is developed by directly calculating the fractional deriva-
tive on the basis of the so-called L1 algorithm, which can serve as a useful tool for numer-
ical implementation of the FMNS model in a structural response analysis problem. Such a
method can be readily embedded into established numerical integration schemes, and thus
can be readily used for nonlinear response analyses of a structural system incorporated with
the FMNS model. By applying the fixed memory principle, the computational efficiency of
the developed method can be largely improved and consequently, the computational com-
plexity can be reduced from O(N2) to O(N) without significant loss of accuracy.

To verify its effectiveness, a base-isolated five-story structural model is used as an ana-
lytical example, and response history analyses are conducted for the structure incorporated
with the FMNS model. Furthermore, the seismic performances of the structure separately
incorporated with different causal RILD elements are compared. It is suggested that the
FMNS model with a unity tunable parameter (i.e., the MNS model) can be used as a sim-
pler option to approximate the behavior of ideal RILD in a nonlinear base-isolation system
without significantly compromising the structural seismic performance, when compared to
other more complicated RILD models in the unified framework.

Compared with the MNS model, the FMNS model can provide an improved approxima-
tion of RILD in the sense of an extended frequency range, over which the rate-independent
dissipation behavior can be mimicked. This feature may be important to approximate the
behavior of RILD over multiple modal frequencies of a structural system, especially for
evaluating the floor-response acceleration response. However, one cannot fully explore the
importance of this feature by incorporating the FMNS model in a base-isolation system.
For approximating the behavior of multiple ideal RILD elements distributed in an MDF
structure, a causal model which can exhibit rate-independent dissipation behavior over an
extended frequency range is preferred, as to be discussed in Chapter 4.



69

Chapter 4

An Efficient Method for a Structural
Model Incorporated with RILD

4.1 Introduction

As a purely dynamic property of a structure (or material), damping can only be measured
by conducting dynamic testing. To this end, harmonic vibration testing is conducted in
most cases because of its simplicity. In this way, the characteristic parameters to describe
the damping behavior of a structure (or material) are estimated by varying the deforma-
tion (force) amplitude and/or the excitation frequency. Consequently, a candidate damping
model which can fit the experimental data in an acceptable degree is usually developed in
the frequency domain. Such a damping model may be conveniently used in a structural sys-
tem and readily analyzed in the frequency domain by virtue of fast Fourier transform (FFT)
algorithm, provided that certain conditions (e.g., linearity and stability) are satisfied. How-
ever, in many applications, it is preferred to interpret the damping model from the frequency
domain to the time domain. For example, in order to use existing commercial softwares for
building structural design, a time-domain description of the damping model is required be-
cause most of the softwares can only support time-domain algorithms for dynamic analyses
in a digital computer. Moreover, time-domain methods are necessary when the nonlinear
behaviors of structural or supplemental damping elements should be taken into account in
dynamic analyses, e.g., when the structure is subjected to extreme earthquake events.

Among many candidate models for describing damping behavior of materials, RILD is
thought to be one of the most promising models which can comply well with the experimen-
tal data of many solid materials in a considerable frequency range [23]. RILD is indeed an
idealized outcome from the dynamic experimental studies, and it is naturally convenient to
be used and analyzed in the frequency domain. However, when transferred to the time do-
main, the ideal RILD model fails to satisfy the requirement of causality [28], which not only
makes it impossible to be physically realized by using real-world devices, but also makes it
challenging to be applied and numerically implemented in a nonlinear simulation problem.

In the past decades, some attempts have been made to enable time-domain simulation
of the ideal RILD element. For example, Inaudi and Kelly [38] suggested an iterative cal-
culation method for dynamic analyses of RILD systems in the time domain, and later In-
audi and Makris [39] proposed a more computationally efficient method by using analytical
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(complex-valued) signals. The above methods may be extended to multi-degree-of-freedom
systems, and used for dynamic analyses of different types of structural systems incorporated
with RILD, e.g., geotechnical, mechanical, or space structures [41, 52, 92]. However, they are
thought to have limited capabilities for nonlinear response history analysis of a structural
model with RILD, when the nonlinearities of structural or supplemental damping devices
are taken into account. For example, as discussed in reference [50], RILD elements can be
supplemented to improve the seismic performance of low-frequency structures. Moreover,
RILD may be used as a straightforward model of simulating the structural inherent damp-
ing without adopting the assumption of Rayleigh damping. In both cases, the nonlinear
behaviors of structural components and/or supplemented energy dissipation devices (e.g.,
hysteretic dampers) should be properly considered for the performance evaluation of the
structural system in extreme earthquake environments. Therefore, a time-domain analysis
method for nonlinear simulations is of fundamental necessity.

To meet this necessity, a causal RILD element may be used instead of the ideal one. In
the time domain, the damping force of a causal RILD element is typically expressed in the
form of a convolution integral, resulting in an integro-differential equation which governs
the motion of the structural system. Solving such an equation by using conventional meth-
ods results in an overall computational complexity of O(N2), where N denotes the number
of time steps in an analysis. Consequently, it becomes a computationally expensive prob-
lem to conduct a dynamic analysis of a structural model with causal RILD, and an efficient
method is required to accelerate the analysis, especially when a large number of iterative
calculations are required, e.g., for nonlinear simulation or numerical optimization design
problems. Indeed, some attempts [41, 42, 45] have been made to reduce the computational
burden for the dynamic analysis of a structural model with causal RILD. However, limited
researches have been reported on computationally efficient methods for the dynamic anal-
ysis of a structural model with the FMNS model, which is thought to be a unified causal
RILD element, as discussed in Chapter 3.

In this chapter, a time-domain computationally efficient method is developed for dy-
namic analyses of a structural model incorporated with the FMNS model. In the time do-
main, the resulting damping force is expressed in the form of a convolution integral with
the Mittag-Leffler relaxation function as a damping kernel. In order to reduce the compu-
tational burden associated with the convolution integral, a recursive method is developed
by approximating the Mittag-Leffler relaxation function as a series of exponential relaxation
processes, which are also known as Prony series [93]. The recursive method is readily em-
bedded into established numerical integration schemes, and consequently, the structural
system incorporated with the FMNS model can be efficiently analyzed without directly cal-
culating the fractional derivative, as one does on the basis of L1-algorithm in Chapter 3. The
effectiveness of the developed method is verified by using numerical examples, and com-
parisons between the developed methods with available methods are made. It is suggested
the developed method can be used as an computationally efficient tool for the dynamic
analysis of a structural model with RILD.
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4.2 Governing equation of motion

4.2.1 Ideal noncausal RILD system

First, one considers a single-degree-of-freedom (SDF) structural system incorporated with
ideal RILD, as shown in Fig. 4.1(a), where m and k denote the structural mass and primary
stiffness, respectively, and kc(iω) denotes the damping function of the ideal RILD. The gov-
erning equation of motion of such a system can be expressed in the frequency domain as
follows,

−mω2X(ω) + [k + kc(iω)]X(ω) = F(ω) (4.1)

where kc(iω) = iηk sgn(ω) is assumed; η denotes the loss factor; i =
√
−1; sgn(·) denotes

the signum function; F(ω) denotes the external exciting force. Assuming that the above
system is stable and absolutely integrable, the above equation can be inverse Fourier trans-
formed into the time domain as follows,

mẍ(t) + k[x(t) + ηx̂(t)] = f (t) (4.2)

where x̂(t) denotes the Hilbert transform of x(t), which is defined as follows,

x̂(t) = F−1[i sgn(ω)X(ω)] = − 1
πt
∗ x(t) = − 1

π

∫ ∞

−∞

x(τ)
t− τ

dτ (4.3)

where F−1(·) denotes the inverse Fourier transform, and ∗ denotes the operation of con-
volution integral. Therefore, Eq.(4.2) is actually an integro-differential equation. It may be
noticed that the damping force ηkx̂(t) depends on not only the past known information of
x(t), but also that in the future, which is unknown and to be determined, i.e., the ideal RILD
is noncausal. This property makes it challenging to solve Eq.(4.2) by using conventional in-
tegration methods. Some methods [38, 39] have been developed to overcome this challenge,
however, they are thought to have limited capabilities for nonlinear dynamic analyses of
structural systems incorporated with RILD.

FIGURE 4.1: SDF systems with (a) ideal noncausal RILD and (b) causal RILD
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4.2.2 Approximated causal RILD systems

In order to overcome the challenge of time-domain simulation of RILD, one can alterna-
tively use a causal RILD element instead of the ideal noncausal one for dynamic analyses,
as shown in Fig. 4.1(b), where k′c(iω) is the damping function of a causal RILD element. For
such a system, the governing equation of motion can be expressed in the frequency domain
as follows,

−mω2X(ω) + [k + k′c(iω)]X(ω) = F(ω) (4.4)

where k′c(iω) = ηkZ(iω) is assumed, i.e., Z(iω) denotes a normalized damping function.
For a causal RILD element, Z(iω) can provide a good approximation of the unit imaginary
function isgn(ω) in some sense.

