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Finding Optimal Cayley Map Embeddings Using Genetic
Algorithms

Jacob Buckelew

Abstract
Genetic algorithms are a commonly used metaheuristic search method aimed at solving complex

optimization problems in a variety of fields. These types of algorithms lend themselves to problems
that can incorporate stochastic elements, which allows for a wider search across a search space.
However, the nature of the genetic algorithm can often cause challenges regarding time-consumption.
Although the genetic algorithm may be widely applicable to various domains, it is not guaranteed
that the algorithm will outperform other traditional search methods in solving problems specific to
particular domains. In this paper, we test the feasibility of genetic algorithms in solving a common
optimization problem in topological graph theory. In the study of Cayley maps, one problem that
arises is how one can optimally embed a Cayley map of a complete graph onto an orientable surface
with the least amount of holes on the surface as possible. One useful application of this optimization
problem is in the design of circuit boards since such a process involves minimizing the number of
layers that are required to build the circuit while still ensuring that none of the wires will cross. In
this paper, we study complete graphs of the form K12m+7 for positive integers m and we work on
mappings with the finite cyclic group Zn. We develop several baseline search algorithms to first gain
an understanding of the search space and its complexity. Then, we employ two different approaches
to building the genetic algorithm and compare their performances in finding optimal Cayley map
embeddings.
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1 Introduction
For decades, mathematical optimization has been of significant interest not only to mathemati-

cians but to computer scientists, economists, and engineers. Many optimization problems are classi-
fied as combinatorial optimization problems, which typically require one to find an optimal solution,
such as a permutation or graph, in a particular search space that minimizes an objective function
[1]. The most common combinatorial optimization problems such as the Traveling Salesman prob-
lem and Timetabling and scheduling problems are also considered N P-hard indicating that these
problems cannot be solved using polynomial time algorithms [1]. Although there are traditional
search methods to find optimal solutions to problems, there has been growing interest in the use
of metaheuristics to solve optimization problems. Using a metaheuristic algorithm, one can poten-
tially discover near-optimal solutions to challenging problems that provide approximate solutions
efficiently. Formally, a metaheuristic is defined as an “iterative search process which guides a subor-
dinate heuristic by combining intelligently different concepts for exploring and exploiting the search
space, learning strategies are used to structure information in order to find efficiently near-optimal
solutions” [2]. Common metaheuristic algorithms include Ant Colony Optimization, Genetic Algo-
rithms, Evolutionary Programming, and Simulated Annealing [3].

The advent of genetic algorithms can be dated back to the second half of the 20th Century.
Starting in the 1950s, the concept of “evolutionary computation” grew out of efforts to employ evo-
lutionary systems as tools for mathematical optimization [4]. The birth of evolutionary computation
spurred the growth of a wide host of metaheuristics including the genetic algorithm. Beginning in
the 1960s and 1970s, John Holland and a group of researchers from the University of Michigan be-
gan establishing the theoretical framework for genetic algorithms [5]. Essentially, genetic algorithms
were founded in natural processes such as natural selection and genetics. Holland’s goals were to
rigorously explain the adaptation process that occurs in natural systems as well as design robust
artificial systems that could mirror such natural systems [6]. In other words, the goal of the genetic
algorithm was to abstract the important adaptive processes found in biological evolution and build
computer algorithms that could solve complex problems that demanded adaptation and robustness.
The basic fundamental processes that increase variation in a population such as DNA crossover and
mutation became building blocks for a new metaheuristic algorithm that was not deterministic in
nature, but stochastic.

In the 1980s, David Goldberg began implementing Holland’s framework with his Binary-coded
Genetic Algorithm (BGA), which modeled chromosomes in a population of individuals as bit strings
of 1’s and 0’s [6]. Using these bit strings an algorithm could then perform stochastic processes
such as recombination and mutations to iteratively find a string that corresponds to an optimal
solution. The algorithm became a driver of natural selection, learning the bit patterns that were
most advantageous for an individual and then considering individuals with those patterns as having a
higher degree of evolutionary fitness. Furthermore, BGAs were much simpler to implement, making
it a very popular metaheuristic tool following its formulation [3]. For decades following Goldberg’s
work, researchers would continue pushing the limits of genetic algorithms and related algorithms.
After nearly 30 years of development, the field of evolutionary computation would encompass a wide
variety of “Evolution Programs” including Genetic Algorithms, Evolutionary Programming, Genetic
Programming, Scatter Search, and Genetics-Based Machine Learning [7].

The rise of genetic algorithms spawned an extensive amount of literature regarding their viability
in solving challenging combinatorial optimization problems. Beginning in 1985, researchers began
using genetic algorithms to solve the Traveling Salesman Problem(TSP), a well-known N P-Hard
problem [8]. Many attempts were made at solving TSP with each approach using a different crossover
technique as a way of integrating problem specific knowledge into the algorithm and thus better
optimize solutions. More recently, in 2013 Nagata developed a genetic algorithm that could out-
perform other efficient heuristic algorithms in solving TSP instances with 200 or more cities [9].
Furthermore, genetic algorithms have achieved high accuracy rates in solving a wide variety of
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operation management problems such as scheduling, facility layout problems, network design, and
forecasting [10]. In this paper, we will primarily be studying the application of genetic algorithms
in solving a particular combinatorial optimization problem in topological graph theory that involves
the embedding of Cayley maps onto orientable surfaces.

We will first provide a brief review of Cayley Maps in Section 1.1 to establish the necessary
background for the optimization problem we attempt to solve. In Section 1.2, we will then review
the various search methods that will be employed in our approach including brute-force search
methods, hill climbing algorithms, and genetic algorithms. Section 2 provides a detailed look at
the computational methods that will be used in our approach. Then, Section 3 will present our
results followed by a discussion of these results in Section 4. Finally, Section 5 will be reserved
for a conclusion of the paper followed by an Appendix that includes a link to a Github repository
containing relevant Python code.

2 Background
In this section, we will provide a basic foundation for the concepts presented in the rest of

the paper. In Section 2.1, we will provide a brief introduction to concepts that are necessary for
understanding Cayley map embeddings onto orientable surfaces. We also describe an example of
a small graph embedding using the complete graph K5. Then, in Section 2.2, we will present an
overview of the search methods that will be employed in this paper including brute force search, hill
climbing, stochastic hill climbing, and genetic algorithms.

2.1 Cayley Maps
In order to understand the optimization problem that will be discussed in this paper, we will

now review definitions that provide a starting point for understanding Cayley map embeddings. The
definitions and several of the figures are credited to Miriam Scheinblum, another Rollins College stu-
dent who conducted research on Cayley map embeddings for her Senior Honors Thesis [11].

Definition 1 A graph G is defined as a 2-tuple such that G = (V, E), where set V contains the
vertices of G connected by a set E of edges.

Although there are many classes of graphs in graph theory, we will focus primarily on complete
graphs. Complete graphs contain properties that will allow us to simplify the algorithmic approach
to solving the graph embedding problem discussed later in this section.

Definition 2 A complete graph Kn has n vertices and an edge between every pair of vertices for a
total of n(n−1)

2 edges.

A common problem in graph embedding is the minimization of the number of edge crossings.
Usually, smaller graphs can be drawn on a plane such that no edges cross. However, more com-
plex graphs demand surfaces that allow for more potential ways for edges to connect to vertices.
Orientable surfaces such as spheres and tori provide a solution when graph drawings become more
complex for larger graphs. As the number of holes increase in the torus, this allows for more options
in how one can draw a graph on the surface while preventing edges from crossing.

Embedding graphs onto orientable surfaces has been a critical part of the study of topology. In
1866, Jordan discovered that the set of closed, orientable surfaces includes the sphere, torus, double
torus, etc.[12]. Embedding a graph onto an orientable surface such as a torus requires a mapping
such that no edges cross.

Definition 3 An embedding of a graph G = (V, E) onto a surface S consists of
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Figure 1: Orientable Surfaces

(1) a one-to-one function fV : V → S; and

(2) a continuous, one-to-one function fe : [0, 1] → S for each edge e ∈ E such that e connects
vertices v0 and v1, then fe(0) = v0 and fe(1) = v1(or fe(0) = v1 and fe(1) = v0)

with the property that fe1(x) = fe2(y) for any x, y ∈ (0, 1) implies e1 = e2 (and x = y).

A graph embedding divides the surface S into components, where each component is a face of
the embedding [11]. When considering optimal graph embeddings, it is important to consider the
amount of faces that are generated by the embedding. The number of faces that the embedding has
will impact the Euler characteristic of the embedding, which is a number that “encodes” the number
of holes required in the surface [13]. It is then very easy to calculate the genus of a surface which is
essentially the number of holes in the surface.

Definition 4 The Euler characteristic χ can be calculated using χ = |V | − |E| + |F | where V, E,and
F are the number of vertices, edges, and faces, respectively.

Definition 5 The genus of an orientable surface g is determined by χ = 2 − 2g.

As the genus increases, the demand for a more complex surface also increases. Thus, in order
to find an optimal embedding of a graph, we will want the genus of the surface to be as small as
possible. In 1968, Ringel and Youngs discovered a formula that could calculate the genus of an
optimal embedding of a complete graph Kn (which we denote γ(Kn)), therefore making it much
easier to determine the simplest surface on which to embed a complete graph [14].

Definition 6 The complete graph Kn has optimal genus

γ(Kn) =
⌈

(n − 3)(n − 4)
12

⌉
Now we introduce important definitions from group theory which will be prove to useful when

performing arithmetic operations.

Definition 7 A group G is a set with:

(1) An associative binary operation ∗ (i.e., for all a, b ∈ G, a ∗ b ∈ G);

(2) An identity element e (i.e., for all a ∈ G, a ∗ e = e ∗ a = a);

(3) And an inverse for each element (i.e., all a ∈ G have an inverse c ∈ G such that ac = c∗a = e.
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Definition 8 A group G is abelian if the operation ∗ is also commutative (i.e., for all a, b ∈ G, a∗b =
b ∗ a).

