

Development of a Smart
Ordering System

Georgios Michailidis

UNIVERSITY CENTER OF INTERNATIONAL PROGRAMMES OF STUDIES
SCHOOL OF SCIENCE AND TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Mobile and Web Computing

MARCH 2021
Thessaloniki – Greece

Student Name: Georgios Michailidis

SID: 3306190002
Supervisor: Prof. Leonidas Akritidis

I hereby declare that the work submitted is mine and that where I have made use of
another’s work, I have attributed the source(s) according to the Regulations set in the
Student’s Handbook.

March 2021
Thessaloniki - Greece

Abstract

This dissertation was written as part of the MSc in Mobile & Web Computing at the

International Hellenic University.

The commercial sector is undoubtedly one of the greatest in the economies of all

countries and so retailers strive to increase their profits daily by attracting more

customers and more sales. Their main problem is when they get out-of-stock on

products that attract these customers, ending up losing them and thus losing their

profits. That being said, one can clearly understand that the re-supply process of a

retailer plays a crucial role to the wellbeing of the business and sticking to traditional

ways, away from information technology, leads to an even worse situation. IoT

(Internet of Things) devices and technologies should be used to transform the

aforementioned process into a simple and easy task and minimize the stock-out

problem that retailers have to deal with.

In this dissertation, an IoT system is proposed to help retailers to confront this problem

and limit its consequences as much as possible. The system has two parts, the vendor

system which, as the name implies, is used by vendors who provide supplies and the

retailer system that is used by the retailers. These two IoT systems communicate with

each other through the internet and provide a retailer with the ability to re-supply

from all its vendors at once without having to organize which products should be send

to which vendor through his order. Furthermore, the option to place again a previous

order is given, allowing the retailer to re-supply the next time even faster, since they

tend to order the same supplies.

Keywords: smart, ordering system, iot, vendor, retailer

Georgios Michailidis
13/03/2021

 -i-

Contents

ABSTRACT ..III

CONTENTS ..I

1. INTRODUCTION .. 1

2. RELATED WORK ... 2

3. PROBLEM DEFINITION.. 5

4. SOLUTION TO THE PROBLEM ... 7

4.1 VENDOR SYSTEM .. 10

4.2 RETAILER SYSTEM ... 19

4.3 CONNECTION OF THE TWO SYSTEMS .. 30

5. SYSTEM EVALUATION .. 30

6. CONCLUSIONS .. 33

BIBLIOGRAPHY ... 34

APPENDIX A – VENDOR SYSTEM SOURCE CODE .. 1

MIDDLEWARE CLASSES ... 1

Middleware - Authenticate .. 1

Middleware - ApiAuthenticate ... 2

CONTROLLER CLASSES ... 2

AuthController ... 3

HomeController.. 4

ProductsController ... 5

CustomersController .. 8

OrdersController .. 11

UsersController .. 15

ApiController .. 18

MODEL CLASSES.. 21

Customers Model ... 22

Products Model .. 22

 -ii-

Orders Model ... 23

OrderItem Model ... 24

APPENDIX B – RETAILER SYSTEM SOURCE CODE ... 25

ACTIVITIES ... 25

Main Activity .. 25

Catalog Activity .. 26

Cart Activity ... 28

Vendors Activity ... 30

Orders Activity ... 31

OrderDetail Activity.. 31

ASYNCTASK CLASSES .. 33

ProductFetchTask... 33

PlaceOrderTask .. 35

OTHER CLASSES .. 37

EndlessRecyclerViewScrollListener.. 37

VendorCoordinator .. 39

Model Class.. 41

 -1-

1. Introduction

Today, the commercial sector is one of the greatest and most important one in the

economy of a country. The main goal of the businessmen in this sector, as well as of

almost every human being, is to maximize their profit in their everyday lives. To

achieve this goal, a business has to make sales in a constant or increasing rate, over

time. A business has to keep attracting new customers and motive existing ones to

procced to new purchases, in order for sales to be made. One can perceive that it is

crucial for a retail store to have an adequate stock of products and in case that some

products are out of stock, they must be replenished as quickly as possible. If that

requirement cannot be met, customers will become dissatisfied and will reduce their

purchases or, in the worst-case scenario, switch to competitor retailers.

It has been observed, that up to this day, many retailers still use conventional

methodologies to operate in their business process. They keep track of their stock,

literally on paper and resupply through phone calls or emails, contacting one by one

their partner vendors. By sticking to these traditional ways of operation, they delay

their re-stock process and dissatisfy existing or potential customers, leading them to

switch to competitors and thus, losing profits. Consequently, it is wise to incorporate

the ever-advancing IoT technologies and devices in their business process. IoT (or

Internet of Things), refers to any kind of entity, devices, objects or even people that

communicate through any kind of network, internet or local network, and exchange

information and possibly do some processing on that information (K. K. Patel & S. M.

Patel, 2016).

The goal of this dissertation is the development of a smart ordering system based on

IoT technologies that will help to minimize the problem that retailers have to face.

Similar systems have been developed to tackle this problem that deal with stock

monitoring with the use of IoT sensors. There are also systems that provide a complete

business-to-business and even business-to-customer electronic shopping solution, like

PrestaShop. Other than that, it is crucial to deeply understand the main problem of the

retailers and why it should be dealt swiftly and efficiently. More details are provided in

the next chapters of this dissertation. Nevertheless, the most important part is the

proposed system itself and how it helps with the problem. The system, which is named

 -2-

Ventail, consists of two sub-systems, one web application for vendors and one mobile

application for the retailers. These two applications can communicate with each other

and provide an efficient way of resupplying the retailers. Finally, the evaluation of the

entirety of the system is crucial as well and through tests and experiments, it was

concluded that it can achieve its goal.

2. Related Work

During this research, no scientific article about ordering systems between retailers and

their vendors could be found. On the contrary, only articles regarding local shelf stock

management systems or web applications that allow ordering between end customers

and retailers through their ecommerce websites were evident and thoroughly

discussed in the academic community. Nonetheless, the latter two cases are fairly

similar in many aspects with an ordering system between retailers and vendors. They

portray exactly the same processes when browsing a product catalogue, adding

products to a shopping cart and finally placing an order when it comes to buying those

products. Such ordering systems allow, on one hand, customers to order their desired

products and, on the other hand, retailers to manage their product catalogue and

incoming orders. Also, IoT systems that use sensors and artificial intelligence software

for warehouse management seem to be quite promising. The problem with these

systems is that normally, technology based on sensors or smart software tends to be

very costly and most retailers may not afford them.