In this chapter, the FMNS model is used because it is thought to be a unified causal RILD
model that can encompass existing causal models. Then, the governing equation of motion
of such a system is specified in the frequency domain as follows,

−mω2X(ω) + k [1 + η Zα(iω)] X(ω) = F(ω) (4.5)

where the normalized damping function Zα(iω) is given as follows,

Zα(iω) = βα
(iω)α − εα

(iω)α + εα
(4.6)

with βα = cot(απ/4). Eq.(4.5) can be inverse Fourier transformed into the time domain as
follows,

mẍ(t) + k [x(t) + η qα(t) ∗ ẋ(t)] = f (t) (4.7)

where qα(t) denotes the damping kernel or relaxation function of the FMNS model

qα(t) = F−1
[
Zα(iω)

iω

]
= βαu(t) [2Eα(−εαtα)− 1] (4.8)

where u(t) denotes the Heaviside’s step function; Eα(z) denotes the Mittag-Leffler relaxation
function defined as follows,

Eα(z) =
∞

∑
n=1

zn

Γ(αn + 1)
(4.9)

Substituting Eq.(4.8) into Eq.(4.7) gives

mẍ(t) + (k− kN)x(t) + kα [Eα(−εαtα)u(t)] ∗ ẋ(t) = f (t) (4.10)

with kN = ηβαk and kα = 2ηβαk, respectively. Letting Īα(t) denote the convolution integral
in Eq.(4.10), one may evaluate it by using a conventional quadrature rule as follows,

Īα(t) =
∫ t

0
Eα(−εατα)ẋ(t− τ)dτ ≈

N

∑
j=0

wj ẋ(tj) (4.11)
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where wj and ẋ(tj) denote the quadrature weight and node, respectively. In many applica-
tions, the external excitation f (t) are discrete data specified at equally-spaced time nodes
tj = jh (h is the step length), and one may pursue the solution of Eq.(4.10) at these time
nodes. For this purpose, the trapezoidal or Simpson rule may be readily used. However,
this results in a computational complexity of O(N2) to solve Eq.(4.10), and the quadrature
weights wj are determined by evaluating the Mittag-Leffler function, which causes addi-
tional computational burden.

4.3 A Prony-series-based recursive method

4.3.1 The basic formulation

Here, in order to reduce the computational burden to solve Eq.(4.10) in the time domain, the
Mittag-Leffler relaxation function is approximated as a superposition of different exponen-
tial relaxation processes as follows,

Eα(−εαtα) ≈
p

∑
j=1

bje−ajεt (4.12)

which are known as the Prony series [41]. In the above equation, p is the number of relax-
ation processes, and is also referred to as the order of a Prony series. It is worth noting that
Eα(−εαtα) tends to unity as t → 0+, therefore, the damping kernel function of the FMNS
model is nonsingular at the time origin (recall that the damping kernel of the Biot model
suffers singularity at the time origin), and one has ∑

p
j=1 bj ≈ 1.

Provided the damping kernel approximated by a Prony series, the convolution integral
Īα(t) can be approximated as follows,

Īα(t) ≈
p

∑
j=1

bje−ajεt ∗ ẋ(t) (4.13)

and then a recursive method can be developed to numerically solve Eq.(4.10). To this end,
letting t = nh, n = 0, 1, 2, ..., N − 1, the following recursive relation is considered

Ij(n + 1) =
∫ nh+h

0
e−ajε(t−τ) ẋ(τ)dτ ≈ e−ajεh Ij(n) +

h
2

[
e−ajεh ẋ(n) + ẋ(n + 1)

]
(4.14)

with j = 1, 2, ..., p. By substituting the above relation into Eq.(4.13), one can evaluate Īα(t) in
a recursive manner as follows,

Īα(n + 1) ≈
p

∑
j=1

bj Ij(n + 1) ≈ L1×pIp×1(n) + τ1 ẋ(n) + τ0 ẋ(n + 1) (4.15)
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where the vectors L1×p =
{

L1, L2, ..., Lp
}

and Ip×1 =
{

I1, I2, ..., Ip
}T are used, and the coeffi-

cients can be respectively determined as follows,

Lj = bje−ajεh, τ1 =
h
2

p

∑
j=1

bje−ajεh ≈ h
2

Eα(−εαhα), τ0 =
h
2

p

∑
j=1

bj ≈
h
2

.

Substituting Eq.(4.15) into Eq.(4.10) gives

mẍ(n+1)+(k−kN)x(n+1)+kατ0 ẋ(n+1) = f (n+1)−kα

[
L1×pIp×1(n)+τ1 ẋ(n)

]
(4.16)

which can be expressed in a more compact form as follows,

mẍ(n + 1) + c0 ẋ(n + 1) + kex(n + 1) = fe(n + 1) (4.17)

where ke = k− kN , c0 = τ0kα, fe(n + 1) = f (n + 1)− kα

[
L1×pIp×1(n) + τ1 ẋ(n)

]
. Eq.(4.17)

can be readily solved by using established numerical integration schemes, e.g., Newmark’s
method or Runge-Kutta method. It should be mentioned that by utilizing the above recur-
sive procedure, one can reduce the overall computational complexity of solving Eq.(4.10)
from O(N2) to O(N).

Of course, provided the Prony series to approximate the Mittag-Leffler relaxation func-
tion, one can also physically interpret them as the relaxation function of a Maxwell-Weichert
model and reformulate Eq.(4.10) as a second-order differential equation coupled with a se-
ries of first-order differential equations (e.g., see reference [33]). However, this formulation
increases the structural dimensions for dynamic analyses due to the additional degrees of
freedom, which may compromise the computational efficiency for large-scale simulation
problems, e.g., the soil-structure interaction simulation of nuclear power plant, where the
soil dynamics is modeled by using rate-independent damping elements [51]. Moreover,
because a theoretical Maxwell-Weichert model doesn’t consist of any mass element, the re-
sulting mass matrix of the whole structural system is singular, which may cause potential
problems for dynamic analyses by applying conventional methods [49]. The above recur-
sive formulation neither increases the structural matrix dimension nor causes a problem of
singular matrix (as to be discussed below), and thus it is preferred for the dynamic analysis
of a structural model with RILD.

4.3.2 Extension to MDF structural systems

Here, for brevity, a two-degree-of-freedom system incorporated with the FMNS model is
considered. The governing equation of motion can be expressed in matrix as follows,

mẍ(t) + (k− kN)x(t) +
∫ t

0
G(t− τ)ẋ(τ)dτ = −mJ2×1 ẍg(t) (4.18)

where m and k are the mass and stiffness matrices of the primary structural system, respec-
tively; kN is the stiffness matrix due to the negative stiffness elements; G(t) is the damping
kernel matrix of fractional-order Maxwell elements; x(t) is the displacement vector relative
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to the ground; J2×1 is the identity vector. These matrices and vectors are specified as follows,

m =

[
m1

m2

]
, k =

[
k1 + k2 −k2

−k2 k2

]
, kN =

[
1kN + 2kN −2kN

−2kN 2kN

]
,

G(t) =

[
1kαḠ1(t) + 2kαḠ2(t) −1kαḠ2(t)
−2kαḠ2(t) 2kαḠ2(t)

]
, x =

{
x1

x2

}
, J2×1 =

{
1
1

}
.

In order to solve Eq.(4.18) in a recursive manner, by defining the following matrices

T =

[
1 −1
0 1

]
, kD

α =

[
1kα 0
0 2kα

]
, ḠD(t) =

[
Ḡ1(t) 0

0 Ḡ2(t)

]
.

one can express the damping kernel matrix as follows,

G(t) = TkD
α ḠD(t)TT (4.19)

where the superscript ’ T ’ denotes the transpose operation. Then, one can reformulate the
matrix operation of the following convolution integral

Ī(t) = G(t) ∗ ẋ(t) = TkD
α ḠDTT ∗ ẋ(t) = TkD

α R(t) (4.20)

where
R(t) = ḠD(t)TT ∗ ẋ(t) = ḠD(t) ∗ ∆̇(t) (4.21)

with ∆̇(t) = TT ẋ(t). Assume that the damping kernel Ḡi(t) is approximated by using Prony
series as follows,

Ḡi(t) ≈
p

∑
j=1

jbi · e−jai ·t (4.22)

Then, by using Eq.(4.15), one has

Ri(n + 1) = Ḡi(t) ∗ ∆̇i(t) ≈ LiIi(n) +
h
2

Ḡi(h)∆̇i(n) +
h
2

Ḡi(0)∆̇i(n + 1) (4.23)

where Li = {1Li, 2Li, ..., pLi} and Ii = {1 Ii, 2 Ii, ..., p Ii}T are 1× p and p× 1 vectors, respec-
tively; their components are given as follows,

jLi = jbi · e−jai ·h, j Ii(n + 1) = e−jai ·h · j Ii(n) +
h
2

e−jai ·h∆̇i(n) +
h
2

∆̇i(n + 1),

respectively, with i = 1, 2; j = 1, 2, ..., p. The above relations can also be reformulated in
more compact forms as follows,

