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Abstract

The Tohoku-Oki earthquake (Myw 9.0) struck northeast Japan on March 11, 2011. A dense onshore geodetic network
in tandem with seafloor geodetic observations captured large coseismic and postseismic deformation. Many studies
have reported the afterslip distribution of this event. However, these previous studies mainly analyzed the distribution
over an extended period, such as from a few dozen days to a few years. Only a handful of studies have investigated the
early afterslip period of the 2011 Tohoku-Oki earthquake. Furthermore, those studies did not provide a sufficient
understanding or rigorous discussion of the early afterslip area or aftershock activities. An understanding of the spatial
and temporal evolution of the early afterslip, beginning immediately after such a massive interplate earthquake, is
essential to understanding the frictional properties of the plate boundary. On this basis, I investigated the spatial and
temporal evolution of the early afterslip following the 2011 Tohoku-Oki earthquake using on- and offshore geodetic
data.

To identify the distribution of early afterslip, I utilized geodetic observations from onshore Global Navigation
Satellite System (GNSS) and Ocean Bottom Pressure gauge (OBP) sites to quantify postseismic deformation during the
210 hours (approx. nine days) following the mainshock. I adopted the kinematic precise point positioning strategy and
removed the sizeable coseismic displacement from the observed data associated with the large aftershocks. Next, 1
performed spatial filtering using common-mode error (CME) analysis. The CME analysis reduced the standard
deviation of the onshore GNSS time series by 14% for the east-west component and 21% for the north-south component,
mainly attributed to pillar tilting caused by thermal expansion via sunlight. The obtained time series was enhanced
using principal component analysis (PCA), which reduced the signal unrelated to the postseismic deformation. Finally, I
selected a combination of principal components (PCs) based on the normalized displacement field of each. Thus, the
time series was reconstructed, and the cleaned time series showed an apparent trenchward postseismic deformation.

I removed the systematic effect of ocean tides, non-tidal oceanographic fluctuation, and sensor drift on the OBP time
series. To estimate sea-floor deformation captured by the OBP sites, I fit the data with a logarithmic function based on
decay time derived from the GNSS time series. Subsidence was captured at all the OBP sites, and the maximum
displacement reached 18 cm.

I used the predicted postseismic deformation via viscoelastic relaxation from a previous study to assess this effect at
the geodetic sites. The viscoelastic effect was relatively small compared to the observed data; 2% and 11% for the
GNSS and OBP sites, respectively.

To estimate early afterslip distribution, I utilized L1-norm regularization, which is characterized by regularization
without smoothing. I estimated the early afterslip distribution using data from GNSS and OBP sites looking at the
cumulative static displacement and time dependence of the observation time series. To assess the reliability of this
method for determining slip and the non-zero slip boundary, I performed a recovery test using both GNSS and OBP site
data looking at assumed fault patches. The L1-norm inversion successfully recognized distinct regions of zero- and
non-zero slip along the plate interface.

The main area of the estimated early afterslip was located off the shores of Iwate, Miyagi, Fukushima, and Ibaraki

at a depth of 30—60 km. The slip was narrow along the dip direction with along-strike variation; the maximum slip
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reached 5.8 m at northern Kinka Island. The estimated afterslip moment of release during those nine days was M, 8.16.
Several fault patches were estimated to occur offshore. These were estimated to explain the subsidence at the OBP sites,
and they appeared to be located where the coseismic slip was relatively small compared to the surrounding area. Based
on the kinematic afterslip results, I found that the afterslip-coseismic moment ratio of the Tohoku-Oki earthquake was
relatively smaller than other large earthquakes. It may relate to the rupture of the 2011 Tohoku-Oki earthquake reaching
from the down-dip to the up-dip of the potential region of the coseismic slip.

The spatial extent of the afterslip was related to frictional properties, therefore I examined the decay time of the
early afterslip time series in each fault patch. The decay time result shows the along strike variation. In Off Miyagi and
Iwate, the decay time tend to be shorter compared to the Fukushima region. The shorter decay time may reflect a small
amount of normal stress on the plate interface and/or a small “a-b” or larger k value. Considering (a-b)~0, it may reflect
that the early afterslip region corresponds to the transition from velocity weakening to the velocity strengthening.

I examined the spatial relationship between the early afterslip with the down-dip limit of the interplate earthquakes
and the distribution of the aftershocks. First, the estimated early afterslip distribution was consistent with the down-dip
limit of the interplate earthquakes off Miyagi and Iwate. Several cross-sections along the strike direction clearly showed
the different characteristics and locations of the afterslip and aftershock activities. For example, off Miyagi and Iwate,
the location of afterslip tended to be in the up-dip portion of the larger afterslip area. In contrast, off Fukushima, the
distribution of aftershocks was in the down-dip of the larger afterslip area. This discrepancy is attributed to along
arc-variation with different structural characteristics between off Miyagi and Fukushima region.

Based on the temporal evolution of afterslip, I emphasized the relationship between early afterslip evolution and the
number of aftershocks. Aftershock—afterslip temporal evolution is consistent in almost every region, although the
regions off Iwate and Miyagi showed a lack of aftershocks 30 hours after the mainshock, in contrast with the estimated
early afterslip. Meanwhile, I found different characteristic in Fukushima and Ibaraki, where there is abundant number of
aftershocks occurred more than afterslip. Such a discrepancy shows the factors other than afterslip were contributing to
triggering aftershocks.

The spatial and temporal evolution of seismic and aseismic slip is related to the properties of the plate interface.

Therefore, estimating the distribution of each slip behavior will be necessary to study earthquake hazard.
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