Additionally, these systems manage to solve the stock out problem only in a local level.

In other words, the platform cannot inform the retailer about the exhaustion of a

product, unless this product already exists in the supplying warehouse. But in the case

that there are no products available either in the store or in the warehouse

whatsoever, the already existing systems do not seem to be of any use at all.

Nonetheless, it is useful to study such systems and compare them with the proposed

system.

Before diving into the IoT systems, it would be wise to explain what IoT stands for. It is

an abbreviation of the phrase “Internet of Things” and, as Madakam, S., Ramaswamy,

 -3-

R., and Tripathi, S. (2015) mention, it refers to everything that can connect to a

network, from humans to devices that can make some calculations or execute

processes and possibly exchange data with other such devices over the network. IoT

devices vary from sensors to smartphones, personal computers and laptops and they

can be interconnected either through the internet or any local network. They normally

produce some data and send them over the network to another IoT device to process

them or require some data to function.

Tejesh, B. S. S, and Neeraja, S. (2018) developed a system that helps retailers manage

their stock located in their warehouse, with the use of IoT devices. More specifically,

their system makes use of RFID tags, small pieces of plastic that emit constantly low

frequency radio-waves. Those tags are used to track the products in the warehouse, so

each one of them is placed on a product. Additional information about the product is

written in those tags in a digital form. The RFID tags constantly emit their data over

radio-waves and some receivers collect them, extract the data and send them to the

main application of the warehouse management. Through the application, the retailer

is able to list all the products in the warehouse and their remaining quantities, at any

moment and in real-time. The system provides valuable information about stock

management, but it does not allow the retailer to place orders and refill the

warehouse. Instead, the retailer has to manually write down all the required products

and also manually proceed to ordering all of them from his partner vendors. Thus, the

stock out problem is not alleviated in a great level with such a solution.

On the other hand, there are web applications that provide a more user-friendly and

efficient way of placing orders. One such system is PrestaShop, an e-commerce

Content Management System (CMS) that allows developers to design, build and setup

an e-commerce website or e-shop for a retailer. PrestaShop consists of two sub-

systems, the front-office and the back-office. The front-office part of PrestaShop is the

e-shop website itself. There the customers can browse through the product catalogue,

search for products or apply filters to match their needs, add products to their

shopping cart and finally place an order. Through the front-office a customer has also

the option to track his orders, so as to find which progress stage they are at, by

checking their status. The back-office sub-system, on the other hand, is the

administration and management web application of the e-shop that concerns only the

 -4-

retailer. Using this application, the retailer can manage the product catalogue by

adding, updating or deleting products. The incoming orders may also be managed by

viewing their details and changing their progress status. This includes a customer

management tool for checking their information with the aim of delivering the correct

products to the appropriate person. The architecture of this system follows a

centralized approach, since both sub-systems belong to the same web application,

running in the same server and all stored data can be found in one place.

There are many similarities and a couple of differences between the proposed system

and PrestaShop. More specifically, the former includes two sub-systems, the retailer

mobile application and the vendor web application. The retailer system resembles the

front-office, where the retailer plays the role of the customer of a vendor. In this

context, the retailer-customer:

 browses the product catalog offered by the vendor,

 searches and filters products,

 selects the desired products and adds them to a shopping cart,

 submits orders to the vendor via a standard ordering interface,

 monitors the status and/or tracks the submitted orders.

Similarly, the vendor system represents the PrestaShop back-office, where a vendor:

 lists and manages the catalogue of the offered products,

 manages the customers (who are all retailers),

 processes the incoming orders,

 updates the order statuses to inform the customers in the context of a

convenient after-sales service.

Beyond the aforementioned similarities, there is a wide variety of elements that

discriminate the proposed system from PrestaShop. The most important is that, in

PrestaShop customers can register and create accounts themselves in the e-shop,

whilst in the proposed system a vendor has to register each of their retailers,

generating an API key and sharing it with each one of them. From the viewpoint of the

retailer, all vendors must be registered in the application; this is achieved by obtaining

one API key from each vendor. Another difference is that in a PrestaShop website,

 -5-

multiple customers order from one and only one retailer, while in Ventail, multiple

retailers may place orders to vendors at once. A third difference is that PrestaShop

uses a centralized architecture, in contrast to the decentralized design of this

application. This offers the advantage of efficiently working with these many-to-many

relationships between retailers and vendors.

3. Problem Definition

It is widely known that a great deal of small and medium retailers do not use any kind

of Information Technology or automation solutions in their business operation. Even

today they stick to traditional, old-fashioned and inefficient practices. The most

important part of their operation deals with stock management, since having available

products to sell at any time, is what brings profit to a retailer. According to these

traditional practices, retailers take inventory by browsing through every shelf in their

warehouse and counting all of their products to finally write down on paper the

amount of the available ones. This process is definitely time consuming and prone to

errors since everything is done by the human hand. Another traditional stock

management practice that constitutes an issue for improvement, is the way retailers

order their supplies. In order to restock their warehouses, they have to go through

their stock list to find all the products that are partially, or fully out-of-stock and

possible create a new list with the products and the amounts needed for each vendor.

That is because each vendor that a retailer works with, offers specific products, so the

retailer has to create multiple lists if there are any needed products from different

vendors. The final step is to either send each order list to the respective vendor via

email or call via telephone each vendor and place the order with the desired items

orally.

Sticking to such practices, those small and medium retailers end up adding a lot of

delay to their restock process. It takes a lot of time to place just one order through a

telephone call, let alone orders to multiple vendors. Adding this wasted time to the

time the vendor needs to deliver the products to the retailer, it leads to a huge amount

of time until the retailer will be able to sell those products again. In other words, the

retailer faces the risk of ending up in a stock out state.

 -6-

Nowadays, the aforementioned out-of-stock situation is the main problem that

retailers have to avoid. It is not unusual that no matter how experienced they may be

in their field, retailers still face the risk of not being able to properly and efficiently

manage their stock. Frontoni et. al. (2016) mention that this out-of-stock situation

occurs at the time that specific merchandise is not available for consumers to obtain

resulting in the need to look for other substitutes.

The problem mainly originates from the retailers themselves, since they do not make

use of appropriate ordering methodologies, as both researches of Corsten and Gruen

(2003) and Fernie and Grant (2008) suggest. Every retailer should know and use

modern and efficient technologies that can deal with this problem. But since

technology rapidly advances, they should also keep track of the innovations that may

occur, which would make this process even faster and more user-friendly.