Li = bie−hai , Ii(n + 1) = e−hai Ii(n) +
h
2

e−hai Jp×1∆̇i(n) +
h
2

Jp×1∆̇i(n + 1). (4.24)

where bi = {1bi, 2bi, ..., pbi} and ai = Diag{1ai, 2ai, ..., pai} are 1× p vector and p× p diagonal
matrix, respectively.
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Define the following matrix and vector, respectively,

LD =

[
L1 0
0 L2

]
, IV =

{
I1

I2

}
,

and recall that ∆̇(t) = TT ẋ(t), one can express Eq.(4.23) in matrix as follows,

R(n + 1) = LDIV(n) +
h
2

[
ḠD(h)TT ẋ(n) + ḠD(0)TT ẋ(n + 1)

]
(4.25)

Substituting Eq.(4.25) into Eq.(4.20) gives

Ī(n + 1) = TkD
α LDIV(n) +

h
2

G(h)ẋ(n) +
h
2

G(0)ẋ(n + 1) (4.26)

Letting Ψ = TkD
α LD, ch = h

2 G(h) and c0 = h
2 G(0), one can reformulate the above equation

as follows,
Ī(n + 1) = ΨIV(n) + chẋ(n) + c0ẋ(n + 1) (4.27)

Substituting Eq.(4.27) into Eq.(4.18) gives

mẍ(n + 1) + c0ẋ(n + 1) + (k− kN)x(n + 1) = −mJ2×1 ẍg(n + 1)−ΨIV(n)− chẋ(n) (4.28)

Similar to the case of an SDF system, one can express the above equation as follows,

mẍ(n + 1) + c0ẋ(n + 1) + kex(n + 1) = fe(n + 1) (4.29)

where ke = k− kN and fe(n + 1) = −mJ2×1 ẍg(n + 1)−ΨIV(n)− chẋ(n). It can be verified
that Eq.(4.29) can generalize Eq.(4.17) as a special case. These equations can be readily solved
by using established numerical integration schemes.

It should be mentioned that although the above method is formulated for dynamic anal-
yses of structural systems incorporated with the FMNS model, with minor revision, it can
also be readily extended for analyzing other types of non-viscously damped systems [94].
Different types of models have different damping kernels, and thus different sets of Prony
series coefficients may be used for approximation, but the above formulation is still applica-
ble for dynamic analyses of those systems. For example, Spanos and Tsavachidis [42] used
the Prony series to approximate the damping kernel of the Biot model. Even in the case of
viscous damping, one has Ḡi(t) = δ(t), which may be approximated by using a Prony series
with jai → ∞ and ∑

p
j=1 jbi = 1, and then one has LD = 0 and ch = 0, and consequently

Eq.(4.29) reduces to the governing equation of a conventional viscously damped system.
In this sense, the above recursive method is thought to be a general method for structural
dynamic analyses.
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4.3.3 Parameter estimation of the Prony series

For a given number of p, the Prony series shown in Eq.(4.12) contain 2p parameters (aj and
bj, j = 1, 2, ..., p) to be estimated for the approximation of a target function (e.g., the Mittag-
Leffler relaxation function is considered in this study). For this purpose, both time-domain
and frequency-domain methods can be used.

Provided that a target function is estimated at discrete equally-spaced time points tn =

(n− 1)h (1 ≤ n ≤ N), e.g., letting gn = Eα(−εαtα
n), the parameter vectors a = {a1, a2, ..., ap}T

and b = {b1, b2, ..., bp}T may be estimated by pursuing a best fit to the target function in the
sense of least-squares of approximation errors

χ2
1(a, b) =

N−1

∑
n=0

ε2
n =

N−1

∑
n=0

(
gn − bTe−aεtn

)2
(4.30)

where the subscript ’1’ indicates the estimation error with respect to the time-domain data.
Due to the exponential term involved with a, the above problem suffers strong nonlin-

earity. Some iterative algorithms for nonlinear regression analyses may be used to solve this
strongly nonlinear problem, but this results in high computational burden. Alternatively,
the least squares Prony method [93] may be used to overcome this challenge by separating
the original highly nonlinear regression problem into a relatively easier polynomial factor-
ing and a linear least square subproblems, for both of which reasonably fast algorithms are
available for the solutions. An introduction of this method is given as follows.

Least-squares Prony method

The least-squares Prony method is known as a classical time-domain method for parameter
estimation problems. Provided that a target function g(t) is estimated at discrete equally-
spaced time points from 0 to (N − 1)h, the error between the target function and a Prony
series can be expressed as follows,

εn = gn −
p

∑
j=1

bjzn
j (4.31)

for n = 0, 1, 2, ..., N − 1, where zj = exp[(−ajεh)]. One can express the above equations in
matrix as follows,

ε0

ε1
...

εN−1

 =


g0

g2
...

gN−1

−


z0
1 z0

2 . . . z0
p

z1
1 z1

2 . . . z1
p

...
...

. . .
...

zN−1
1 zN−1

2 . . . zN−1
p




b1

b2
...

bp

 = {g} −Ab. (4.32)

If N = 2p, one may obtain an exact solution to the above matrix equation (i.e., εn = 0,
n = 0, 1, ..., 2p− 1), and a Prony series can be designed to exactly represent the target func-
tion over the sample points. However, in most applications, one has N � 2p and a best
estimation of the Prony series may exist in the sense of least squares of the errors.
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In order to separately determine zj and bj, it is crucial to construct a homogeneous linear
constant-coefficient difference equation with zj (j = 1, 2, ..., p) as its solution. To this end,
a polynomial φ(z) is defined with the exponents zj as its roots, and can be expanded as
follows

φ(z) =
p

∏
j=1

(z− zj) =
p

∑
k=0

γkzp−k (4.33)

with γ0 = 1. Then, letting Ai denote a sub-matrix of A in Eq.(4.32), which contains the
elements from the i-th to (i + p)-th rows. Notice that the matrix A has a Vandermonde
structure, one has

Ai =


zi−1

1 zi−1
2 . . . zi−1

p

zi
1 zi

2 . . . zi
p

...
...

. . .
...

zi+p−1
1 zi+p−1

2 . . . zi+p−1
p

 =


z0

1 z0
2 . . . z0

p

z1
1 z1

2 . . . z1
p

...
...

. . .
...

zp
1 zp

2 . . . zp
p




zi−1
1

zi−1
2
...

zi−1
p

 = A1 · {zi−1} (4.34)

From Eq.(4.32), one can similarly obtain the following matrix equations

{ε}i = {g}i −Aib = {g}i −A1 · {zi−1}b (4.35)

for i = 1, 2, ..., N − p, where {ε}i =
{

εi−1, εi, ..., εi+p−1
}T, and {g}i = {gi−1, gi, ..., gi+p−1}T.

Define the following (p + 1)× 1 vectors

{γ} = {γ0, γ1, ..., γp−1, γp}T, {γ̌} = {γp, γp−1, ..., γ1, γ0}T.

where the above checked symbol denotes an order reverse operation with respect to a vector.
Left-multiplying Eq.(4.35) by {γ̌}T gives

ε̄i = {γ̌}T{ε}i = {γ̌}T{g}i − {γ̌}TA1 · {zi−1}b = {γ̌}T{g}i = {ǧ}T
i {γ} (4.36)

for i = 1, 2, ..., N − p, where the term involving b vanishes because zj (j = 1, 2, ..., p) are the
roots of the Eq.(4.33). Recall that γ0 = 1, the above equations can be expressed in matrix as
follows,

{ε̄} =


ε̄1

ε̄2
...

ε̄N−p

 =


gp

gp+1
...

gN−1

+


gp−1 gp−2 . . . g0

gp gp−1 . . . g1
...

...
. . .

...
gN−2 gN−3 . . . gN−p−1




γ1

γ2
...

γp

 = {g′}+ B · {γ}

(4.37)
From the above equation, one can obtain a best estimation of the polynomial coefficients
{γ} in the sense of least squares. With the estimated coefficients {γ}, one can numerically
estimate the roots zj (j = 1, 2, ..., p) of the polynomial in Eq.(4.33). To this end, for example,
one can refer to the algorithm by Jenkins [95].

With the roots zj (j = 1, 2, ..., p), one can estimate the coefficients aj (j = 1, 2, ..., p). Then,
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one can estimate the remaining unknown coefficients bj (j = 1, 2, ..., p) by solving the follow-
ing matrix equation

g0

g2
...

gp−1

−


z0
1 z0

2 . . . z0
p

z1
1 z1

2 . . . z1
p

...
...

