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1.  INTRODUCTION

Precipitation, a highly variable weather parameter,
serves human beings as a primary source of water on
Earth. Its benefits and negative effects vary among
regions. In the central Himalayas, people depend to a
great degree on precipitation for water resources
(Chalise 2002), agriculture (Menon 2009), energy,
and industrial supplies. Frequently, the residents are
adversely affected by precipitation-induced natural
hazards such as floods (Mirza 2011, Vellore et al.

2014, 2016), landslides (Dahal & Hasegawa 2008,
Dahal 2012), and drought (Sigdel & Ikeda 2010,
Wang et al. 2013). Furthermore, the Himalayas are
regarded as a ‘water tower’ housing 3 major river
basins, namely the Indus, Ganges and Brahmaputra,
which supply water to the huge population of South
Asia (Chalise 2002, Mishra 2015). In addition, the
Himalayas are a storehouse of biological diversity,
home to endangered species, and an extremely im -
portant part of the global ecosystem (Beniston 2003).
Consequently, it is clear that any changes in the
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amount, intensity, and frequency of precipitation can
impart considerable economic, social, and ecological
costs in the Himalayas and the Indian subcontinent.

According to International Panel on Climate
Change (IPCC), warming of the climate system is un -
equivocal. It is linked predominantly to increased
anthropogenic greenhouse gases from human activi-
ties (IPCC 2013). Anthropogenic greenhouse gases
contribute to global mean surface warming, to
change in the global water cycle, to reduction in
snow and ice cover, and to changes in climate ex -
tremes. Moreover, anthropogenic influence is ex -
pected to contribute to increases in atmospheric
moisture content and changes in precipitation (IPCC
2013).

The Himalayas constitute a unique geographical
mountainous region (Fig. 1) of the world that is
extremely sensitive to climate change (Xu et al.
2009). The consequences of climate change have
already been noticed, such as an increased number
of climatic extremes (Baidya et al. 2008, Karki et al.
2017), reduced snow and ice cover (Ageta et al. 2001,
Shres tha & Aryal 2011), as well as changing precipi-
tation trends (Palazzi et al. 2013, 2015, Wang et al.
2013, Panthi et al. 2015, Roxy et al. 2015), and

increased variability of precipitation (Duan et al.
2006), particularly over the central Hima laya, Nepal.
Consequently, it is essential to understand the future
evolution of precipitation under warming climates
and to inform policymakers and planners, in order to
enable proactive adaptation measures to be taken
and ensure sustainable economic development.

In recent decades, global climate models (GCMs)
have been widely used to study the response of the
global climate system and its components to en -
hanced anthropogenic gas forcing. Precipitation is an
awkward atmospheric variable. Numerical modeling
of precipitation presents many challenges. Perform-
ance of GCMs is credible at the global scale, and
they are able to elucidate large-scale climate fea-
tures. Nevertheless, GCM performance at the
regional scale remains variable (Sperber et al. 2013,
Mehran et al. 2014, Ramesh & Goswami 2014) be -
cause of the difficulty of taking into account various
factors such as topography, land-cover change, aero -
sols, and thermodynamic forcing (Turner & Annama -
lai 2012, Rajendran et al. 2013). The models’ defi-
ciencies are more evident over mountainous regions
because of inadequate representation of topographic
details and other climate-relevant features such as
land cover, which are important determinants of
modulating climate in the mountains (Beniston 2003,
Duan et al. 2013, Palazzi et al. 2015). Therefore, the
performance of a GCM should be evaluated before
using its output for regional applications such as the
study of regional climate change effects.

The Himalayan region receives about 80% of its
annual total precipitation from the South Asian mon-
soon system during the months June to September:
the summer monsoon season (SMS). The South Asian
monsoon can been regarded as a complex, fully
 coupled ocean−land−atmosphere system (Turner &
Anna malai 2012). Precipitation is highly variable
both in space and time. Most GCMs show difficulty
in simulating the present South Asian monsoon pre-
cipitation climate correctly. Consequently, simulated
precipitation is subject to a substantial degree of
uncertainty (Webster et al. 1998, Turner & Annamalai
2012, Sperber et al. 2013). Therefore, the assessment
of climate projection reliability poses a major chal-
lenge (Ramesh & Goswami 2014). One widely used
approach in handling model uncertainty is to apply a
multi-model mean (MMM) for projection analysis.
However, MMMs of all available models still embody
the uncertainty associated with the models that are
incapable of simulating present climate and its vari-
ability. Another possible approach is to select models
that can simulate the present precipitation climate
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Fig. 1. South Asia, showing location and elevation (above
mean sea level) of the study area (white rectangle) for the
evaluation of simulated monsoon season precipitation with
the present climate, and the analysis of future projection 

over the the central Himalayan region (CHR)
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and its spectrum of variability rather than a simple
ensemble of all available models (Turner & Anna-
malai 2012, Sperber et al. 2013, Ramesh & Goswami
2014).

Many earlier studies have examined state-of-the-
art GCM capabilities to simulate historical monsoon
precipitation and used selected models to analyze
the future evolution in warming scenarios for the
Indian subcontinent (e.g. Menon et al. 2013, Sperber
et al. 2013, Ramesh & Goswami 2014, Sharmila et al.
2015). Although the Indian subcontinent, including
the Himalayas, re ceives monsoon season precipita-
tion from the southwest (South Asian) monsoon sys-
tem, the interannual fluctuations of the monsoon
 season mean pre cipitation data over the central
Himalayas and over India do not show good agree-
ment, particularly regarding the amplitude of the
precipitation (Shres tha et al. 2000). Consequently,
with regard to re gional climate change perspectives,
separate studies of the future evolution of precipita-
tion over the Himalayas must be conducted. How-
ever, few studies have addressed the future evolution
of Himalayan monsoon precipitation in warming sce-
narios (Palazzi et al. 2013, 2015, Panday et al. 2015,
Rajbhandari et al. 2016). Sharmila et al. (2015) stud-
ied performances of 20 GCMs that participated in the
Coupled Model Intercomparison Project Phase 5
(CMIP5; Taylor et al. 2012) to simulate daily to inter-
annual variability of monsoon precipitation over the
Indian subcontinent, giving priority to precipitation
variability over India. Palazzi et al. (2013) investi-
gated the increase in projected monsoon season
mean precipitation with an increase in heavy rainfall
days over the Himalayas using single-model simula-
tion. Rangwala et al. (2013) reported that a multi-
model ensemble of CMIP5 models projects enhanced
warming rates in mountains particularly during win-
ter, with the largest increase over the Tibetan Plateau
and the Himalayas. Other studies of indices of tem-
perature and precipitation extreme over the western
and eastern Himalayas project increases in wet
extremes over the eastern Himalayas in future warm-
ing scenarios (Panday et al. 2015). Another study by
Palazzi et al. (2015) assessed the capabilities of 32
CMIP5 GCMs to simulate the annual cycles of area-
averaged precipitation over the western and central
Himalayas. They found that the multi-model ensem-
ble mean and most individual models exhibit a wet
bias for all seasons. They classified the models fur-
ther based on model capabilities, horizontal and ver-
tical resolution, and aerosol representation in the
model. Those results revealed that no single model or
group of models best represents all precipitation

characteristics considered in their study. They also
analyzed the future evolution of seasonal mean pre-
cipitation, and revealed a wetter future with a grad-
ual increase in summer monsoon rainfall over the
central Himalayas in future warming scenarios
(Palazzi et al. 2015). A recent study of climate change
in a river basin in the Himalayas using statistically
downscaled data from 8 CMIP5 GCMs revealed a
14% increase in SMS precipitation by 2050 (Rajb-
handari et al. 2016). Similarly, a very recent study by
Wu et al. (2017) investigated the changes projected
in mean and extreme climates over Hindu Kush
Himalayan region by 21 CMIP5 models and reported
that the precipitation extremes are projected to
intensify in future over the region. Studies on the
evaluation of state-of-the-art GCM capabilities to
simulate spatial and temporal variation of SMS pre-
cipitation over the central Himalayas as a whole re -
main insufficient.