The impact of stock-outs for a retailer could be rather severe. According to Verhoef

and Sloot (2006) the most acute ramifications of stock-outs for retailers is when

customers proceed to not buy anything at all or, even worse, when they turn to a

competitive retailer, where they will find the desired merchandise. Having dissatisfied

customers is the first step towards closing-doing. And it becomes even worse when

these dissatisfied customers choose to purchase what they need from a competitor, so

that the adversary business thrives, while the business that has stocked-out steadily

declines. Another research conducted by Pizzi and Scarpi (2013) clearly supports that

customers can become dissatisfied with a retailer in the long term when stock-outs

occur, as well. As follows, the income of the retailer with stock-outs will decrease,

since a large percentage of the disappointed customers could turn to other retailers or

even lose their interest to buy any products for a certain period of time. But some

customers may become so dissatisfied that they will never turn to this business again

in the future. Thus, a mismanagement of the stock can lead to significant delays,

justified dissatisfaction on behalf of the customers, and eventually loss of income. This

is the reason why it is of paramount importance for a retailer and the sustainability

and growth of his company to be in the position to refill his stock exactly at the right

time.

 -7-

4. Solution to the Problem

A problem like this can be effectively tackled by using an appropriate software, and

smart technologies. This dissertation presents the core design and development

elements of a smart ordering system that provides retailers with a smart, fast and easy

way of managing their supply orders across their vendors. The system itself consists of

two subsystems, the vendor system and the retailer one. Both of them are connected

through an Application Programming Interface (API) that belongs to the vendor

system. Regarding the design architecture of the system, there are two possible ways

to follow, centralized or decentralized architecture (Akritidis et.al. 2018). With a

centralized architecture (Picture 1), the server-side processing or the business logic of

the system, takes place in one central place, normally in one server machine which

runs the server-side application of the system. Then, all client-side applications have to

connect to that server to process any kind of business logic. On the other hand, in a

decentralized architecture (Picture 2), the server-side application of the system is

located in many different servers, each running as an individual, and independent

application with its own database. In this case, the client-side applications may

connect to multiple different servers, though one at a time, to execute their business

logic.

 -8-

Picture 1: Centralized architecture

Picture 2: Decentralized architecture

 -9-

Regarding the proposed system, a decentralized architecture was used, with the

vendor system representing a server-side application running on the server of each

vendor and the retailer system representing the client-side application. The reason this

architecture was preferred over the centralized one is because its advantages are of

more importance, as stated by Robin Jan Maly (2003). First and foremost, the

decentralized design provides great availability since any single point of failure is

absent. In contrast to the decentralized design, in the centralized architecture, if the

server running the business logic fails for any reason, then none of the client-side

applications will be able to perform its intended functionalities. On the contrary, the

existence of multiple servers in the decentralized architecture guarantees that in the

case of an isolated failure, the clients will still be able to perform their functionalities,

on any other available server. In the current case, if the server of one of the vendors

fails, then the retailers will still be able to use the system to place orders to all the

other vendors (Picture 3).

Picture 3: Smart Ordering System - Decentralized

 -10-

Another advantage is that it provides better communication speed, because the

network bandwidth for the communication between the client-side and server-side

application is distributed among multiple servers and thus increasing the overall

network speed that the final user experiences. In other words, in a centralized system

all clients send requests to one server over the internet, overloading the network and

increasing the latency. On the opposite side, a decentralized system distributes the

requests of clients to multiple different servers each time and decreases the load of

the network, allowing faster connection over the internet. Finally, the decentralized

design reduces the load of the server processing, leading to a faster response to the

client. On a centralized system, all clients would send requests to one server with

limited resources and it would take more time to process each request and send a

response accordingly. Opposed to that, the decentralized architecture once again

distributes the requests from all clients to multiple servers, so each server has to deal

with fewer requests thus increasing the speed of the process. Relative to the proposed

system, retailers can only connect to their partner vendors business logic and the

vendor himself is the only one who can connect to the back office of the system,

meaning the both the network bandwidth and the server load is going to be

significantly low.

4.1 Vendor System

This subsection describes in more details the system of the vendor. Concerning the

technical details, this system is a web application developed with Laravel version 8,

one of the best PHP frameworks. PHP is a server-side programming language that is

used to develop websites and web applications (Sklar, 2016). In a typical setup, a PHP

application is executed by a module (CGI, FastCGI or other) of an HTTP server that

allows multiple clients to access this application at the same time. Therefore, the

combination of PHP with an HTTP server allows the design of rich, multi-user

applications. In addition, the PHP-powered web pages are dynamic which means that

their content changes according to the submitted request of the client. In contrast, the

static Web content is always the same, regardless of the parameters of the submitted

 -11-

request. A dynamic Web page can connect and receive data from a local/remote

database system, or a remote Web service, or an API.

The designed vendor system requires PHP version at least 7.3 and uses MySQL version

5 as the main database service. The Application Programming Interface is also

developed with Laravel, as a sub-component of the vendor system, utilizing the

efficient and smart routing capabilities of this powerful framework. More information

about the API will be documented in the chapter 4.3 below.

Now let us continue with the functionalities that the system provides to the vendors.

One important service is the ability to manage their product catalog. At first, they are

presented with a list of products (Picture 4) that they have already registered in the

system. This list shows some basic information about each product such as the product

ID from the database record, the product name and code, its price the quantity of its

stock and its status which has two possible values, enabled or disabled. Products with

status set to enabled, are the only ones that will be shown to the retailer system and

the ones with disabled status will be hidden. That way, a vendor can easily determine

which products are active for sale and which are not, for example because they

temporary cannot sell them for any reason.

Picture 4: Product list

Additionally, the product list provides a searching ability to the vendor. Among a set of

filters, the vendor can choose any combination of them and press the “Search” button

to get the desired products. The available filters are a range of product ID, the product

 -12-

name, the product code, a range of price values, a range of stock quantities and the

status of the product. If any products match those filters, they will be shown in the list

after clicking the “Search” button (Picture 5). After a search attempt, the “Clear”

button is displayed in the search bar, allowing the clearing of all search filters so that

the entire, unfiltered product list is displayed.

Picture 5: Filtered product list with minimum price (400) and status (enabled).

Another feature of the product catalogue is the option to add a new product to it

(Picture 6). The vendor can enter all the necessary information about the product, like

its name, status, code, barcode, price, stock and description and save it permanently

to the database.

 -13-

Picture 6: Screen of new product addition.