. . .
...

zp−1
1 zp−1

2 . . . zp−1
p




b1

b2
...

bp

 =


0
0
...
0

 (4.38)

in which it is assumed that the designed Prony series exactly fits the target function at the
first p sample points. Alternatively, with respect to Eq.(4.32), one can design a Prony series
so that it can provide a best fit to the target function over all the sample points of investiga-
tion in the sense of least squares. In this study, the later strategy is employed. It should be
mentioned that by using the above method, aj and bj (j = 1, 2, .., p) are generally complex-
valued. However, in most cases, their imaginary parts are typically negligible, and it is
enough to only use their real parts for approximation of the target function. An example
of applying the Prony method is given by Spanos and Tsavachidis [42] who discussed the
dynamic analysis of a structural model with the Biot model.

Frequency-domain methods

The parameter estimation can also be made in the frequency domain. To this end, a Prony
series is designed so that its Fourier transform can be used to approximate a target digital
filter over a frequency range of interest.

Here, a target digital filter is chosen as the inverse Fourier transform of the Mittag-Leffler
relaxation function and is given as follows,

Λt(iω) = F−1[Eα(−εαtα)] =
(iω)α−1

(iω)α + εα
(4.39)

where the subscript ’t’ indicates the target digital filter. The Fourier transform of a p-th order
Prony series can be obtained as follows,

Λ̄(iω) =
p

∑
j=1

bj

iω + ajε
(4.40)

It should be pointed out that the r.h.s. of Eq.(4.40) physically represents the impedance
function of a Maxwell-Wiechert model consisting of p spring-dashpot branches coupled in
parallel. In such a case, aj and bj can be physically interpreted as the normalized relaxation
frequency (also known as the pole of force-velocity transfer function) and stiffness of the
j-th branch, respectively. As p → ∞, such a model can be used to physically represent the
Biot model [32].

Provided that the target digital filter are specified at N discrete equally-spaced frequency
sample points, say Ω = {ω0, ω1, ..., ωN−1}T, one may find a best estimation set of the pa-
rameter vectors a = {a1, a2, ..., ap}T and b = {b1, b2, ..., bp}T with respect to Eq.(4.40) in the
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sense of least squares of approximation errors

χ2
2(a, b) =

N−1

∑
µ=0

∣∣Λt(iωµ)− Λ̄(iωµ)
∣∣2 (4.41)

with ωµ ∈ Ω, where the subscript ’2’ indicates the estimation error with respect to the
frequency-domain data. According to the Parseval’s theorem, if N is sufficiently large, one
has the following relation

χ2
2(a, b) =

1
N

χ2
1(a, b) (4.42)

which can be derived by applying the discrete Fourier transform (DFT) method. In a general
case, in order to simultaneously estimate the parameters of the Prony series from Eq.(4.41),
one may use some iterative algorithms (e.g., see reference [96]) for solving this nonlinear
regression problem.

However, for brevity, one can assume that the parameter vector a is specified as a priori,
and consequently, the above problem can be formulated as a linear least-squares problem
with respect to the unknown parameter vector b as follows,

min χ2
2(b) =

M

∑
µ=1

[
Λ′t(ωµ)−

p

∑
j=1

Θ′µjbj

]2

+
M

∑
µ=1

[
Λ′′t (ωµ)−

p

∑
j=1

Θ′′µjbj

]2

(4.43)

where Λ′t(ω) and Λ′′t (ω) denote the real and imaginary parts of the target digital filter, re-
spectively; and Θ′µj and Θ′′µj can be expressed as follows,

Θ′µj =
εaj

ω2
µ + ε2a2

j
, Θ′′µj =

−ωµ

ω2
µ + ε2a2

j
.

Or in a more compact form, one can also formulate the above problem as follows,

min χ2
2(b) = ‖Λt −Θb‖2 (4.44)

where Λt and Θ denote the target data vector and the so-called design matrix of a fitting
problem, respectively, and they are given as follows,

Λt =

{
Λ′t(Ω)

Λ′′t (Ω)

}
, Θ =

[
Θ′1(Ω) Θ′2(Ω) · · · Θ′p(Ω)

Θ′′1 (Ω) Θ′′2 (Ω) · · · Θ′′p(Ω)

]
.

It should be mentioned that the above method has the freedom to specify the normalized
relaxation frequency aj (j = 1, 2, ..., p) as a priori. This feature may be very useful in some
applications, because the flexibility of specifying a may make it possible to approximate
the target filter at any finite frequency range of interest. In the case of N = p, the above
method results in an exact fitting of the target filter at those frequency points specified by
a, and an interpolation approximation of the target filter at the overall frequency range of
investigation. An example of applying such a method is given by Genta and Amati [33]
who use the word ’tuning’ to represent this concept. In a more general case, one may have
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N � p, and the above method results in a least-squares approximation of the target filter at
a frequency range of interest.

To apply both the time- and frequency-domain methods, one requires an efficient method
for a linear least-squares problem. For this purpose, either the singular value decomposition
(SVD) method or the covariance method may be used. In this study, to solve the above prob-
lem, the covariance method is use first, because it is usually faster than the SVD method. If
the first attempt fails to find the solution, e.g., when the normal matrix is close to be singular,
the SVD method is used instead.

The remaining problem is to determine the number of exponentials p (i.e., the order of
a Prony series). One may estimate it by using some order election rules or an SVD method.
In either case, the maximum order is limited to p ≤ N/2. A straightforward (but compu-
tationally expensive) method of determining the order p is to gradually increase the order
from unity, and evaluate the parameters by using one of the above methods, and repeat the
iterative processes until a certain error criterion is met.

For example, provided that the Mittag-Leffler relaxation function is estimated at time
sample points over [0, 10] with a step length of 0.01 s, a time-domain (least-squares Prony)
method is used for parameter estimation of the Prony series. Fig. 4.2 plots the error index
in terms of χ2

1 against the order of Prony series with respect to different tunable parame-
ters. It is shown that a higher-order Prony series results in a better approximation of the
target function. This example verifies the feasibility of the above strategy of estimating the
required order p.
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FIGURE 4.2: Approximation error of the estimated Prony series

4.3.4 Discussion on the application

Next, the application of the above recursive method for structural dynamic analyses is dis-
cussed, and its computational efficiency (in terms of both speed and accuracy) is compared
to that of the L1-algorithm-based method (referred to as L1-algorithm) with a cutoff number
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of N0 = 0.1N. For this purpose, a linear SDF system (T = 4.0 s and η = 0.1) is consid-
ered here as an analytical example, and time history analyses are conducted by using the El
Centro wave recorded in the 1940 Imperial Valley earthquake.

Fig. 4.3 compares the computational costs of the above recursive method with respect
to the variations of the order of Prony series p (left) and the tunable parameter α (right),
respectively. It is shown that the recursive method has a computational complexity of order
O(N), and it can be even faster than the L1-algorithm (N0 = 0.1N). Moreover, from all the
cases of investigation, the number p (when it is relatively small) and the tunable parameter α

are found to have limited effects on the CPU time of dynamic analyses by using the recursive
method. This suggests that by using the recursive method, a fractional-order system may be
efficiently analyzed without significant increase of computational burden, compared with a
conventional integer-order (α = 1) system.
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FIGURE 4.3: Comparison between the CPU times with respect to different (a)
orders of Prony series (α = 0.1), and (b) tunable parameters (p = 9).

Fig. 4.4 shows the percentage errors of the above recursive method in terms of the dis-
placement peak (left) and RMS values (right) with respect to the variation of the tunable
parameter, compared to the case of L1-algorithm (N0 = 0.1N). Furthermore, letting α = 0.1,
Fig. 4.5 compares the percentage errors of the above recursive method for analyzing struc-
tures with different periods in terms of the displacement peak and RMS values. It is shown
in these figures that the percentage errors in terms of both displacement peak and RMS
values can be reduced to negligible levels if a sufficient high order Prony series is used for
approximation (e.g., p ≥ 9).

The above comparison studies suggest that the above recursive method can be used to
efficiently analyze a structural model incorporated with the fractional-order RILD without
significant loss of accuracy.
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FIGURE 4.4: Percentage errors in terms of displacement (a) peak value and (b)
RMS value for the proposed model with different tunable parameters
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FIGURE 4.5: Percentage errors in terms of displacement (a) peak value and (b)
RMS value with respect to different structural periods

4.4 Application for simulating the structural inherent damping

Here, the applicability of the FMNS model to approximate the behavior of ideal RILD for
simulating the structural inherent damping is discussed, and the effectiveness of the de-
veloped method is further verified and compared with those of existing methods. For this
purpose, a 10-story benchmark building structure incorporated with RILD is used as an
analytical example, as shown in Fig. 4.6, and its structural parameters are listed in Table 4.1.

The yielding behavior of the resistant stiffness element is taken in account, and it is mod-
eled by using a bilinear elasto-plastic stiffness element instead of a linear spring element, as
shown in Fig. 4.6. The initial stiffness jk1, post-yielding stiffnesses jk2, and yielding deforma-
tion jxy of the bilinear stiffness element at each story are listed in Table 4.1. The post-yielding
stiffness ratio is assumed as 0.2, i.e., jk2 = 0.2 jk1, and the yielding deformation is assumed
to vary with the initial stiffness, i.e., jxy = 1xy/1k1 · jk1.



