粒子形状の異なる ZnO 光触媒の合成と評価

成田唯人1)、西健斗1)、松山達2)、井田旬一2)*

1) 創価大学大学院理工学研究科 〒192-8577 東京都八王子市丹木町 1-236

2) 創価大学理工学部 〒192-8577 東京都八王子市丹木町 1-236

Synthesis and characterization of ZnO photocatalyst with different morphologies

Yuito Narita¹⁾, Kento Nishi¹⁾, Tatsushi Matsuyama²⁾, Junichi Ida^{2)*}

- 2) Graduate School of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
- 3) Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan * Corresponding author: ida@soka.ac.jp

2022年4月29日受付,2022年5月16日受理

Abstract In recent years, pollution by persistent organic pollutants (POPs) is becoming one of the severe environmental issues which cause damage to human health. Currently, although ozone treatment has been employed for POPs removal as an advanced treatment, it has disadvantages of high costs and production of harmful byproducts. Photocatalysts have been attracting attention as one of the innovative POPs removal methods. The photocatalyst is a semiconductor that triggers an oxidation-reduction reaction by light exposure on the particle surface and can achieve mineralization of pollutants. Although TiO₂ is a typical photocatalyst, ZnO has also attracted attention because of its low costs. Many researchers reported synthesis and characterization of various ZnO particles with different particle shapes and morphologies using different synthesis methods. However, comparison of their photocatalytic activity under the same experimental condition is very limited.

Therefore, in this study, we synthesized three different ZnO particles with different particle shapes and morphologies, such as flower-like, multi-shell and rod-like, and compared their particle properties and photocatalytic activities for the same degradation target compound under the same degradation condition. Samples were synthesized by a solvothermal method using $Zn(NO_3)_2 \cdot 6H_2O$ as raw material. The particle shape was controlled by adding appropriate structure-directing agents. The flower-like, multi-shell and rod-like samples were synthesized by adding hexamethylenetetramine, L(-)-proline and ethanolamine, respectively. The photocatalytic activity was evaluated by degrading 2,4-dinitrophenol (DNP) as a model POPs.

Morphologies of the resulting samples were observed by a scanning electron microscope. Based on the SEM observation, it was confirmed that flowerlike, multi-shell and rodlike samples were obtained as expected. The result of X-ray diffraction (XRD) shows that the peaks at 2 $\theta = 31^{\circ}$, 34° , 36° , 48° , 57° , 63° , 68° , and 69° can be attributed to ZnO. This result indicates that ZnO is successfully obtained by all the synthesis methods. The results also showed that the intensity of the strongest diffraction peak of the three samples varies depending on the ZnO samples in the following order: flower-like < multi-shell < rod-like, and the rod-like sample showed a significantly strong peak intensity among the samples (approximately 15 times larger than that of the flowerlike).

On the other hand, the BET specific surface area exhibited a different order: rod-like < multishell < flower-like, and the surface area of the flower-like ZnO was more than 5 times larger than that of the other two samples. These results showed that the strongest peak intensity in XRD measurement and the specific surface area for the three samples are in a trade-off relationship. Finally, photocatalytic activity tests were carried out using 10 ppm DNP under UV light irradiation. The DNP is widely used as an indicator of the photocatalytic activity. The treated water was sampled periodically, and the DNP concentration change as a function of time was determined by measuring the absorption at 357 nm with a UV-vis spectrophotometer. It was found that the DNP degradation fitted the first-order kinetics well for all the samples and the degradation rate was in the following order: rod-like < multi-shell < flower-like. This order is similar to the order for the specific surface area and opposite to that of the strongest peak intensity. The results suggest that the highest photocatalytic activity for DNP degradati on was in the flower-like shape where ZnO contributes a very high specific surface area and not by crystallinity of ZnO.

