

Detection of Chemical Change of Adsorbates using Electrical Property of MoS2 Field-Effect Transistor

著者	Mamun Muhammad Shamim Al
学位授与機関	Tohoku University
学位授与番号	11301甲第20005号
URL	http://hdl.handle.net/10097/00133594

博士論文

Detection of Chemical Change of Adsorbates using Electrical Property of

MoS₂ Field Effect Transistor

(2硫化モリブデンを用いた電界トランジスタ電気特性による吸着種の化 学状態変化検知)

Muhammad Shamim Al Mamun

令和3年

Table of Content

Chapter 1 INTRODUCTION	2
Chapter 2 MATERIALS, CHARACTERIZATION TECHNIQUES ANDCHARGE TRANSFER MECHANISM	3
Chapter 3 <i>IN SITU</i> STUDY OF SENSOR BEHAVIOR OF MOS ₂ FIELD EFFECTTRANSISTOR FOR METHYL ORANGE MOLECULE IN ULTRA HIGH VACUUM CONDITION	3
Chapter 4 MICROFLUIDIC TANK ASSISTED NICOTINE SENSINGPROPERTY OF FIELD EFFECT TRANSISTOR COMPOSED OF ATOMICALLY THIN MOS ₂ CHANNI	EL 4
Chapter 5 OBSERVATION OF THERMALLY REVERSIBLE ISOMERIZATIONOF NITRO-SPIROPYRAN ON MOS ₂ SURFACE BY MOS ₂ FIELD EFFECT TRANSISTOR	. 4
Chapter 6 SURFACE CHARGE TRANSFER DOPING OF MOS ₂ BYMELAMINE INVESTIGATED BY THE BACK GATED MOS ₂ FIELD EFFECT TRANSISTORS	5
Chapter 7 SURFACE CHARGE TRANSFER DOPING OF MULTILAYER MOS ₂ BY CAFFEINE	6
Chapter 8 PRESSURE DEPENDENT P-DOPING AND N-DOPING BEHAVIORBY O ₂ DETECTED BY FEW LAYERS MOS ₂ -FIELD EFFECT TRANSISTORS	7
Chapter 9 <i>IN-SITU</i> ADSORPTION BEHAVIOR OF METHYL RED ON MOS ₂ AND ITS EFFECT ON THE TRANSFER CHARACTERISTICS OF MONOLAYERED MOS ₂ -FIEI EFFECT TRANSISTORS	LD 8
Chapter 10 GAS ENVIRONMENTAL AND PHOTO IRRADIATION EFFECT ONHYSTERESIS IN THE TRANSFER CHARACTERISTICS OF MOS ₂ TRANSISTOR	9
Chapter 11 CONCLUSION REMARKS AND OUTLOOK	10
Chapter 12 BIBLIOGRAPHY	10

Chapter 1 INTRODUCTION

Realizing the importance of MoS_2 in different sensor applications¹, this PhD research emphasizes on the fabrication of MoS_2 based field effect transistors and their application for chemical sensing through electrical property measurement.

Chapter 2 MATERIALS, CHARACTERIZATION TECHNIQUES AND CHARGE TRANSFER MECHANISM

Semiconductor Materials used for the MoS_2 -FET fabrication has been introduce in this section. All the nanofabrication instruments and surface characterization techniques have been described in this chapter. Finally, surface charge transfer mechanism is given in the later part of this chapter.

Chapter 3 IN SITU STUDY OF SENSOR BEHAVIOR OF MOS₂ FIELD EFFECT TRANSISTOR FOR METHYL ORANGE MOLECULE IN ULTRA HIGH VACUUM CONDITION

Here, I investigated the sensor behavior of the MoS₂-FET device with the deposition of Methyl Orange (MO) which is widely used as a chemical probe. I detected the shift of the I_dV_g curve of the MoS₂-FET device with the increase of the coverage (\Box) of the MO molecule in *in-situ* chamber², shown in Fig. 1. I show that the system can detect the adsorption of MO far less than monolayer and the phase change from the first layer to the second layer growth, which is realized by the benefit of the *in situ* UHV experimental condition.