This study assesses the capability of CMIP5 GCMs
to reproduce spatial and temporal variability of cen-
tral Himalayan SMS precipitation in the present cli-
mate. It responds to concerns regarding high spatio -
temporal variation of precipitation in the Himalayas
and its consequent effects on the socioeconomy of
the region. We investigate future spatial and tempo-
ral changes in the mean and variability of SMS pre-
cipitation under warming climates based on system-
atically selected best models and their MMM, rather
than a using simple multi-model ensemble of all
available models. To date, there are no studies docu-
mented that examine the central Himalayas using
models that can simulate spatio temporal variability
in present climate. This study is designed to yield
valuable results that are useful to ascertain a model’s
ability for the present condition, and to elucidate the
changes expected to occur in the future. Further-
more, knowledge related to model ability is valuable
for re searchers in selecting a suitable global model to
use in regional applications. For example, informa-
tion related to the  ability of GCMs to simulate the
present climate helps a regional climate modeler in
making GCM model choices for the generation of cli-
mate projections on a regional scale. In addition, this
study provides opportunities for model developers to
build on inherent strengths or address deficiencies in
successive generations of these global models.

Although many factors such as model resolution
and physical parameterizations affect model per-
formance, and many variables modulate the variabil-
ity of monsoon rainfall, we only evaluate simulated
precipitation. Assessing model capabilities and defi-
ciencies in the simulation of all elements of monsoon
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systems, is beyond the scope of this study. However,
this study provides some valuable information
related to GCM performance over a mountainous
region.

2.  STUDY AREA, DATA AND METHODOLOGY

2.1.  Study area

The central Himalayas are the world’s most com-
plex region in terms of topography, an area where
elevations range from below 100 m to the ‘top of the
world’ (the summit of Mt. Everest at 8848 m above
sea level) (Fig. 1). The complex topography of the
region plays a crucially important role in determin-
ing patterns of local wind circulation and precipita-
tion (Lang & Barros 2002, Barros et al. 2004, Anders
et al. 2006). Precipitation throughout the region
varies both temporally and spatially. The region re -
ceives about 50 to 90% of total annual precipitation
from the SMS (Nayava 1980). Comparison shows that
SMS precipitation is greater in southeastern parts
than in northwestern parts of the region, while north-
western areas receive considerable amounts of pre-
cipitation during winter (December−February) from
western disturbance systems (Nayava 1980).

SMS precipitation over the central Himalayas, par-
ticularly over Nepal and surrounding areas, is highly
correlated with the southern oscillation index (SOI) at
an interannual time scale (Shrestha 2000, Shrestha et
al. 2000, Sigdel & Ikeda 2012). In this study, the study
area is designated based on the correlation of SMS
mean precipitation anomaly in the Himalayan region
with mean sea surface temperature (SST) averaged
over the Niño3.4 region (5° N to 5° S, 120° to 170°W)
in the Pacific Ocean. The correlation was found to be
significant over 26° to 32° N latitude and 78° to 91° E
longitude (Fig. 2a). The precipitation over this region
is also highly correlated with the SMS mean wind
speed at 200 hPa averaged over the Arabian Sea and
central India (18° to 25° N, 60° to 80° E) (Fig. 2b).
Therefore, this area was selected for the study. It is
referred to as the central Himalayan region (CHR)
hereinafter. The SST, circulation and precipitation
datasets used in demarcation of the study area are
Extended Reconstructed Sea Surface Temperature
version 3b (ERSST3b; Smith et al. 2008), the Japanese
55-year Reanalysis (JRA55; Kobayashi et al. 2015)
and Asian Precipitation Highly Resolved Observa-
tional Data Integration Towards the Evaluation of
Water Resources version 1101 (APHRODITE; Yatagai
et al. 2012).

2.2.  Observational datasets

Precipitation over the Himalayas exhibits signifi-
cant spatial and temporal variations (Lang & Barros
2002, Barros et al. 2004, Anders et al. 2006). Existing
rain-gauge networks are not sufficiently dense to
reveal variability at a fine spatial scale. The gauge
network density is low in the middle and high moun-
tains because of the high elevation, severe weather,
and remoteness of the regions. Since most rain-
gauge stations were established in the 1970s and
1980s (Karki et al. 2017), information on the long-
term pattern of precipitation over the CHR is limited.

4

Fig. 2. (a) Spatial distribution of Pearson’s correlation coeffi-
cient of summer monsoon season (SMS) mean sea surface
temperature (SST) over the Nino3.4 region (5° N to 5° S, 120°
to 170° W) with SMS mean precipitation anomaly. The stip-
pled areas are significant at the 95% confidence level. (b)
Normalized time series of SMS mean precipitation over the
central Himalayan region (black), SMS mean wind speed at
200 hPa averaged over the Arabian Sea and central India
(18° to 25° N, 60° to 80° E) (red) and SMS mean SST averaged
over the Nino3.4 region (blue). Correlation coefficients of
SST, wind, and precipitation are given at the top of the figure
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Several gridded precipitation datasets derived
from ground and/or satellite observations or reanaly-
sis data are now available at varying temporal and
spatial resolutions. A major difficulty related to eval-
uation of models is that these datasets are mutually
inconsistent and are adversely affected by imperfect
representation of observations (Collins et al. 2013,
Mishra 2015). Many researchers have concluded that
gauge-based gridded precipitation datasets are bet-
ter for analyses of the Himalayan regions than satel-
lite and reanalysis datasets (Andermann et al. 2011,
Tong et al. 2014, Prakash et al. 2015). However, con-
siderable discrepancies do exist among gauge-based
precipitation datasets (Collins et al. 2013, Palazzi et
al. 2013, 2015, Mishra 2015). The accuracy of the
gauge-based gridded data depends on the number of
gauges, interpolation techniques, and climatology
used (Yatagai et al. 2012). 

In this study, 4 gauge-based gridded precipitation
datasets viz. APHRODITE version 1101 (Yatagai et
al. 2012), Global Precipitation Climatology Centre
(GPCC) full-data version 6 (Schneider et al. 2014),
Climatic Research Unit (CRU) version TS3.22 (Harris
et al. 2014) and Climate Prediction Center (CPC) ver-
sion 1.0 (Chen et al. 2002) (Table 1) are used to quan-
tify the observational uncertainty over the study
area. All these datasets are available at 0.5° horizon-
tal resolutions and at monthly timescale except
APHRODITE which is available at daily timescale.
Brief descriptions of the datasets are given in Table 1.
The main differences among these datasets are
the number of rain gauges, the interpolation algo-
rithms, and the climatology used. Himalayan re -
gions have sparse gauge networks that certainly
influence the quality of gridded precipitation data -
sets. APHRODITE has incorporated as many stations
as possible in order to create representative precipi-
tation datasets (Yatagai et al. 2012), and has been
reported to be the best among the gridded datasets
(Andermann et al. 2011, Yatagai et al. 2012, Tong et
al. 2014, Prakash et al. 2015) for the CHR. Since
model performance is sensitive to the choice of ref-

erence data, APHRODITE is selected as a reference
dataset for this study. Many recent studies (Jourdain
et al. 2013, Toreti et al. 2013, Mishra et al. 2014)
have also used APHRODITE data to evaluate GCM
performance.