Keywords: Persistent organic pollutants, Photocatalyst, Wastewater treatment, Zinc Oxide

近年、生活排水や工場排水などに含まれる残留性 有機汚染物質(POPs:Persistent Organic Pollutants) による水質汚染が問題となっている。POPsとは、環境 残留性や生物蓄積性、長距離移動性があり、人の健 康や環境への有害性が懸念される物質のことを指し(梶 原・松神 2021)、ストックホルム条約によって国際的に 規制されていることから、適切な処理が求められる。

現在、排水中の POPs の処理方法として、オゾン酸 化法がよく用いられている。オゾンは強力な酸化剤として はたらくことで、着色や異臭の原因となる有機化合物や 病原菌を酸化分解することができる(海賀 2008)。そ の一方、オゾン処理による消毒副生成物の発生が問題 となっている。消毒副生成物とは、オゾンが水中の有 機物と反応することにより非意図的に生成する物質のこ とである(細田・勢川 2021)。代表的な消毒副生成 物としてカルボニル化合物、カルボン酸が知られており、 中でもホルムアルデヒドはわが国で規制の対象となって いる。また、原水に臭化物イオンが含まれる場合には臭 素酸イオンが生成し、非常に制御が困難な副生成物と されている(伊藤・越後 2008)。

そこで近年、太陽光を利用でき、有害な副生成物を 生じないクリーンな POPs 処理技術の一つとして光触媒 が注目されている。光触媒とは、光を吸収することで酸 化還元反応を引き起こす半導体材料である。1972 年 に本多・藤嶋効果が発見されて以降、水分解や CO₂ 還元といった人工光合成の実現を目指し、光触媒に関 する研究が活発化した。本多・藤嶋効果とは、酸化チ タン電極と白金電極を電解質溶液に浸し、酸化チタン 電極に光を照射すると水が分解され、酸化チタン電極 から酸素が、白金電極から水素が発生する現象である (Fujishima & Honda 1972)。さらに、酸化チタンを用い た不均一系光触媒反応による酢酸の分解(Kraeutler & Bard 1978)やトリクロロエチレンの分解(Pruden & Ollis 1983)が報告され、有機物分解への応用が見 出された。現在では、メチレンブルーのような合成染料 (Muhammad et al. 2021) や 2,4-ジニトロフェノールの ような POPs(Bashir et al. 2019)など、構造が複雑な 有機化合物を分解対象として研究が行われており、排 水処理の実用化に向けた期待が高まっている。

光触媒による水中の有機物分解反応は以下のように 進行する (Fig. 1)。まず、光触媒がバンドギャップエネ ルギーに相当する光を吸収することで励起電子 e、およ び正孔と呼ばれる正電荷 h⁺ が生じる。励起電子は水 中の溶存酸素を還元し、スーパーオキシドアニオンラジカ ル・O² を生成する。一方、正孔は水と反応して水酸ラ ジカルを生じる。これらのラジカルが強力な酸化剤として はたらき、有機化合物を酸化分解する (大谷 2005)。

近年、酸化チタンに替わる低コストな光触媒として、 酸化亜鉛(ZnO)の研究が進んでいる。ZnO光触媒 の合成は、粒子径を制御しやすく、結晶化度の高い粒 子を容易に得られることから、ソルボサーマル法がよく用 いられている。ソルボサーマル法とは、前駆体溶液をス テンレス製オートクレーブに入れて加熱することで、高温 高圧下で結晶を形成する方法である。また、溶媒が水 の場合は特に水熱合成法と呼ばれる。これまで、構造 制御剤を用いたソルボサーマル合成によって、さまざまな 粒子形状のZnO光触媒が合成されている。Quらは、 ヘキサメチレンテトラミンを添加することでナノフラワー型 ZnOを合成し、抗生物質であるシプロフロキサシンの分 解に用いた(Qu et al. 2020)。Chenらは、アミノ酸の 一種であるN-アセチル-d-プロリンを添加することでマ ルチシェル型ZnOを合成し、一酸化窒素の酸化に用 いた(Chen et al. 2018)。Wangらは、アミノエタノール を添加することでロッド型ZnOを合成し、合成染料であ るメチレンブルーの分解に用いた(Wang et al. 2011)。 しかし、これら複数の研究の間では、反応に用いる光 源やZnOの濃度、分解対象物は統一されておらず、

粒子形状による光触媒活性の違いを単純に議論する ことはできない。そこで本研究では、粒子形状の異なる 3種のZnO(ナノフラワー型、マルチシェル型、ロッド型) をそれぞれソルボサーマル合成し、2,4-ジニトロフェノー ルを分解対象物として統一された実験条件でそれらの 光触媒活性を比較検討することを目的とした。

Figure 1. Mechanism of organic compounds degradation by photocatalyst.