84 Chapter 4. An Efficient Method for a Structural Model Incorporated with RILD

FIGURE 4.6: A 10-story benchmark building structure incorporated with RILD

Modal analysis is conducted for the undamped example structure in the initial linear
state, and the modal characteristics are indicated in Table 4.2. It should be noticed that the
first three modes contribute more than 95% of the participating mass.

TABLE 4.1: Structural parameters

Story number mj (ton) jk1 (kN/m) jk2 (kN/m) jxy (m) |jkc| (kN/m)
1 700 279 960 55 992 0.036 27 996
2 682 383 550 76 710 0.050 38 355
3 680 383 020 76 604 0.050 38 302
4 676 328 260 65 652 0.043 32 826
5 670 306 160 61 232 0.040 30 616
6 667 291 890 58 378 0.038 29 189
7 660 244 790 48 958 0.032 24 479
8 656 220 250 44 050 0.029 22 025
9 649 186 110 37 222 0.024 18 611
10 875 158 550 31 710 0.021 15 855

In this study, the damping function of the ideal RILD element at the j-th story, jkc, is
assumed to be proportional to the corresponding tangent stiffness, i.e.,

jkc = iη · jkt · sgn(ω), j = 1, 2, ..., 10. (4.45)

with j = 1, 2, ..., 10, where the loss factor is assumed to be uniform in the entire structure,
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TABLE 4.2: Natural frequencies of the example structure (primary linear state)

Mode number
Natural period Natural frequency Participating mass ratio

(s) (rad/s) (Hz) (%)
1 2.01 3.13 0.50 82.07
2 0.75 8.33 1.33 11.36
3 0.46 13.69 2.18 3.65
4 0.33 18.89 3.01 1.43
5 0.26 23.97 3.81 0.66
6 0.22 28.16 4.48 0.37
7 0.20 32.08 5.11 0.21
8 0.18 35.52 5.65 0.14
9 0.16 39.61 6.30 0.06

10 0.14 44.19 7.03 0.05

e.g., η = 0.1 is used; jkt denotes the tangent stiffness of the resisting stiffness element at
the j-th story. Due to the noncausality of the ideal RILD element, a nonlinear response his-
tory analysis of the above structure is impractical when the yielding behavior of structural
elements is taken into account, e.g., in order to investigate the seismic performance of the
structure subjected to extreme ground motions. In such cases, causal RILD elements can be
used instead of the ideal noncausal RILD element.

4.4.1 Linear response history analyses

Here, the FMNS model is compared with the Nakamura model [45] in terms of computa-
tional efficiency for response history analyses, as indicated in Table 4.3. For reference, the
ideal RILD model is also considered and analyzed by using the frequency response analysis
method when the structural elements remain linearly elastic.

TABLE 4.3: Different methods for dynamic analysis of a structure with RILD

Model Analysis method Comput. cost Nonlinear simulation
Ideal RILD Frequency response analysis Low ×
Nakamura Nakamura (2007) Low �
FMNS Prony-series recursive Low �

×: Not applicable �: Applicable

For the Nakamura model, a focused frequency range of interest from 0 to ωm = 20π

rad/s is considered (and the damping function beyond the frequency ωm is assumed to van-
ish). Then, by conducting the Hilbert transform in Eq.(3.27) defined in the sense of Cauchy
principal value, one can obtain an analytical expression of the normalized damping function
of Nakamura model as follows,

ZN(iω) =
2
π

[
1

ωm
+

(
ω

ωm
− 1

2

)
ln
(ωm

ω
− 1
)]

+ i (4.46)



86 Chapter 4. An Efficient Method for a Structural Model Incorporated with RILD

and then to approximate an ideal RILD element at the j-th story by using the Nakamura
model, one has

jkN = η · jkt · ZN(iω) (4.47)

In order to transform the above equation into the time domain, the method suggested by
Nakamura [45] is used here. To this end, a length-M FIR-type filter is used to approximate
the normalized damping function as follows,

ZN(iω) ≈ iωc̄0 +
M−1

∑
n=1

k̄ne−iωnT (4.48)

where T denotes the sample time interval; c̄0 and k̄n denote the coefficients used in velocity
and displacement terms, respectively. Those coefficients can be readily estimated by using a
linear regression method. Here, letting ωm = 20π rad/s (i.e., 10 Hz, such a frequency range
covers the natural frequencies of the structure indicated in Table 4.2), M = 19, T = 0.05 s.

Fig. 4.7 shows the recovered damping function of the Nakamura model from the approx-
imation in Eq.(4.48), as well as those of the ideal RILD and FMNS models. For the Nakamura
model, two different cases are considered: 1) an original one (referred to as Nakamura I),
and 2) a modified one (referred to as Nakamura II) with its real part added by 1.05 to fit that
of the proposed element at the center of the frequency range (5 Hz), as shown in Fig. 4.7(a). It
should be mentioned that such a modification doesn’t affect the causality of the model, and
is also suggested by Nakamura [45] to control the accuracy for a specific frequency range.
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FIGURE 4.7: Damping functions of different RILD elements

For the proposed FMNS model, the cutoff frequency is set as the fundamental natural
frequency of the primary linear structure, i.e., ε = 3.14 rad/s (0.5 Hz), and the tunable
parameter α is fixed as 0.1 here. An approximation of the ideal RILD element at the j-th
story by using the FMNS model is given as follows,

jkP = η · jkt · Zα(iω) = η · jkt · βα
(iω)α − εα

(iω)α + εα
(4.49)

with j = 1, 2, ..., 10. Response history analyses are conducted by using the above developed
recursive method, provided that the damping kernel is approximated by using a 9-th order
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Prony series, so that the computational burden can be thought to be comparable to that for
the 18-term Nakamura model.

To verify the accuracy of the FMNS method for approximation of the ideal RILD model,
the seismic responses of differently damped structures subjected to the El Centro wave (N-
S component) are investigated, respectively. Here, the peak ground velocity (PGV) of the
ground motion is scaled as 0.25 m/s (corresponding to the design level earthquake in the
practice used in Japan) so that the excited structures remain linearly elastic. In this case, time
history analyses of the ideal RILD system can be conducted by using the frequency response
analysis method.

Four different RILD elements are compared: ideal RILD, Nakamura I, Nakamura II,
and FMNS. Response history analysis codes are run on an computer with an Intel Core 7,
3.40 GHz with 16 GB RAM, and the CPU times for separately analyzing the ideal RILD,
the Nakamura, and the FMNS systems are 1.337, 2.564, and 2.594 s, respectively (with a
time step length of 0.002 s, and a total time range of 81.92 s provided). This comparison
verifies that the computational burden of the proposed method is comparable with that of
the Nakamura method.

Fig. 4.8 shows the peak seismic responses at each story of differently damped structures,
in terms of relative displacement, interstory drift, relative velocity, and absolute acceleration.
It is suggested from this overall comparison that both the Nakamura and FMNS models
can provide a good approximation of the ideal RILD in a general sense when used in the
example structure.
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FIGURE 4.8: Peak seismic responses of differently damped structures

Fig. 4.9 compares the hysteresis loops of different RILD elements at the first story (where
the largest deformation occurs) of the structure. It is shown that the hysteresis loop of the
Nakamura I model has a negative skew (Fig. 4.9(a)), whereas that of the Nakamura II model
has a positive skew (Fig. 4.9(b)). As an intermediate of the previous two cases, the hysteresis
loop of the proposed model provides a best fit to that of the ideal RILD model (Fig. 4.9(c)).
Indeed, a tunable value smaller than 1.05 may be used to modify the damping function of
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the Nakamura model (say Nakamura III), so that the hysteresis loop can well fit that of the
ideal RILD element. However, no further effort is made here to find such a value because
it may be dependent on the structural characteristics and the frequency content of ground
motions.
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FIGURE 4.9: Hysteresis loops of different RILD elements at the first story of
the structure

Table 4.4 summaries the maximum values among the seismic responses at each story of
differently damped structures subjected to the El Centro wave, in terms of relative displace-
ment, interstory drift, relative velocity, and absolute acceleration. Generally speaking, both
the Nakamura and FMNS models can provide a good approximation of the ideal RILD. Par-
ticularly, the Nakamura I system can provide a best fit of the ideal RILD system in terms
of the acceleration response at the expense of increased displacement responses. The Naka-
mura II system provides a better approximation in terms of interstory drift, at the expense
of increased acceleration response. The FMNS model provides an intermediate approxima-
tion between the previous two cases in terms of interstory drift and acceleration, and a best
approximation of the ideal RILD in terms of response displacement and velocity.