2.3.  Model data

Monthly mean precipitation simulated by 38 state-
of-the-art GCMs participated in CMIP5 are used to
evaluate the model performance in simulating cur-
rent climatology. Although the simulation period is
approximately 1850−2005 for historical runs, evalua-
tions are performed for the period 1971−2000, corre-
sponding to the temporal coverage of the observation
network over the study region. To assess changes in
the mean state and variability of precipitation in
future periods, projections of precipitation under
warming scenarios are analyzed for 3 tri-decadal
periods in the 21st century: 2011−2040, 2041−2070,
and 2070−2099 (hereinafter near-, mid- and far-
future, respectively). Projection data for 2 warming
scenarios, Representative Concentration Pathways
(RCP) 4.5 and 8.5, are used. Models are selected
based on the availability of RCP4.5 and RCP8.5 sce-
nario data. Because of the unavailability of the multi-
ple ensemble runs for all models, we used monthly
precipitation of each model from one ensemble mem-
ber (r1i1p1) for all study periods. To investigate the
associated change in atmospheric variables with the
change in precipitation, we also analyzed the wind,
temperature, specific humidity, and vertical velocity.

Additionally, we analyzed daily precipitation simu-
lation (for ensemble r1i1p1) by the selected best
models to investigate change in daily precipitation
frequency, and active and break spells under
RCP8.5. All model outputs are freely available at the
Earth System Grid Federation (ESGF) archive
through ESGF data portals (http://cmip-pcmdi.llnl.
gov/   cmip5/data_getting_started.html). Brief infor-
mation of CMIP5 models used for this study is pre-

sented in Table 2. Some of these
models share their model compo-
nents, such as the atmospheric
model, or the ocean model. The
analysis of genealogy of the mod-
els is available in Knutti et al.
(2013). Additional details of mod-
els and experiments are available
in a report by Taylor et al. (2012),
and online at https://pcmdi.llnl.
gov/ index.html.

Dataset                          Spatial/temporal       Available      Reference
                                            resolution                period

APHRODITE v1101      0.5° × 0.5°/daily       1951−2007     Yatagai et al. (2012)
GPCC Full-data v6    0.5° × 0.5°/monthly    1901−2010     Schneider et al. (2014)
CRU Ts3.22                 0.5° × 0.5°/monthly    1901−2013     Harris et al. (2014)
CPC v1.0                     0.5° × 0.5°/monthly  1948−present   Chen et al. (2002)

Table 1. Gauge-based gridded precipitation datasets used for this study, with their 
respective resolution, source, available period and reference
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2.4.  Methodology

2.4.1.  Evaluation and selection of best models

To evaluate the model capabilities against the
observations, all datasets are regridded to common
resolution (0.5° × 0.5°) of the reference data using
bilinear interpolation, which is a common regridding
technique (e.g. Lin et al. 2014, Mishra et al. 2014,
Sharmila et al. 2015).

Ranking the GCM performance is an enormously
difficult exercise. Several techniques and measures
have been used to evaluate GCM performance (e.g.
Chadwick et al. 2013, Kumar et al. 2013, Sperber et
al. 2013, Mehran et al. 2014, Palazzi et al. 2015,
Sharmila et al. 2015), but no individual evaluation
technique or performance measure is regarded as a
superior one. Many previous studies have used Tay-
lor diagrams (Taylor 2001) to evaluate GCM capabil-
ities to simulate precipitation and other variables

(e.g. Inoue & Ueda 2011, Ogata et al.
2014, Sharmila et al. 2015). These dia-
grams are suitable for evaluating multi-
ple aspects of climate models because
they provide a succinct statistical sum-
mary of how closely a pattern of a test
variable matches reference variables in
terms of their correlation coefficient
(CC), centered root-mean-square dif-
ference (RMSD) and the ratio of their
variations (Taylor 2001). For this study,
we used a normalized Taylor diagram
in which the radial distance from the
origin indicates the normalized stan-
dard deviation (NSD) of the variable
and the azimuthal position gives the CC
between test and reference variables.
Similarly, the distance between the test
and reference variable indicates the
normalized centered RMSD (NRMSD).
A model is considered reliable if the
test variable lies close to the reference
variable in the diagram. For clear scien-
tific analysis, we have defined criteria
such that a model is regarded as ‘reli-
able’ if CC ≥ 0.6, 0.5 ≤ NSD ≤ 1.5 and
NRMSD ≤ 1.0.

The mean monsoon precipitation and
circulation influence the monsoon vari-
ability on all timescales. Such variabil-
ity cannot be simulated correctly with-
out correct representation of the mean
state and seasonal cycle (Sperber &
Palmer 1996, Turner et al. 2005, Anna-
malai et al. 2007). Therefore, Taylor
diagrams are constructed for 3 metrics:
(1) the spatial pattern of SMS mean pre-
cipitation climatology, (2) the annual
cycle of area averaged precipitation,
and (3) the spatial pattern of interan-
nual variability (IAV) of precipitation.
IAV is measured by the interannual
standard deviation of SMS mean pre-

6

CMIP5 model                AGCM resolution          OGCM resolution

ACCESS1.0                   N96 L38                          1° × 0.33 − 1° L50
ACCESS1.3                   N96 L38                          1° × 0.33 − 1° L50
BCC-CSM1.1                 T42 L26                           1° × 0.33 − 1° L40
BCC-CSM1.1m             T106 L26                         1° × 0.33 − 1° L40
BNU-ESM                      T42 L26                           1° × 0.33 − 1° L50
CCSM4                          1.25° × 0.9° L26              1.125° × 0.27 − 0.54° L60
CESM1-BGC                 1.25° × 0.9° L26              1.0° × 1.0° L60
CESM1-CAM5              1.25° × 0.9° L30              1.125° × 0.27 − 0.54° L60
CMCC-CM                    T159 L31                         2° × 0.5 − 2° L31
CMCC-CMS                  T63 L95                           2° × 0.5 − 2° L31
CNRM-CM5                  T127 L31                         1.0° × 0.33 − 1.0° L42
CSIRO-Mk3.6.0             T63 L18                           1.875° × 0.9375° L31
CanESM2                      T63 L35                           1.41° × 0.94° L40
EC-EARTH                    T159 L62                         1.0° × 0.33 − 1.0° L42
FGOALS-g2                   2.8125° × 2.8125° L26    1° × 0.5 − 1° L30
FIO-ESM                        T42 L26                           1.125° × 0.27 − 0.64° L40
GFDL-CM3                    C48 L48                          1.0° × 0.33 − 1.0° L50
GFDL-ESM2G               2.5° × 2.0° L24                1.0° × 0.33 − 1.0° L63
GFDL-ESM2M              2.5° × 2.0° L24                1.0° × 0.33 − 1.0° L50
GISS-E2-H                     2.5° × 2.0° L40                1° × 0.2 − 1° L26
GISS-E2-H-CC              2.5° × 2.0° L40                1° × 0.2 − 1° L26
GISS-E2-R                     2.5° × 2.0° L40                1.25° × 1° L32
GISS-E2-R-CC              2.5° × 2.0° L40                1.25° × 1° L32
HadGEM2-AO              N96 L60                          1° × 0.33 − 1° L40
HadGEM2-CC              N96 L60                          1°× 0.33 − 1° L63
HadGEM2-ES               N96 L38                          1° × 0.33 − 1° L40
INMCM4                       2° × 1.5° L21                   1° × 0.5° L40
IPSL-CM5A-LR             3.75° × 1.875° L39          2.0° × 0.5 − 2.0° L31
IPSL-CM5A-MR            2.5° × 1.25° L39              2.0° × 0.5 − 2.0° L31
IPSL-CM5B-LR              3.75° × 1.875° L39          2.0° × 0.5 − 2.0° L31
MIROC5                         T85 L40                           1.4° × 0.5 − 1.4° L50
MIROC-ESM                 T42 L80                           1.4° × 0.5 − 1.7° L44
MIROC-ESM-CHEM    T42 L80                           1.4° × 0.5 − 1.7° L44
MPI-ESM-LR                 T63 L47                           GR15L40
MPI-ESM-MR                T63 L95                           TP04 L40
MRI-CGCM3                 TL159 L48                      1.0° × 0.5° L51
NorESM1-M                  2.5° × 1.9° L26                1.125° × 1.125° L53
NorESM1-ME                2.5° × 1.9° L26                1.125° × 1.125° L53