For this paper, we will only be concerned with modular arithmetic, specifically within the finite
cyclic group Zn. Thus, addition will be the binary operation we use most frequently.

Definition 9 Addition modulo n uses the integers 0, 1, ..., n − 1. Given an integer a, we define a
mod n = r, where r is the remainder upon dividing a by n.

Definition 10 The finite cyclic group Zn = {0, 1, ..., n − 1} is an abelian group under addition
modulo n.

In the abelian group Zn, the identity element is e = 0 since x + 0 = 0 + x = 0. We define −x
to be the additive inverse of x and the order of a group element, ord(x), to be the smallest positive
integer m such that mx = 0. Note that −x = n − x when working in addition modulo n.

We now introduce the fundamental definitions for understanding Cayley graphs and Cayley maps.

Definition 11 Suppose H is a group with n elements and X is a subset of H − {e} that is closed
with respect to inverses. The Cayley graph CG(H, X) is a graph on n vertices, labeled by the n
elements of H. The edges are determined by X : vertices g and h are adjacent if and only if there
exists some x ∈ X such that g = h ∗ x.

In Figure 2, we show that K4 can be represented as the Cayley graph CG(Z4, {1, 2, 3}), where
each of the edges are determined by the non-zero elements of Z4. The blue edges represent the
addition of a 1 in one direction and the addition of a 3 in the reverse direction. On the other hand,
the red edges represent the addition of a 2 in both directions. Thus, all the vertices will be adjacent
to one another since each vertex can reach every other vertex by the addition of another non-zero
element, which ensures that the Cayley graph is a complete graph.

However, notice that there are edge crossings in the Cayley graph. When we want to embed
Cayley graphs onto orientable surfaces without edge crossings, we instead opt to use Cayley maps.

Figure 2: CG(Z4, {1, 2, 3})

Definition 12 Cayley Map CM (H, ρ) embeds Cayley graph CG(H, X) onto a surface, where X is a
closed subset of H and ρ = (x1, x2, ..., xk) is a cyclic permutation of X that gives the counterclockwise
rotation of edges around each vertex.
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Figure 3: The counterclockwise rotation of edges
around each vertex of a particular Cayley map

Figure 3 illustrates the counterclockwise rotation of edges around each vertex of a Cayley map
with ρ = (x1, x2, ..., xk). It is possible to find optimal embeddings for many small complete graphs.
For example, we will look at the optimal embedding of the Cayley map CM (Z5, (1, 2, 4, 3)) which
optimally embeds on a torus.

Figure 4: Counterclockwise rotation around each
vertex in CM (Z5, (1, 2, 4, 3))

Taking a look at Figure 4, we can see that ρ = (1, 2, 4, 3) determines the counterclockwise rotation
around any particular vertex. By adding non-zero elements to the vertex in the middle, we can reach
each of the other vertices in order to make the graph complete. Furthermore, like in the Cayley
graph example shown earlier, each edge represents the addition of a non-zero number in the forward
and reverse directions. If v represents a particular vertex in the Cayley map, then one must add 4
to v in order to form an edge with the vertex v + 4. Thus, in the reverse direction, one will need to
add 1 to v + 4, which is also the additive inverse of 4, in order to return to v. This pattern holds
true for any of the edges between the middle vertex v and the other surrounding vertices. Now that
we have identified the general pattern around each vertex, we can start creating the full Cayley map
for CM (Z5, (1, 2, 4, 3)).
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Figure 5: Counterclockwise rotation around each
vertex in CM (Z5, (1, 2, 4, 3))

In Figure 5, we illustrate the full Cayley map for CM (Z5, (1, 2, 4, 3)). Note that since this Cayley
map optimally embeds on a torus, edges can cross the boundaries of the rectangle in order to reach
other vertices without crossing other edges. Each of the faces that are generated by the Cayley map
are indicated in different colors. Thus, from this Cayley map we can see that F = 5, E = 10, and
V = 5. Therefore the Euler characteristic χ = 0, in which case the genus of the surface g = 1. We
can verify that a one hole torus is the most optimal surface for the embedding since γ(K5) = 1 = g.
Also, notice that all of the faces generated are triangles.

Another way we can describe the faces of the Cayley map is by looking at λ, which is a permu-
tation of disjoint cyclic permutations where each factor in λ describes an edge type. For example,
Figure 5 has λ = ((1, 3, 4, 2)), so there is only one single cyclic permutation which indicates that
there will only be one type of face in the embedding. One can see that every face is generated by a
cycle of the permutation (1, 3, 4, 2) so anytime there is an edge of type 1, that edge is followed by
an edge of type 3, and so forth. The next definition is critical for understanding the relationship
between ρ and λ.

Definition 13 Suppose H is a group and X is a subset of H that is closed with respect to inverses.
Then λ(x) = ρ(x−1) (and therefore ρ(x) = λ(x−1)).

Definition 3.10 gives us a way to move back and forth between λ and ρ in a way that will be very
useful when we explain the search algorithms later in the paper. If λi is a cyclic permutation in λ,
then |λi| denotes the number of elements in λi. We also define the multiplicity of λi, mult(λi), to
be the order of x1 + x2 + ... + xn in Zn. When defining λ, we will write λ = λ1 · ... · λm as a product
of m disjoint cyclic permutations. Given a λi, Face(λi) = |λi| · mult(λi) = k, where k will represent
the type of polygon generated by λi. The number of k-gons can then be found using p|λi|

F ace(λi) , where
p refers to a prime n.

Figure 6: Folding a rectangle into a torus
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Notice that the previous example produced an optimal embedding onto a torus. By starting with
a rectangle, one can simply fold the long sides of the rectangle together, resulting in to openings
which represent the short sides of the original rectangle. Then by connecting these two openings,
one can create a torus out of a rectangle. Other surfaces can also be used for gluing together tori
such as hexagons. In fact, the optimal embedding for K7 requires folding a hexagon into a torus.

Figure 7: Optimal Embedding for K7

As of now, it should be clear that the main optimization problem of constructing graph embedding
involves minimizing the genus of the surface on which a graph is embedded. However, since the genus
is directly calculated from the Euler characteristic, one must also consider how this value affects the
genus. Recall that the Euler characteristic equation is χ = |V | − |E| + |F |. From this equation, it
should be clear that the number of vertices and edges will always remain constant for any Cayley
map we make with a particular group Zn. Also, |V | − |E| will typically be a negative value, so thus
the more faces we can generate in a graph embedding, the higher the Euler characteristic becomes
(the closer it approaches 2, in which case the genus is 0). Since ρ and, therefore λ, have an effect
on the number of faces generated on an embedding, one must try to maximize the number of faces
by finding the most optimal ρ or λ that will result in the highest possible number of faces on the
embedding. Typically, generating larger polygons will result in less faces, so reducing the size of
the polygons will help to maximize the Euler characteristic. Then once the Euler characteristic is
known, the equation χ = 2 − 2g tells us that an increase in the value of χ results in a lower genus.

In this paper, we will be working with the finite cyclic group Z12m+7 for m = 0, 1, 2.... Many of
the these groups will be of the form Zp, where p is prime. Scheinblum successfully proved that a
Cayley map with the group Zp can achieve an optimal embedding when all of its λi generate 3-gons
[11]. While many of the algorithms we implement attack the the optimization problem by searching
for ρ, Scheinblum’s findings will be useful if we want to attack the problem by searching for optimal
λ. Thus, we will base one of our genetic algorithms on the idea that we can form triplets in λ since
there will be 12m + 6 total elements in any particular group, which means that it is possible to
group the elements into triplets. Then, we must confirm that the triplets are cyclic permutations
that each have mult(λi) = 1. If such a λ exists for a Cayley map embedding with a group Z12m+7,
then that particular λ and its corresponding ρ will define an optimal graph embedding for K12m+7
onto an orientable surface.

2.2 Search Methods
One of the most common problems in computer science is the search problem. Usually, a search

problem requires building a search algorithm that can find an optimal solution in a search space. A
search space may be a structure or space of a specific problem domain. There are several classes of
search algorithms that have developed in recent decades as the literature on search algorithms has
expanded. Three of the most popular classes of search algorithms are enumerative, calculus-based,
and random search methods [6]. An enumerative method can be thought of as an exhaustive search
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method that checks every possible candidate in a search space until it finds a solution. On the other
hand, a calculus-based search method is inspired by the way in which local optima or global optima
are found in calculus. This process usually involves working with the gradient of an objective function
or using an iterative approach such as hill climbing to make progress toward a maximum or minimum
solution. Finally, there are also random search methods which include genetic algorithms and other
many other Evolutionary Programs mentioned in Section 1. This class of methods typically involves
a probabilistic component but it is not necessarily limited to completely random techniques such as
a random walk. Genetic algorithms use random choices as a way to effectively exploit a search space
which still gives the random search a sense of direction [6].

In this section, we will provide background and the review of literature regarding relevant algo-
rithms within these classes. For the purposes of this paper, we will only be concerned with brute
force search methods (enumerative), hill-climbing methods (calculus-based), and genetic algorithms
(random search). Furthermore, since the optimization problem in this paper is primarily a combina-
torial optimization problem, we will focus on the feasibility of each search method in tackling such
problems.

Brute Force Search

A common baseline algorithm for most search problems is a brute force search. A brute force
search is an enumerative search method that exhausts all the potential solutions in a search space.
Brute force algorithms are easy to implement as opposed to other search algorithms; however, their
performance depends heavily on the size of a search space. This is especially the case when one
must deal with problems in a specific domain. Thus, it is the job of a programmer to incorporate
domain-specific knowledge into the brute force algorithm to improve its performance and perhaps
cut down on the size of the search space. Basic pseudocode of a brute force search algorithm is layed
out below in Algorithm 1. Note that the programmer has some discretion when it comes to choosing
the stopping condition.