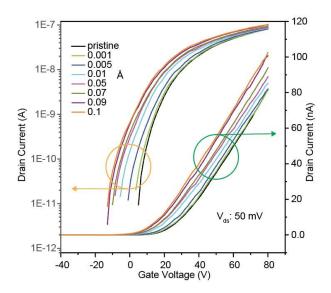


Fig. 1 I_d - V_g plot as a function of the MO coverage using four-layer device.

Chapter 4 MICROFLUIDIC TANK ASSISTED NICOTINE SENSING PROPERTY OF FIELD EFFECT TRANSISTOR COMPOSED OF ATOMICALLY THIN MOS₂ CHANNEL

I investigated the sensor behavior of the MoS_2 FET, the channel of which is composed of four MoS_2 atomic layers focusing on the interaction with the solution containing target molecules. For that purpose, I made a newly designed device in which the mask covers the electrodes of the source and the drain to make the solution contact only with the channel. In addition, the micro-fluid tank was fabricated on the top of the channel to control the flow of the solution. Using the mask and tank, we performed the drop-cast process in the μ m scale to transfer the nicotine molecule onto the channel (Fig. 2a). I measured the I_d - V_g curve of the FET with the nicotine transfer to the channel and found that the threshold voltage shifted to the negative V_g direction (Fig. 2b). This behavior of V_{th} indicates that electrons are transferred from nicotine molecules to the MoS_2 channel^{2, 3}, which was further confirmed by analyzing the Xray photoemission spectroscopy and Raman spectroscopy together with the DFT calculation.

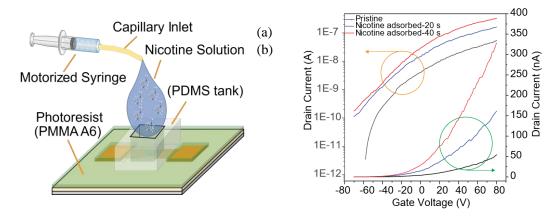


Fig. 2 (a) Illustration of the syringe pump assisted nicotine solution passing into the tank; (b) I_d - V_g current as a function of the back-gate voltage (V_g) before and after the nicotine functionalization.

Chapter 5 OBSERVATION OF THERMALLY REVERSIBLE ISOMERIZATION OF NITRO-SPIROPYRAN ON MOS₂ SURFACE BY MOS₂ FIELD EFFECT TRANSISTOR

I observe the light and thermal induced structural switching of spiropyran (1',3'-Dihydro1',3',3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indole]) molecule through electrical property measurement by MoS₂-FET. UV light was irradiated on spiropyran (SP) to convert its isomer merocyanine $(MC)^4$, shown in Fig. 3. To reverse back to the former structure, I heat the device by external heater. Isomerization process was monitored through the measurement of I_d - V_g of the MoS₂-FET device and quantitative observation was assumed form the threshold voltage determination.

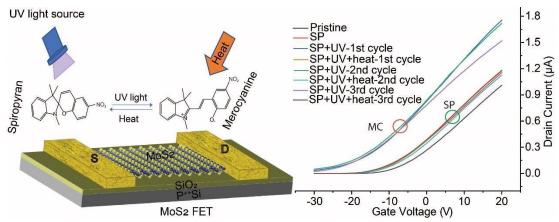


Fig. 3 (a) Illustration of MoS₂-FET and SP/MC conversion upon UV/Heat application. (b) Drain current (I_d) as a function of gate voltage (V_g) for the spiropyran deposited surface after heat treatment.

