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Abstract

Background

Non-alcoholic fatty liver disease (NAFLD) ranks first among liver diseases in Western coun-

tries. NAFLD is typically associated with obesity and diabetes, however it also develops in

lean individuals without metabolic syndrome. The prevalence of lean NAFLD is 7 percent in

the U.S. and 25–30 percent in some Asian countries. NAFLD starts with excess liver fat

accumulation (NAFL), progresses to nonalcoholic steatohepatitis (NASH), cirrhosis and

hepatocellular carcinoma (HCC). The pathogenesis of lean NASH-HCC and how it differs

from obese NASH-HCC is not well understood.

Methods

In this work, we generated a mouse model of lean and obese NASH-HCC using a choline

deficient/high trans-fat/fructose/cholesterol diet and a choline supplemented/high trans-fat/

fructose/cholesterol diet, respectively, to compare progression to NASH-HCC in lean versus

obese mice. Comparisons were made at the organismal, histological, and molecular level

by investigating fatty acid metabolism in the plasma of these mice.

Results

Obese mice showed more pronounced glucose intolerance and insulin resistance, higher

levels of plasma cholesterol and triglycerides, and higher penetrance of NASH compared to

lean mice. Despite the abnormal metabolic profile of obese mice, male obese and lean mice

developed HCC with similar penetrance (53.3% and 53.8%, respectively), albeit lean mice

showed faster tumor progression as evidenced by the larger tumor size and lower HCC-free

survival. None of the female lean mice developed HCC, while 50% of female obese mice

developed HCC. Both groups of mice showed a reduction in plasma polyunsaturated fatty

acids (PUFAs), however, the levels were higher towards the endpoint in obese mice com-

pared to lean mice.
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Conclusions

Unhealthy diet composition appears to drive progression to NASH-HCC rather than the

organismal effects of obesity. PUFA levels may increase due to systemic inflammation in

obese mice and act as suppressors of tumor progression, thus delaying HCC progression in

obese mice compared to lean mice. These models could be used to further dissect the

molecular pathogenesis of lean and obese NASH-HCC and address the mechanisms

whereby PUFAs may be implicated in hepatocarcinogenesis.

Background

Globally, the prevalence of non-alcoholic fatty liver disease (NAFLD) is 24 percent and is predicted

as the leading cause for liver transplantation in the United States by 2030 [1,2]. NAFLD encom-

passes a liver disease spectrum that starts with excess accumulation of fat in the liver (NAFL) and

progresses to nonalcoholic steatohepatitis (NASH) with inflammation, cirrhosis and finally hepato-

cellular carcinoma (HCC) [3]. An increasing number of HCCs are caused by NAFLD [4–6].

Some of the risk factors for NAFLD include obesity, diabetes, and genetic predisposition,

however, it can also develop in lean individuals that do not have metabolic syndrome. The

prevalence of lean NAFLD in the U.S. is 7 percent and as high as 25–30 percent in certain

Asian countries [2]. Genetic mutations resulting in triglyceride accumulation in the liver con-

tribute to NAFLD in some patients [7], but more typically diet-related visceral obesity (diet

high in fructose, fat, and cholesterol) is associated with lean NAFLD. Patients with lean

NAFLD do not exhibit all the co-morbidities of metabolic diseases, such as insulin resistance,

higher serum cholesterol and triglyceride levels, or higher liver enzymes that obese patients

exhibit. Since risk factors for lean NAFLD are still not well understood, identification of lean

NAFLD is difficult and results in delayed diagnosis and poor prognosis [8,9].

NAFLD progression is characterized by lipogenesis and lipid metabolism changes, such as

alterations in serum fatty acids of NASH patients [10,11]. Currently lipid metabolism changes

during progression to HCC are not well understood. Certain phospholipids and ceramides

show lower levels in human HCC tissues compared to normal tissues [12]. Furthermore, a

genetic murine model of NASH revealed distinct patterns of serum and tissue fatty acid levels

that correlate with early-stage HCC [13]. Higher levels of free fatty acids were observed in the

livers of mice with diet-induced NAFLD [14] and polyunsaturated fatty acids were reduced in

the plasma of mice with lean NASH-HCC [15].

Various mouse models of diet-induced HCC have been generated, however, they are char-

acterized by certain limitations: 1) they develop diet-induced HCC in the context of obesity

and/or 2) they develop HCCs with low penetrance, or 3) they develop HCCs with high pene-

trance after a very long duration of feeding (80 weeks) [16–19]. A model of lean NASH-HCC

was recently developed by utilizing a choline deficient, high trans-fat/sucrose/cholesterol diet

to induce NASH-HCC in mice of the C57BL/6N strain [15]. In this work we refined the afore-

mentioned mouse model by adding fructose to the diet instead of sucrose, since fructose is

directly converted to fat in the liver. In addition, we used the same high fat diet formulation in

the context of choline supplementation, in order to generate an obese model of NASH-HCC.