Algorithm 1 Brute force search
initialize the first candidate
while stopping condition is not met do

if candidate meets condition then
return candidate

end if
get next candidate

end while

For most problems where brute force search is used, one can think of the search space as a graph
composed of initial states, goal states, functions defined on states or edges, and constraints [15].The
most common brute force search techniques for graph traversals are depth-first search(DFS) and
breadth-first search(BFS). DFS involves traversing a branch of a graph as far as possible until the
algorithm must backtrack to previous states in order to find more branches to traverse. Thus, over
time DFS will traverse each branch of the graph and cover the whole search space. BFS is an
alternate search method that checks for solutions across each layer of a graph instead of directly
traversing each branch one at a time. It is also not uncommon to combine DFS and BFS in a single
brute force search algorithm so that the algorithm can benefit from the caution that BFS offers and
the quick penetration of each branch that DFS offers.

Historically, brute force search has been a niche, only having significance in a small handful
of domains such as number theory and games [15]. In number theory, mathematicians have used
brute force search algorithms as way to provide evidence for conjectures. In the 1950s and 1960s,
Derrick Lehmer utilized brute force search algorithms in order to prove theorems that demanded high
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amounts of computation [16, 17]. There have also been other cases in which brute force algorithms
have assisted in making important discoveries including in the search for Mersenne primes and in
proving the four color theorem [18]. Ultimately, the power of computation unleashed a whole new
branch of mathematics: computational number theory.

There have also been extensive efforts to apply brute force search in solving games and puzzles.
In the literature, chess has been the epitome of such applications since exhaustive search techniques
can be useful in searching state spaces given a small amount of positional knowledge [15]. Other
games where applications of exhaustive search have been successful include Qubic, Go-Moku, and
Nine Men’s Morris [19–21]. Many of the exhaustive search techniques used in games have also had
applications in AI, where decision-making algorithms are crucial for determining the best moves a
player can make in a game. There have also been efforts made in using exhaustive search to solve
puzzles. One of the most classic puzzles is the Rubik’s Cube. In 2010, mathematicians discovered
that given any starting position on a Rubik’s Cube, it would only take 22 or fewer moves to solve
the Rubik’s Cube. [22].

Outside of gaming and number theory, brute force search techniques have not been widely em-
ployed for optimization problems. As stated previously, such techniques fail greatly when the size
of a search space increases. Without a heuristic or shortcut to help trim down the search space, a
brute force search is almost guaranteed to be a memory intensive computational burden for prob-
lems involving large search spaces. Most combinatorial optimization problems will therefore require
a more clever or heuristic approach in order to avoid the combinatorial explosion that arises from
handling too many candidates in a search space.

Hill Climbing Algorithms

One of the most fundamental calculus-based search methods is the hill climbing algorithm. This
algorithm is a local search method that analyzes only a portion of the total search space and converges
to local optima quickly. The process of hill climbing can be attributed to the problem of finding
maxima and minima of a function in calculus. Usually, an algorithm will start at a specific point in
the search space and examine nearby neighbors. In order to compare the merit of each neighbor, an
evaluation function will be used. If the algorithm is looking for a local minima, it will move to the
neighboring state with the lowest value from the evaluation function, but if the algorithm is looking
for a local maxima, it will move to the neighboring state with the highest value. The hill climbing
process will continue iterating through the search space until it stops at a desired local optima.
The algorithm knows that the state is a local optima if none of its neighbors have higher values(for
local maxima) or lower values(for local minima) Hill climbing may be used in both discrete and
continuous search spaces, but for the purposes of this paper we will focus on hill climbing in the
context of discrete combinatorial optimization problems.

Algorithm 2 outlines a psuedocode example of a hill climbing algorithm in a discrete space. This
form of hill climbing is also known as steepest ascent hill climbing since the algorithm analyzes every
neighbor close to the current state instead of simply picking the first neighbor it finds that has a
higher value.
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Algorithm 2 Hill climbing algorithm
currentSolution = initialSolution
stopCondition = FALSE
while !stopCondition do

neighbors = getNeighbors(currentSolution)
nextValue = - infinity
nextSolution = NULL
for all members in neighbors do

if value(member) > nextValue then
nextSolution = member
nextValue = value(member)

end if
end for
if nextValue ≤ value(currentSolution then

stopCondition = TRUE
end if
currentSolution = nextSolution

end while

Like the brute force search, hill climbing may not be suitable for problems in a wide variety
of domains. If a search space contains various local optima, but very few or only a single global
optima, then finding a best solution to a problem will be challenging. Furthermore, most of the
functions that students work with in a calculus course are continuous and differentiable, making the
process of finding local optima very easy. However, most optimization problems have some degree of
noise or even discontinuity in the search space that prevents easy use of the hill climbing algorithm.
Many search spaces can also contain structural problems for the hill climbing algorithm such as
“plateaus” where values remain unchanged for many consecutive solutions, or “ridges” which force
the hill climbing algorithm to zig-zag to a local optima. There also exists the danger of a search
space having a very volatile structure where solutions often have extreme differences in their values.
Thus, a global optima may only have neighbors with values at the opposite extreme, making it very
difficult for there to be a gradual convergence to the global optima. For these reasons, along with
the fact that the algorithm is limited to a local scope, hill climbing is considered to be less robust
than other search techniques [6].

One modification that has often improved the performance of hill climbing algorithms is the
addition of a stochastic component. When transitions are made at random, we consider the algorithm
to be a stochastic hill climbing method. Given a set of neighbors, the algorithm will choose a neighbor
at random chance, although some neighbors may hold higher weight over other neighbors if they are
closer to the optimal solution. One must also consider what should happen if the neighbor that is
chosen by the algorithm has a value that is worse than that of the current state. One approach is
to retain the current state and repeat the process of choosing another neighbor in hopes that the
neighbor will be a favorable state [23]. Another approach is to simply allow the algorithm to run
for a definite number of iterations even if it makes moves that transition from a particular state to
one that is worse than it. This approach also allows the algorithm to scan a broad range of the
overall search space and one can simply keep track of the highest running value that the algorithm
has found by the end of the simulation or simply stop the algorithm if it finds a global solution.

One commonly used analogy is to think of the pool of neighbors as a roulette wheel. The neighbors
with values closer to the optimal solution should have a higher chance of being chosen, and thus one
can think of each neighbor having its own chunk on a biased roulette wheel. However, this approach
evaluates all neighbors of a current state though. If one wishes to cut down on computation, an
alternate approach is to simply identify a random neighbor and accept the neighoring state with
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some probability that depends on how the neighboring state’s value from the evaluation function
differs from that of the current state’s value [24]. With this approach, it is still possible to allow the
algorithm to move freely to states even if their value is worse.

Stochastic hill climbing can be a vary useful algorithm that combines both calculus-based search
techniques with random search. There have also been efforts made to compare the performance of
stochastic hill climbing methods to other random search algorithms. Juels and Wattenberg recom-
mended that stochastic hill climbing even be a baseline algorithm for genetic algorithms [23]. Many
of the heuristics that are employed to implement stochastic hill climbing such as the roulette wheel
can also provide the backbone for design choices in genetic algorithms.

Algorithm 2 presents a pseudocode example of the stochastic hill climbing algorithm. The tran-
sition probability is decided at the discretion of the programmer. As a starting point, Fogel and
Michaelewicz provide the following function for calculating the transition probability [24]:

p = 1
1 + e

eval(currentstate)−eval(neighbor)
T

Here, T acts as an additional parameter and its value typically depends on the nature of the
problem. A higher value of T will make the search more random, but a lower value of T will make
the algorithm more deterministic in nature.

Algorithm 3 Stochastic hill climbing algorithm
x = 0
select state at random
evaluate(state)
while t < maxIterations do

select a neighbor at random
transition to neighbor with probability p
x = x + 1

end while

Although hill climbing algorithms are less robust than other search algorithms, there have
been many examples of their success in solving combinatorial optimization problems. Traditional
hill climbing algorithms have been used for producing one-factorizations of complete graphs and
have outperformed genetic algorithms in solving graph coloring and bin packing problems [25, 26].
Stochastic hill climbing has also seen major success compared to other evolutionary programs in a
variety of problems. Stochastic hill climbing has been a top-performer in automatic graph drawing
problems, which have direct applications to software engineering and VSLI design [27]. There has
also been a growing fascination in combining stochastic hill climbing with other Evolutionary Pro-
grams. One algorithm, titled “magnetic hill climbing”, combines aspects of stochastic hill climbing
with evolutionary strategies and has been used to solve the minimum cut graph partitioning problem
[28]. Researchers have also combined evolutionary algorithms and stochastic hill climbing to solve
the edge-biconnectivity augmentation problem [29].

In recent years, there have been efforts to evolve the basic hill climbing algorithm into a more
robust and efficient method. One example is the development of Smart Hill Climbing (SHiC), which
has made significant advances in optimizing application server configurations, agile dynamic mapping
in many-core systems, and in finding better boolean functions for creating block and stream ciphers
[30–32]. Improvements that make SHiC algorithms robust include their ability to cover global search
spaces effectively, learning from past transitions, and making smart restarts in the search process
[30]. Hill climbing has also been useful in optimizing machine learning and deep learning algorithms.
In deep learning, hill climbing has outperformed other heuristic algorithms in training artificial neu-
ral networks for classification tasks [33]. Researchers have also developed multi-stage combinations
of algorithms that combine hill climbing algorithms with learning algorithms such as K-means for
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optimizing sample allocation designs [34].