Chapter 6 SURFACE CHARGE TRANSFER DOPING OF MOS₂ BY MELAMINE INVESTIGATED BY THE BACK GATED MOS₂ FIELD EFFECT TRANSISTORS

I report a method to tailor of the transfer characteristics of multilayer MoS₂-FET by using the melamine molecule through surface charge doping. Melamine solution was made using NMP as a solvent. The electrical properties were measured by Keithley 2634B in open air. The electrical properties of the back gated multilayer MoS₂ FETs were increased after doping at room temperature in open air (shown in Fig. 4a). The charge carrier density of multilayer MoS₂ was increased doubled after melamine doping. The left shift of threshold voltage after doping process revealed that melamine molecule imposes n-doping^{2, 3} to the multilayer MoS₂. After doping process, the trend of downward shifting of E_{2g} and A_{1g} peaks in the Raman spectrum indicates increasing electron concentration for the n-type doping system, shown in Fig. 4b. The illustration of charge transfer is shown in Fig. 4c.

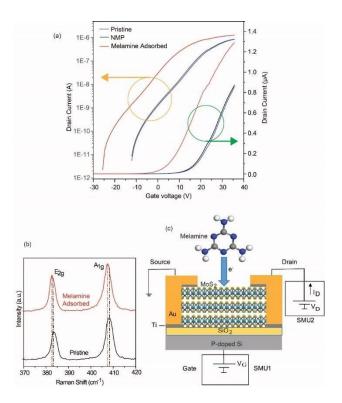


Fig. 4 Transfer characteristics of the multilayer MoS₂ FET before (black), in only NMP (blue) and after surface charge doping (red) at $V_{ds} = 50$ mV, (b) Raman spectra of the multilayer MoS₂ before (black) and after melamine doping process (red), (c) Surface charge transfer between melamine and MoS₂-FET.

Chapter 7 SURFACE CHARGE TRANSFER DOPING OF MULTILAYER MOS₂ BY CAFFEINE

I report that chemical incorporation of mechanically exfoliated multilayer molybdenum disulfide (MoS₂) by caffeine can tailor the electrical properties of the MoS₂-field effect transistors. Device was totally dipped into the caffeine solution for 15 seconds, dried by N₂ gun and measured the electrical properties. Transfer characteristics and Raman spectroscopy study acknowledged that caffeine results n-doping³ in the multilayer MoS₂, shown in Fig. 5. Threshold voltage shifted left side after the doping process and the electrical property increased without any destruction of the device at room temperature in open air. After functionalization of caffeine molecules, the trend of downward peak shifting of E_{2g} and A_{1g} peaks in the Raman spectrum indicates the increase of electron concentration on the MoS₂ surface.

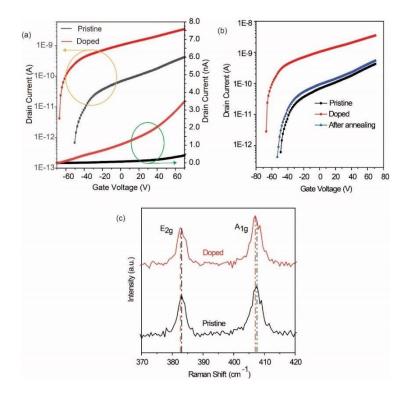


Fig. 5 (a) Transfer characteristics as a function of back gate voltage (V_g) pristine (black), doped by caffeine (red), (b) Transfer characteristics as a function of back gate voltage (V_g) pristine (black), doped by caffeine (red), after annealing (blue), (c) Raman shift with 532 nm laser source at room temperature before and after caffeine doping.

Chapter 8 PRESSURE DEPENDENT P-DOPING AND N-DOPING BEHAVIOR BY O₂ DETECTED BY FEW LAYERS MOS₂-FIELD EFFECT TRANSISTORS

I show the sequential O_2 dosing from E⁻⁵ Pa to 1 atm pressure on few layers MoS₂-FET in an in-*situ* measurement chamber. Fig. 6a shows the illustration of MoS₂-FET device. FET property both in air and UHV has been shown in Fig. 6b. With a very low pressure (e.g., E⁻⁵ Pa, O₂ donates electron to the MoS₂ thus increases the I_d and up to 0.1 Pa, this phenomenon retains, seen in Fig. 6c. After additional adding of O₂ threshold voltage started increasing and I_d decreases, shown in Fig. 6d. The sensitivity of the device featuring minimum detection level of 1×10^{-8} % of O₂ which is very competitive with the recent O₂ sensor papers. The shift of threshold voltage to the positive gate voltage after O₂ dosing indicates that electron is transferred from MoS_2 to O_2 . We observe that certain amount of O_2 can mask the n-type doping behavior and starts p-type doping to the MoS_2 channel, consistent with the previous results^{5, 6}.