The aim was to develop an obese and non-obese (lean) mouse model of NASH-HCC, in which

the only difference in the diet composition would be the presence and absence of choline,

respectively. These mouse models would enable further molecular comparisons of lean and

obese NASH-HCC.
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Materials andmethods

Animals and experimental diets

The Institutional Animal Care and Use Committee at the University of Nebraska Medical

Center approved this study (Protocol #: 17–018) and it was also conducted in compliance with

the ARRIVE guidelines. Male (n = 103) and female (n = 25) C57BL/6N mice (Charles River

Laboratories) were allowed to acclimate and housed as previously described starting at 3 weeks

of age [15]. They were housed in a temperature-, humidity-, and ventilation-controlled vivar-

ium on a 12-h light/dark cycle in specific pathogen-free conditions.

30 males and 10 females were fed with a choline supplemented, high trans-fat, fructose, and

cholesterol diet (CS-HFFC; D18091706), 38 males and 10 females were fed with a choline defi-

cient, high trans-fat, fructose, and cholesterol diet (CD-HFFC; D17071001), and 35 males and

5 females were fed with a low-fat control diet (CON; D16120211; Research Diets, New Bruns-

wick, New Jersey; S1 Table). Choline deficiency results in lean NASH-HCC [15], whereas cho-

line supplementation allows for liver carcinogenesis in the context of obesity [20]. The sample

size was estimated based on HCC penetrance in our previous work [15]. Food consumption

was monitored, mice were weighed and regular husbandry checks were performed as previ-

ously described [15].

Glucose and insulin tolerance test

Intraperitoneal glucose tolerance tests (IPGTT) and intraperitoneal insulin tolerance tests

(IPITT) were performed every 12 weeks starting at 12 weeks of age. Glucose (2g/kg) or insulin

(0.5 units/kg) was administered through intraperitoneal injection after mice were fasted for 6

hours in the morning. Blood samples were obtained from the tail vein and blood glucose levels

were measured as previously described [15] before glucose or insulin challenge (0 minutes) as

well as at 15-, 30-, 60-, and 120-minutes post injection. An additional value was taken at 45

minutes after insulin injection. Blood glucose levels were graphed as previously described

[15,21]. Individual baseline blood glucose measurements before glucose administration were

used as reference (t = 0).

Measurement of plasma lipids and liver enzymes

Every 12 weeks beginning at 12 weeks of age whole blood was collected from all mice to assess

plasma lipids (cholesterol, triglycerides) and liver enzymes (alanine aminotransferase, ALT;

aspartate aminotransferase, AST) as previously described [15].

Liver biopsy

Liver biopsies were performed on all mice at 20 weeks of age to assess liver disease after 16

weeks on specialized diets. All animals were weighed and received preoperative IP injections

of carprophen (5mg/kg). Anesthesia was induced with 3–5% isoflurane and maintained with

1–2% isoflurane during surgery. Anesthesia depth was verified every 10 minutes using a pedal

pinch and recorded appropriately. Mice were placed in dorsal recumbency and prepared asep-

tically for surgery. 50-100mg of tissue was biopsied from the right lobe and absorbable gelatin

sponge was used to stop any bleeding. At the completion of surgery, each animal was observed

until mice regained sternal recumbency and then were returned to their home cage. Mice were

observed daily and received additional analgesic injections for two days postoperatively. Skin

staples were removed after 10–14 days. Half of the biopsied tissue was frozen, and the other

half was fixed in 10% formalin to be paraffin embedded.
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Histological evaluation

Mice were monitored until the endpoint of the study (64 weeks of age) and were euthanized

per institutional ethical guidelines by CO2 inhalation if they showed signs of poor health. Tis-

sues were harvested for analysis. Exsanguination was used to confirm death. A cardiac punc-

ture was performed to collect blood right after euthanasia. Postmortem, livers were excised,

weighed, and observed grossly for the appearance of nodules. Tissue samples were snap frozen

in liquid nitrogen and stored at -80˚C and the remaining tissues were fixed in 10% formalin

for 2 hours and paraffin embedded at the Tissue Sciences Facilities at the University of