Genetic Algorithms

In this section, we will now introduce the primary metaheuristic search method that we implement
in this paper, the genetic algorithm (GA). We’ll begin by discussing the basic components of the
GA and then review relevant literature that has provided key insights into the performance of GAs
in solving combinatorial optimization problems. We’ll also take a look at how the GA is related to
other random search methods such as stochastic hill climbing.

The GA is a metaheuristic approach to solving optimization problems that takes inspiration
from the biological processes that drive evolution. Such processes include genetic recombination and
crossover, mutations, and reproduction. Arguably the most popular of all Evolutionary Programs,
the GA stands out because it places heavy emphasis on the role of recombination over random
mutations [35]. The reason is founded in the significance of genetic diversity, which is a result of
recombination.

In a real-world population of animals, recombination causes genetic diversity to increase and over
time individuals with the most favorable traits will be more likely to pass on their genes to future
generations because of natural selection. Individuals who have favorable traits and can reproduce
easily are deemed to be more “fit” than others. Similarly, we can think of encoded strings, usually
composed of 0’s and 1’s, to represent the chromosomes of individuals in a computer simulation. By
letting the individuals reproduce, we can allow the algorithm to practice natural selection and decide
which patterns in these binary strings cause an individual to have a high fitness measure. Then,
over a series of generations, the individuals with higher fitness will be more likely to keep passing
on the patterns that made them more fit to begin with, thus causing every future generation to be
slightly more fit than the previous generation. If the simulation continues for a large amount of
generations, a convergence to an optimal individual should occur.

Compared to other heuristic search methods, the GA also stands out because of four significant
features [6]:

• GAs work with encodings of parameters

• GAs search from a population of points

• GAs use objective functions

• GAs use probabilistic rules

The GA does not search for solutions in the way that a hill climbing algorithm would. While hill
climbing may be dependent on continuity or differentiability, a GA simply works off of encodings of
parameters. Usually, these encoded strings will be composed of 1’s and 0’s. These strings then form
the chromosomes of a population. As a population-based approach, the GA handles a large number
of chromosomes which maintains a great deal of diversity in a population. This approach allows the
GA to let natural selection act on the whole population and future generations so that favorable
patterns can be preserved and optimal chromosomes can be produced through the recombination
process of solutions that are more fit.

The GA also incorporates the use of objective functions. We’ll define the fitness function f to
be an evaluation function that determines the merit that an individual has in a population. The
fitness function ultimately decides how likely an individual is to reproduce with other individuals
and pass on its traits to future offspring [6]. The fitness of an individual has a great impact on how
one programs the reproduction operator, which we will discuss later in more detail.

Finally, the GA is classified as a random search method. Thus, GAs do not incorporate deter-
ministic rules like the hill climbing algorithm or traditional brute force approaches. Because the
process of evolution is partly driven by chance, so do GAs depend on randomness to determine
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which chromosomes are more optimal and will be able to pass on their traits to future offspring.
Probability is also central to the mutation operator, which is a key step in the implementation of a
GA.

At the heart of a genetic algorithm are three fundamental components [36]:

• A selection operator

• A crossover operator

• A mutation operator

We’ll now review the details of each step in the GA in more detail while keeping our focus on
the 3 major operators. Following this discussion, we will include a pseudocode example of a basic GA.

The Selection Process and Reproduction

After the objective function and the structure of the chromosomes are understood, the first
task is to figure out how the selection process will work for reproduction. The reproduction (or
selection) operator acts as an artificial version of natural selection since chromosomes with higher
fitness values will be more likely to be selected for reproduction in the simulation, thus making it
possible for offspring to carry on certain qualities that are favorable [6]. Once the programmer has
initialized a population of chromosomes, the fitness of each chromosome will need to be assessed
using the objective function. Although there are several selection methods, the most commonly
used method is “fitness-proportionate selection” with a roulette wheel [4]. One way to partition the
roulette wheel is to scale the fitness values of each chromosome in such a way that slightly favors
those with higher fitness values, and thus when chromosomes are chosen for reproduction, it will be
more likely for the algorithm to choose the more optimal chromosomes.

The selection process can have a very significant impact on the rate of convergence to an optimal
solution. It is important to consider the “exploitation/exploration” balance since if the selection
process is too biased toward optimal chromosomes, it is likely that future generations will lose
genetic diversity necessary for further progress in the convergence process [4]. However, if the
selection process is too reserved in its bias, convergence to a desirable solution will take much
longer. It is also important to note that in a traditional GA, no chromosomes are carried over
to subsequent generations after they undergo the reproductive process. One way to save high-
performing chromosomes to be individuals of subsequent generations is to implement a technique
called “elitism” [4]. Also, note that selection operator chooses chromosomes without replacement,
which allows chromosomes to be chosen more than once [37].

As one can see, the nature of the reproduction operator is vital for the performance of the GA.
It is up to the programmer to make the necessary adjustments so that the chromosomes in the algo-
rithm can gradually converge to an optimal solution. For more on selection techniques, see Melanie
Mitchell’s An Introduction to Genetic Algorithms [4].

Crossover and Recombination

After selecting two chromosomes for the mating process, the crossover operator must be consid-
ered. Compared to other operators, the crossover operator is likely the main distinguishing feature
of the GA since recombination, as a result of crossover, is very powerful for exploring a search space
while helping the algorithm learn which traits of a chromosome should be preserved over others [4].
Typically, the crossover operator will perform some rearrangement of subsequences of the parent
chromosomes so that the child chromosomes, or offspring, have traits from both parents. Tech-
niques for crossover range from very simple methods like single-point crossover to more advanced
methods which may be more specific to problems in certain domains.
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The most traditional approach for crossover is the single-point crossover. Given two parent
chromosomes, the operator will choose a random location on the bit strings to be a cutoff point.
This process will produce two subsequences for each parent chromosome which will then be re-
arranged so that first half of the first parent chromosome will attach to the second half of the second
parent chromosome to produce the first child chromosome. Likewise, the first half of the second
parent chromosome will attach to the second half of the first parent chromosome to produce the
second child chromosome.

Single-point crossover, although easily to implement, has its downsides. Two common problems
that can arise are “positional bias” and the “endpoint effect” [4]. Positional bias is a concept that
refers to the way in which schemas produced by parent chromosomes depend on the location of the
bits in the chromosome [38]. The single-point crossover method may disrupt bits that interact with
one another if the bits are located far away from each other. Thus, the method assumes that certain
short schemas are what form the building blocks of a string, but usually one will not know how the
ordering of bits affects the functional relationships between them [4]. Another common problem is
the “endpoint effect”, which happens when the endpoints of the parent chromosomes always show up
in their subsequences. Therefore, it is likely that future generations will maintain these “vestigial”
structures.

One alternative approach to single-point crossover is the double-point crossover method. Basi-
cally, this approach requires forming two cutoff points. It is then a common practice to take the
middle chunk of one of the parent chromosomes and place it in between the first and third subse-
quences of the second parent chromosome to form the first child chromosome. Then, the middle
chunk of the other parent’s chromosome can be placed between the first and third subsequences of
the other first parent chromosome to form the second child chromosome. Although double-point
crossover can protect against positional bias and endpoint effects, it is still not an ideal approach
for many problems. The literature on crossover methods is quite vast and includes more complex
crossover methods such as “parameterized uniform crossover” and “partially mapped crossover”
[39, 40].

The Mutation

Just like in the process of evolution, we can create mutations in our chromosomes in order
to generate random variation in a population. The reasoning behind the addition of a mutation
operator is that sometimes a program may converge slowly and require an extra push from another
source of variation. The operator thus gives the GA a small chance to hop around the search
space and possibly escape the traps of local optima [37]. The basic mutation operator involves
randomly flipping bits in a chromosome with some small probability like 0.001 [36]. Once again,
this operator can be tuned if the programmer believes that more exploration will help the program
converge sooner. However, the probability of mutation should remain low. It is widely accepted
that mutation is simply a secondary mechanism by which the GA can form adaptations [6].

Below, Algorithm 4 presents a pseudocode example of a basic GA. In Section 3 we will discuss
more specifics regarding the implementation of specific operators and methods in the algorithm.
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Algorithm 4 Genetic algorithm
k = 0
Pk = Initial population of random individuals
evaluateFitness(individual) for each individual ∈ Pk

while k < maxIterations do
Select individuals from Pk for reproduction
Recombine individuals
Mutate individuals
evaluateFitness(new individuals)
Pk+1 = new individuals
k = k + 1

end while

As stated in Section 1, the GA has been applied to a wide scale of problems. GAs have been used
at General Electric for aircraft design, Los Alamos National Lab for work on satelite images, John
Deere for assemby line optimization, and even in generating computer-animated horses in the hit
movie The Lord of the Rings: The Return of the King, to name a few [41]. However, it is also worth
taking a look at the literature regarding the GA’s performance in solving combinatorial optimization
problems to get an idea for when GAs are a preferred option over other search methods.

The most famous benchmark for the algorithm’s feasibility and applicability is arguably its
performance in solving the Traveling Salesman Problem(TSP), which is problem that requires one
to find the shortest route on a graph of cities such that all cities are visited once but the route ends
where it started. Once GAs become more commonly used search methods, the focus was set on
developing optimal crossover operators for TSP. Following the work of Goldberg and Holland, many
researchers developed complex crossover techniques that provided promising results such as heuristic
crossover (1985), partially-mapped crossover (1985), order crossover and cycle crossover (1987), edge
recombination crossover (1990), matrix crossover (1992), DPX crossover (1996), and edge assembly
crossover (1997) [6, 42–47]. Since the crossover operator generates the most variation in a population
compared to the other operators, most of the success of a GA depends on the efficiency of crossover
and its ability to explore a broad area of the search space.