TABLE 4.4: Maximum seismic responses of differently damped structures
(PGV = 25 cm/s, linear state)

Model
Displacement Interstory drift Velocity Acceleration

(cm) (cm) (cm/s) (cm/s2)
Ideal RILD 16.1 (1.00) 2.76 (1.00) 64.5 (1.00) 294 (1.00)
Nakamura I 17.7 (1.10) 2.94 (1.07) 68.4 (1.06) 293 (1.00)
Nakamura II 14.8 (0.92) 2.86 (1.04) 68.7 (1.07) 321 (1.09)
FMNS 15.4 (0.96) 2.88 (1.04) 67.1 (1.04) 300 (1.02)

Note: the number in the parenthesis means the ratio to the response of the ideal RILD system.

The above comparison suggests that the FMNS model can be considered as an alternative
model to approximate the ideal RILD. When it is incorporated into a structural system, re-
sponse history analyses can be readily carried out by using the developed recursive method,
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and the computational efficiency is comparable with that of the Nakamura model.
For the application of the Nakamura model, in order to control the accuracy for a fre-

quency range specified by the threshold parameter ωm, one may need to use an additional
turnable value to correct the simultaneous stiffness term. To this end, trial calculations may
be required to find a suitable value. Moreover, as pointed out in reference [45], the accuracy
of calculating the damping function of the Nakamura model by the Hilbert transform at
low-frequency ranges may be low. This may compromise its applicability in low-frequency
structures.

However, for the FMNS model, one can readily set the cutoff frequency ε as the funda-
mental natural frequency of the structure, and the tunable parameter α as a small value (e.g.,
0.1 may be used) so that this model can simulate the rate-independent dissipation behavior
over a considerable frequency range. Moreover, the FMNS model can be readily used in
low-frequency structure without suffering accuracy problems associated with the calcula-
tion of damping function, and the developed recursive method can be applied to conduct
the response history analysis with a comparable computational burden as the Nakamura
method. This is thought to be a potential advantage of the FMNS model over the Nakamura
model for applications in low-frequency structures.

4.4.2 Nonlinear response dynamic analyses

Here, the seismic responses of the example structure subjected to strong ground motion are
investigated by taking the nonlinear behavior of structural stiffness elements into account.
To this end, the FMNS model is used instead of the ideal RILD element, and its dynamic
stiffness is given in Eq. (4.49).

For comparison, the tangent-stiffness-proportional (TSP) damping model and the modal
damping model [7] are also considered here. For the TSP damping model, one has the
damping matrix given as follows,

cTSP
t =

η

1ω1
kt (4.50)

where 1ω1 denotes the fundamental natural frequency from an eigenvalue analysis by using
the initial stiffness matrix of the undamped structure.

For the modal damping model, the damping matrix is updated by conducting an eigen-
value analysis at each iterative step according to the tangent stiffness matrix (referred to as
nonlinear modal damping (NLM) model). More specifically, the damping matrix Ct of the
NLM model is specified as a diagonal matrix with the j-th element as follows,

jCt = η
jKt

jωt
= η · jωt · j Mt (4.51)

where jKt, j Mt, and jωt denote the modal stiffness, mass, and frequency of the j-th mode,
respectively, which are estimated at each step in an analysis according to the tangent stiff-
ness matrix of the structure. Then, the damping matrix can be recovered from the modal
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damping matrix as follows,

cNLM
t =

(
mΦtM−1

t

)
Ct

(
M−1

t ΦT
t m
)

(4.52)

where Φt denotes the modal matrix consisting of the normalized eigenvectors, which is
updated at each step according to the tangent stiffness matrix. Notice that Mt and Ct are
diagonal, the above equation can be reformulated as follows,

cNLM
t = η m

(
J

∑
j=1

jωt

j Mt
· jφt · jφ

T
t

)
m (4.53)

where J denotes the number of modes considered in the analysis. In this study, all the
modes of the structure are taken into account for response history analyses, i.e., J = 10 for
the example structure. Because an eigenvalue analysis is required for each iterative step in
a nonlinear dynamic analysis, the computational burden of this method is thought to be
relatively heavy.

For example, the seismic performances of the three differently damped structures sub-
jected to the El Centro wave are investigated. In order to compare the responses of the three
structures under different intensity-level earthquakes, the PGV of the El Centro wave is
scaled as 25, 50, and 75 cm/s, respectively, which correspond to the design level, maximum
considerable level, and an excessive level earthquakes in the design practice used in Japan.

Figs. 4.10-4.12 compares the peak seismic responses at each story of the structures sub-
jected to different intensity-level earthquakes, respectively. Relatively small differences be-
tween seismic responses of the three structures are observed in terms of relative displace-
ment, interstory drift, and relative velocity. However, the floor response accelerations at
high stories of the TSP structure are obviously lower than those of the other two structures.
This is in good agreement with the fact that the stiffness (both initial and tangent) propor-
tional damping models underestimate the high-mode responses of structure because of the
assumed excessive damping ratios at those modes. From the comparison between the seis-
mic performances of the other two systems, it is suggested that under different different
level earthquakes, the seismic responses of the FMNS system matches well with those of the
NLM system in terms of the four performance indexes.

To further examine the seismic performance of the FMNS and NLM damping elements
subjected to different intensity-level earthquakes, Fig. 4.13 compares the hysteresis loops of
the two types of damping elements at the first story of the structure subjected to different
intensity-level earthquakes. It can be observed from Fig. 4.13 that the FMNS model performs
similarly as the nonlinear modal damping model in a general sense.

For the FMNS model, the damping force is proportional with the tangent stiffness of
the bilinear stiffness element at the same story, and therefore, it is sensitive to the state
transformation of the later. For example, as shown in Fig. 4.13(c), the damping force of
the proposed model abruptly decreases to a much lower level at a deformation of about
0.1 m, which is companied with the state transformation of the structural stiffness element
at the same story, as shown in Fig. 4.14(c). For the NLM model, a similar property can
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FIGURE 4.10: Peak seismic responses of differently damped structures
(PGV=25 cm/s)
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FIGURE 4.11: Peak seismic responses of differently damped structures
(PGV=50 cm/s)

also be observed from Fig. 4.13(c), whereas the damping force shows less sensitivity to the
state transformation of the structural stiffness element. This is partly because its damping
coefficient is indirectly related with the structural stiffness through the modal characteristics
of the whole structure at the very moment.

Table 4.5 summaries the maximum values among the seismic responses at each story
of the above three types of structures subjected to different intensity-level earthquakes, in
terms of relative displacement, interstory drift, relative velocity, and absolute acceleration.
Generally speaking, the seismic responses of the structure incorporated with the FMNS
model match well with those of the NLM system under different level earthquakes, whereas
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FIGURE 4.12: Peak seismic responses of differently damped structures
(PGV=75 cm/s)
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FIGURE 4.13: Hysteresis loops of damping elements at the 1st story
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those of the TSP system are obviously lower in terms of maximum floor response accelera-
tion and relative displacement (except for PGV = 25 cm/s).

TABLE 4.5: Maximum seismic responses of differently damped structures

PGV Damping Displacement Interstory drift Velocity Acceleration
(cm/s) model (cm) (cm) (cm/s) (cm/s2)

25
NLM 15.9 2.74 63.5 295
TSP 16.2 (1.02) 2.67 (0.97) 62.9 (0.99) 230 (0.78)

FMNS 15.4 (0.97) 2.88 (1.05) 67.1 (1.06) 300 (1.02)

50
NLM 34.4 7.97 1.07 531
TSP 30.5 (0.89) 7.95 (1.00) 1.08 (1.01) 391 (0.73)

FMNS 34.7 (1.01) 8.19 (1.03) 1.11 (1.04) 516 (0.97)

75
NLM 53.0 16.7 1.43 690
TSP 47.8 (0.90) 15.8 (0.95) 1.38 (0.97) 587 (0.85)

FMNS 55.0 (1.04) 16.9 (1.01) 1.47 (1.03) 697 (1.01)

Note: the number in the parenthesis means the ratio to the response of the NLM system.

Indeed, the simulation of inherent damping mechanism of structural elements (or ma-
terials), especially when the nonlinear behavior is involved, is a very complicated prob-
lem, which is still kept open for discussion. From the above comparison with the NLM
model, however, one can at least conclude that the FMNS model, which can simulate the
rate-independent dissipation behavior of many solid materials [23] over a considerable fre-
quency range, is readily used as a candidate model for simulating the structural inherent
damping in nonlinear simulation problems. Moreover, in terms of the accuracy of evaluat-
ing the structural seismic response, the FMNS model is comparable with the NLM model.