Table 2. CMIP5 models used for this study with their respective horizontal
and vertical resolution of atmosphere (AGCM) and ocean (OGCM) general
circulation models. N: reduced gaussian grid (N96 is roughly equivalent to
1.25° latitude × 1.875° longitude). L: vertical levels (L38 means there are
38 vertical levels in a model). T: spectral model (T42 is roughly equivalent to
2.8° latitude × 2.8° longitude). C: cubed-sphere resolution (C48 is roughly 

equivalent to 2° × 2°
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cipitation. Finally, the best models are selected. We
regard a model as ‘superior’ if it is reliable for simu-
lating all 3 metrics.

2.4.2. Assessment of future change

After selecting the best models, we constructed a
time series of the MMM of monthly precipitation by
assigning equal weight to each of the best models.
Based on best models and their MMM, the future
evolution of precipitation is analyzed.

In this study, changes in mean and IAV of SMS pre-
cipitation under 2 warming scenarios, RCP4.5 and
RCP8.5, are assessed for near-, mid-, and far-future
periods relative to the present climatology. The
changes in mean (⎯Pchange) and IAV (σchange) are com-
puted as:

(1)

and:

(2)

where:
(3)

and:

(4)

In those equations, Pi is the June−September mean
precipitation in the i th year (i = 1,2,3,…, N), where N
is the total number of years used for analysis. ‘Pre-
sent’ is the present period (1971−2000). ‘Future’ sig-
nifies future periods (2010−2040, 2041−2070 and
2070−2099).

In addition, the change in annual cycle is investi-
gated based on the daily climatological mean of first
3 harmonics under both warming scenarios. Changes
in the frequency of light, moderate, and heavy (1–10,
10–40 and >40 mm d−1, respectively) precipitation
days in future periods under RCP8.5 scenario are also
analyzed.

Reportedly, IAV of monsoon precipitation is related
significantly to monsoon active and break spells
(Krish na murthy & Shukla 2000). Long break spells
are also known to affect agricultural production
(Gad gil & Joseph 2003). Therefore, changes in active
and break spell characteristics are analyzed. To iden-
tify the active and break spells, a rainfall index (RI) is
created by application of a 9 to 90 d bandpass filter to
the daily area-averaged (26° to 30° N, 80° to 89° E)
precipitation anomaly computed by subtracting the
climatological mean of the first 3 harmonics. Spec-

trum analysis was conducted to ascertain the domi-
nant periodicity of the 9−90 d period used in filtering
the detrended anomaly. The standard deviation of RI
is computed for each year. Then the climatological
mean of the standard deviation (RIstd) is computed.
Then, active (break) spells are identified for all years,
defined as periods when RI ≥ +1.0 (≤ –1.0) RIstd for ≥3
consecutive days or more (Fig. 3a). During active
(break) spells of monsoon in the CHR, the precipita-
tion anomaly is positive (negative) in foothills of the
Himalayas (Fig. 3b,c). This spatial pattern of precipi-
tation anomaly agrees well with the findings of previ-
ous studies on the Indian monsoon that precipitation
is excess (deficit) in the foothills of the Hima layas
during the break (active) spells in central India
(Krish na murthy & Shukla 2000, Gadgil & Joseph
2003, Rajeevan et al. 2010, Goswami 2011).

3.  RESULTS

3.1.  Evaluation of model performance and
 selection of the best models

In this study, performances of 38 GCMs (Table 2)
are evaluated relative to the APHRODITE dataset for
simulating CHR SMS precipitation for the present cli-
mate (1971−2000) by constructing Taylor diagrams
for all 3 metrics: (1) annual cycle, (2) spatial pattern of
SMS mean precipitation climatology, and (3) spatial
pattern of IAV of SMS mean precipitation (Fig. 4a−c).

All the models reproduced annual cycles of mean
precipitation over the CHR more or less accurately
with CC >0.6, except IPSL-CM5B-LR (−0.24) (Fig. 4a).
However, only about half of the models (ACCESS1.3,
BCC-CSM1.1, BCC-CSM1.1m, CMCC-CM, CMCC-
CMS, CNRM-CM5, CSIRO-Mk3.6.0, CanESM2,  EC-
EARTH, FIO-ESM, GFDL-CM3, HadGEM2-ES,
 INMCM4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-
ESM, MIROC-ESM-CHEM and MRI-CGCM3) are re-
liable. CNRM-CM5 and the multi-model mean of all
38 models (MMM38) are very close to reference data-
set. Although observational datasets (CPC, CRU and
GPCC; solid black symbols in Fig. 4a) have slightly
higher NSD than the reference dataset, their skills in
reproducing the annual cycle are consistent with
each other 

Results showed that simulating the spatial pattern
of monsoon precipitation climatology over the com-
plex terrain presented a major challenge for the mod-
els. They generally fail to capture observed topo-
graphically driven variability in the study region. Of
the 38 GCMs, only 10 are reliable, i.e. reproduce rea-
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sonable spatial patterns of seasonal climatology (AC-
CESS1.0, CNRM-CM5, EC-EARTH, GFDL-ESM 2G,
GFDL-ESM2M, HadGEM2-AO, Had GEM2-CC, Had
GEM2-ES, INMCM4, and IPSL-CM5A-LR) (Fig. 4b).
Similarly, only 8 models performed well in simulating
the spatial pattern of IAV (ACCESS1.0, ACCESS1.3,
CMCC-CMS, CNRM-CM5, EC-EARTH, HadGEM2-
AO, HadGEM2-CC, and Had GEM2-ES) (Fig. 4c). An
inability of GCMs to represent IAV is evident
(Sharmila et al. 2015, Alves et al. 2016).

Taylor diagrams revealed that none of the models
performed equally well in simulations of the 3 met-
rics used for this study. For example, BCC-CSM1.1m
is one of the best models for reproducing the annual
cycle, but its performance is much poorer when
reproducing the spatial pattern of climatology and
IAV. Similarly, INMCM4 is reliable for simulating
the annual cycle and spatial patterns of seasonal
mean precipitation, but it failed to simulate the spa-
tial  pattern of IAV. The CCs of MIROC5 are almost

8

Fig. 3. (a) 9 to 90 d filtered precipitation anomaly (solid line in upper panel) and daily rainfall averaged over part of the the central
Himalayan region (26° to 30° N, 80° to 89° E) (bars in lower panel) from 1 June to 30 September 1981. Dashed lines in the upper
panel denote the climatological mean ±1 SD of daily rainfall during 1971−2000. The blue (red) line with dots in the upper panel
shows active (break) spells. The solid line in the lower panel shows the climatological mean of the first 3 harmonics. (b) Compos-
ites of active and (c) break spells of monsoons. The red rectangles in (b) and (c) indicate the area used to create the daily precipi-

tation index
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identical to observation datasets (CPCC, CPC and
CRU) in simulations of all 3 metrics, but it has
extremely large NSD compared to reference data.
In general, the models that are reliable for repre-
senting spatial  patterns are reliable for representing
the annual cycle.