In recent literature, there has been growing interest in developing parallel genetic algorithms and
as well as hybrid algorithms that can compete with more state-of-the-art optimization algorithms
[48–50]. Essentially, a parallel algorithm can execute several tasks in a program simultaneously by
taking advantage of multiple processing units, thus dividing the total amount of work into smaller,
more manageable pieces. Once the parallel processing units finish, the algorithm will output a single
result much faster than if there was only one processing unit available. Highly parallelized GAs
have been successful at solving TSP for intelligent transportation systems, making it much easier
for autonomous vehicles to make swift decisions in time-constrained problems [49].

Although GAs may perform well on their own in some cases, many researchers have also incorpo-
rated GAs into hybrid optimization algorithms to improve upon traditional GAs and compete with
top-performing optimization algorithms. In one example, a hybrid genetic algorithm significantly
out-performed a traditional genetic algorithm approach in solving TSP using Android Google Maps,
especially as problem complexity increase [50]. Even more exciting for the state of GA research is
the prospect of more hybrid optimization algorithms incorporating both GAs and machine learn-
ing algorithms. The hybridization of GAs and Multiagent Reinforcement Learning (MARL) has
generated a powerful combination for solving TSP by letting the GA act as a tour improvement
heuristic and MARL to act as a connection heuristic [48]. Such hybrid algorithms have been able to
out-perform more state-of-the-art algorithms in solving TSP. Hybrid GAs have also been successful
at solving other common combinatorial optimization problems that have had major implications for
operations research including flow-shop scheduling, the three-index assignment problem, and the
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well-known quadratic assignment problem [51–53].
It is worth mentioning some cases in which GAs are not suited for certain optimization problems.

For the most part, it is not recommended to use a GA if a search space is small, is smooth or
unimodal, or has a structure that is well understood [4]. When search spaces are small, it is not
worth implementing a complex algorithm such as a GA when a brute-force approach may be able
to find a global optima much faster. Furthermore, GAs work very well in noisy environments, but
they tend to fail compared to hill climbing techniques when dealing with smooth search spaces.
Hill climbers can exploit the smoothness of such search spaces and thus approach a global optima
much faster. When the structure of a search space is well understood, it is not efficient to use a
GA since other domain-specific algorithms will better incorporate domain-specific knowledge, thus
making those algorithms more efficient at finding global optima. However, these considerations are
not necessarily the end all be all for deciding on the use of GAs for solving a particular optimization
problem. The wide variety of research on GAs has proven that the method can incorporate very
efficient design choices that enhance their performance and help them out-perform other modern
algorithms, thus maintaining the trend of robustness that GAs have demonstrated since the days of
Holland and Goldberg.

3 Computational Methods
In this section, we lay out the implementation of the computational methods used for solving

the optimization problem we introduced at the end of Section 2.1. In Section 3.1, we will explain
our baseline approach to solving the problem which involves the use of a brute force algorithm.
Then, in Section 3.2, we will explain two hill climbing algorithms that we built in order to better
understand the structure of the search space. Finally, in Section 3.3, we will end this section with
the implementation of two GAs that tackle the optimization problem from different angles. For
relevant code, see the Appendix section.

3.1 Brute Force Algorithm
Given a positive integer n, the brute force algorithm will search for an optimal Cayley map

embedding for the graph K12m+7. In order to determine if a solution is optimal, we base our search
on the optimal genus for a complete graph Kn given by Ringel and Youngs that we mentioned in
Section 2.1:

γ(Kn) =
⌈

(n − 3)(n − 4)
12

⌉
.

For a given Cayley map CM (Zn, ρ), recall that ρ represents a cyclic permutation of elements
from 1 to n − 1, and that ρ will determine the λ, which impacts the number of faces generated by
the Cayley Map. Our brute force algorithm will search for a optimal ρ by checking permutations
that will be stored in lists. The starting point for the search is the smallest permutation, and each
subsequent permutation that is evaluated will be the next largest permutation lexographically. The
algorithm will only need to check (n−2)! permutations in the worst case as long as each permutation
always begins with 1. As the algorithm runs, it keeps track of the most optimal ρ that it has found
so far, and if it finds a ρ with genus equal to the optimal genus determined by the Ringel and Youngs
definition, then the algorithm will stop and return the optimal solution for that particular Cayley
map.

Most of the logic in the algorithm takes place in the calculate genus() function which will be a
fundamental function for other algorithms we present later in this section. This function will also
act like an objective function for evaluating fitness. The basic idea behind the function is to compute
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the function λ(x) for the value in ρ and from there we use the set of formulas we defined in Section
2.1 to calculate the number of faces that λ generates. Then, once we have the number of faces,
edges, and vertices, we can calculate the Euler characteristic of the Cayley map and then the genus.
Below, we list the key steps in calculating the genus given a ρ:

1. Build two dictionaries. One that will hold mappings of the function λ(x) and one that will
keep track of which elements of ρ have already been evaluated (set all values to 1).

2. Iterate through each value in ρ and save a mapping from each x ∈ ρ to λ(x), which we found
to be equal to ρ(x−1). For our approach we save the λ(x−1) at each iteration since we know
that x−1 = n − x and thus we can map x−1 to ρ(x), which is simply the value following x in ρ.

3. Calculate the number of edges using n(n−1)
2 and save the number of vertices, which is equal to

n.

4. Find the number of faces generated. This requires iterating through the keys in the second
dictionary that was created in step 1 and then calculating Face(λi) for each λi ∈ λ. Then one
can calculate the number of faces that each λi generates by doing n|λi|

F ace(λi)

5. Calculate the Euler characteristic using χ = |V | − |E| + |F | and then obtain the genus using
g = χ−2

−2 .

For example, suppose we want to find an optimal embedding for a Cayley map with the group
Z7, and suppose we set ρ = (1, 2, 3, 6, 5, 4). First, we will want to figure out what λ looks like so
that we can divide up our elements into their corresponding λi. Using the fact that λ(x) = ρ(x−1),
we have

λ(1) = ρ(6) = 5

λ(5) = ρ(2) = 3

λ(3) = ρ(4) = 1

.
Now we can obtain λ1 = (1, 5, 3). By performing a similar process on the remaining values in

ρ we can find that λ2 = (2, 4, 6). Thus we have the product λ = ((1, 5, 3), (2, 4, 6)), so now we can
calculate the number of faces that each factor generates. For λ1 we can see that 1+5+3 = 2 and since
2 and 7 are relatively prime, then ord(2) = mult(λ1) = 7. Since |λ1| = 3, then Face(λ1) = 3 ·7 = 21.
Then, by calculating n|λ1|

F ace(λ1) , we can see that the number of faces generated by λ1 is 1. We can
perform similar calculations to see that the number of faces generated by λ2 is also 1. Thus, only 2
faces are generated by the Cayley map.

Since E = 7(6)
2 = 21 and V = 7, we have χ = 7−21+2 = −12. Thus, g = −12−2

−2 = 7. According
to the Ringel and Youngs definition, this is not an optimal embedding since γ(K7) = 1. As you can
see, this approach does not say much about the structure of the search space as a whole. To better
understand the search space, it is more appropriate to implement a calculus-based search such as
hill climbing.

3.2 Hill Climbing Algorithms
In this section, we’ll discuss two different approaches to building a hill climbing algorithm for our

optimization problem. First, we will discus the implementation of the traditional hill climbing algo-
rithm that we employ in this paper. Then, we will also consider a stochastic hill climbing algorithm

18



since it may act as a good predictor for the performance of the GA that we will discuss in Section 3.3.

Traditional Approach

Instead of searching through possible permutations of ρ in lexographic order, the hill climbing
algorithm instead picks a random permutation in the search space and begins a local search. Our
algorithm will continue to use the same calculate genus() function that was implemented in the brute
force approach as a way of measuring the fitness of a ρ. In order for the algorithm to determine
the next neighbor to transition to, the algorithm will need to figure out all the nearby neighbors,
evaluate each of their fitness values, and then choose the neighbor that has a fitness value better
than the current ρ. In our case, the algorithm will choose a ρ with a fitness value lower than the
current ρ since a lower genus is more optimal. If the algorithm reaches a ρ and its neighbors all
have genus values greater than that of ρ, then it will stop and return the current permutation and
its genus.

In order to implement this approach, we must also define what it means to be a neighbor to a
particular ρ. Suppose we are trying to find an optimal embedding for CM (Z7, ρ) and that we begin
our search with ρ = (1, 4, 5, 2, 3, 6). A neighbor of ρ can be found by making a single swap between
adjacent elements in ρ. One neighbor may have the first two elements swapped and another may
have the first and last elements swapped. Thus, there will be 6 neighbors in total:

(4, 1, 5, 2, 3, 6)

(1, 5, 4, 2, 3, 6)

(1, 4, 2, 5, 3, 6)

(1, 4, 5, 3, 2, 6)

(1, 4, 5, 2, 6, 3)

(6, 4, 5, 2, 3, 1)

.
This approach is useful for understanding the structure of the search space. As long as permu-

tations begin with the element 1, then there will be (n − 2)! possible solutions, so for much larger
groups such as Z115, it is important to exploit the structure of the search space as much as possible
to improve the performance of the search. If the hill climbing algorithm finds that there are many
local optima but few global optima, then it may not be helpful to depend on a hill climbing approach.
Instead, a stochastic approach may prove to be more useful.

Stochastic Approach

The stochastic hill climbing algorithm can often be a useful baseline for determining the likely
performance of a genetic algorithm. In our approach, neighbors are defined the same way as in
the traditional hill climbing algorithm. However, now the search can transition randomly from
permutation to permutation even if the new permutation has a higher genus than the previous one.
The process works similar to a roulette wheel. When the algorithm begins, it will evaluate all of the
genus values of the neighbors close to the starting point and then build a biased roulette wheel based
on these values. Since many neighbors may share the same genus, we will cluster similar neighbors
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into their own intervals on the roulette wheel. Since the wheel is biased in favor of more optimal
permutation, it is much more likely for a group of neighbors with genus 1 to be chosen randomly
than a group of neighbors with genus 5. After a group is chosen randomly, a random permutation
is then chosen from that group of candidates and the permutation that is chosen becomes the next
permutation.