If the computational efficiency is concerned, e.g., for those large-scale simulation prob-
lems where thousands or more degree of freedoms are used in the numerical simulation,
the proposed model is thought to be superior than the NLM model. In order to construct
the modal damping matrix for the later, eigenvalue analyses are conducted at each iterative
step, which is computational expensive for those problems. However, for the FMNS model,
those time-consuming calculations for the modal characteristics are not necessary. For an-
alyzing the example structure separately incorporated with the FMNS and NLM models
subjected to the El Centro wave (with a time step of 0.004 s and a record length of 81.92 s),
the total CPU times are 2.57 and 4.76 s, respectively, by running the codes on a computer
with an Intel Core 7, 3.40 GHz with 16 GB RAM. For those large-scale simulation problems,
the difference in computational efficiency is expected to much larger.

4.4.3 Parametric studies

In the above comparison studies, the tunable parameter α is fixed as 0.1 for application of
the proposed FMNS model, and it has been shown that this contributes to a good approxi-
mation of the ideal RILD and it may be used as a competitive model to the Nakamura and
NLM models for simulating the structural inherent damping. Here, parametric studies are
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conducted to further investigate the effect of the tunable parameter α on the performance of
the FMNS system subjected to different intensity-level earthquakes.

For this purpose, letting α = 0.10, 0.25, 0.50, 0.75, 1.0, respectively, the FMNS model is
used instead of the ideal RILD element in the ten-story example structure for simulating
the structural inherent damping, and response history analyses are conducted by applying
the recursive method on the basis of a Prony series with an order of 9 (i.e., p = 9), except
for the case of α = 1.0, where the proposed model reduces to a first-order system [49] (i.e.,
p = 1 is used in the recursive procedure). The ratio of the peak response of the structure to
the case of α = 0.1 is used as a performance index to indicate the sensitivity of the seismic
performance of the structure with respect to the variation of the tunable parameter α.

Figs. 4.15-4.17 compare the peak response ratios of the FMNS system with different tun-
able parameters when subjected to the El Centro wave with a scaled PGV of 25, 50, 75 cm/s.
It is shown that the response displacement of the structure is generally insensitive to the
variation of the tunable parameter α, whereas the floor-response acceleration shows strong
dependence on this parameter. The larger the tunable parameter α, the larger response ra-
tios in terms of floor-response acceleration are observed. In the case of α = 1.0, the largest
response ratio in terms of floor-response acceleration can exceed 150%. This means that the
floor-response acceleration of the structure may be obviously overestimated if the FMNS
model with a large value of α (e.g., α ≥ 0.5) is used instead of the ideal RILD for simulating
the structural inherent damping.
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FIGURE 4.15: Peak response ratios of a structure with the proposed model
(PGV=25 cm/s)

Recall that the closer to unity the tunable parameter α is, the lower loss modulus of the
FMNS model has in the frequency range higher than the cutoff frequency (typically equal to
the fundamental natural frequency), as shown in Fig. 3.3. In other words, with a value of α

close to unity, the FMNS model results in an underestimated damping ratio at high modes of
the structure by defining the damping functions in Eq.(4.49). Consequently, the high mode
responses containing dominating high frequency components are overestimated, which is
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FIGURE 4.16: Peak response ratios of a structure with the proposed model
(PGV=50 cm/s)
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FIGURE 4.17: Peak response ratios of a structure with the proposed model
(PGV=75 cm/s)

finally reflected in the analysis result of floor-response acceleration of the structure. This
can be readily verified by comparing the Fourier amplitude spectra of the time histories of
floor-response accelerations. For example, Fig. 4.18 compares the Fourier amplitude spectra
of the time histories of floor-response accelerations at the seventh story (where the largest
response ratio occurs) of the structure subjected to different intensity-level earthquakes. As
expected above, it is observed from Fig. 4.18 that in the case of α = 1.0, the structure with
the FMNS model yields much larger responses in high frequency ranges when compared
with the case of α = 0.1.

Similarly, it is observed from Fig. 4.15-4.17 that the response ratio in terms of interstory
drift at the rooftop of the structure also shows strong dependence on the tunable parameter
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FIGURE 4.18: Fourier amplitude spectra of the floor response accelerations at
the 7th story

α. This is also thought to be partly because larger tunable parameters result in underesti-
mated damping ratios at high modes of the FMNS structural system.

Fig. 4.19 compares the hysteresis loops of the FMNS model with different tunable param-
eters at the top story of the structure. It is shown that compared with the case of PGV = 25
cm/s, the difference between the deformations of the two models are even larger when sub-
jected to higher intensity-level earthquakes. It should be mentioned that the rapid change
of damping force in Fig. 4.19 (b) and (c) suggests the state transformation of the structural
bilinear stiffness element, because the damping force of the propose model is updated with
the tangent stiffness of the structural element.
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FIGURE 4.19: Hysteresis loops of the damping elements at the top story

For comparison, Fig.4.20 shows the hysteresis loops of the proposed models at the first
story (where the largest interstory drift occurs) of the structure. Different from the seismic
responses at higher stories, the displacement response at the first story is mostly dependent
on the low mode responses. In both the cases of α = 0.1 and α = 1.0, the proposed models
provide a good estimation of the first modal damping ratio. Therefore, in these two cases,
the proposed models at the first story performs similarly, even when the structural element
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FIGURE 4.20: Hysteresis loops of the damping elements at the 1st story

yields under an excessive level earthquake (Fig. 4.20 (c)).
The above parametric studies suggest that for the application of the proposed FMNS

model to simulate the structural inherent damping in an MDF structure, the tunable param-
eter α should be as a small value to control the accuracy of predicting the seismic responses
of the structure, especially in terms of floor-response acceleration. For such applications,
a value of α = 0.1 is suggested so that the structural damping ratios at high modes can
be properly specified. On one hand, an even smaller value of α may be used, but the im-
provement in the simulation accuracy is found to be limited. On the other hand, a much
larger tunable parameter (e.g., α = 1.0) results in the underestimated damping ratios at
high modes, and consequently the seismic responses in terms of floor-response acceleration
may be largely overestimated.

4.5 Chapter conclusions

In this chapter, time-domain methods for dynamic analyses of a structural model incorpo-
rated with RILD are discussed. The difficulty of applying the ideal RILD for nonlinear time
history analyses is overcome by using the FMNS model proposed in Chapter 3 instead, and
a computationally efficient recursive method is developed by using a Prony series to ap-
proximate the Mittag-Leffler relaxation function, which is the damping kernel function of
the FMNS model. For practical applications, it is necessary to estimate the characteristic pa-
rameters of a Prony series, and to this end, both time- and frequency-domain methods are
discussed. Comparison between the developed recursive method with the L1-algorithm-
based method developed in Chapter 3 suggests that the former can be more computationally
efficient without compromising the simulation accuracy.

In order to verify the effectiveness of the developed method, the application of the FMNS
model for simulating the structural inherent damping is discussed. For this purpose, a ten-
story benchmark building model is used as an analytical example. First, linear response
history analyses are conducted to examine the seismic performance of the example struc-
ture separately incorporated with the ideal RILD, Nakamura models (an original one and
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a modified one with increased storage modulus), and the FMNS model. Comparison stud-
ies between the seismic responses of these differently damped structures suggest that both
the Nakamura and the FMNS models can be used as an good candidate for approximat-
ing the ideal RILD, and also these two causal models can be analyzed with comparable
computational efficiencies. A potential advantage of the FMNS model over the Nakamura
model may exist in the determination of the model tunable parameters for application in
a low-frequency structure. For the Nakamura model, trial calculations may be required to
determine those parameters for controlling the accuracy, which may be difficult for appli-
cations in low-frequency structures because this model may suffer relatively low accuracy
in calculating the damping function in low frequency range by using the Hilbert transform.
However, for the FMNS model, the model parameters can be readily determined for appli-
cations, and the damping function can be readily calculated without suffering low accuracy
in low frequency region associated with the use of Hilbert transform.

Furthermore, the FMNS model is compared with the tangent stiffness proportional damp-
ing model and the nonlinear modal damping model for simulating the structural inherent
damping. The seismic performance of the example structure separately incorporated with
the three different damping models is examined by taking the nonlinearities of structural
elements into account. The seismic responses of the three types of structures subjected to
different intensity-level earthquakes are compared. It is shown that the FMNS model is
comparable with the nonlinear modal damping model in terms of the simulation accuracy
of structural seismic responses, but it is superior to the later in terms of computational effi-
ciency for nonlinear time history analyses.

Lastly, parametric studies are conducted to investigate the effect of the tunable parame-
ter α on the seismic performance of the FMNS structural system. It is suggested that for the
application of the FMNS model to simulate the structural damping in an MDF structure, a
small value of α (e.g., α = 0.1 is suggested in this study) is preferred so that the structural
damping ratios at high modes can be properly specified. A much larger value (e.g., α = 1.0)
may result in underestimated damping ratios at high modes, and consequently the seismic
responses in terms of floor-response acceleration can be largely overestimated.
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Chapter 5

Conclusions and Future Work

It is well known that rate-independent linear damping (RILD) suffers an issue of noncausal-
ity, which hinders its use for practical applications. On the one hand, although RILD is
expected to be a straightforward model for the simulation of structural inherent damping,
the noncausal property makes it challenging to numerically implement RILD in a nonlinear
response history analysis for the performance evaluation of a building structure subjected to
extreme ground motions. On the other hand, RILD is also found to have important applica-
tions for the seismic response control of a low-frequency structure, because it can achieve ef-
fective displacement reduction at the expense of lower damping force compared with other
damping types, but because of its noncausality, it is impossible to physically realize RILD
by using real-life devices, which can be installed in an actual building structure for seismic
protection purposes.