Nebraska Medical Center. Each nodule observed grossly was cut from the rest of the liver and

put in an individual cassette for histological assessment. The rest of the liver that had no visible

nodules was cut into smaller 2-3mm pieces in thickness which were laid out horizontally in

cassettes to provide a cross-sectional view of the entire liver and allow for counting of micro-

scopic nodules not visible by naked eye. This allowed an accurate quantification of macro-

scopic and microscopic lesions across the different diet groups. Tissue sections were stained

with Hematoxylin and Eosin (H&E) and Masson-Trichrome. At necropsy, an additional reti-

culin stain was performed. These stained sections were scored blindly by an experienced

pathologist. Score were recorded for steatosis, ballooning, and inflammation in order to deter-

mine the presence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepa-

titis (NASH) [22]. Steatosis was scored as follows: 0 =<5%, 1 = 5–35%, 2 = 36–64%, and 3 =

>65% cells had macrovesicular steatosis. Ballooning was scored as follows: 1 = rare ballooned

degeneration or apoptotic cells, 2 = clusters of ballooned hepatocytes with apoptotic cells,

3 = clusters of ballooned hepatocytes with apoptotic cells and clusters of foamy macrophages.

Inflammation was scored as follows: 1 = 1 focus/High Power Field (HPF), 2 =>1 focus/HPF,

3 = diffuse inflammation. Fibrosis was scored as follows: 1 = pericentral, 2 = pericentral and

periportal, 3 = bridging, 4 = cirrhosis. The stained liver sections were also evaluated for the

presence of regenerative nodules, dysplastic nodules, and hepatocellular carcinomas as previ-

ously described [15].

Metabolomics

Plasma collected at 24, 48, and 64 weeks of age and tissue collected at 64 weeks of age were ana-

lyzed for fatty acid levels. Plasma and tissue samples were randomly selected from mice fed

with the CD-HFFC diet that had HCC (n = 6), mice fed with the CS-HFFC diet that had HCC

(n = 6), and mice fed with the control diet (n = 6). Mice from both CD-HFFC (n = 3) and

CS-HFFC (n = 3) diets that only developed dysplastic nodules were only analyzed at 64 weeks

of age (plasma and tissue). All mice selected were males.

Plasma (n = 60) and tissue (n = 24) samples were prepared for analysis as previously

described [15] and extracts were sent to the Lipidomics Core Facility at Wayne State Univer-

sity for fatty acid metabolomics analysis as previously described [15]. In total, 32 fatty acids

(C12-C26) were analyzed (S2 Table).

Cytokine analysis

Plasma collected from 32 weeks of age were analyzed for cytokine levels using the R&D Sys-

tems Proteome Profiler Mouse Cytokine Array Kit, Panel A (ARY006; Minneapolis, MN).

Plasma samples were randomly selected from mice that developed HCC from the CD-HFFC

(n = 3) and the CS-HFFC diet (n = 3). All mice selected were males.

Briefly, samples were incubated on membranes containing antibodies for 40 cytokines in

duplicate (S3 Table). After an overnight incubation at 4˚C, membranes were washed and
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incubated with a streptavidin secondary antibody. A chemiluminescent solution was applied,

and membranes were exposed to film for 1–10 minutes.

Resulting films were scanned and spot intensity was calculated using Adobe Photoshop.

Each cytokine signal was measured using the lasso tool and the mean and pixel density was

recorded and averaged. The averaged mean and pixel density values were multiplied to get the

absolute intensity value for each cytokine. Data were expressed in relative intensity (absolute

intensity of cytokine/relative intensity of control) and graphed.

Statistical analyses

SAS 9.2 software (SAS Institute Inc, Cary, North Carolina) was used for data analysis. Contin-

uous data were expressed as mean +/- standard deviation or as absolute number or percentage

for categorical variables. Diet-based group comparisons were performed using a one-way

ANOVA. Survival curves were generated using GraphPad Prism 6 software. Survival was com-

pared between mice fed with the CD-HFFC diet and mice fed with the CS-HFFC diet that died

before the endpoint due to any health-related cause or due to HCC. Mice that were euthanized

at the endpoint were censored irrespective of whether they developed HCC since they were

otherwise healthy and therefore, we could not designate the cause of death as HCC. A P-

value< 0.05 was considered statistically significant for all comparisons.

Results

Assessment of weight gain

Male mice fed with the CS-HFFC diet weighed significantly more than mice on either the

CD-HFFC or control diet by 14 weeks of age (p = 0.036; Fig 1A). By 64 weeks of age these mice

weighed 66% and 62% more than mice on the CD- HFFC and control diet, respectively. Simi-

larly, the female mice on the CS-HFFC diet became obese by 10 weeks of age (p = 0.026; Fig

1A) with a total weight difference of 72% and 84% compared to CD- HFSC and the control

diet, respectively. Furthermore, CD-HFFC and control male mice gained an average of 154%

and 171% of their starting weight respectively, while male CS-HFFC mice gained an average of

319%. Female CD-HFFC and control mice gained 154% and 131% of their original body

weight respectively, whereas CS-HFFC females gained 266% of their original body weight (S4

Table). All mice were consuming the same amount of food on average (p = 0.07 and 0.814 for

males and females, respectively, Fig 1B), which was measured crudely by weighing the amount

of feed left in the cage before changing feed.