The algorithm will continue to make transitions even if the transitions aren’t favorable in terms
of reducing the value of the genus. Furthermore, it is up to the user to decide how many iterations
the algorithm should run. This design choice allows the stochastic hill climbing algorithm to have
freedom to scan the search space as much as possible. Other design choices of the stochastic hill
algorithm will have a significant influence on the development of the GAs in the next section. As
stated previously in the paper, stochastic hill climbing algorithms often provide the building blocks
for more complex random search methods like GAs.

3.3 Genetic Algorithm
This section will review the implementation of two different GAs that we will use to solve our

optimization problem. In the first approach, we continue to search across all possible permutations
of ρ to find a optimal Cayley map embeddings. This method builds upon the previous building
blocks that were established in our baseline algorithms. The second approach attacks the problem
by searching for optimal λ permutations. In Sections 4 and 5, we will explain in more detail the
the differences between searching for ρ and searching for λ and why one of the algorithms may have
more powerful implications than the other.

The ρ Approach

Given a finite cyclic group of the form Z12m+7, the first GA will find a ρ that produces an
optimal Cayley map embedding according to Ringel and Youngs definition. Regarding the design of
the algorithm, we will use object-oriented development. The Individual class will keep track of the
fitness and permutation attributes of an individual as well include methods such as mutate() and
calculate genus(). There will also be a Population class that contains important attributes such
as the list of individuals in the population, a list that keeps track of the best genus values in each
generation, a list that keeps track of the average genus in each generation, and the most optimal
permutation found so far in the search. In the Population class there are also several important
methods that we list below:

• metrics(): After a generation of individuals is generated, this method will evaluate the fitness
of each individual and keep track of the best genus, calculate the average genus, and update
the best permutation if a more optimal permutation is found in the generation. This method
will also update the optimal genus found so far in the search too.

• select individual(): This method will serve as the selection operator for the algorithm. An
individual will be randomly chosen to be reproduce using a roulette wheel selection.

• save individuals(): This method will save the top 10% of individuals with regards to fitness
so that these individuals can remain in the subsequent generation.

• mate(): The mate() method will control the reproduction process between two individuals.
The crossover operator will be based on a double-point cutoff method In order to perform
crossover, it will call on crossover().

• crossover(): Given substrings from the previous parents, this method will perform the crossover
operation and return a child chromosome.
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• generate population(): This method replaces the old generation with the new one using the 3
core operators. All of the other methods except metrics() and results() will be called in order
to complete the reproduction and replacement process.

• results(): This method will print out the most optimal rho and its fitness as well as the average
and best rho for each generation. Also, this method will print out the individuals in the final
generation.

There are three core operators in the algorithm: selection, crossover, and mutation. The selection
operator will involve use of a biased roulette wheel selection process similar to the one used in the
stochastic hill climbing algorithm. To add another degree of bias in the algorithm, the top 10%
of individuals in each generation will carry over to the next generation to increase the rate of
convergence to an optimal solution. In terms of crossover, we use a double-point crossover method
that cuts at two points and then rearranges substrings to create the offspring chromosomes. Below,
we outline the steps of the double-point crossover method:

1. Starting with two parent chromosomes, find two different indices and cut each chromosomes
at those two indices.

2. Take the middle chunk from the chromosome of the first parent and replace the middle chunk
from the chromosome of the second parent.

3. Make any necessary substitutions in case duplicate values are present in the new chromosome.

4. Repeat the process for the other child chromosome but instead replace the middle chunk from
the first parent chromosome with that of the second parent chromosome.

Let’s take a look at an example to examine the problem of duplicates that may occur with
this method and how to solve it. Suppose we have two parent chromosomes, (1, 4, 6, 3, 5, 2) and
(1, 5, 3, 6, 2, 4) and let one cutoff point be between the 3rd and 4th element and other cutoff point
be between the 5th and 6th element. Thus we have the following substrings:

Parent 1 : (1, 4, 6)(3, 5)(2)

Parent 2 : (1, 5, 3)(6, 2)(4)

We’ll then replace the middle substring of the second parent chromosome with the middle sub-
string of the first parent chromosome:

Child 1 : (1, 5, 3)(3, 5)(4)

Here, we can see that 3 and 5 are duplicate elements so the child chromosome is not a valid
ρ. However, we can substitute the 3 in the first substring with a 6 since we know the 3 from the
middle substring of the first parent chromosome replaced a 6 that was in the middle substring of the
second parent chromosome. Similarly, we can substitute the 5 in the first substring with a 2. Thus,
the first child chromosome will look like (1, 2, 6, 3, 5, 4). The second child chromosome will look like
(1, 4, 3, 6, 2, 5).

The mutation operator will mutate a child chromosome at a probability of p = 0.005. If a
chromosome undergoes a mutation, two random elements in ρ will swap positions. Both the crossover
and mutation operators are likely to aid the algorithm in exploring the search space while the
selection operator works on exploiting the search space. The double-point crossover has potential
to make very different child chromosomes, and thus cover a very wide range of solutions. Similarly,
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the mutation operator can increase the amount of genetic diversity in a population of individuals
and occasionally help the algorithm escape local optima.

The GA is not a complex metaheuristic search algorithm, and thus it lends itself to problems
that may have search spaces that are not well understood. The implementation is quite simple and
straightforward compared to other state-of-the-art algorithms or domain-specific search algorithms.
However, with an alternate approach we may be able to simplify the optimization problem even
further. Scheinblum’s conclusion about finding optimal Cayley map embeddings using 3-gons in λ
may provide enough domain-specific knowledge to streamline the search process for the genetic algo-
rithm. However, if we’re going to implement such an algorithm we will need to change our approach.

The λ approach

As mentioned earlier in Section 2.1, if we are working with a Cayley Map CM (Zp, ρ) where p
is prime, then we can find an optimal embedding as long as λ only generates 3-gons. Since our
understanding of the structure and implications of λ is more comprehensive than that of ρ , we can
use domain-specific knowledge to build an alternative approach in our search for optimal Cayley
map embeddings. Thus, this approach has potential to cut down on the pool of possible solutions
to something that is more manageable for the algorithm and less intensive.

The first problem that must be considered with this approach is the construction of chromosomes.
One could build random permutations of λ where each λi contains 3 elements, but that would not
guarantee that each λ generates a 3-gon. Scheinblum found that if the mult(λi) = 1, essentially
meaning the elements in λi add up to zero, then the graph could always be optimally embedded for
CM (Zp, ρ) [11]. Recall that Face(λi) = mult(λi) · |λi|. If we know that mult(λi) = 1 and |λi| = 3,
then clearly Face(λi) = 3, and therefore that particular λi generates 3-gons. In order to construct
chromosomes, we will instead take an alternative approach. We will incorporate a brute force search
that looks for sets of triplets that add up to zero into our GA, thus making our algorithm a hybrid
GA algorithm.

Instead of making our chromosomes the elements in λ, we will leave that to the brute force
portion of the algorithm. Our brute force search is inspired by Scheinblum’s brute force algorithm
that generates the λ and ρ of optimal Cayley map embeddings for complete graphs of the form Kn

where n = 1 mod 3 and n > 7 [11]. The number of elements in λ must be divisible by 3 in order to
form triplets and since 0 is not an element that we need to consider, we require n = 1 mod 3. The
algorithm is essentially a depth-first search algorithm that incorporates backtracking to find sets of
triplets where each set is of the form (i, j, k) such that i < j < k and i + j + k ≡ 0 mod n. Although
these details are necessary, it is still possible to generate a ρ that is not one cyclic permutation
containing all n − 1 elements. Thus, a λ that is found by the brute force search may not generate a
valid Cayley map embedding.

Once a potential set of triplets is found by the brute force algorithm, the hyrbid algorithm
will begin the GA portion of the search. Instead of our chromosomes representing λ, they will
instead be an encoding of the orientations of each triplet in λ. For example, suppose we are working
in Z7 and λ = ((4, 2, 1)(6, 5, 3)). We can find ρ by using the fact that ρ(x) = λ(x−1). Thus,
ρ = ((1, 5)(2, 3)(4, 6)), which is not a valid ρ since it is does not contain all n − 1 elements in a single
cyclic permutation. We’ll define the orientation of a triplet to be the order of the elements, so we’ll
encode an unreversed triplet as a 0 and a reversed triplet as a 1. In our example we would encode
the chromosome for ((4, 2, 1)(6, 5, 3)) as [0, 0]. Then, if we want to randomize orientations of the
triplets we could form a new λ using the chromosomes [1, 0], which produces λ = ((1, 2, 4)(6, 5, 3)).
We can then see that ρ = (1, 5, 4, 6, 2, 3), which is a valid ρ. Therefore, this λ and ρ define an optimal
Cayley map embedding for K7.

The goal of the GA portion of the algorithm is to find optimal λ and ρ by discovering different
combinations of orientations for each cycle in a given set of triplets, which is found by the brute
force portion of the algorithm. If a λ does produce a valid ρ, then there is no reason to calculate

22



the genus since we already know that the embedding should be optimal according to Ringel and
Youngs definition. Thus, the evaluation function in the λ approach will not track the genus of each
individual, but instead the number of cycles in ρ, which is generated by the set of triplets. Hence,
individuals with the highest fitness will only have a single cycle in ρ. The algorithm will process
a certain amount of generations, searching for the optimal orientation of triplets that make a valid
ρ. After the GA finishes, the brute force search will then re-take control of the search and find the
next set of triplets. The GA will then continue and the process will repeat until all of the possible
sets of triplets have been tested in a GA for optimal orientations of their cycles.