5.1 Conclusions

In this dissertation, aimed at facilitating the practical applications of RILD in the above two
situations, novel causal models which can mimic the behavior of an ideal RILD model were
proposed. The main conclusions are drawn as follows,

1) For the purpose of seismic protection of a low-frequency structure subjected to strong
ground motions, a causal passive mechanical model which consists of a conventional
Maxwell element and a linear negative stiffness element coupled in parallel was pro-
posed (labeled as MNS model). The proposed MNS model creates a time-domain rep-
resentation of a bilinear digital filter, and is thought to be much simpler in the senses
of both physical realization and numerical simulation compared with existing causal
models. In order to physically realize the MNS model for practical applications, one
can readily create a conventional Maxwell element by arranging an oil damper and
a coil spring coupled in series, and equivalently create a linear negative stiffness el-
ement by reducing the horizontal stiffnesses of the primary structure (or isolators).
Alternatively, a passive device which creates linear negative stiffness within the defor-
mation range of interest was also designed, making the MNS model more attractive for
mimicking the behavior of an ideal RILD model. Furthermore, comparisons between
the seismic responses of five-story base-isolated structures incorporated with the MNS
and linear viscous damping models exemplified the feasibility of the MNS model to
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mimic ideal RILD in reducing the floor-response acceleration without increasing the
displacement. Therefore, the proposed MNS model is expected to be a viable option
for improving the seismic performance of low-frequency structures subjected to strong
ground motions.

2) By generalizing the bilinear digital filter into a fractional-order one, a novel causal
model was proposed for achieving an improved approximation of the ideal RILD
model in the sense of an extended frequency range, over which the rate-independent
dissipation behavior may be tracked by adjusting a tunable parameter (say α). Such a
model can be represented by a fractional-order Maxwell element coupled in parallel
with a linear negative stiffness element(labeled as FMNS model), which is a general-
ization of the MNS model. Both passive and semi-active methods were suggested to
physically realize the FMNS model. Furthermore, the relationships between the FMNS
model with existing causal models for RILD (e.g., Biot, Makris, Maxwell-Wiechart, and
Keivan models) are revealed and proved. It is suggested that the FMNS model can be
considered as a unified causal model for RILD because it can encompass other exist-
ing causal models. On the basis of the newly revealed relationships between different
causal models and the well established ones, a unified framework of causal models
for RILD was constructed. For numerical implementation of the FMNS model, a time-
domain analysis method was developed by directly calculating the fractional deriva-
tive on the basis of the so-called L1 algorithm, and the computational efficiency can
be largely improved without significant loss of accuracy if the fixed memory princi-
ple is applied. Comparisons between the seismic responses of five-story base-isolated
structures incorporated with different causal RILD models suggested that the FMNS
model with α = 1 (i.e. the MNS model) can be used as a simple option to approxi-
mate the behavior of ideal RILD for use in a nonlinear base-isolation system, and the
seismic performance of the structure is not compromised when compared with other
more complicated causal RILD models.

3) For further accelerating the dynamic analysis of a structural model with the FMNS
model, a recursive method was developed by using a Prony series to approximate
the damping kernel of the FMNS model in terms of Mittag-Leffler relaxation function,
which can avoid the calculation of the fractional derivative for response history anal-
yses. The developed method can be readily embedded into the established numerical
integration schemes for response history analyses of an MDF system. For practical ap-
plication of this method, both time- and frequency-domain methods were discussed to
estimate the characteristic parameters of a Prony series. Moreover, it was shown that
this recursive method can be more computationally efficient than the L1-algorithm-
based method without compromising the simulation accuracy. In terms of applica-
tion of the FMNS model for simulating the structural inherent damping, a ten-story
benchmark building model was used as an analytical example with the nonlinearities
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of structural stiffness elements taken into account. Comparisons between the perfor-
mance of the FMNS model with those of the ideal RILD, Nakamura, tangent stiff-
ness proportional, and nonlinear modal damping models were made when they were
separately incorporated into the example structure to simulate the structural inherent
damping. It is suggested that the FMNS model can be used as a competitive candidate
for simulating the structural inherent damping when compared with the Nakamura
and nonlinear modal damping models. Furthermore, parametric studies were con-
ducted to investigate the effect of the tunable parameter α on the seismic performance
of the FMNS system. It was suggested that in terms of application for simulating the
structural inherent damping, the FMNS model with α = 1 (i.e. the MNS model) may
largely overestimate the seismic responses in terms of floor-response acceleration be-
cause of underestimated damping ratios at high modes. Therefore, a much smaller
tunable parameter (e.g., α = 0.1) was recommended for this application so that the
structural damping ratios at high modes can be properly specified.

5.2 Future work

5.2.1 Further performance improvement on the MNS model

In terms of application of RILD for seismic protection of a base-isolated structure subjected
to strong ground motions, the simple MNS model is expected to be a viable option with-
out compromising the seismic performance, when compared with other more complicated
causal RILD models. However, it should be noted that this model may suffer limited capa-
bility of the displacement control of a low-frequency structure subjected to extreme ground
motions containing dominating low-frequency components.

For the development of MNS model, a linear negative stiffness element (LNSE) is thought
to play a critical role. It can either be conceptually created by equivalently reducing the hor-
izontal stiffness of primary structure (or of isolator), or be physically implemented by using
some passive negative stiffness devices. To mimic the behavior of RILD, the stiffness of an
LNSE should be dependent on the required damping ratio to achieve a specified perfor-
mance target. However, to avoid the structural instability, the stiffness (absolute value) of
an LNSE should be at most not larger than that of the primary structure (or of isolator). This
implies that there is a limiting damping ratio, say ξlim, for applying the MNS model for seis-
mic control. In frequent earthquake events, a relatively small damping ratio may be used to
constraint the isolator deformation within an acceptable range; however, in a severe earth-
quake event, a damping ratio larger than ξlim may be demanded to achieve this goal, and
the resulting LNSE may provide a stiffness (absolute value) larger than that of the primary
structure, resulting in a problem of structural instability. This suggests that the MNS model
may fail to provide further deformation reduction beyond this limit. Therefore, further ef-
forts are necessary to be made to overcome this challenge and improve the performance
of the MNS model for seismic protection of a low-frequency structure subjected to extreme
earthquake events.
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5.2.2 Physical realization of the FMNS model

The FMNS model consists of a fractional-order Maxwell element coupled in parallel with an
LNSE. In terms of its physical realization, the remaining challenge is to physically realize a
fractional-order Maxwell element. One may develop novel real-life damping devices on the
basis of the reported experiments on some devices and materials, which were simulated by
using such a fractional model. Alternatively, one can also passively realize the FMNS model
in an equivalent manner. The equivalence between the FMNS model with the TMW model
suggests that one may passively realize the FMNS model by developing a combination sys-
tem consisting of multiple damping devices coupled with each other in parallel, which can
be readily realized in practical applications. Several alternative damping devices are avail-
able for this purpose, and the Maxwell element can be competitive due to its simplicity, and
also the corresponding design method is well established and discussed in this dissertation.

One can also physically realize the FMNS model by employing semi-active devices,
which can generate the desired damping force by the FMNS model. For this purpose, an
efficient time-domain analysis technique is required to numerically implement the FMNS
model. The L1-algorithm-based method may be readily used and the computational effi-
ciency can be largely improved by applying the fixed memory principle without significant
loss of accuracy. Furthermore, it is worth noting that more advanced algorithms are also
available to permit the variation of step length, or the application of spectral methods for
high order (in accuracy) simulations. However, it may be still challenging to embed those
advanced methods into the established numerical integration schemes (e.g., Newmark inte-
gration scheme).

5.2.3 Application of RILD in a high-rise building structure

In this study, to illustrate the application of the FMNS model for the simulation of structural
inherent damping, a ten-story benchmark building structure is used as an analytical exam-
ple. The nonlinearity of the structural element is considered by using a bilinear stiffness
element, which may be not typically used in the design practice. Typical and refined models
to take the nonlinearities of structural stiffness elements in account will be used in the future
work.

The seismic performance of a high-rise building structure incorporated with RILD is of
particular interest in the future work for both the purposes of seismic response control and
simulation of structural inherent damping. In both cases, the methods developed in this
study can be readily used to conduct response history analyses. Moreover, the application of
RILD for the vibration control of high-rise building structure in various loading conditions
(earthquake, wind, or blast loading, and so on) may also be explored. For this purpose, a
design method for optimal placement of the damping devices in the structural may also be
necessary.
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