Survival

Mice fed with the CS-HFFC diet survived until the endpoint. In contrast, mice fed with the

CD-HFFC had a lower overall health problem-free survival rate compared to mice fed with the

CS-HFFC and control diet. Furthermore, mice fed with the CD-HFFC diet had a lower HCC-

free survival rate compared to mice fed with the CS-HFFC diet (Fig 2).

Assessment of glucose tolerance and insulin resistance

Male mice fed with the CS-HFSC diet developed glucose intolerance and insulin resistance by

48 weeks (p = 1.11 x 10−16 and 5.41 x 10−13) and remained in this state at 60 weeks (p = 1.11 x

10−16 and 7.59 x 10−13) weeks of age. Female mice fed with the CS-HFFC diet developed insu-

lin resistance transiently at around 48 weeks and were glucose intolerant starting at 48 weeks

until the endpoint. In contrast, only female CD-HFFC fed with mice developed glucose
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intolerance after 24 weeks and only males developed insulin resistance transiently at around

48 weeks (Fig 3A and 3B).

Assessment of plasma lipid profile and liver damage

CS-HFFC fed males and females had significantly higher levels of cholesterol after 24 weeks of

age while there were no differences between CD-HFFC fed and control diet fed mice. How-

ever, male CD-HFFC fed mice had lower plasma cholesterol compared to CS-HFFC fed mice

after 48 weeks. Male CD-HFFC mice had lower levels of triglycerides compared to control and

CS-HFSC mice after 12 weeks (Fig 3C and 3D), albeit all groups had triglyceride levels within

the normal range. Both AST and ALT liver enzymes were significantly higher in both male

and female mice fed with the CS-HFSC and CD-HFSC diet compared to control diet fed mice.

Fig 1. Weight gain and food consumption. (A) Weight gain of mice fed with the control, CD-HFFC, and CS-HFFC diets. Male and female mice fed with the
CS-HFFC diet gained significantly more weight than mice fed with the control or CD-HFFC diets. Male CS-HFFC fed with mice were considered obese at 14
weeks of age while females fed with the same diet became obese at 10 weeks of age. (B) and (C) Feed consumption assessment per cage. Overall, the three groups
of mice seem to be consuming the same amount of feed.

https://doi.org/10.1371/journal.pone.0272623.g001
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Male CD-HFFC fed mice showed higher plasma liver enzymes at 12 (AST; p = 8.58 × 10−10

and ALT; p = 1.11 × 10−16) and 24 weeks (ALT; p = 1.11 × 10−16) compared to CS-HFFC fed

mice (Fig 3E and 3F). There were no differences in plasma AST or ALT levels among females

fed with the CD-HFFC and CS-HFFC diet.

Assessment of liver disease at midpoint

We assessed liver steatosis, inflammation, and ballooning at 20 weeks of age. 8 male (23%) and

3 female (30%) CD-HFFC mice had steatosis scores of 3, whereas none of the CS-HFFC fed

mice had steatosis scores of 3 at that timepoint (Fig 4A; S9 Table). While there were no signifi-

cant differences observed in the average steatosis scores between CD-HFFC and CS-HFFC fed

males, 60% of the females fed with the CS-HFFC diet received a steatosis score of 1, bringing

the average score down enough for it to be significantly lower than that of the CD-HFFC

females (1.4 vs 2.2, respectively; p = 0.006; S8 Table). Males fed with both the CD-HFFC and

CS-HFFC diet had similar degree of liver inflammation, with 25 (71%) and 23 (77%) scoring a

1. Similarly, in the females, the majority of both CD-HFFC (60%) and CS-HFFC (80%) mice

had a liver inflammation score of 1 (Fig 4B; S9 Table). The average inflammation score was

not different for the males, however there were significant differences in the scores of the

CD-HFFC and CS-HFFC females (1.4 vs 1.2, respectively; p = 0.006; S8 Table). Finally, there

were no observed differences in the hepatocyte ballooning scores for either males or females

fed with the CD-HFFC and CS-HFFC diets (p = 0.0683 males; 0.355 females; S8 Table). 17

(57%) of the males fed with the CS-HFFC diet had a ballooning score of 2 (on a 0–2 scale)

while only 15 (43%) of the CD-HFFC male mice received the same score (Fig 4C; S9 Table).

Representative histological pictures of steatosis, inflammation, ballooning, and fibrosis are pre-

sented in Fig 5 (Fig 5).