The hybrid GA will maintain a similar object-oriented structure used in the first GA and contains
two majors classes: the Population class and Individual class. Individuals will contain attributes
that keep track of fitness, the set of triplets, the orientation of triplets, and a map that saves all of
the ρ(x) mappings for each value in the set of triplets. Like the previous algorithm, the Population
class will save attributes such as the best fitness in each generation, optimal lambda found so far in
the search, average fitness in each generation, and the overall optimal fitness found by the algorithm.
Below, we list the significant functions in the Population class:

• metrics(): This method will save the average fitness, best fitness, and optimal lambda in each
generation.

• analyze(): This method produces a convergence plot that plots the average fitness and best
fitness for each generation.

• select individual(): This method will employ a biased roulette wheel selection method to
choose individuals for reproduction.

• save individuals(): This method saves the top 10% of individuals in a generation to be carried
over to the next generation.

• mate(): This method executes the crossover operator between two parent chromosomes using
a single-point crossover method.

• generate population(): This method replaces the old generation with the new one using the 3
core operators. All of the other methods except metrics() will be called in order to complete
the reproduction and replacement process.

The major differences between this approach and the first GA are in the implementation of the
crossover operator and mutation operator. Instead of using a double-point crossover, we will use
a simple single-point crossover. A random index will be chosen and a cut will take place at that
location in each of the parent chromosomes. Then, the first child chromosome will be composed
of the first substring of the first parent chromosome along with the second substring of the second
parent chromosome. Similarly, the second child chromosome will be composed of the first substring
of the second parent chromosome with the second substring of the first parent chromosome. For
example, suppose the first parent chromosomes is (1, 0, 0, 1, 0, 0) and the second parent chromosome
is (0, 0, 1, 1, 1, 0). If we perform a single cut after index 3 then one of the child chromosomes will be
(1, 0, 0, 1, 1, 0) and the other one will be (0, 0, 1, 1, 0, 0).

The mutation operator also works slightly different in this approach. Given a child chromosome,
there will be a small probability (.001) that a bit will flip. Since we assume each mutation event
to be independent, this probability will be the same for each bit. On the other hand, the selection
operator essentially remains the same in both GAs with exception of the scaling operation for making
the roulette wheel biased.

By making a hybrid GA, we can leverage a useful amount of domain-specific knowledge in our
search for optimal Cayley map embeddings. Since the first GA was searching for permutations of
ρ, any optimal solution would have to be found within a search space containing (n − 2)! possible
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solutions. Now, with the λ algorithm, most of the computational load will be placed on the brute
force algorithm. After finding a set of triplets, the GA will only need to search 2 n−1

3 total possibilities
for optimal orientations of a set of triplets. Once a λ that produces a valid rho is found, we will
have a guaranteed solution that optimally embeds a complete graph of the form K12m+7 onto an
orientable surface.

4 Results
In this section, we present results of the proposed GAs as well as the hill climbing and brute force

algorithms. We’ll evaluate the effectiveness and efficiency of an algorithm based on its ability to
find optimal solutions in a reasonable amount of time. We’ll also take a look at how each algorithm
performs for more complex Cayley maps.

In our results, we’ll compare the brute force algorithm (BF), hill climbing algorithm (HC),
stochastic hill climbing algorithm (SHC), genetic algorithm (GA), and hybrid GA algorithm (HGA).
Since the performance of each algorithm is dependent on the complexity of each graph, we started by
looking at how each algorithm performed on a small graph embedding. Table 1 presents the average
time it took for each algorithm to find an optimal Cayley map embedding of the graph K7. Note
that this time may not be the full execution time of the program if the algorithm was able to find an
optimal embedding before it finished (e.g. GAs will continue running until the last generation has
been evaluated). In searching for optimal solutions of the graph K7, all of the algorithms consistently
found optimal graph embeddings except the HC algorithm. The overall average genus found for the
HC algorithm was nearly 4, although in cases where it did find an optimal solution, the average time
it took for the program to find a solution was 0.003 seconds.

Results for K7
Algorithm Average Time to Find

Solution (sec)
BF 0.016
HC 0.003
SHC 0.001
GA 0.001
HGA 0.005

Table 1: Average time spent finding solutions for optimal embeddings of K7. The optimal genus
γ(K7) = 1.

The baseline embedding K7 also gave us the opportunity to better understand the basic structure
of its search space since the BF algorithm could efficiently search every possible permutation. In
Figure 8, we graphed all of the permutations of ρ on the x-axis (every 4th tick is shown), and their
genus values on the y-axis. The structure of the search space has a major effect on the performance
of traditional hill climbing algorithms and brute force algorithms. As graphs became more complex,
the structures of larger search spaces continued to have few global optima, causing the performance
of these two algorithms to be much worse compared to other algorithms.
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Figure 8: The search space for K7.

We then gradually increased the complexity of the graphs and compared certain algorithms in
their ability to find optimal embeddings of K19. At this point, the BF algorithm became computa-
tionally intensive and the time it took to run the program quickly surpassed the reasonable capacity
of standard computers. Thus, in Table 2, we compare all of the algorithms except the BF algorithm.
In terms of metrics, we keep track of each algorithm’s average genus found, best genus found, and
average execution time of the program. By this point, not every algorithm was finding optimal
solutions consistently, so it was apt to analyze these specific metrics and get a sense of the balance
between execution time and ability of an algorithm to find optimal or near-optimal solutions.

Results for K19
Algorithm Average Execution

Time (sec)
Average
Genus

Best Genus

HC 0.004 60 56
SHC 0.213 45 39
GA 0.260 40 39
HGA 0.408 N/A 20

Table 2: Comparing the performance of each algorithm in finding optimal Cayley map embeddings
of K19. The optimal genus γ(K19) = 20.

While the HC algorithm did not run for a user-specified number of iterations, the rest of the
algorithms were more customizable regarding the input parameters. To obtain the results in Table
2, we used 500 iterations for the SHC algorithm, 20 individuals and 20 generations for the HGA,
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and 50 individuals and 50 generations for the GA. Due to the nature of the HGA, this algorithm
will tend to run longer than the other algorithms as it covers the search space of possible triplets
in the brute force portion and the search space composed of all orientations of each triplet during
the GA portion. The program finishes once it has covered all sets of valid triplets, so it is possible
that the program finds many optimal embeddings along the way as opposed to the GA which may
only find a single global optima in the search space of all permutations of ρ. Although its average
execution time was 0.408 seconds, the HGA found at least 16 permutations of λ that formed optimal
embeddings. Furthermore, in the implementation of the HGA, we were only focused on finding the
number of cycles in ρ generated by each set of triplets, so finding the average genus was irrelevant.

Beyond K19, HC and SHC suffered in performance and struggled to reach even local optima.
The GA also struggled to provide near-optimal solutions as the complexity of graphs increased. For
larger Cayley map embeddings we focused on finding solutions with the HGA, which continued to
perform well and provide more than one optimal embedding for each graph we analyzed. Table 3
presents permutations of λ that produce optimal embeddings for graphs of the form K12m+7 using
the HGA. For each simulation, we used 20 generations each with 20 individuals to cut down on
computational burdens that are a result of processing larger graphs. We list one λ for each graph
along with the number of optimal ways one could orient the triplets and still obtain an optimal
embedding. Each λ is not the only set of triplets that can be found in the search space of possible
triplets for each graph. The HGA program can find all possible sets of triplets using the brute force
method as well as most of their optimal orientations using the GA portion of the algorithm, but for
the sake of conciseness we only present one example. Note that not every graph is of the form Kp,
where p is prime. Although a graph of the form Kp is guaranteed to have an optimal embedding
with all 3-gons, we were still able to find optimal embeddings for graphs where 12m + 7 was not
prime.

Results for K12m+7

K12m+7 Permutations of λ
Optimal

Orientations Genus γ(K12m+7)

K7 (1,2,4)(3,5,6) 2 1 1

K19
(1,2,16)(3,5,11)(4,7,8)(6,14,18)(9,12,17)
(10,13,15) 24 20 20

K31

(1,2,28)(3,4,24)(5,8,18)(6,10,5)(7,11,13)
(9,23,30)(12,21,29)(14,22,26)(16,19,27)
(17,20,25)

75 63 63

K43

(1, 2, 40)(3, 4, 36)(5, 7, 31)(6, 12,
25)(8, 13, 22)(9, 14, 20)(10, 15, 18)(11,
33, 42)(16, 29, 41)(17, 30, 39)(19, 32,
35)(21, 27, 38)(23, 26, 37)(24, 28, 34)

39 130 130

K55

(52, 2, 1)(48, 4, 3)(5, 6, 44)(38, 10,
7)(8, 12, 35)(9, 17, 29)(11, 18, 26)(23,
19, 13)(14, 20, 21)(15, 41, 54)(51,
43, 16)(22, 39, 49)(24, 33, 53)(25,
40, 45)(27, 36, 47)(50, 32, 28)(30, 34,
46)(42, 37, 31)

31 221 221
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K67

(1, 2, 64)(60, 4, 3)(56, 6, 5)(52, 8,
7)(48, 10, 9)(11, 12, 44)(35, 19, 13)(14,
20, 33)(31, 21, 15)(16, 23, 28)(17,
24, 26)(18, 50, 66)(22, 47, 65)(25,
46, 63)(62, 45, 27)(29, 51, 54)(61,
43, 30)(53, 49, 32)(34, 41, 59)(36, 40,
58)(55, 42, 37)(38, 39, 57)

25 336 336

K79

(76, 2, 1)(72, 4, 3)(68, 6, 5)(7, 8,
64)(9, 10, 60)(11, 12, 56)(51, 15, 13)(14,
21, 44)(16, 22, 41)(17, 23, 39)(18,
24, 37)(19, 27, 33)(31, 28, 20)(25,
55, 78)(75, 57, 26)(77, 52, 29)(30,
54, 74)(32, 53, 73)(66, 58, 34)(62,
61, 35)(36, 59, 63)(38, 49, 71)(40, 48,
70)(69, 47, 42)(65, 50, 43)(67, 46, 45)

66 475 475

K91

(1, 2, 88)(3, 4, 84)(80, 6, 5)(76, 8,
7)(9, 10, 72)(11, 12, 68)(64, 14, 13)(15,
16, 60)(17, 23, 51)(48, 25, 18)(19,
26, 46)(43, 28, 20)(41, 29, 21)(22,
30, 39)(35, 32, 24)(90, 65, 27)(89,
62, 31)(33, 63, 86)(87, 61, 34)(36,
67, 79)(37, 70, 75)(85, 59, 38)(40,
69, 73)(42, 57, 83)(44, 56, 82)(71,
66, 45)(47, 54, 81)(49, 55, 78)(50, 58,
74)(77, 53, 52)

47 638 638

Table 3: HGA results for graphs of the form K12m+7.