Furthermore, an existing product from the product list can be edited, by pressing the

“Edit” button. The edit screen of the product (Picture 7) is similar to the one with the

addition of a new product and all existing data of the product is loaded in the

appropriate fields. Any of the data can be changed and saved permanently. Moreover,

the product can be deleted by pressing the “Delete” button.

Picture 7: Screen of product edit.

Finally, the deletion of a product can be initiated from the product list, by clicking the

“Deleted” button of the desired product and confirm the deletion from the popup

message that appears (Picture 8).

 -14-

Picture 8: Deletion confirmation message.

In the sequel, the most important feature of this system, the order management

module is presented. A vendor can list all the orders (Picture 9) that were placed from

all customers. The list contains basic information about each order, like the ID number

from the database record, the name of the customer who placed the order, the total

cost of the entire order, the current status and the date that it was placed.

Picture 9: List of orders

The order status may be assigned three different values: “processing” when it is placed

and created, “delivered” when the vendor finishes the order and sends it to the

customer and “canceled” when the vendor has any reason to cancel a specific order.

The order management comes with a searching/filtering mechanism, similar to the one

in the product catalogue. There are several filters matching the information fields

provided by the order list and those are a range of order IDs, the name of the

customer, a range of the order total, the status and a range of dates that the order was

 -15-

placed. Following the same logic with the product catalogue, one or more filters can be

combined and by pressing the “Search” button, if any orders match those criteria, they

will be shown on the list (Picture 10). There is a “Clear” button to remove all search

filters as well.

Picture 10: Filtered order list with status (processing)

Moreover, a vendor can view in detail an order by clicking the “View” button of an

order on the order list. At the very top of the order view screen (Picture 11), there is

information about the name of the customer, the date that the order was placed, the

order total and the total quantity of all products. Below this information, the order

status can be found and can be updated at any time. Lastly, there are two sections,

one showing the products that were ordered along with their price, quantities, stock

and total cost of each product and the other one showing general information about

the customer, such as the number of completed orders and the total amount of money

earned from this customer.

 -16-

Picture 11: The details view of an order.

Another functionality of the system, which is equally important, is the customer

management subsystem which allows a vendor to manually register the customers

into the system and grand access to the product catalog and the ability to place orders.

In fact, customers cannot register themselves through the retailer system, because the

entire system follows a Business-to-Business (B2B) principle and each customer of a

vendor is predetermined by a contract. So, to protect the vendor system against

unauthorized access and since a vendor already has the details of the clients, he can

easily register them into the system. The registration will generate a unique API key,

for each customer, which is used for the connection between the two systems and it

will be described in more detail in subsection 4.3 below.

There is also a customer list (Picture 12) in this section which sums up the essential

data of each customer, like the database ID of the record, the name, the API key and

the status. The status of a client may receive one of the following four values:

enabled/disabled and validated/invalidated. Only validated customers can actually

have interactions with the vendor system. The searching functionality could not be

absent from customer management and it provides filters like a range of database IDs,

the name, the status and the API key.

 -17-

Picture 12: Customer List.

The registration of a customer is a quite simple process and the vendor has to press

the “Add new customer” button to show the appropriate screen (Picture 13), input the

data and save the record. There is also an update functionality, which follows the same

logic and layout of the registration of a customer.

Picture 13: Customer Registration – Update Screen.

 -18-

Lastly, there is also the option to delete a specific customer, provided that no

correlated orders exist. For the deletion, a vendor has to click the “Delete” button of a

specific customer on the list and confirm the popup message (Picture 14). If the

customer has at least one order, the system will not allow the deletion and will show

an error message accordingly.

Picture 14: Customer deletion popup message.

Finally, the least significant functionality of the system is the user management

module. By user, it is meant the user of the vendor system, the people that manages

the application, which are the vendor and probably his employees. A list of all users is

available and more users can be created or existing ones can be updated on their data.

Also, an authenticated user has the ability to reset the password of another user, in

case it is forgotten or lost and users can be deleted, except the first pre-installed user.

 -19-

4.2 Retailer System

This chapter contains details about the sub-system of the retailer application. Starting

with the technical ones, the retailer system is an Android mobile application,

developed with Java 7 and minimum Android SDK or API Level 23. For data storage, it

utilizes Android’s native SQLite database service. Upon its startup, the application

presents the user a menu with three options (Picture 15), the product catalogue, the

order list and the vendor list.

Picture 15: Retailer application - main screen.

 -20-

Concerning the functionalities, first and foremost there is the product catalogue. The

application implements an efficient endless scrolling list of products (Picture 16) from

all the vendors that the retailer has a cooperation with. Not all products are loaded at

once in the list, because having to download possibly a huge amount of product data

from all the vendors, would take a long time and consume lots of resources of the

mobile device. Instead, a small number of products is downloaded each time and when

the list is about to finish with the next scroll downwards, a few more data will be

downloaded.

Picture 16: The endless scrolling list of products.

 -21-

The user is also able to apply filters to find specific products. The filters include the

selection of a specific vendor, the determination of a price range and the searching by

title and/or code. They are all accessible via a specific popup dialog that appears

immediately after the “Search” button has been pressed (Picture 17).

Picture 17: Search filters popup.

 -22-

From the product catalog, there are two options for the retailer. The first one is “View

Options” which shows a new screen with all the details of the product. The other one

is the “Add to cart” option. The latter option is found inside the product details screen

as well. By choosing the “Add to cart” button from the catalog, a popup dialog appears

(Picture 18), showing the name, code and price of the product. It contains an input

allowing the user to set the desired quantity for this product. Of course, there is a set

of validity checks, that include a check if the quantity is a positive number and if it is

not, then the confirmation button gets disabled and the product cannot be added to

the cart.

Picture 18: Add to cart popup.

 -23-

At any moment, while in the product catalog screen, the user can access the shopping
cart (Picture 19) and view all the products that were added to it, change their
quantities or even remove them completely from the cart. Additionally, some
information about each product is displayed, such as the name of product, the price
and the total cost accompanied by the price and the desired quantity.

Picture 19: Shopping cart screen.

When all desired products for the resupply have been added to the cart (Picture 19),

the retailer can press the “Place Order” button to send the order, without the need to

make separate orders for each vendor. All products added to the cart could originate

 -24-

from many different vendors, yet the application implements a smart, automatic

mechanism that creates sub-orders or partial orders for each vendor and groups the

selected products into the appropriate sub-order. Then, each sub-order is sent to the

appropriate vendor. This automatic mechanism provides speed and efficiency to the

ordering process for the supplies.