By 20 weeks of age, 30 (100%) and 34 (97.2%) male mice fed with CS-HFFC and CD-HFFC

diets developed NASH, respectively while 10 (100%) and 7 (70%) female mice fed with

CS-HFFC and CD-HFFC diets developed NASH, respectively. None of the mice fed with the

control diet developed NASH (Fig 4E).

Assessment of NASH and HCC development at the endpoint

Mice fed with the CD-HFFC and CS-HFFC diets had enlarged livers, significantly higher liver

to body weight ratios, and enlarged spleens compared to mice fed with the control diet (S5 and

S6 Tables). Male mice fed with the CD-HFFC diet developed significantly larger HCC tumors

Fig 2. Survival curves. (A) HCC-free, and (B) Disease-free survival of male mice fed with the different diet types. Mice fed with the CD-HFFC diet
had poorer disease-and HCC-related survival.

https://doi.org/10.1371/journal.pone.0272623.g002

PLOS ONE Liver cancer in obese and non-obese mice

PLOSONE | https://doi.org/10.1371/journal.pone.0272623 August 22, 2022 7 / 18



Fig 3. Metabolic function, plasma lipids, and plasma enzymes in mice fed with the control (C), CD-HFFC (CD), and CS-HFFC (CS) diets. (A)
Glucose tolerance. Both male and female mice fed with the CS-HFFC diet exhibited intolerance to glucose at 48 (p = 1.11 x 10–16, 1.02 x 10–13) and 60
(p = 1.11 x 10–16, 1.11 x 10–16) weeks of age. (B) Insulin resistance. No differences were observed until 48 weeks of age. Male and female mice fed with
the CS-HFFC diet were insulin resistant at both 48 (p = 5.41 x 10–13, 5.31 x 10–6) and 60 (p = 7.59 x 10–13, 0.015) weeks of age. (C) Plasma cholesterol
and (D) plasma triglyceride levels. (E) Plasma AST and (F) plasma ALT levels. Horizontal black lines indicate lower and upper limits of normal plasma
lipid and enzyme levels. Statistical differences between diet groups are shown with either a,b,c or x,y,z, markings above the graphs (one set used for males
and the other for females), where statistically significant differences would be denoted by different letters across diets.

https://doi.org/10.1371/journal.pone.0272623.g003
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than CS-HFFC fed males (91.29mm2 and 11.25mm2, respectively; p = 1.09 x 10−5) at the end-

point (S5 and S6 Tables). There were no differences in tumor multiplicity between the two

groups.

We also assessed liver disease development. All mice fed with the CD-HFFC and CS-HFFC

diets (100%) developed NASH. Neither male (n = 32) nor female (n = 5) mice fed with the con-

trol diet developed NASH (Fig 4E). Livers were assessed for degree of steatosis, inflammation,

and ballooning. Male mice fed with the CS-HFFC diet had more steatosis at death than their

CD-HFFC diet counterparts as 50% (15 mice) of the CS-HFFC mice had a steatosis score of 3

compared to the 4% (1 mouse) of the CD-HFFC fed male mice (Fig 4A; S9 Table). Similarly, 2

(20%) female CS-HFFC mice received a liver steatosis score of 3 whereas none of the

CD-HFFC females had a liver steatosis score of 3 (Fig 4A; S9 Table). These numbers were simi-

lar for liver inflammation scores as well. Only mice fed with the CS-HFFC diet received an

inflammation score of 3 (9 males and 3 females) whereas the majority (65%) of the CD-HFFC

Fig 4. Descriptive results from liver biopsy at study midpoint and necropsy at study endpoint. (A) Distribution of steatosis, (B)
inflammation, and (C) ballooning scores at study midpoint and endpoint. (D) Fibrosis scoring at midpoint and endpoint. Both male and
female mice fed with the CD-HFFC diet developed a higher degree of fibrosis than mice fed with the CS-HFFC diet at the study midpoint,
however CS-HFFC fed mice develop a higher degree of fibrosis by the study endpoint. All mice fed with the control diet had a fibrosis score
of 0 and had normal liver phenotypes. (E) Liver disease diagnosis. All mice fed with the CS-HFFC diet developed NASH by study midpoint.
All mice fed with both the CD-HFFC and CS-HFFC diet developed NASH by study endpoint. (F) Prevalence of HCC at study endpoint (64
weeks of age).

https://doi.org/10.1371/journal.pone.0272623.g004
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Fig 5. Histological pictures showing the various degrees of steatosis, inflammation, ballooning and fibrosis. (A) Steatosis scores of 1–3. (B) Inflammation scores of
1–3. (C) Ballooning scores of 1–3. (D) Fibrosis scores of 1–3.

https://doi.org/10.1371/journal.pone.0272623.g005
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fed male mice had an inflammation score of 1 (Fig 4B; S9 Table). Of the 26 male and 10 female

CD-HFFC fed mice, 17 (65.4%) males and 3 (30%) females had a ballooning score of 1 and 9

(34.6%) males and 7 (70%) females had a ballooning score of 2, respectively (0–2 scale). For

mice fed with the CS-HFFC diet, 11 of the 30 males (36.7%) and 2 of the 10 females (20%) had

a ballooning score of 1, and 19 (63.3%) males and 8 (80%) females had a ballooning score of 2

(Fig 4C; S9 Table).