When working with more complex graphs, we were also able to observe patterns of convergence
in the HGA. In Figure 9, we provide an example of a convergence graph for a particular set of triplets
that form an embedding of the graph K79. As you can see in the convergence graph, we have plotted
the generations on the x-axis and the number of cycles in ρ on the y-axis, and we focus on observing
the change in average fitness and best fitness over the course of the genetic algorithm. Clearly, the
particular set of triplets that were found by the brute force portion can be oriented in such a way
that they form an optimal embedding since the the algorithm found orientations that generated only
one cycle in ρ. Even with increasing complexity, the average fitness value within the population of
chromosomes dropped very quickly once the algorithm discovered an optimal orientation of triplets
soon after the fifth generation. By the 10th generation, most chromosomes in the population were
already optimal. Convergence graphs like the one in Figure 9 can ultimately help one understand
how fast the algorithm is converging to a particular solution and whether or not one should cut
back on the number of generations if convergence is quite fast or perhaps increase the number of
generations if convergence is slow.
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Figure 9: A convergence graph for a λ that produces an optimal embedding of K79.

5 Discussion
For every graph that was simulated, the HGA outperformed every other algorithm in finding

the most optimal solutions possible. This was especially the case for larger, more complex graphs
beyond K19. For smaller graphs such as K7, the HGA took longer to find optimal solutions on
average compared to other algorithms but these differences were essentially trivial considering how
small the search space is for finding optimal solutions in K7. For optimal embeddings of K19, the
HGA also had a longer average run-time compared to HC, SHC, and GA but the optimality of
the solutions that it found heavily outweighed the loss of extra time. While the HGA could easily
find an optimal solution for K19 with genus 20, the HC, SHC, and GA could only settle for near-
optimal solutions with the next best possible embedding having a genus of 39. Beyond K19, the HGA
continued to perform effectively and without considerable computational burdens. Furthermore, our
results provide empirical evidence that there exists several optimal embeddings for any graph of the
form K12m+7, further supporting Scheinblums conjecture that there exists an optimal embedding
for any graph of that form [11].

A problem that hindered the other search algorithms was the structure of the search space for
finding optimal permutations of ρ. The BF algorithm failed to find solutions for graphs beyond K7,
and was ultimately ruled out because of computational burdens. The lexographic search provided
no help in handling the large search spaces of more complex graphs. The HC algorithm struggled to
find optimal solutions consistently for embeddings of K7, and that was likely due to the structural
patterns that existed in the search space. Based on Figure 8, there were only 2 optimal permutations
of ρ in the whole search space, and furthermore each global optima was isolated from other local
optima. The structure of the search space did not lend itself well to gradual local search methods
such as hill climbing since usually these methods follow gradual descents or ascents from sub-optimal
solutions to optimal solutions. However, the local optima were essentially pits in the search space
that trapped the hill climbing algorithm, preventing it from being able to transition to a better
state. Thus, since there was a lack of paths for the HC to move gradually from a local optima to
the global optima, the approach suffered in performance compared to the more advanced methods.
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While the HC and BF approaches struggled to deal with higher complexity beyond the graph
K7, the SHC and GA scored similarly on most metrics until they became infeasible for graphs larger
than K19. In finding solutions for the embedding of K19, the SHC and GA were in the middle
of the pack in terms of performance. While these algorithms had shorter average execution times
compared to HGA, they only found near-optimal solutions. For graphs larger than K19, the SHC
and GA suffered the same fate as the HC, and could not cover broad search spaces with such few
global optima. In past literature, the genetic algorithm has usually out-performed stochastic hill
climbing methods because of the crossover operator [54]. However, there may be some reasons as
to why the GA did not quickly out-perform the SHC. One possibility is the existence of hitchhikers
in the chromosomes of individuals. Hitchiking usually occurs when a large schema in the structure
of a chromosome becomes so common in the population, and even though it may provide higher
fitness for an individual, it is likely that other elements tag along near the schemas and become
hard to replace [55]. This effect may have been a serious bottleneck for the GA in finding optimal
solutions since a double-point crossover does not handle hitchikers as well as more advanced crossover
methods.

While the simple GA may not have met expectations, it still provided further results that it can
easily out-perform a traditional hill climbing method and brute force approaches. Genetic algorithms
are not forced to travel down gradients and do not get confused by local optima, unlike traditional
hill climbing methods [54]. The GA was able to use stochastic operations in its core operators to
its advantage, thus making it much easier for it to cover a broad search space and piece together
more optimal schemas in each chromosome. The HC, on the other hand, only depended on adjacent
swaps between elements in each chromosome and could not gain an understanding of the underlying
structural patterns in ρ that made one optimal. Furthermore, the GA was a population-based
approach that could find desirable schemas within chromosomes in parallel with other desirable
schemas, while the BF and HC were simply unable to exploit the search space and covered a much
shorter range of possible solutions at a time.

However, the GA suffered in performance compared to the HGA, especially for larger graphs.
The HGA benefited from all of the inherent strengths of GAs such as the use of coding, ability to
search populations, blindness to auxiliary information, and operators that incorporate randomness
[6]. All of these strengths clearly propelled the HGA past the BF, HC, and SHC approaches and
ultimately contributed to the overall robustness of the algorithm. The addition of domain-specific
knowledge and the ease in finding sets of triplets with the brute force component for most graphs
also influenced the success of the HGA over the GA. A key distinction that makes the HGA stand
out from the other algorithms is that it does not focus its search on finding ρ. When searching
for optimal ρ, the GA could not benefit from any domain-specific findings to streamline the search
process. On the other hand, our approach with finding λ in the HGA benefited from domain-specific
knowledge regarding the formulation of triplets to create the maximum number of faces possible in an
embedding of K12m+7, and thus making it optimal. For now, we have inadequate understanding of
the patterns in ρ that may increase the likelihood of a particular ρ producing an optimal embedding.

Applications of Graph Embeddings

While many readers may think that graph embeddings are only important for topological graph
theory, it is worth taking a moment to consider a specific application of finding optimal Cayley
map embeddings. One of the most important and obvious applications may be in the design of
printed circuit boards, or PCBs [56]. If one thinks of the connection points of a PCB as the vertices
of a graph and the wires as edges, then it is clear that the circuits can be modeled by graphical
representations. A common risk that occurs in the construction of PCBs is the possibility of a short
circuit, which can cause considerable damage to the circuit. As long as wires do not cross, short
circuits can be more easily prevented. Thus, the Cayley map provides a reasonable solution to such
a problem since it models the circuit board such that no two edges of the graph cross, and therefore
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there will be no wire crossings. Furthermore, finding optimal Cayley maps that require the least
number of holes as possible on an orientable surface can be useful when cutting down on the number
of layers in a circuit board. Since the layers in the circuit board are essentially the holes, optimal
Cayley map embeddings can provide an advantage in the design and construction of PCBs.

6 Conclusion
In this paper, we explored new approaches to finding optimal Cayley map embeddings for com-

plete graphs of the form K12m+7 where m is a positive integer. Previous attempts at finding optimal
embeddings relied primarily on brute force approaches that found optimal permutations of λ, but
we presented alternative methods including a brute force approach, hill climbing algorithm, stochas-
tic hill climbing algorithm, and genetic algorithm. While all of these methods focused on finding
optimal ρ, we also constructed a hybrid genetic algorithm that could finding optimal embeddings by
searching for λ. We compared the algorithms in their ability to find optimal solutions quickly. We
also compared how well the algorithms could handle larger graphs and if they could find not only
local optima, but more importantly, global optima.

The traditional hill climbing algorithm and the brute force approach failed to exploit the structure
of the search space in finding optimal ρ. The brute force algorithm could not handle vast search
spaces while the hill climbing algorithm could not escape the confusion of local optima. On the other
hand, the random search algorithms such as the stochastic hill climbing algorithm, genetic algorithm,
and hybrid genetic algorithm made good use of probabilistic components in their implementations.
The stochastic hill climbing algorithm and genetic algorithm both performed similarly, but due to
the lack of domain-specific knowledge about what makes a particular ρ optimal, these algorithms
could not surpass the performance of the hybrid genetic algorithm. The hybrid genetic algorithm
made use of all of the benefits that come along with genetic algorithms as well as additional domain-
specific knowledge about the nature of λ that made its approach more successful. Instead of going
into the problem blind, the algorithm blended deterministic and probabilistic components in a way
that contributed to its overall success.

This work has provided additional empirical evidence that optimal embeddings exist for graphs
of the form K12m+7. Furthermore, we have established another case in which genetic algorithms and
evolutionary strategies can be useful in solving challenging combinatorial optimization problems.

7 Appendix
GitHub code repo: https://github.com/JacobBuckelew/HonorsThesis
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