With the background of model capabilities ex -
plained above, 6 models are identified as the best
performing models based on the criteria defined in
Section 2.4.1: ACCESS1.0, CNRM-CM5, EC-EARTH,
HadGEM2-AO, HadGEM2-CC, and HadGEM2-ES.
Among these, the 3 HadGEM2 models, run with the
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Fig. 4. Taylor diagrams of (a) annual cycle
of precipitation averaged over the central
Himalayan region (CHR), (b) spatial pat-
tern of climatological summer monsoon
season (SMS) mean precipitation, and (c)
spatial pattern of interannual variability
measured by the standard deviation (SD)
of SMS mean precipitation during
1971−2000. Data are shown relative to the
APHRODITE observation dataset for 3
additional observation datasets (CPC,
CRU, GPCC; solid black symbols), 38
CMIP5 model projections and 3 multi-
model means (MMMs). Distance from the
center of x-axis, identified as reference
(APHRODITE), shows centered root
mean square difference, and azimuthal
angle shows Pearson correlation coeffi-
cient between APHRODITE and other 

observed and model datasets
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same horizontal resolutions but with different com-
plexities in terms of the inclusion of complex physical
processes (The HadGEM2 Development Team 2011),
show almost identical skills to reproduce present cli-
matology (Fig. 4a−c). Consequently, only HadGEM2-
ES is considered for additional study because it is
better than the other 2 HadGEM2 models. Therefore,
the 4 best models namely ACCESS1.0, CNRM-CM5,
EC-EARTH and HadGEM2-ES and their MMM (i.e.
MMM4) are used to study the future evolution of pre-
cipitation under RCP4.5 and RCP8.5 scenarios. How-
ever, RCP4.5 scenario datasets of EC-EARTH were
not accessible at the time of analysis. Therefore, we
also constructed a MMM of the 3 best models
(MMM3) excluding EC-EARTH. MMMs show better
capability for reproducing the annual cycle (Fig. 4a)
and spatial distribution of SMS mean precipitation
climatology (Fig. 4b). However, MMMs are unreli-
able for spatial patterns of IAV (Fig. 4c). Among
MMMs, MMM38 is the best for the annual cycle but
the poorest for the spatial pattern of seasonal mean
and IAV because of the inclusion of unreliable
 models.

We also computed the area averaged mean of SMS
mean precipitation over the CHR during the present
climate, and then analyzed its inter-model spread,
range and bias (Table 3). The reference dataset,
APHRODITE, shows mean precipitation of 5.13 mm
d−1 for 1971−2000. The inter-model range is as large
as two times (10.09 mm d–1) the reference dataset
value, whereas the inter-model spread is 55% of the
reference dataset value. Two-thirds of the total mod-
els and other observation datasets show a wet bias.
Biases of MMMs are almost identical to the biases of
observation datasets.

For more detail, the annual cycle of the best models
and their MMMs is presented in Fig. 5. A large inter-
model spread is evident in the shape and size of
the annual cycle. The model uncertainty is large dur-
ing the monsson season. It is noteworthy that
APHRODITE precipitation is lower than those of
other observation datasets as well as the best models,
particularly during the monsoon season. The spatial
distribution of SMS precipitation and its IAV are pre-
sented respectively in Figs. 6 & 7. The spatial patterns
of large-scale mean precipitation and IAV among the
observations show remarkable consistency. The best
models show reliable skill in simulating spatial pat-
terns of seasonal mean climatology (Fig. 6) and, to
some extent, IAV (Fig. 7). However, local biases exist
in many regions. ACCESS1.0 and HadGEM2-ES sim-
ulations show similar patterns of climatology and bias
as they are based on atmospheric components from
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Dataset                   Bias      Dataset                          Bias 
                           (mm d−1)                                     (mm d−1)

APHRODITE            –         GISS-E2-H                  −2.50
CPC                        2.01      GISS-E2-H-CC           −2.53
CRU                        1.56      GISS-E2-R                   −3.48
GPCC                     1.36      GISS-E2-R-CC            −3.43
ACCESS1.0            2.75      HadGEM2-AO              2.93
ACCESS1.3            1.92      HadGEM2-CC              2.89
BCC-CSM1.1       −0.96      HadGEM2-ES               2.61
BCC-CSM1.1m     0.13      INMCM4                       1.20
BNU-ESM              3.32      IPSL-CM5A-LR           −1.63
CCSM4                  4.74      IPSL-CM5A-MR         −0.57
CESM1-BGC         4.62      IPSL-CM5B-LR           −3.39
CESM1-CAM5      6.02      MIROC5                        4.92
CMCC-CM            2.07      MIROC-ESM                 2.53
CMCC-CMS          2.01      MIROC-ESM-CHEM   2.43
CNRM-CM5          0.60      MPI-ESM-LR                 4.06
CSIRO-Mk3.6.0   −2.11      MPI-ESM-MR               3.61
CanESM2            −0.46      MRI-CGCM3              −1.41
EC-EARTH            1.66      NorESM1-M                  6.49
FGOALS-g2         −1.92      Nor-ESM-ME                6.61
FIO-ESM                1.42      MMM3                          1.99
GFDL-CM3            1.09      MMM4                          1.91
GFDL-ESM2G       3.47      MMM38                        1.45
GFDL-ESM2M      3.52

Table 3. Climatological mean bias of precipitation averaged
over the central Himalayan region (CHR) for the summer
monsoon season (SMS, June−September) during the present
period (1971−2000). Data are shown for 3 additional observa-
tion datasets (CPC, CRU, GPCC), 38 CMIP5 model projec-
tions and multi-model means. Bias is calculated related to
APHRODITE SMS mean precipitation (5.13 mm d−1). Inter-
model standard deviation: 2.85 mm d−1; inter-model range: 

10.09 mm d−1

Fig. 5. Annual cycle of precipitation over the central Hima -
layan region (CHR) from 4 observational datasets (black
lines), simulations of 4 selected CMIP5 best models and their
multi-model means (coloured lines), and simulations of 34
other CMIP5 models (grey lines) for the period 1971−2000
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the same model family (Bi et al. 2013, Knutti et al.
2013). CNRM-CM5 has a noticeable dry bias (Fig. 6)
and lower IAV over southeastern parts (Fig. 7). The
MMMs of best models show reasonable skill in as-
sessing mean precipitation (Fig. 6), but smooth out
the IAV (Fig. 7) (Sperber et al. 2013). Because IAV of
MMMs is not reliable, further analysis of IAV is not
performed based on MMM data.