One more feature that this system implements is vendor management. In this part of

the system, a retailer is able to register all the collaborating vendors to the application.

When the system downloads the product catalogue, it uses the list of registered

vendors to find and fetch their respective product catalogues. Initially by pressing the

“My Vendors” button in the main menu, the user is presented with a list of all

registered vendors (Picture 20). The list contains some basic information about each

vendor like the name and the address of the server that runs the vendor application.

Picture 20: Vendors List

 -25-

For the vendor registration, the user enters in the popup dialog (Picture 21) a

descriptive name, the address of the server that runs the vendor system and the API

key. The last two pieces of information are provided by the vendor. More details about

them will be provided in Subsection 4.3.

Picture 21: Vendors add popup dialog.

 -26-

Additionally, the system allows a retailer, to edit and update the information of a

specific vendor. By pressing the desired vendor item in the list, a popup dialog (Picture

22), like the one for the vendor addition, opens and all of its fields are filled with the

saved data. Then, the user can change those values and save the changes permanently

to the database, by pressing the “Update” button.

Picture 22: Vendor update popup dialog.

Finally, the deletion option is provided and the user needs to long press the list item of

the desired vendor and then confirm the popup message (Picture 23) that appears.

After confirming it, the vendor’s data will be deleted permanently from the database.

 -27-

Picture 23: Vendor delete popup confirmation.

Last but not least, an equally important feature is the order list, where the retailer is

presented with a list of all submitted orders (Picture 24). All information about these

orders is stored locally in a database in the device. Those details have to do with the

date that the order was placed and the total cost. Two additional options are provided

for each order: the first one is a form that presents all the order details, whereas the

second one is a “Reorder” button that creates a new order with the same products and

submits it to the vendor.

 -28-

Picture 24: Orders List

In the order details screen (Picture 25), the user may access a detailed list of all partial

orders that were placed to each vendor through the selected order, as well as check all

the products that were ordered along with their price and quantities. Another useful

piece of information is the partial order status which shows the progress of the partial

order from the vendor’s side. The status is not stored locally in the device, because it

can change at any time by the vendor, but it is rather downloaded every time this

screen is shown. In the case of a connection failure with the vendor, the status is

displayed with a dash “-”.

 -29-

Picture 25: Order’s details list

Finally, with the reorder option, either from the order list or the order’s details screen,

the application downloads the products from the partial orders from each respective

vendor and adds those products to the cart along with the quantities that they had in

the selected order. It is necessary to re-download the products to clear any

inconsistencies between the products, because a vendor might have changed the title

or the price of a product that was recorded in a past order or he might have even

deleted it. Thus, the products from the order are downloaded and added to the cart

with the latest data and the retailer can verify them before proceeding to place the

order.

 -30-

4.3 Connection of the two Systems

As mentioned before, the two sub-systems are connected to each other through an

Application Programming Interface (API) which is a sub-module of the vendor system.

Essentially, the retailer application uses this API to get or send data through HTTP

requests. This connection is unidirectional, from the retailer to the vendor, since the

retailer application is the one that needs to either download data from the vendor or

send data to the vendor, for an order for example. All the data the vendor needs to

access is located in the same local server where the vendor application is running.

These HTTP requests cannot be performed simply by anyone, since there is a security

layer that allows only authorized users to send or receive data through their

connection. This security layer is accomplished from the customer registration,

(mentioned at chapter 4.1), and the vendor registration, (mentioned at chapter 4.2).

First, the vendor registers a customer and a unique API key is generated for this

customer. Then, the vendor has to give this key along with the IP address or the

domain of the server where his application is running. Finally, when registering a

vendor, the retailer has to input these data and the retailer application will

automatically include them for every HTTP request it sends to the specified vendor.

This way, every retailer will have permission to send requests only to their vendors and

not to any other vendor and also any malicious user outside of the system will not be

able to send any requests at all, without having a valid API key even if they manage to

find the IP address or domain of the server of a vendor.

5. System Evaluation

The evaluation of the entire system was realized with the participation of eight people

in total. Three of them played the role of the vendor and five of them the role of the

retailer. The vendors installed the vendor application into their hosting provider, while

the retailer installed the retailer one into their smartphones. Each vendor registered a

random number of retailers into their system as customers and the respective

customers or retailers registered those vendors into their mobile application. All of

them examined and used the two systems thoroughly for a week.

 -31-

In terms of effectiveness, both the vendors and the retailers stated that the systems

worked as expected and delivered what they were supposed to deliver. The vendors

were able to easily manage their business-to-business product catalogue and the

orders from their customers. On the other hand, the retailers mentioned that the

application allowed them to efficiently resupply with the help of the endless scrolling

list filled with products from all vendors and the process is consuming almost no time

at all. More specifically, by using conventional methods they would need on average

two hours to write down all the desired products for re-order, while with the retailer

system they only need around five minutes. They can monitor the progress status of

their orders and place again a previously stored order, which is very important for

them since most of the times they tend to order the same supplies in the same

quantities. Overall, they pointed out that before using Ventail, they had to spend up to

three whole days to complete the resupply process by contacting each vendor, one

after the other, wasting time until they understand each other. Though with the

system it only takes one day and that is not only due to the fact that the retailer

system reduces greatly the time wasted on the ordering process, but also the vendor

system allows vendors to efficiently manage their orders

Regarding the communication speed, the results cannot be very objective, since speed

mostly depends on variable factors, like the internet connection provided from an

Internet Service Provider, the processing power capabilities of a vendor server or a

client device that will render the application. Nevertheless, all three vendors pointed

out that they experienced satisfactory speeds and each page was loading really fast,

almost instantly. The fact that PHP was used as the building block of this system as well

as the efficient pagination of all data led to high server-side processing speeds and

lightweight HTML pages that can be rendered by any browser quickly. On the other

side, three out of five retailers mentioned that the running speed of the application

was good, while the other two stated that sometimes there were some delays. Those

delays had to do with the product catalogue and the downloading process, so it is

assumed that the problem lies in their internet connection. Either their Internet

Service Provider has a low bandwidth or somewhere through the routing there were

some unexpected delays, especially since with the Covid-19 quarantine the internet

traffic is too high.

 -32-

The final aspect of the entire system that was evaluated was the power consumption.

This is possibly the most important one in the field of IoT devices, since IoT devices run

on low-capacity batteries. This explains why the system was designed and developed

to maximize power efficiency and resource management. Therefore, the goal was to

minimize the battery consumption of the IoT devices that would use it. Of course,

there is no point in measuring the vendor system for power consumption because it is

a server-side processing application. In other words, it us executed by a server that us

constantly plugged in to a stable power supply.