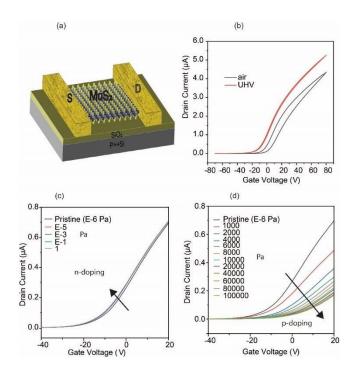


Fig. 6 (a) Illustration of MoS₂-FET; (b) Transfer characteristics in air and UHV; (c) I_d - V_g with different O₂ dosing with low pressure showing n-doping. (d) I_d - V_g with different O₂ dosing showing p-doping.

Chapter 9 *IN-SITU* ADSORPTION BEHAVIOR OF METHYL RED ON MOS₂ AND ITS EFFECT ON THE TRANSFER CHARACTERISTICS OF MONOLAYERED MOS₂FIELD EFFECT TRANSISTORS

I investigate the adsorption behavior of Methyl Red (MR) and its effect on the electrical properties of the MoS₂ field effect transistor (FET) in an *in situ* experimental system in which the molecule deposition and the surface- and electrical-characterization of the MoS₂ FET are executed in a single ultra-high vacuum chamber, shown in our previous report⁷. Illustration of charge transfer is shown in Fig. 7a. The V_{th} shifts towards the negative direction and the initial change with \Box can be expressed with an exponential function of \Box , which can be accounted for with the Langmuir type adsorption of the molecule for the first layer and the charge transfer from the molecule to the substrate, shown in Fig. 7b.

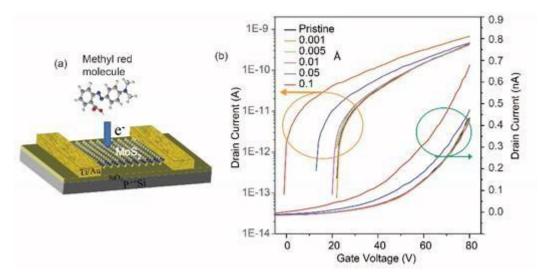


Fig. 7 (a) Illustration of donation of electron form MR to substrate; (b) I_d - V_g plot as a function of the MR coverage.

Chapter 10 GAS ENVIRONMENTAL AND PHOTO IRRADIATION EFFECT ON HYSTERESIS IN THE TRANSFER CHARACTERISTICS OF MOS₂ TRANSISTOR

I report the characteristic behavior of the hysteresis observed in the transfer characteristics of back-gated field-effect transistors with an exfoliated MoS_2 channel in various environment. We find that the hysteresis is strongly enhanced by temperature, environmental gas, or light irradiation⁸⁻¹⁰. Our measurements reveal characteristic behavior of the hysteresis in 1 atm oxygen environment, which I explain as oxygen molecule facilitated charge accepter on the MoS_2 surface, shown in Fig. 8a. The decrease in the current value in the ON state of the device may indicate that oxygen molecules are more effective charge acceptor than nitrogen molecules. I conclude that intrinsic defects in MoS_2 , such as S vacancies, which result in effective adsorbates trapping, play an important role in the hysteresis behavior. Fig. 8b shows the hysteresis in N₂ environment. The hysteresis gap is lower than the O₂ environment is observed. This might be due to the N₂ is less reactive than the O₂.