3.2.  Projected change in future warming scenarios

3.2.1.  Changes in SMS precipitation climatology

The annual cycles of daily precipitation (smoothed
by removing the first 3 harmonics) of the best models
and their multi-model means for the near-, mid- and
far-future periods under RCP4.5 and RCP8.5 scenar-
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Fig. 6. Mean precipitation climatology (blue shading) and bias (contours) with respect to the APHRODITE observation dataset
(top left) for the SMS (June−September) season during 1971−2000. Comparative data are shown for 3 additional observation
datasets (CPC, CRU and GPCC; upper row), 4 selected best CMIP5 models and the multi-model means of 3 (MMM3) and 4
(MMM4) best models. Dry bias is indicated by red contours (−2, −4 and −6 mm d−1) and wet bias is indicated by green contours 

(2, 4 and 6 mm d−1)

Fig. 7. Interannual variability (IAV) of SMS mean precipitation (blue shading) and bias in IAV (contours) with respect to
APHRODITE during 1971−2000. Comparative data are shown for 3 additional observation datasets (CPC, CRU and GPCC; up-
per row), 4 selected best CMIP5 models and their multi-model means (MMMs). Dry bias is indicated by red contours (−1.5, 

−1 and −0.5 mm d−1) and wet bias is indicated by green contours (0.5, 1.0 and 1.5 mm d−1)
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ios with their corresponding annual cycle at the
 present condition are depicted in Fig. 8. Except
HadGEM2-ES for near- and mid-future periods, all
models projected an increase in the amplitude of pre-
cipitation during the summer monsoon (June−Sep-
tember) in all future time slices under both warming
scenarios. However, no large difference exists in the
amplitudes of precipitation projection between
RCP4.5 and RCP8.5. The amplitude increases gradu-
ally from the near-future to far-future periods. The
increase is large in July and August, with a value of
about 3 mm d−1 in the far-future period. Winter pre-

cipitation (December− February) is projected to
decrease slightly by multi-model means and member
models (Fig. 8).

Table 4 presents the change in area-averaged SMS
mean precipitation over CHR and its IAV for near-,
mid-, and far-future periods under both warming sce-
narios relative to the present climatology. The area-
averaged precipitation is projected to increase gradu-
ally from near- to far-future periods. It is highest for
the far-future period under RCP8.5. Models consis-
tently project increased precipitation in the mid- and
far-future periods under both warming scenarios with

Fig. 8. Annual precipitation cycle in the central Himalayan region (CHR) based on simulations by the 4 best CMIP5 models
and the multi-model means of 4 (MMM4) best models for the present climate (green), and for near-future (2011−2040; left
panels), mid-future (2041−2070; centre panels) and far-future (2070−2099; right panels) periods under RCP4.5 (pale orange)
and RCP8.5 (dark orange) scenarios. The annual cycle is constructed from the climatological mean of the first 3 harmonics to 

facilitate a visual comparison of the phase and amplitude
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a 99% confidence level. However, projections are in-
consistent for the near-future period. The projected
change in mean precipitation is about −1 to 27%.
MMMs projected an increase of about 20% of mean
precipitation at the 99% confidence level.

In contrast to mean precipitation, models project
mixed tendencies for changes in the IAV of SMS mean
precipitation in all future time periods under both
warmingscenarios,except for far-futureperiodsunder
theRCP8.5scenario.Somemodelsshowasignificantly
increasing tendency, while others show a decreasing
tendency for the same periods under the same sce-
nario (Table 4). However, models are consistent in
revealing increasing variation during the far-future
period under RCP8.5. Increased variation indicates
irregular SMS precipitation, which strongly affects
decision making in every sector from agriculture to
water resource management. It is noteworthy that
future projections of IAV are inconsistent. This result
suggests that projection data must be considered
carefully when used to study climate change impacts.

Fig. 9 presents relative changes in the spatial pat-
tern of SMS mean precipitation climatology for the
far-future period under the RCP 8.5 scenario. Precipi-
tation is projected to increase considerably over most
parts of the CHR by all the best models and MMMs.
However, regional uncertainty exists. Most models
project slight and not significant de creasing ten -
dencies over northwestern parts of the study area.

ACCESS1.0 and Had GEM2-ES
project similar spatial patterns
of SMS mean precipitation cli-
matology change, which possi-
bly derives from their use of
common atmospheric models (Bi
et al. 2013, Knutti et al. 2013).

Projection of possible IAV
change of SMS mean precipita-
tion during the far-future period
under RCP8.5 is presented in
Fig. 10. The model consensus on
changes in IAV spatial pattern is
low, indicating considerable un-
certainty. However, most of the
best models consistently reveal
increasing IAV over Nepal with
some models showing statisti-
cally significant increasing IAV.

Projected changes in mean
pre cipitation and IAV are robust
in the far-future period under
the RCP8.5 scenario. Therefore,
further analysis specifically ad-

dresses the projected changes only in the far-future
period under the RCP8.5 scenario.

3.2.2.  Changes in extreme indices

Changes in daily precipitation characteristics.
Changes in the frequency and intensity of extreme
events are well known to have stronger effects on the
socioeconomy than seasonal mean changes. Mishra
et al. (2014) concluded that the ensemble mean of
best GCMs performed better than RCMs for simulat-
ing indices of extreme events over India. Wet ex -
tremes and daily intensity are projected to increase
and rainy days are projected to decrease over the
Himalayas in future warming scenarios (Palazzi et al.
2013). It is therefore worthwhile to analyze the
changes in frequency of daily precipitation projected
by the best GCMs and their MMM for the central
Himalayas.

Fig. 11 portrays projected changes in frequency
distribution of daily precipitation under the RCP8.5
scenario during SMS in the far-future period. A
MMM of daily precipitation simulated by the 4 best
models (MMM4) is created by assigning equal
weight to each model, as with MMM4 of monthly
precipitation. HadGEM2-ES has 360 d in 1 yr,
120 d in SMS and 30 d in each month. Conse-
quently, MMM4 also has 120 d in SMS. To enable

Model          2011−2040   2041−2070    2070−2099
                               RCP4.5    RCP8.5         RCP4.5    RCP8.5         RCP4.5     RCP8.5

Change in seasonal mean precipitation (%)
ACCESS1.0               2.16       −0.83            9.38**       6.33**       12.67**     17.39**
CNRM-CM5              8.24       10.72**        9.84**     20.28**       17.71**     27.55**
EC-EARTH                –              7.34**        –              12.91**          –              15.45**
HadGEM2-ES           4.83         2.27            9.94**       7.68**       17.85**     20.58**
MMM3                       4.76*       3.39            9.71**     10.56**       15.90**     21.27**
MMM4                       –              4.35*          –              11.13**          –              19.87**
                                                                                                                               
Change in IAV of seasonal mean precipitation (%)
ACCESS1.0           −21.18     −12.20          17.72        −6.32           −1.69         36.28
CNRM-CM5            73.68*     44.84          19.61         35.77           48.10         63.72**
EC-EARTH                –              7.71            –              58.34*           –              55.71**
HadGEM2-ES       −12.61       −3.27          −1.84         15.06           −8.05         15.63

Table 4. Changes in mean and interannual variability (IAV) of SMS (June−Septem-
ber) precipitation projected by 4 selected best CMIP5 models and their multi-model
means (MMMs), averaged over the central Himalayan region (CHR) for near-future
(2011−2040), mid-future (2041− 2070) and far-future (2070−2099) periods. MMM4 is
the MMM of the 4 selected models. RCP4.5 scenario datasets of EC-EARTH were
not accessible at the time of analysis. Therefore, we also constructed a MMM of the
3 best models (MMM3) excluding EC-EARTH. Confidence levels (**99%; *95%) of
mean and interannual variation change were calculated, respectively, using 

Student’s t-test and Levene’s test



Clim Res 75: 1–21, 2018

comparative analysis, calculated fre-
quencies of HadGEM2-ES and
MMM4 are adjusted to 122 days,
multi plying by a scaling factor (122/
120). The 4 best models and MMM4
consistently pro ject a de crease in light
precipitation days over most parts of
the study area. However, ACCESS1.0
and HadGEM2-ES show an increase
in light rain-rate events over Nepal.
These 2 models have quite similar re-
sponse for all rain-rates. Moderate and
heavy precipitation days are projected
to increase. However, model conver-
gence in spatial patterns of projected
changes in the frequency of moderate
precipitation over Nepal is low. AC-
CESS1.0 and HadGEM2-ES show de-
creased frequencies of moderate pre-
cipitation over Nepal. The decrease in
light to moderate rainfall over the Hi-
malayan foothills and Nepal might be
attributable to the shift from light to
moderate rainfall to heavy rainfall cat-
egories under warming scenarios. The
projected increase in moderate and
heavy precipitation days is expected
to be accompanied by a possible in-
crease in precipitation-induced haz-
ards such as floods and landslides.