So, four out of five users were satisfied with the power efficiency of the retailer system

and they mentioned that they did not have to charge extra times their smartphones

while using the application for an entire week. This is due to fact that the application is

not using almost any power-hungry resources of the smartphone, like camera, GPS, or

any other sensors. It only makes some HTTP requests to vendor systems, but only

when needed, like when the user launches the product catalogue or places an order.

The one user that had some noticeable battery drainage, probably had an older device

with a lower battery capacity or even damaged battery.

 -33-

6. Conclusions

To summarize, the stock-out problem that retails have to face is probably the most

crucial one since it can lead to a severe loss of customers and therefore profits. The

adoption of traditional ways of resupplying definitely renders the situation even worse.

Therefor, it would be wise to incorporate information technologies and technologies

related with Internet of Things into the supply process. This will boost the ordering

capabilities and improve the time of the resupply process. That is exactly the goal of

the proposed system, namely to provide retailers with an effective and time efficient

way of ordering their supplies from many vendors at the same time and having the

option to place again previously submitted orders, with the aim of reducing the wasted

time. The aforementioned goal is achieved, according to the system evaluation, and

the system provides not only an effective solution to the problem, but also a time and

power efficient solution. There is definitely room for improvements and additions to

the system. One of them would be the option for the vendor system to connect to the

Enterprise Resource Planning (ERP) application of the vendor or the vendor’s

electronic store and automatically insert all products into the system. Another

interesting point of improvement would be the implementation of the ability for the

retailer system to connect to the ERP or electronic store of the retailer and

automatically order exhausted or nearly exhausted products.

 -34-

Bibliography

Akritidis, L. Bozanis. P, and Papadopoulos D. (2018). Efficient Urban Transportation(s)

with IoT Devices and Robust Workers Allocation, In Proceedings of 2018 South

Eastern European Conference on Design Automation, Computer Engineering,

Computer Networks and Social Media Conference (SEEDA-CECNSM), pp. 1-6.

Corsten, D., & Gruen, T. (2003). Desperately seeking shelf availability: an examination

of the extent, the causes, and the efforts to address retail out‐of‐stocks.

International Journal of Retail & Distribution Management, 31(12), 605-617.

doi:10.1108/09590550310507731

Fernie, J., & Grant, D. (2008). On‐shelf availability: the case of a UK grocery retailer.

The International Journal of Logistics Management, 19(3), 293-308.

doi:10.1108/09574090810919170

Frontoni, E., Mancini, A., Zingaretti, P., Contigiani, M., Bello, L., & Placidi, V. (2016).

Design and test of a real-time shelf out-of-stock detector system. Microsystem

Technologies, 24(3), 1369-1377. doi:10.1007/s00542-016-3003-3

Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A

Literature Review. Journal of Computer and Communications, 03(05), 164-173.

doi:10.4236/jcc.2015.35021

Maly, R. (2003, March). Comparison of Centralized (Client-Server) and Decentralized

(Peer-to-Peer) Networking. Ανάκτηση December 13, 2020, από

https://pub.tik.ee.ethz.ch/students/2002-2003-Wi/SA-2003-16.pdf

Patel, K., & Patel, S. (2016). Internet of Things-IOT: Definition, Characteristics,

Architecture,Enabling Technologies, Application & Future Challenges.

International Journal of Engineering Science and Computing.

Pizzi, G., & Scarpi, D. (2013). When Out-of-Stock Products DO Backfire: Managing

Disclosure Time and Justification Wording. Journal of Retailing, 89(3), 352-359.

doi:10.1016/j.jretai.2012.12.003

Sklar, D. (2016). Learning PHP: A Gentle Introduction to the Web's Most Popular

Language. O'Reilly Media.

 -35-

Tejesh, B., & Neeraja, S. (2018). Warehouse inventory management system using IoT

and open source framework. Alexandria Engineering Journal, 57(4), 3817-3823.

doi:10.1016/j.aej.2018.02.003

Verhoef, P., & Sloot, L. (2006). Out-of-Stock: Reactions, Antecedents, Management

Solutions, and a Future Perspective. Retailing in the 21st Century, 239-253.

doi:10.1007/3-540-28433-8_16

 -1-

Appendix A – Vendor System Source Code

Middleware Classes

In Laravel Framework, middleware classes provide a function that executes every time

before or after the controller class that handles the main request. The vendor system

uses two middleware classes for authentication purposes.

Middleware - Authenticate

This middleware is used to block the access to the system to any unauthenticated

request and redirects to the login page. It extends Laravel’s authentication system and

overrides the redirectTo function, which is called before any processing of an incoming

request occurs and returns a route to the controller that renders the login page, if

there is no logged in user.

 -2-

Middleware - ApiAuthenticate

Similarly with the previous one, this middleware blocks any unauthorized access to the

system through the API that connects the retailer to the vendor system. First of all, it is

checked if the request includes a parameter for the API key, if not then a 403 HTTP

error is returned. Then, if the key parameter exists, it is checked whether or not there

is a customer record with this API key in the database. If there is, then the request is

processed normally, else a 401 HTTP error is returned.

Controller Classes

Controller classes in Laravel are responsible for processing incoming HTTP requests

and either render a webpage, access the database and retrieve some data, modify,

insert or delete records from the database, process files and anything in general that

has to do with server-side processing.

 -3-

AuthController

This controller handles anything that has to do with the user authentication of the

application.

 The login_page function is responsible to render the login page, if there is no

logged in user, or in the other case it redirects to the home page.

 The do_login function handles the HTTP post request that is sent when the user

presses the login button in the login form. It checks whether the credentials are

correct to allow access or return an error message.

 The do_logout function releases the session variable that keeps track whether

there is a logged in user and redirects to the login page, in other words it logs

out the user.

 -4-

HomeController

This controller is responsible for rendering the dashboard or home page of the vendor

application. It calculates the total number of products, customers and orders, grouped

by order status, and the total earning and passes these data to the view file which will

be rendered on screen.

 -5-

ProductsController

 -6-

ProductsController deals with the product management requests of the system.

 The index function handles the product list rendering. The products are collected

from the database, with possible user requested filters applied on the query, and

the results are paginated through Laravel’s pagination functionality.

 The create function simply renders the page for creating a new product.

 -7-

 The submit_create function handles the form submission to create a new product.

