

Faculty of Electronics and Computer Engineering

Master of Science in Electronic Engineering

2021

DESIGN AND ANALYSIS OF CAPACITIVE POWER TRANSFER SYSTEM FOR LOW POWER APPLICATIONS

FARAH KHALIDAH BINTI ABDUL RAHMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this entitled "Design and Analysis of Capacitive Power Transfer System for Low Power Applications" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature :... PROF MADYA DR MOHD SHAKIR B MD SAAT Supervisor Name :..... Date . 1/8/2021 UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved mother and father, Filzah and Harith, and the dedicated research team

ABSTRACT

Capacitive power transfer (CPT) system has been chosen as an alternative to perform the contactless power transfer in recent years. Advantages of CPT includes ability to confine electric field between coupling plates, power transfer capability through metal barriers, low eddy current power losses in metal surroundings, as well as the potential to minimise circuit size and costing. However, the challenge of handling CPT includes the separation distance between the transfer plates. This thesis focuses mainly on the development of a fundamental theory of CPT system and its application for low power contactless charging, starting from designing and analysing Class E resonant inverter to generating high frequency AC power source to drive the CPT system. The design is ensured to fulfil Zero-Voltage Switching (ZVS) condition in order to avoid switching loss. In electronic system, the quality factor, Q_L represents the effect of electrical resistance towards the system. By using Class E power amplifier circuit, the system with $Q_L = 10$ produced better results as compared to $Q_L = 40$. Considering the sensitivity of components variation, the investigation of Class E resonant inverter with $\pi 1a$ impedance matching circuit is done to act as a compensation network in order to enable efficient power transfer between the two parts of the system for wider load-range changes. The size of the capacitive plates was also succeeded to be reduced to half of the initial measurement by implementing the impedance matching network. The implementation of aluminium plate as transfer material for the CPT system shown the peak-to-peak value of output voltage is 25.5V with 52.55% duty cycle. After an impedance matching being inserted into the system, the experimental work produced 9.51W with 95.10% efficiency. Different materials of capacitive plates were also been investigated and discussed further in this thesis by providing the consequences of using particular materials towards the efficiency of the system. Copper has shown the best results by producing a better exponential decrease as compared to aluminium and zinc, in line graph of the output voltage.

REKA BENTUK DAN ANALISIS SISTEM PEMINDAHAN KUASA KAPASITIF UNTUK APLIKASI BERKUASA RENDAH

ABSTRAK

Sejak kebelakangan ini, pemindahan kuasa kapasitif (CPT) dipilih sebagai alternatif untuk proses pemindahan kuasa tanpa sentuh,. Kelebihan CPT termasuk daya pengehadan medan elektrik di antara plat gandingan, keupayaan memindah kuasa melalui halangan logam, kadar kehilangan kuasa arus pusar dalam persekitaran logam yang rendah, serta keupayaan untuk mengurangkan saiz litar serta kosnya. Walau bagaimanapun, cabaran bagi mengelolakan CPT termasuk dari segi jarak pemisahan antara dua plat. Tesis ini memberi tumpuan terhadap perkembangan teori asas sistem CPT dan aplikasinya untuk pengecasan tanpa wayar berkuasa rendah, bermula dengan mereka bentuk dan menganalisis litar penyongsang resonans Kelas E untuk menghasilkan sumber kuasa arus ulang-alik berfrekuensi tinggi untuk menggerakkan sistem CPT. Reka bentuk tersebut dipastikan memenuhi keadaan penukaran voltan sifar (ZVS) untuk mengelakkan kehilangan kuasa tukaran. Dalam sistem elektronik, faktor kualiti (O_L) mewakili kesan rintangan elektrik terhadap sistem tersebut. Dengan menggunakan litar penambah kuasa Kelas E, sistem yang menggunakan $Q_L = 10$ menghasilkan keputusan yang lebih baik berbanding $Q_L = 40$. Mengambilkira variasi sensitiviti komponen, penyelidikan terhadap penyongsang resonans Kelas E dengan tambahan litar impedans π 1a dilakukan, berfungsi sebagai rangkaian kompensasi demi membolehkan pemindahan kuasa yang efisien di antara dua bahagian dalam sistem tersebut untuk julat perubahan beban yang lebih luas. Saiz plat kapasitif juga berjaya dikurangkan sebanyak separuh daripada saiz yang asal dengan menambah litar padanan impedans ke dalam sistem sedia ada. Penggunaan plat aluminium sebagai bahan pindahan sistem CPT menghasilkan nilai voltan 25.5V puncakke-puncak dengan 52.55% kitaran tugas. Setelah litar penyesuaian impedans ditambah ke dalam sistem, eksperimen berjaya menghasilkan kuasa pengeluaran 9.51W bersamaan 95.10% kadar kecekapan. Penggunaan plat sentuh kapasitif daripada bahan berbeza juga telah dibincangkan di dalam tesis ini dengan menyatakan kesan penggunaan plat-plat yang berbeza tersebut. Plat daripada tembaga menghasilkan keputusan yang terbaik apabila menghasilkan penurunan eksponen yang lebih baik berbanding aluminium dan zink, dalam graf garis lurus untuk voltan output.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, and the Most Merciful. Alhamdulillah, all praises to Allah as all the hard work and others' contributions have been awarded by the completion of this precious thesis.