2. 材料と方法

2.1. 材料

硝酸亜鉛六水和物(和光特級)、水酸化ナトリウム(試 薬特級)、ヘキサメチレンテトラミン(試薬特級)、L(-) - プロリン(試薬特級)は富士フイルム和光純薬株式会 社から購入したものを使用した。エタノールアミン(99.0 %)は東京化成工業株式会社から購入した。メタノール (試薬特級)、2,4-ジニトロフェノール(ナカライ規格特 級)はナカライテスク株式会社から購入したものを使用し た。いずれの試薬も精製を行うことなくそのまま使用した。

2.2. 粒子形状の異なる ZnO の合成

2.2.1. ナノフラワー型 ZnO の合成

ナノフラワー型 ZnO は、Quらの報告を参考に合成し た(Qu et al. 2020)。まず、硝酸亜鉛六水和物 0.335 gとヘキサメチレンテトラミン 0.158 gを超純水 37.5 mL に溶解した。その後、溶液を 550 rpm で磁気撹拌しな がら0.6 M水酸化ナトリウム水溶液を18.8 mL滴下した。 そのまま 10 分間攪拌を続けた後、懸濁液を 100 mL オートクレーブ(TAF-SR100、耐圧硝子工業)に移し、 100 ℃で 13 時間、水熱合成した。加熱終了後、室温 まで放冷し、得られた懸濁液を 3000 rpm で 30 分間遠 心分離することにより粒子を回収した。回収試料を超純 水で 2 回洗浄後、80 ℃で 12 時間乾燥させ、ナノフラワー 型 ZnO を得た。

2.2.2. マルチシェル型 ZnO の合成

マルチシェル型 ZnO は Chen らの報告を参考に合成 した(Chen et al. 2018)。まず、硝酸亜鉛六水和物 0.258 gとL (-) - プロリン 0.196 gをメタノール 40.0 mL に溶 解し、550 rpm で 20 分間磁気攪拌した。溶液を 100 mL オートクレーブに移し、150 ℃で 48 時間、ソルボサー マル合成した。得られた懸濁液を 3000 rpm で 30 分間 遠心分離することにより粒子を回収し、超純水で 2 回洗 浄した。得られた粒子を 80 ℃で 12 時間乾燥した後、マッ フル炉 (KDF S7、デンケン)を用いて空気中で昇温速 度 1 ℃ min⁻¹、最高温度 600 ℃、保持時間 4 時間で 焼成し、マルチシェル型 ZnO を得た。

2.2.3. ロッド型 ZnO の合成

ロッド型 ZnO は Wang らの報告を参考に合成した (Wang et al. 2011)。まず、硝酸亜鉛六水和物 0.595 gとエタノールアミン 10.0 mL を超純水 40.0 mL に溶解 した。その後、溶液を 550 rpm で磁気撹拌しながら 0.8 M 水酸化ナトリウム水溶液 30.0 mL を滴下した。溶液 を 100 mL オートクレーブに移し、140 ℃で 12 時間、水 熱合成した。得られた懸濁液を 3000 rpm で 30 分間遠 心分離することにより粒子を回収し、その後、超純水で 2 回洗浄した。最後に試料を 80 ℃で 12 時間乾燥させ、 ロッド型 ZnO を得た。

2.3. 特性評価

X 線回折装置(XRD、D8 Advance、Bruker)を用 いて試料の結晶構造解析を行った。40 kV、40 mA で CuK a線(0.154021 nm)を発生させ、2 θ = 20 ~ 80 deg.の測定範囲、0.05 deg.のステップ幅、0.5 deg. s⁻¹ の走査速度で回折線を検出した。

走査型電子顕微鏡(FE-SEM、JSM-7500M、JEOL) を用い、試料の表面観察を行った。試料表面に加速電 圧 5 ~ 15 kV、エミッション電流 10 µA で電子線を照射し、 二次電子を検出した。

比表面積・細孔分布測定装置(ASAP 2020、島津 製作所)を用いて試料の比表面積を測定した。セル内 の試料を 200 ℃で 2 時間加熱することで脱ガス処理し た後、-195.8 ℃における窒素の吸着等温線を測定した。 その後、Brunauer-Emmett-Teller(BET)多点法によ る解析により比表面積 S (m² g⁻¹)を決定した。また、式 (1)を用いて BET 径 D (μ m)を算出した。

$$D = \frac{6}{\rho S} \tag{1}$$

 ρ は試料の密度 (g cm⁻³) を示す。

Figure 2. Reactor diagram for evaluation of photocatalytic activity.