A new product record is inserted in the database with the data extracted from the

request.

 The edit function renders the edit page for a specific product. A product id is

passed as a parameter from the request url and it is used to retrieve the record

from the database. Then the record is passed in the view file which renders the

edit page filled with the product information.

 The submit_edit function handles the form submission request to update the data

of a specific product. The record of the product in the database is updated with

the data extracted from the request.

 The delete function removes a product record from the database. A product id is

passed as a parameter from the request url and it is used to delete the specified

product record.

 The parseFilters function is executed inside the index function and it is responsible

for applying the user requested filters on the product listing query. For each

possible filter, it is checked if it is present in the request and if so, the appropriate

SQL clause is appended to the query which will be executed later in the index

function.

 -8-

CustomersController

 -9-

CustomersController deals with the customer management of Ventail system.

 The index function handles the customer list rendering. Customer records are

collected from the database, with possible user requested filters applied on the

query, and the results are paginated through Laravel’s pagination functionality.

 The create function simply renders the page that allows a user to register a new

customer.

 The submit_create function handles the form submission request to register a new

customer. A new customer record is inserted in the database with the data

extracted from the request.

 -10-

 The edit function renders the edit page for a specific customer. A customer id is

passed as a parameter from the request url and it is used to retrieve the record

from the database. Then the record is passed in the view file which renders the

edit page filled with the customer information.

 The submit_edit function handles the form submission request to update the data

of a specific customer. The record of the customer in the database is updated with

the data extracted from the request.

 The delete function removes a customer record from the database. A customer id

is passed as a parameter from the request url and it is used to delete the specified

record.

 The parseFilters function is executed inside the index function and it is responsible

for applying the user requested filters on the customer listing query. For each

possible filter, it is checked if it is present in the request and if so, the appropriate

SQL clause is appended to the query which will be executed later in the index

function.

 -11-

OrdersController

 -12-

 -13-

This controller is responsible for handling any request that has to do with the order

management of the system.

 The index function handles the order list rendering. Order records are collected

from the database, with possible user requested filters applied on the query, and

the results are paginated through Laravel’s pagination functionality. The results

contain also the total cost of each order.

 The view function renders the view page for a specific order An order id is passed

as a parameter from the request url and it is used to retrieve the record from the

database. Then the record is passed in the view file which renders the view page

filled with the order information. Additionally, the order status data are retrieved

and passed int the view file in order to render the appropriate status name based

on the status id of the order.

 The submit_status function handles the form submission request from the user to

change and update the status of a specified order. A few checks have to be made

before the database record gets updated. If the current order status is Delivered

 -14-

and it is requested to change to either Processing or Canceled, the quantity of

each product from the order has to be added in the current stock of the respective

product. On the other hand, if the current order status is not Delivered and it is

requested to change to Delivered, first it has to be checked if the order can be

completed and then the stock has to be decreased by the amount that is

presented in the order. If the forementioned restrictions are satisfied, the order

status will be updated successfully. If not, an error message will be returned.

 The completeOrder function changes the status of a specific order to Delivered.

The stock of all products from this order is decreased by the amount of their order

quantity. Finally, the order record is updated with the new status.

 The reverseOrder function updates the status of a specified order. Also, it is

checked if the current status is already Delivered to reverse the stock of each

product presented in the order.

 The parseFilters function is executed inside the index function and it is responsible

for applying the user requested filters on the order listing query. For each possible

filter, it is checked if it is present in the request and if so, the appropriate SQL

clause is appended to the query which will be executed later in the index function.

 -15-

UsersController

 -16-

UsersController deals with the user management of the vendor system.

 The index function handles the user list rendering. User records are collected from

the database, with possible requested filters applied on the query, and the results

are paginated through Laravel’s pagination functionality.

 The create function simply renders the page that allows the creation of a user for

the system.

 -17-

 The submit_create function handles the form submission request to create a new

user. A new user record is inserted in the database with the data extracted from

the request if the username presented in the request does not exist in the

database. Also, the password gets hashed and the hash is stored in the database

instead of the clear-text password.

 The edit function renders the edit page for a specific user. A user id is passed as a

parameter from the request url and it is used to retrieve the record from the

database. Then the record is passed in the view file which renders the edit page

filled with the user information.

 The submit_edit function handles the form submission request to update the data

of a specific user. The record of the user in the database is updated with the data

extracted from the request, only if the provided username is the same as before or

different from any other record. Furthermore, is a password is provided, it will be

hashed and the hash will replace the old one in the database.

 The delete function removes a user record from the database. A user id is passed

as a parameter from the request url and it is used to delete the specified record.

 The parseFilters function is executed inside the index function and it is responsible

for applying any requested filter on the user listing query. For each possible filter,

it is checked if it is present in the request and if so, the appropriate SQL clause is

appended to the query which will be executed later in the index function.

 -18-

ApiController

 -19-

 -20-

ApiController handles any request from the retailer system.

 The map_request function maps any incoming request to the appropriate private

function of the ApiController that is capable of handling the request. In order for

the mapping to take place, a parameter named action must be present in the

request. If it is not present or it is invalid, a 422 HTTP error is returned.

 The products function handles the catalogue listing request from the retailer

application. Any filter that is sent through the request is applied to the query and

the result is return in json format.

 The place_order function creates an order sent by a retailer application. First of

all, it retrieves the customer record based on the API key provided by a request

 -21-

parameter, called key. Then, it checks if the request contains a non-empty array

named products and if it does not, it returns a 422 HTTP error. Else, it creates a

new order record in the database with the customer’s id. Finally, for each product

in the array, a new order_item record is stored in the database for the

forementioned order.

 The get_order_status function returns the status of a specified order and

customer. The function retrieves the customer record based on the API key

provided by a request parameter, called key. If the request parameter order_id is

not present, a 422 HTTP error is returned. Else, the order record is retrieved from

the database based on the order_id and the customer id and its status is returned.

 The get_products function returns the data of products based on an array of

product ids sent with the request. If the array is not present, a 422 HTTP error is

returned. Else, all products with the specified ids that are enabled are retrieved

from the database and returned in json format.

 The parseFilters function is executed inside the products function and it is

responsible for applying any requested filter on the catalogue listing query. For

each possible filter, it is checked if it is present in the request and if so, the

appropriate SQL clause is appended to the query which will be executed later in

the index function. It also appends a where clause to retrieve only products that

are set as active.