With regards to fibrosis, 19 (73.1%) of the 26 male CD-HFFC fed mice had a fibrosis score

of 1, while 6 (23.1%) had a score of 2, and 1 (3.8%) had a score of 3 whereas 11 (36.7%), 16

(53.3%), and 3 (10%) male CS-HFFC fed mice had fibrosis scores of 1, 2 and 3, respectively.

For female mice fed with the CD-HFFC diet, 6 (60%) had a fibrosis score of 1 and the remain-

ing 4 (40%) had a fibrosis score of 2. Finally, 4 (40%) females on the CS-HFFC diet had a fibro-

sis score of 1, while 5 (50%) had a score a 2, and 1(10%) had a score of 3. None of the control

mice developed fibrosis (Fig 4D). Representative histological pictures of steatosis, inflamma-

tion, ballooning, and fibrosis are presented in Fig 5 (Fig 5).

We also assessed the mice for the development of dysplastic nodules and HCCs. Only male

mice fed with the CD-HFFC diet developed HCC, with a penetrance of 53.8%. On the con-

trary, both male and female mice fed with the CS-HFFC diet developed HCC with 53.3% and

50% penetrance, respectively. In addition, all mice fed with both the CD-HFFC and CS-HFFC

diet developed dysplastic nodules. None of the control mice developed any type of nodules

(Fig 4F). Representative histological pictures of dysplastic nodules and HCC are presented in

Fig 6 (Fig 6).

Metabolic profile of fatty acids in plasma and liver tissue

We evaluated plasma levels of thirty-two fatty acids at 24, 48, and 64 weeks (S7 Table). At 24

weeks of age mice fed with the CD-HFFC and CS-HFFC diet had significantly lower plasma lev-

els of 7 fatty acids (of the 32 evaluated) compared to mice fed with the control diet. 85.7% of

those fatty acids were polyunsaturated fatty acids (PUFAs). At 48 weeks of age, 7 of the 32 fatty

acids had lower plasma levels in mice fed with the CD-HFFC and CS-HFFC diet compared to the

control diet while 1 fatty acid (DHA) was lower in CD-HFFC fed mice only. 50% of fatty acids

altered at 48 weeks were PUFAs. At 64 weeks of age, 12 fatty acids were significantly lower in the

plasma of mice fed with the CD-HFFC and CS-HFFCmice, 1 was significantly higher in the

plasma of mice fed with the CS-HFFC diet that developed HCC (Mead acid; MUFA), and 1 was

significantly higher in the plasma of both CD-HFFC fed and CS-HFFC fed mice with HCC

(DPA; PUFA, n-6). 71.4% of fatty acids that were altered at 64 weeks were PUFAs.

Fatty acid levels were also analyzed in tissue samples taken from the same mice at 64 weeks

of age. Overall, there were three fatty acids that were significantly reduced in the dysplastic and

HCC tissue of CD-HFFC and CS-HFFC diet mice compared to liver tissue from control mice

(Heptadecanoic acid, SFA; Arachidic acid, SFA; and Hexacosanoic acid, SFA) (S1 Fig). Fur-

thermore, Behenic acid (SFA) was observed to be significantly reduced in CS-HFFC fed mice

with HCC compared to CS-HFFC fed mice with dysplastic nodules (S1 Fig).

Three plasma fatty acids were significantly lower in mice fed with the CD-HFFC and

CS-HFFC diets compared to mice fed with the control diet at all three time points: ! -linolenic

acid (PUFA, n-6), docosahexaenoic acid (PUFA, n-3), and docosapentaenoic acid (PUFA, n-

3) (S2A Fig). The levels of all of these PUFAs were significantly higher at 48 weeks in CS-HFFC

fed mice with HCC (S2B Fig) and remained elevated at 64 weeks for DHA but decreased at 64

weeks for ! -linolenic acid and DPA. The plasma levels of these fatty acids had no observed dif-

ferences over time in the CD-HFFC fed mice with HCC and control mice. The tissue levels of

these fatty acids did not differ significantly among the different groups (S3 Fig).
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Plasma cytokine profile

Of all plasma cytokines evaluated at 32 weeks of age, two were significantly higher in the