2.4. 光触媒活性評価

2,4-ジニトロフェノール (DNP) を POPs のモデル物質 として用い、Fig. 2 に示した実験装置で分解実験を行っ た。DNP は黒色染料の原料や重合防止剤として化学 工業分野で広く用いられている。また、DNP 溶液は黄色 を呈し、濃度変化を分光学的手法で測定可能なことから、 光触媒研究における分解対象物としてよく用いられてい る。分解経路の解析も行われており、光触媒による DNP 分解の安全性が確かめられている (Aslam et al. 2014)。

光源には波長域 300 ~ 440 nm、6 W のブラックライト 蛍光ランプ (FL6BLB/N、東芝) を9 本用いた。まず、 10 ppm の DNP 溶液 50 mL に試料 0.06 gを超音波分 散させた。その後、暗所で 30 分間攪拌することで試料 表面と DNP との吸着平衡とした後、光照射を開始した。 一定時間ごとに試料をサンプリングし、紫外可視分光光 度計 (V-650、JASCO)を用いて波長 357 nm における 吸光度を測定した。

分解反応を一次反応と仮定し、式(2)を用いて反応 速度定数 *k* (min⁻¹)を決定した。

$$k = -\ln\left(\frac{c_{\rm t}}{c_0}\right) \tag{2}$$

 c_0 は初濃度 (ppm)、 c_t は照射時間 tにおける濃度 (ppm)を示す。

3. 結果

3.1. 結晶構造解析

ソルボサーマル合成により得られた三種類の試料のX線回折パターンをFig.3に示した。全ての試料でZnOのリファレンスパターンと一致し、不純物を含むことなくZnOが合成されていた。

ナノフラワー型、マルチシェル型、ロッド型 ZnO の 結晶化度はそれぞれ 71.1%、77.1%、90.6%、また、 結晶子径はそれぞれ 30.2 nm、41.7 nm、79.4 nm であった。最強線ピークの結晶面は、ナノフラワー型、 マルチシェル型 ZnO が(101)面、ロッド型 ZnO が (100)面であった(Table 1)。また、(100)面と(101) 面のピーク強度比 R(100) / (101)はナノフラワー 型が 0.74、マルチシェル型が 0.59、ロッド型は 11.45 であった。

3.2. 表面観察

ナノフラワー型 ZnO は、シート状の一次粒子が集まる ことで粒子径約 1 µm 程度の花のような二次粒子を形成

Figure 3. X-ray diffraction pattern of ZnO samples with difference morphologies.

Samples	Crystallinity (%)	Crystallite diameter (nm)	Crystal face of strongest peak	R(100)/(101)
Flower-like	71.1	30.2	(101)	0.74
Multi-shell	77.1	41.7	(101)	0.59
Rod-like	90.6	79.4	(100)	11.45

Table 1. Crystallinity, crystallite diameter and crystal face of the strongest peak for ZnO samples with difference morphologies.

していた (Fig. 4a)。マルチシェル型 ZnO は、100 nm 程度の球状一次粒子が集まって直径約1~2µmの 球状二次粒子を形成していた。球状二次粒子は一部、 最外殻が欠けている粒子が観察され、少なくとも2層の シェルを形成していることが確かめられた(Fig.4b)。ロッ ド型 ZnOは、15 µm 程度の棒状粒子が形成されてい た(Fig. 4c)。先端は尖っており、側面は複数の平面 から成っている様子が観察された。以上より、全ての試 料で調製法を参考にした論文と同様の形態が観察でき、 目的の形状の ZnO 粒子が合成できたことが確認された。

3.3. 試料の比表面積測定

ナノフラワー型、マルチシェル型、ロッド型 ZnO の比 表面積はそれぞれ 7.57 m² g⁻¹、1.31 m² g⁻¹、0.89 m² g^{-1} であった。また、BET 径はそれぞれ 0.14 μ m、0.81 μm、1.21 μm であった。