Model Classes

Model classes in Laravel represent a database table and their fields represent the table

columns. Laravel uses an Object-Relational Mapper (ORM), a plugin that makes

database interaction very easy and less time consuming. Almost all queries are

generated automatically and can be called from a model instance by auto-generated

functions. Relations between models can also be defined in a model class and Laravel

will automatically include them in the queries. Finally, computed attributes can be

defined which are custom attributes that do not exists in the database and are

calculated per model instance on the runtime from PHP.

 -22-

Customers Model

This model represents the customers table in the database. A many-to-many

relationship with the orders table is defined. Additionally, the total_spend computed

attribute is defined that contains the total amount of money that the customer spent

on orders.

Products Model

 -23-

This model represents the products table in the database. A many-to-many

relationship with the orders table is defined. A pivot is used as an intermediate table

that breaks the initial many-to-many relationship to one-to-many relationships.

Orders Model

This model represents the orders table in the database. A many-to-many relationship

with the products table is defined. A pivot is used as an intermediate table that breaks

the initial many-to-many relationship to one-to-many relationships. Two more

relationships are defined, one belongs-to with the customers model and another one

with the order_status model. Finally, the can_be_completed computed attribute is

defined that contains a boolean value of whether the specific order can be changed to

delivered status or not. It calculates that by checking if the stock of the order’s

products can satisfy the respective order quantities.

 -24-

OrderItem Model

This model is the pivot or the intermediate table that connects the orders and

products table and breaks their many-to-many relationship. Two belongs-to

relationships are defined one for the orders table and one for the products table.

Moreover, the total_cost computed attribute is defined which contains the total cost

of the specific order item and it is calculated by multiplying the order quantity and the

product’s price.

 -25-

Appendix B – Retailer System Source Code

Activities

Main Activity

 -26-

This activity is the starting point of the retailer application. It creates a screen that

contains a menu with three buttons, one for the product catalogue screen, one for the

orders list screen and one for the vendor management screen. Also, it initializes the

main, global database handler helper class.

Catalog Activity

 -27-

This activity presents the catalogue of products from all vendors in an infinite-scrolling

list. Products are downloaded with the help of an ProductFetchTask object.

 -28-

Cart Activity

 -29-

Cart activity can be launched either by Catalog activity or during a reorder attempt

from OrderDetail activity. The activity displays all items that are currently in the cart

and their quantities can be modified further or they can be removed from cart

completely.

 -30-

Vendors Activity

This activity is responsible of presenting the vendor management feature of the

retailer system. Vendors are loaded from the database to a RecyclerView.

 -31-

Orders Activity

This activity lists all orders placed by the user through the retailer system. All orders

are listing in a RecyclerView.

OrderDetail Activity

 -32-

OrderDetail activity shows all information about a specific order. An order in the

retailer system can consist multiple partial or sub orders, each one of them associated

with a specific vendor. An ArrayList of PartialOrder objects from the main order is

passed through the intent. Furthermore, when this activity is launched, an async task is

executed to download the status of each partial order from its respective vendor

system.

 -33-

AsyncTask Classes

ProductFetchTask

 -34-

This async task is designed to download product data through HTTP requests from all

vendors that are registered in the application. The task is executed each time the

RecyclerView in the Catalog activity reaches a threshold before its ending. Additionally,

the task uses the VendorCoordinator class to coordinate the process of downloading

product data from multiple different vendor systems. After the task finishes its

execution, if the AsyncTaskListener has been set, one of its two functions will be

executed based on whether the execution was successful or not.

 -35-

PlaceOrderTask

 -36-

PlaceOrderTask is responsible to send through HTTP request each partial order to the

appropriate vendor. The vendor system has to return the order id that its database

generated and it will be used as the id of the PartialOrder record that will be stored in

the retailer system. After the task finishes its execution, if the AsyncTaskListener has

been set, one of its two functions will be executed based on whether the execution

was successful or not.

 -37-

Other Classes

EndlessRecyclerViewScrollListener

 -38-

This class is the heart of the endless-scrolling list of the product catalog. It is a scroll

listener which is set on the RecyclerView that contains the products in the Catalog

activity. With every scroll, unless the end of the RecyclerView list is reached, it

calculates how many items are visible on screen and if the number is close to a pre-

defined threshold, its state changes to loading state. That means that the scroll is close

to the end of the list and more products must be downloaded, if there are any more

left to download.

 -39-

VendorCoordinator

 -40-

This class is consisted only with static methods and it is used to help the

ProductFetchTask by coordinating the process of downloading product data from

multiple different vendor systems. It contains a list of all registered vendors, the index

of the current vendor, the offset of the current vendor and the selected vendor from

the catalog filters. The fetching task retrieves from the coordinator the current vendor

and its offset and downloads products from this vendor by the current offset, until no

more products are returned. Then, the coordinator moves the index to the next

vendor and this process continues, until the index reaches the end of the list. If the

user has selected a specific vendor from the catalog filters, the coordinator will return

only the selected vendor to the fetching task, thus downloading products only from

this vendor.

 -41-

Model Class

 -42-

Model is an abstract class that is extended by the persistent classes of the retailer

system. Typically, persistent classes are those that their objects have data needed to

be permanently stored in a filesystem or a database. So in Ventail, those Model

children classes represent all different database tables, such as vendors, orders, partial

orders, and all common fields and methods are gathered in one place, thus the

existence of Model abstract class. One such common field is the id field which

represent a database column that contains a unique identifier number for each record.

Finally, some common methods are the create method which inserts a new record in

the database based on the object’s data, the update method which uses the id field to

update the specified record based on the object’s current data and the delete method

which uses the id field to delete the specific record from the database.

	Abstract
	Contents
	Introduction
	Related Work
	Problem Definition
	Solution to the Problem
	4.1 Vendor System
	4.2 Retailer System
	4.3 Connection of the two Systems

	System Evaluation
	Conclusions
	Bibliography
	Appendix A – Vendor System Source Code
	Middleware Classes
	Middleware - Authenticate
	Middleware - ApiAuthenticate

	Controller Classes
	AuthController
	HomeController
	ProductsController
	CustomersController
	OrdersController
	UsersController
	ApiController

	Model Classes
	Customers Model
	Products Model
	Orders Model
	OrderItem Model

	Appendix B – Retailer System Source Code
	Activities
	Main Activity
	Catalog Activity
	Cart Activity
	Vendors Activity
	Orders Activity
	OrderDetail Activity

	AsyncTask Classes
	ProductFetchTask
	PlaceOrderTask

	Other Classes
	EndlessRecyclerViewScrollListener
	VendorCoordinator
	Model Class