CS-HFFC fed mice compared to the CD-HFFC fed mice (JE, p = 0.002 and TIMP-1,

p = 0.0235) (S4 Fig). Some other cytokines (such as BLC, C5/C5a, Sicam-1, KC, M-CSF, SDF-

Fig 6. Histological pictures showing representative images of dysplastic nodules and HCC. (A) Micrographs representing
dysplastic nodules. (B) Micrographs of hepatocellular carcinoma.

https://doi.org/10.1371/journal.pone.0272623.g006

PLOS ONE Liver cancer in obese and non-obese mice

PLOSONE | https://doi.org/10.1371/journal.pone.0272623 August 22, 2022 12 / 18



1) also exhibited higher levels than the remaining cytokines, albeit, they were not different

between the diet groups.

Discussion

In this work we demonstrated the development of unhealthy diet (high fat/fructose/choles-

terol) related NASH-HCC in two different contexts: lean NASH HCC in the setting of choline

deficiency and obese NASH-HCC in the setting of choline supplementation. Mice fed with the

CD-HFFC diet had lower HCC-free survival compared to mice fed with the CS-HFFC diet.

Furthermore, lean NASH-HCC showed faster HCC progression with regards to tumor growth

(HCC appearing as early as 32 weeks) compared to obese NASH-HCC. Lean NASH-HCCs

were also larger in size compared to obese NASH-HCCs at the same timepoint. Thus, in males

choline deficiency in the context of unhealthy diet results in accelerated hepatocarcinogenesis

in the context of normal weight compared to choline supplementation in the context of obe-

sity. It has been previously shown that choline supplementation in mice, albeit at higher levels

and in a different mouse strain, results in attenuation of high fat diet-induced HCC [20].

Interestingly, insulin resistance and glucose intolerance were evident in obese CS-HFFC

mice, with both male and female mice developing glucose intolerance by 48 weeks, male mice

developing insulin resistance by 48 weeks and females transiently developing insulin resistance

at 48 weeks. In contrast, only female CD-HFFC fed mice developed glucose intolerance after

24 weeks and only male mice transiently developed insulin resistance at around 48 weeks.

Thus, persistent insulin resistance and glucose intolerance are features in the obese

NASH-HCC model, whereas transient insulin resistance and glucose intolerance are features

of lean NASH-HCC. This is consistent with human NASH, in which lean NASH patients

appear to have a better metabolic profile compared to obese NASH patients [23].

With regards to plasma lipid profile, obese CS-HFFC fed mice (male and female) had

higher levels of plasma cholesterol and triglycerides compared to lean CD-HFFC fed male

mice. The latter may reflect potential retention of triglycerides in the liver of CD-HFFC fed

mice [24]. While we did not assess plasma HDL, LDL, and VLDL levels specifically, previous

reports show reduced plasma VLDL and unaffected plasma HDL levels in rats fed a choline

deficient diet, suggesting that the higher total cholesterol levels we observed may be mostly

due to HDL [25].

Both lean and obese mice fed with the CD-HFFC and CS-HFFC diets, respectively, experi-

enced liver damage as evidenced by elevated plasma levels of ALT and AST. Lean mice fed

with the CD-HFFC diet had higher levels of these enzymes at earlier time points suggesting

more pronounced liver damage early on. At 20 weeks of age 100% of the obese CS-HFFC fed

mice (male and female), 97.2% of male lean CD-HFFC fed mice, and 70% of lean CD-HFFC

females had developed NASH. This implies differential effects of the diet by gender, with

females experiencing lower prevalence of NASH in the context of choline deficiency. Obesity

appears to have a bigger impact on the metabolic profile of females, worsening their metabolic

profile that is characterized by glucose intolerance and insulin resistance. Thus, obesity plays a

bigger role in NASH development in females whereas males develop NASH to the same extent

in the context of normal weight and obesity. Such gender differences have been observed pre-

viously in mice [26]. In addition, lean females fed with the CD-HFFC only developed dysplas-

tic nodules but not HCC at the endpoint, in contrast to obese females fed with the CS-HFFC

diet who developed HCC at the endpoint. Lean and obese males developed HCC at the end-

point with similar penetrance. Therefore, obesity seems to provide the right context for tumor

progression in females, whereas in males other mechanisms may be driving hepatocarcinogen-

esis irrespective of obesity. It is possible that in females, estrogen levels are protective of NASH
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development and consequently HCC in the context of normal weight [27]. However, in the

context of obesity, estrogen signaling may be suppressed allowing for NASH and HCC

progression.