光照射下で行なった 2,4- ジニトロフェノール (DNP) 分 解実験の結果をFig. 5aに示した。ナノフラワー型 ZnO を用いた分解実験では、反応時間 60 分で DNP をほ ぼ完全に分解した。一方、マルチシェル型およびロッド 型 ZnO を用いた実験での DNP 分解率は、60 分後で それぞれ約78%、60%であった。

続いて、DNPの濃度変化の片対数プロットを Fig. 5b に示した。全ての試料において良好な直線関係が得ら れたことから、ZnO 光触媒による DNP 分解が一次反 応であることが明らかとなった。また、光触媒活性はし ばしば反応速度定数で議論される。ナノフラワー型、マ ルチシェル型、ロッド型 ZnO の反応速度定数はそれぞ れ 0.0624 min⁻¹、 0.0259 min⁻¹、 0.0151 min⁻¹ であった $(Table 2)_{\circ}$

4. 考察

3.4. 光触媒活性評価

一般に、光触媒活性は粒子の比表面積と結晶化度 調製した粒子形状の異なる各 ZnO 試料を用い、UV によって左右される。なぜなら、比表面積の増大に伴い吸

Figure 4. SEM images of (a) flower-like, (b) multi-shell and (c) rod-like ZnO particles.

収光束が増えること、また、分解対象物の吸着サ小が 増えることで反応速度が向上するためである。一方で、 結晶化度は量子収率に影響を与える。ここでの量子収 率とは、光触媒粒子が吸収した光子のうち、反応に用 いられた光子の割合を意味する。結晶化度が高い粒子 は励起電子と正孔の再結合中心が少ないため、量子 収率が向上する。したがって、一般的には比表面積と 結晶化度が高い粒子ほど光触媒活性が大きくなると言 われているが、用いる光触媒の材料や合成法、分解 対象物質などによりどちらがより光触媒活性に影響する

Figure 6. Relationship between crystallinity and BET specific surface area for each sample.

かは異なってくる。

Fig. 6 に示したように、本研究で合成した 3 つの試 料の間では、粒子の結晶化度と比表面積はトレードオ フの関係にあることが明らかとなった。この結果を光 触媒活性の関係を比較すると、光触媒活性はナノフラ ワー型、マルチシェル型、ロッド型の順に高く、比表面 積の順と一致し、結晶化度の傾向とは逆の傾向を示し ていることがわかる。このことから、ZnO 光触媒におけ る活性への寄与は、本実験の範囲内では結晶化度よ りも比表面積の方が大きいと考えられる。ここで、ZnO の光触媒活性は比表面積が 50 m²g⁻¹程度を超える と頭打ちになることが報告されている(橋本ら 2013)。 本研究で合成した 3 つの試料の比表面積はいずれも 50 m²g⁻¹を大きく下回るため、比表面積による寄与が 大きいと考えられる。

また粒子径・結晶子径比から、1 つの ZnO 粒子を構成する単結晶の量を評価することができる。1 つの ZnO 粒子を構成する単結晶の量の増加は、結晶粒界の増 加を意味する。結晶粒界は、励起電子と正孔の再結合 中心として作用する格子欠陥を生じる(橋本ら 2013) ため、光触媒活性の低下を招くことが知られている。ナ ノフラワー型、マルチシェル型、ロッド型 ZnO の粒子径・ 結晶子径比はそれぞれ 4.7、19.5、15.2 であった。ナ

Sample	Light source	Reaction rate constant $(10^{-3} min^{-1})$	Reference
Flower-like ZnO	UV (6W Black light blue fluorescent lamp \times 9)	62.4	This study
Multi-shell ZnO	UV (6W Black light blue fluorescent lamp \times 9)	25.9	This study
Rod-like ZnO	UV (6W Black light blue fluorescent lamp \times 9)	15.1	This study
Commercial ZnO ¹⁾	UV (500W tungsten halogen lamp)	2.12	Vora et al., 2009
Y ₂ O ₃ -ZnO	UV (500W xenon lamp)	16.4	Su et al., 2014
Ag/rGO ²⁾	UV (11W mercury lamp \times 6)	45	Alturiqi et al., 2021
MWCNTs/TiO ₂ ³⁾	Solar	62.1	Wang et al., 2009
SiO ₂ /Fe ₃ O ₄	Visible light (50W LED lamp)	8.19	Al-Arjan et al., 2022

Table 2. Comparison of DNP degradation rate for various photocatalysts.