Changes in active and break spells.
Active and break spells of monsoon
are known to affect the monsoon sea-
son total precipitation (Rajeevan et al.
2010) and IAV of SMS mean precipita-
tions (Krishnamurthy & Shukla 2000).
Break spells of long duration are
known to have a strong effect on rain-
dependent agricultural production
(Gadgil & Joseph 2003). Therefore,
active and break spells of monsoons
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Fig. 10. Spatial distribution of projected
change in interannual variability (IAV) of
SMS precipitation in the central Himalayan
region (CHR) during 2070− 2099 under
RCP8.5 relative to the present (1971− 2000)
climatology. Data are shown for 4 selected
best CMIP5 models; MMM3 and MMM4 are
not shown here because these MMMs are
not reliable to simulate IAV for the present
climate. The level of significance in this case 

was tested using Levene’s test

Fig. 9. Spatial distribution of projected change in SMS precipitation in the cen-
tral Himalayan region (CHR) during 2070−2099 under RCP8.5 relative to the
present (1971−2000) climatology. Data are shown for 4 selected best CMIP5
models and their multi-model means of 3 (MMM3) and 4 (MMM4) best mod-
els. Stippled areas are significant at the 95% confidence level. The level of sig-
nificance was assessed using Student’s t-test for equal and unequal variances 

based on Levene’s test
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simulated by models for both the present and future
under the RCP8.5 warming scenario are analyzed in
this study. Best models and MMM4 perform reason-
ably well when simulating the frequency and length
of active and break spells under the present climate
(Fig. 12). However, the spread in the length of break
spells is greater than in the length of active spells in
the present climatology (Fig. 12b,d). Best models and
MMM4 consistently project a gradual increase in the
frequency and length of active and break spells.
However, inter-model spread is larger for break
spells than active spells.

4.  DISCUSSION

A key obstacle hindering evaluation of model sim-
ulation over the Himalayas is the lack of a reliable
observation dataset (Yatagai et al. 2012, Palazzi et al.
2013, Mishra 2015). Available gridded observed pre-
cipitation datasets show discrepancies (Figs. 4–7,
Table 3) indicating uncertainty in observation data -
sets, which complicates model evaluation (Ra mesh &
Goswami 2014). We used the APHRODITE precipita-
tion dataset as a reference because this dataset is
good for the Himalayan region (Andermann et al.
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Fig. 11. Projected changes in the frequency (d season−1) distribution of daily SMS precipitation (light: 1−10 mm d−1; moderate:
10−40 mm d−1; heavy: >40 mm d−1) under RCP8.5 during 2070−2099. Data are shown for 4 selected best CMIP5 models and 

their multi-model mean (MMM4)
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2011, Yatagai et al. 2012, Tong et al. 2014, Prakash et
al. 2015). However, the sparse observation network
over the Tibetan plateau and the high Hima la yas
might lead to underestimation of precipitation over
the region (Yatagai et al. 2012). A second issue, not
considered here, is the problem of mapping coarse
resolution values from the models to the slightly fine
resolution of APHRODITE, which would likely result
in lower predictive capability (McBride & Ebert
2000). Consequently, enhancement of the observa-
tion network is recommended to provide a represen-
tative precipitation dataset for the Hima layan region.

The complex topography of the Himalayas plays a
vital role in changing local wind circulation and pre-
cipitation characteristics. Spatial and temporal vari-
ability of precipitation are intertwined, with local
drivers such as topography and land use interacting
with remotely connected variables such as ENSO
(Shres tha 2000, Shrestha et al. 2000). Consequently,
reliable representation of topography and physical
processes in climate models is important for the real-
istic simulation of regional precipitation (Fennessy et
al. 1994, Turner & Annamalai 2012, Rajendran et al.
2013). State-of-the-art GCMs differ from each other
in many ways, including in their formulations, inclu-
sion of different coupled components such as carbon
cycles and stratospheric processes, parameterization
of different physical processes, and model resolu-
tions. These differences are reflected in their simula-

tions (Fig. 4, Table 3). However, some climate models
share a common lineage and in turn share common
biases (Knutti et al. 2013).

Most GCMs reproduce annual cycles of regional
averaged precipitation (Fig. 4a) reasonably well,
even though the inter-model difference is large.
They display much lower capabilities to reproduce
spatial patterns of the mean and IAV of SMS mean
precipitation (Fig. 4b,c) in spite of the higher resolu-
tion of recent versions and the introduction and
improved representation of complex physical pro-
cesses (Taylor et al. 2012). This fact underscores the
need for improved understanding of underlying
atmo spheric processes — especially in mountainous
regions — and for corresponding improvements in
the models. The IAV of precipitation depends to a
large degree on the horizontal resolution of the mod-
els (Giorgi 2002). The inability of GCMs to reproduce
the spatial distribution of precipitation at regional
levels is also described in reports of previous studies
(Turner & Annamalai 2012, Sperber et al. 2013, Su et
al. 2013, Sharmila et al. 2015). Most of the models
show a wet bias over steep topography (Mehran et al.
2014). About 66% of models show a wet bias. The
rest of the models show a dry bias over the CHR
(Table 3). Large biases in models are associated with
convective parameterization schemes (Sabeerali et
al. 2015). However, it is extremely difficult to identify
a single factor  explaining what makes a model good
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Fig. 12. (a) Frequency and (b) length of active spells and (c) frequency and (d) length of break spells during SMS in the central
Himalayan region (CHR). Data for the present period (1971−2000) are shown for the APHRODITE observation dataset, and
simulated data for present period and future period under RCP8.5 is shown for 4 selected best CMIP5 models and their 

multi-model mean (MMM4)
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or bad in complex terrain (Fig. 4, Table 3) (Su et al.
2013, Palazzi et al. 2015). Past evidence shows that
high-resolution models perform better than coarse-
resolution models through enhanced representation
of topography and circulation (e.g. Fennessy et al.
1994, Rajendran et al. 2013). Our analysis shows that
slight improvements in model resolution might not
reduce model errors. For example, resolutions of

CCSM4, CESM1-BGC, CESM1-CAM5, and CMCC-
CM are finer than those of HadGEM2 models, but
the former do not outperform the HadGEM2 models
(Fig. 4, Table 2). Nevertheless, it is noteworthy that
the spatial pattern of SMS precipitation is poorly
reproduced by coarse resolution (≥2.5° longitude)
models. Similarly, it is apparent from the 3 Had -
GEM2 models (AO, CC, and ES), that differ from
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Fig. 13. Projected changes in the SMS mean state during 2070–2099 under RCP8.5 (a–d) vertically integrated (surface to 300 hPa)
moisture flux convergence (color) and wind at 850 hPa (vector); (e–h) omega at 500 hPa (color) and specific humidity (contour in-
terval: 10%, negative value is denoted by dashed contour and positive value is denoted by solid contour); (i–l) temperature (color)
and wind at 200 hPa (vector). Projected changes are computed as (MeanFuture – MeanPresent) except for the change in specific 

humidity. Changes in specific humidity are computed as (100 × (MeanFuture – MeanPresent) / MeanPresent)
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each other in the extent to which they incorporate
complex physical processes, that improved represen-
tation of these processes does not improve model
capability to a marked degree (The HadGEM2
Development Team 2011). In fact the improvement in
bias is much less than the systematic mean bias.
These results highlight that high-resolution (a few
kilometers) models with im proved physical parame-
terization schemes of physical processes are needed
to obtain a reasonable spatial distribution (Rajendran
et al. 2013).