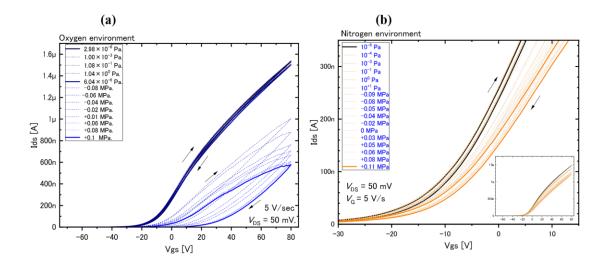


Fig. 8 Environmental effect on hysteresis curve.; (a) Oxygen environment. (b) Nitrogen environment. Full range curve is shown in inset. In both cases, V_{DS} set to 50 mV and V_G sweep 5 V/sec. The sweep directions of V_G are indicated by arrows.

Chapter 11 CONCLUSION REMARKS AND OUTLOOK

 MoS_2 -FET can be a good tool for the chemical sensing. However, my desire is to make biosensor operating in aqueous solution. The limitation is MoS_2 flakes are broken in solution when applying voltages. In our lab, to protect the MoS_2 flake being broken, HfO_2 or TiO_2 layer has been incorporated on the MoS_2 channel so far, but same problem remains. Still need to find the threshold thickness of other dielectric materials on the MoS_2 that helps to survive MoS_2 from being broken.

Chapter 12 BIBLIOGRAPHY

1. Di, C.-a.; Zhang, F.; Zhu, D., Multi-Functional Integration of Organic Field-Effect Transistors (OFETs): Advances and Perspectives. Advanced Materials 2013, 25 (3), 313-330.

2. Ryu, M. Y.; Jang, H. K.; Lee, K. J.; Piao, M. X.; Ko, S. P.; Shin, M.; Huh, J.; Kim, G. T., Triethanolamine doped multilayer MoS2 field effect transistors. Physical Chemistry Chemical Physics 2017, 19 (20), 13133-13139.

3. Kiriya, D.; Tosun, M.; Zhao, P.; Kang, J. S.; Javey, A., Air-stable surface charge transfer doping of MoS(2) by benzyl viologen. J Am Chem Soc 2014, 136 (22), 7853-6.

4. Gobbi, M.; Bonacchi, S.; Lian, J. X.; Vercouter, A.; Bertolazzi, S.; Zyska, B.; Timpel, M.; Tatti, R.; Olivier, Y.; Hecht, S.; Nardi, M. V.; Beljonne, D.; Orgiu, E.; Samori, P., Publisher Correction: Collective molecular switching in hybrid superlattices for light-modulated twodimensional electronics. Nat Commun 2018, 9 (1), 3689.

5. Qi, L.; Wang, Y.; Shen, L.; Wu, Y. H., Chemisorption-induced n-doping of MoS2 by oxygen.

Appl Phys Lett 2016, 108 (6).

6. Tong, Y.; Lin, Z. H.; Thong, J. T. L.; Chan, D. S. H.; Zhu, C. X., MoS2 oxygen sensor with gate voltage stress induced performance enhancement. Appl Phys Lett 2015, 107 (12).

7. Mamun, M. S. A.; Waizumi, H.; Takaoka, T.; Alam, M. I.; Tanaka, Y.; Ando, A.; Wang, Z.; Komeda, T., In situ study of sensor behavior of MoS2 field effect transistor for methyl orange molecule in ultra high vacuum condition. Nanotechnology 2021, 32 (7), 075501.

8. Deb, S.; Bhattacharyya, P.; Chakrabarti, P.; Chakraborti, H.; Das Gupta, K.; Shukla, A.; Dhar, S., Effect of Oxygen Adsorption on Electrical and Thermoelectrical Properties of Monolayer MoS2. Phys Rev Appl 2020, 14 (3).

9. Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R., Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl Phys Lett 2012, 100 (12).

10. Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J.; Grossman, J. C.; Wu, J., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 2013, 13 (6), 2831-6.