1) Purchased from Merck.

2) rGO: Reduced graphene oxide.

3) MWCNTs: Multi-walled carbon nanotubes.

ノフラワー型 ZnO の値が他の試料に比べて圧倒的に小 さいことから、比表面積に加え、結晶粒界の少なさもナ ノフラワー型の高い光触媒活性の要因の一つであること が示唆された。

さらに ZnO は結晶面によって価電子帯と伝導帯の位 置が異なることから、二つの異なる結晶面の界面でヘテ ロ接合が生じ、再結合が抑制されると言われている(Liu et al. 2019)。ロッド型 ZnO は(100)面と(101)面のピー ク強度比である R(100)/(101)が非常に大きく、(100) 面だけが特異的に成長していると言える。すなわち、ロッ ド型 ZnO では異なる結晶面の界面が少なく、電荷分 離性能が他の試料より劣ることが示唆され、そのことも 光触媒活性が低い要因の一つであると考えられた。

種々の光触媒による DNP 分解反応の速度定数を

Table 2 に示した。本研究のナノフラワー型 ZnO は、 不定形粒子である市販の ZnO(Vora et al. 2009)と 比較して、低出力の光源を用いながら 30 倍近く高い 光触媒活性を有することが分かった。また ZnO 以外 でも、DNP 分解における電荷分離性能の向上のため に、二種の金属酸化物を複合化した Y_2O_3 -ZnO(Su et al. 2014)や、金属ドープ光触媒の一種である Ag/ rGO(Alturiqi et al. 2021)が開発されている。さらに、 高比表面積を得るため、TiO₂ に多層カーボンナノチュー ブ(MWCNTs: Multi-walled carbon nanotubes)を 複 合させた光触媒(Wang et al. 2009)や、メソポーラス シリカを担体として利用した SiO₂/Fe₃O₄(Al-Arjan et al. 2022)が開発され、DNP 分解に用いられているが、本 研究のナノフラワー型 ZnO はいずれの光触媒よりも高い 活性を示した。

以上より、ナノフラワー型 ZnO は高比表面積、かつ 電荷分離性能に優れるという特徴を持ち、高い光触媒 活性を有することが分かった。さらに、3 つの試料の中 で最も低温で合成できること、調製時に有機溶媒が不 要であることから、グリーンケミストリーの観点からも優れ た材料であると言える。また、光触媒の粒子形状は、 結晶化度や比表面積などの粒子特性を左右する大きな 要因の一つであり、光触媒開発における粒子形状制御 の重要性が示された。

5. 結論

本研究では、3種の構造制御剤を用いたソルボサー マル合成により、ナノフラワー型、マルチシェル型、ロッ ド型のZnO光触媒を合成し、粒子特性および光触媒 活性を比較した。得られた粒子の特性評価の結果、 異なる構造制御剤を用いることで、粒子形状とそれに 大きく影響される BET 比表面積、および結晶化度など、 性状の異なる種々の ZnO を調製することできた。結晶 化度はロッド型、マルチシェル型、ナノフラワー型の順 に大きく、一方で、BET 比表面積はナノフラワー型、 マルチシェル型、ロッド型の順に大きかった。この結果 より、本研究で調製した3種のZnOは、結晶化度と BET 比表面積はトレードオフの関係にあることが示され た。また XRD の測定結果から、ロッド型のみ、(100) 面と(101) 面のピーク強度比であるR(100)/(101) が非常に大きく、(100) 面だけが特異的に成長してい ることがわかった。

得られた各種形状の ZnO を用いて DNP 分解により 光触媒活性を評価した結果、活性はナノフラワー型、 マルチシェル型、ロッド型の順に大きく、BET 比表面 積の傾向と一致した。また、ロッド型は結晶面の強度 が(100)面に偏っていたことも活性が低い要因と考え られた。以上の結果より、ZnO を用いた DNP 分解反 応においては、ナノフラワー型形状のものが最も適して いることが示された。ただ一般に、比表面積の大きい 粒子は粒子径が小さいことから、水処理後に固液分離で光触媒粒子を回収・再利用することが困難となる。 そのため、高比表面積を有しながら、回収および再利 用可能な光触媒を開発することが今後の課題となる。