Among the 38 GCMs, only 6 GCMs (ACCESS1.0,
CNRM-CM5, EC-ERATH, HadGEM2-AO, Had -
GEM   2-CC, and HadGEM2-ES) fulfill our criteria for
‘superior’ models. This result suggests that im proved
understanding of governing physical processes, and
corresponding improvements in models, are required
in order to simulate precipitation over mountainous
regions realistically. HadGEM2-AO and HadGEM2-
CC were omitted in this study of  precipitation pro-
jections because their skill in reproducing precipita-
tion characteristics is lower or nearly equal to
HadGEM2-ES for the present climate. Our results
show agreement with past studies (Lee & Wang 2014,
Prasanna 2016). It is particularly interesting that 3 of
the 4 selected ‘best models’ (ACCESS1.0, CNRM-
CM5, and HadGEM2-ES) are also recommended as
the best models for South Asia (Prasanna 2016), as
well as for global (Lee & Wang 2014) monsoon as-
sessment. However, the choice of the reference data-
set and methodology affect the skill of the models.

Best models and MMMs project an increase in
SMS mean precipitation in all future periods under
RCP4.5 and RCP8.5. Model agreement and statistical
significance are higher for mid-future and far-future
periods. Unlike mean precipitation, model projec-
tions of changes in the variability of precipitation are
not consistent for all future periods. However, pro-
jected change in IAV in the far-future pe riod (2070−
2099) under RCP8.5 is consistent among models, and
is greater than the mean change. MMM4 projects an
approximate 20% increase in mean SMS precipita-
tion in this period. The increase in mean precipitation
might be attributed to an increase in the moisture
flux convergence, in turn attributable to the increase
in the water holding capacity of the atmosphere in a
warming environment (Turner & Annamalai 2012,
Sharmila et al. 2015, Prasanna 2016), enhancement
of climatological low-level monsoon flow over the
Arabian Sea (Ogata et al. 2014), and increased con-
vective activity. However it is slightly offset by weak-
ened easterly winds over the Arabian Sea and central
India in the upper troposphere caused by warming of

the Indian Ocean (Fig. 13). In fact, IAV of CHR pre-
cipitation is largely dominated by the Pacific Ocean
sea surface temperature, i.e. ENSO). The ENSO−
mon soon relation is projected to weaken over time
(Li & Ting 2015). However, simulation of ENSO by
CMIP5 models is extremely uncertain (Turner &
Annamalai 2012, Jha et al. 2014).

Moderate to heavy precipitation days are projected
to increase in the far-future period under RCP8.5,
whereas light precipitation days are projected to
decrease. However, regional uncertainty does exist.
The projected increase of moderate to heavy rainfall
might be related to increased flow from the Arabian
Sea, increased moisture attributable to warming,
and/or increased convective activity over the study
region (Fig. 13) (Houze et al. 2007). The decrease in
light rainfall might be attributable to a shift in daily
precipitation amounts to higher rainfall categories.
Furthermore, the frequency and length of active
monsoon spells is consistently projected to increase
in future periods, which might be attributed to
enhanced low level circulation, increased convective
activities, and/or moisture attributable to warming
(Fig. 13). Our results related to extreme precipitation
show good agreement with those of earlier studies
(Panday et al. 2015, Sharmila et al. 2015, Kitoh &
Endo 2016, Wu et al. 2017).

The results show that increased mean precipitation
and variability in precipitation are largely the result
of increased frequency of moderate to heavy precipi-
tation days and active spells. Our analyses show that
more frequent and prolonged intense precipitation
might occur in the future, which might strongly and
adversely affect society if suitable adaptation meas-
ures are not planned and implemented.

Thorough analyses are necessary, however, to
investigate the physical processes responsible for
spatial and temporal variability of precipitation, and
to evaluate how these processes are reproduced in
climate simulations. As described herein, we did not
perform analyses to ascertain the reasons behind the
poor capability of models to simulate the spatial and
temporal distribution of CHR SMS precipitation. Nor
did we investigate possible causes of projected
changes in precipitation characteristics, which might
be related to numerous simulated variables. These
matters are left as subjects for future work.

5.  CONCLUSIONS

Precipitation over the Himalayas is highly variable
both temporally and spatially. A major challenge
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faced by climate models is to simulate the spatial and
temporal variability of precipitation over such moun-
tainous regions. This study documents the capabili-
ties of 38 global climate models participating in
CMIP5 to simulate spatiotemporal variability of sum-
mer monsoon season precipitation over the central
Himalayas under the present climate. Additionally, it
reveals the projected changes in future seasonal
mean and extreme precipitation under warming sce-
narios based on systematically selected best models
and their MMM. Most of the models can simulate the
mean annual cycle reasonably well. However, the
inter-model spread is extremely large during the
monsoon season. Realistic simulation of spatial distri-
bution of the mean monsoon season precipitation and
its IAV is problematic. Few models are successful in
reproducing spatial and temporal variability reason-
ably well. Poor capabilities of models in simulating
spatial patterns might be linked to coarse model res-
olutions and convective parameterization schemes.

We applied the 4 best models, based on their capa-
bilities to reproduce the annual cycle, spatial pat-
terns of monsoon season mean precipitation and its
IAV, to study the future evolution of monsoon season
precipitation under warming scenarios RCP4.5 and
RCP8.5. However, the best models and their MMMs
show considerable biases relative to observed pre-
cipitation and the inter-model spread is large.

All the best models and their MMM consistently
indicate increases in monsoon season precipitation in
future periods. Intensification is greater in the core
monsoon months of July and August. Projected mean
monsoon season precipitation increases gradually
from near-future to far-future periods under both
warming scenarios. MMM4 projects an increase in
mean precipitation by 20% in a far-future period
under RCP8.5. In addition, all models project an
increase in IAV in far-future periods under RCP8.5.
However, model agreement is poor for projected
changes in variability for near-future and mid-future
periods. Similarly, differences among the best mod-
els are apparent in the regional spatial distribution of
projected changes, particularly IAV, which reflects
the uncertainty of future projection.

Analysis of model projections of the occurrence of
extreme weather events suggests  that the projected
increase in monsoon season mean precipitation is
exacerbated by consistent intensification of moderate
to heavy precipitation days, and projected increases
in the frequency and length of active spells of
 monsoons under RCP8.5. The projected increase in
seasonal mean precipitation might be attributable to
in creased moisture flux convergence, enhanced low-

level wind from the Arabian Sea and increased con-
vective activities associated with enhanced moisture
due to warming. However, thorough studies of other
variables should be undertaken to explore other pos-
sible thermodynamic and dynamic causes of precipi-
tation change under warming scenarios.
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