Consistent with earlier liver damage in lean CD-HFFC fed mice compared to obese

CS-HFFC mice, lean CD-HFFC-fed mice show more fibrosis and steatosis in their livers at 20

weeks compared to obese CS- HFFC-fed mice. This observation is reversed at the endpoint

where obese CS-HFFC mice show more liver fibrosis and steatosis compared to CD-HFFC

mice. Inflammation is lower at 20 weeks in obese CS-HFFC fed female mice compared to lean

CD-HFFC fed female mice. The inflammation pattern is reversed at the endpoint with obese

CS-HFFC fed mice showing higher levels of inflammation compared to lean CD-HFFC fed

mice. It might be that in the context of choline deficiency and normal weight, changes in the

liver microenvironment (inflammation and fibrosis) happen earlier and support initiation of

hepatocarcinogenesis but may not be driving tumor progression. It could be that epigenetic

changes drive tumor progression given the role of choline in one-carbon metabolism and sup-

ply of methyl groups for methylation [28]. In contrast, in the context of choline supplementa-

tion and obesity similar changes in the liver microenvironment occur later on and may be

driving liver cancer initiation and progression. Interestingly, plasma levels of TIMP-1 and JE

cytokines were higher in obese CS-HFFC further supporting the notion that the inflammatory

microenvironment may be driving tumor progression in the context of obesity. Increased lev-

els of TIMP-1 have been found to be associated with poor prognosis in gastric cancer, which

relates to the role of matrix metalloproteinases in degrading the ECM [29]. A similar scenario

may hold for obese NASH-HCC.

Given that NASH-HCC both in the context of obesity and normal weight is driven by an

unhealthy diet, fatty acid metabolism is altered during disease progression. Interestingly, as

observed in previous work [15], the plasma levels of a number of PUFAs were reduced in both

settings consistent with their anti-carcinogenic role. Interestingly, PUFA levels remained low dur-

ing the entire disease progression in lean mice, however, they increased and remained increased

in obese mice, perhaps contributing to delayed tumor progression in the context of obesity.

PUFAs have been suggested to have beneficial effects in improving metabolism in the context of

obesity as well as improving insulin resistance [30]. It may be that increased levels of PUFAs may

be counteracting the metabolic effects of obesity and given their anti-carcinogenic role may be

contributing to delayed tumor progression. Thus, PUFA supplementation may have a beneficial

effect in counteracting hepatocarcinogenesis in lean NASH-HCC. Furthermore, plasma mead

acid levels were higher in CS-HFFC fed mice compared to CD-HFFC fed mice. Mead acid has

been shown to suppress breast carcinogenesis and it is possible it may have a similar effect in liver

tissue, thus contributing to delayed hepatocarcinogenesis in obese mice with NASH-HCC [31].

Conclusions

An unhealthy diet high in trans-fat, cholesterol and fructose contributes to hepatocarcinogen-

esis both in the context of obesity and normal weight. Tumor progression is faster in males

and slower in females in the context of normal weight compared to obesity, suggesting obesity

has differential effects in carcinogenesis according to gender. The mouse models generated are

great resources for studying lean and obese NASH-HCC and better understanding the mecha-

nisms of hepatocarcinogenesis in these two contexts.
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CD-HFFC, and CS-HFFC diets. Bolded fatty acids are significant at all 3 time points.

(DOCX)
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(DOCX)
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S1 Fig. Fatty acid levels by diet at 64 weeks. Tissue fatty acid levels in male mice fed with the

CD-HFFC (CD) diet with HCC and dysplastic (Dysp) nodules, mice fed with the CS-HFFC

(CS) diet with HCC and dysplastic nodules, and mice fed with the control diet. !ng/ug. a Signif-

icantly different than control. b CS Dysp and CS HCC are significantly different. (A-C) Levels

of heptadecanoic, arachidic, and hexacosanoic acid in mice with dysplastic nodules and HCC

fed both the CD and CS diet were significantly different than in control mice. (D) Levels of

behenic acid were significantly different between mice fed the CS diet with dysplastic nodules

and HCC.

(TIF)

S2 Fig. Plasma fatty acid levels by diet type. (A) Plasma fatty acid levels in male mice fed

with the CD-HFFC (CD) diet with HCC and dysplastic (Dysp) nodules, mice fed with the

CS-HFFC (CS) diet with HCC and dysplastic nodules, and mice fed with the control diet.
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Mice with nodules (dysplastic and HCC) had lower plasma levels of specific fatty acids than

control mice at 24, 48, and 64 weeks of age. (B) Trends of plasma fatty acid levels over course

of study for each diet type. No concentration levels were observed in the control or CD-HFFC

fed mice however CS-HFFC mice exhibited levels that increased at 48 weeks that decreased by

64 weeks of age.
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trol diet. !ng/ug.

(TIF)
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age.

(TIF)

S1 Dataset. Minimal data set containing relevant data from study.
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