引用文献

- Al-Arjan WS, Al-Saeed S, Nazir S, Da'na E (2022) Synthesis of porous chlorophyll coated SiO2/Fe3O4 nanocomposites for the photocatalytic degradation of organic pollutants. React Kinet Mech Catal 135: 555–570.
- Alturiqi AS, Al-Farraj ES, Anazy MM, Ammar RA (2021) Fabrication and characterization of reduced graphene oxide with silver nanoparticles and its utilities for enhancing photodegradation of 2,4-dinitrophenol compound. Appl Nanosci: doi. org/10.1007/s13204-021-02017-w.
- Aslam M, Ismail IMI, Almeelbi T, Salah N, Chandrasekaran S, Hameed A (2014) Enhanced photocatalytic activity of V2O5-ZnO composites for the mineralization of nitrophenols. Chemosphere 117: 115–123.
- Bashir H, Yi X, yuan J, Yin K, Luo S (2019) Highly ordered TiO2 nanotube arrays embedded with g-C3N4 nanorods for enhanced photocatalytic activity. J Photochem Photobiol, A 382:111930.
- Chen X, Zhang H, Zhang D, Miao Y, Li G (2018) Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation. Appl Surf Sci 435: 468–475.
- Fujishima A, Honda K (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238: 37–38.
- 橋本恭邦・坂下 優・高津淑人・日高重助 (2013) 粒 子特性の制御が酸化亜鉛の光触媒活性に及ぼす影 響. 粉体工学会誌 50: 19–27.
- 細田 耕・勢川利治 (2021) 京都市の下水処理放流水 の消毒副生成物特性.水環境学会誌 44:103–114.
- 伊藤禎彦・越後信哉 (2008) 水の消毒副生成物. 技報 堂出版,東京, 45-48 pp.
- 海賀信好 (2008) オゾンと水処理. 技報堂出版, 東京, 17 pp.

- 梶原夏子·松神秀徳 (2021) 新規 / 候補 POPs (PCNs, HCBD, HBCDD, PFAS) 含有廃棄物処理の現状と 今後の課題.廃棄物資源循環学会誌 32: 8–27.
- Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic synthesis of methane from acetic acid
 new Kolbe reaction pathway. J Am Chem Soc 100: 2239–2240.
- Liu Y, Huang D, Liu H, Li T, Wang J (2019) ZnO tetrakaidecahedrons with coexposed {001}, {101}, and {100} facets: shape-selective synthesis and enhancing photocatalytic performance. Cryst Growth Des 19: 2758–2764.
- Muhammad ID, Rida K, Jawayria N, Zaib H (2021) Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies- a critical review. J Clean Prod 298: 126567.
- 大谷文章 (2005) 光触媒標準研究法.東京図書,東 京,46-50 pp.
- Pruden AL, Ollis DF (1983) Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water. J Catal 82: 404–417.
- Qu Y, Xu X, Huang R, Qi W, Su R, He Z (2020)

Enhanced photocatalytic degradation of antibiotics in water over functionalized N,S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight irradiation. Chem Eng J 382: 123016.

- Su T, Qin Z, Ji H, Jiang Y (2014) Preparation, characterization, and activity of Y2O3-ZnO complex oxides for the photodegradation of 2,4-dinitrophenol. Int J Photoenergy: 794057.
- Vora JJ, Chauhan SK, Parmar KC, Vasava SB, Sharma S, Bhutadiya LS (2009) Kinetic study of application of ZnO as a photocatalyst in heterogeneous medium. J Chem 6: 531–536.
- Wang H, Wang HL, Jiang WF, Li ZQ (2009) Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res 43: 204–210.
- Wang X, Zhang Q, Wan Q, Dai G, Zhou C, Zou B (2011) Controllable ZnO architectures by ethanolamineassisted hydrothermal reaction for enhanced photocatalytic activity. J Phys Chem C 115: 2769– 2775.