First of all, I would like to grab this opportunity to express my appreciation towards Associate Professor Dr. Mohd Shakir bin Md Saat for being a great supervisor. I totally respect his positivity in handling issues, possessing high level of enthusiasm in his supervision, and guiding me throughout my master research journey. His willingness to supervise me has enormously contributed to my progress including sharing opinions and knowledge on things to be done for experimental works and also for taking his time in reviewing my research papers.

I would also like to acknowledge my co-supervisor, Dr. Mai Mariam binti Mohamed Aminuddin along with other lecturers such as Mr. Zulkarnain bin Zainuddin, Mr. Adie bin Mohd Khafe, and Mr. Imran bin Hindustan who had contributed in guiding me to ensure my survival in this MSc journey.

Special thanks to my dedicated and supportive research team and the fellow technicians, especially Dr. Yusmarnita, Puan Siti Huzaimah, Mr. Hairulisam, Puan Hafizah Adnan, Mr. Mohamad Effendy Abidin, Mr. Mohd Sufian Abu Talib, Mr. Imran Mohamed Ali, and Norezmi binti Md Jamal who tried their best to give their hands whenever I need them.

Moreover, I would like to thank FKEKK UTeM and MOE Malaysia for providing me equipment facilities and financial support for this project under MyBrains15, Research Acculturation Grant Scheme (RAGS) and Fundamental Research Grants Scheme (FRGS).

My deepest appreciation goes to my dear father, Haji Abdul Rahman bin Abdul Rahim, my lovely mother, Hajah Sabariah binti Othman and my younger siblings, Filzah Arinah and Muhammad Harith for their relentless prayers, love, high motivation, strong support and understanding that significantly led to this achievement.

Finally, thank you everyone for being by my side during the darkest and brightest time for this dream cannot be true without all of you. I owed you so much, may Allah bless every single of you with His love. Thank you.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xvii
LIST OF PUBLICATIONS	xviii

CHAPTER

1.	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Motivation	4
	1.3	Problem statement	4
	1.4	Objectives	6
	1.5	Limitation of the study	6
	1.6	Organization of the thesis	7
2.	LI	TERATURE REVIEW	8
	2.1	Introduction	8
	2.2	Overview of Wireless power transfer	9
		2.2.1 Far field WPT	15
		2.2.1.1 Microwave power transfer	15
		UN2.2.1.2 Light power transfer MALAYSIA MELAKA	16
		2.2.2 Near-field WPT	19
		2.2.2.1 Inductive power transfer	20
		2.2.2.2 Acoustic power transfer	22
		2.2.2.3 Capacitive wireless power transfer system	24
	2.3	Power amplifiers	27
		2.3.1 Class B power amplifier	28
		2.3.2 Class C power amplifier	29
		2.3.3 Class D power amplifier	30
		2.3.4 Class E power amplifier	32
		2.3.5 Class F power amplifier	38
		2.3.6 Ideal Choice for a Power Amplifier	40
	2.4	Zero-voltage switching	40
	2.5	Quality factor, Q _L and bandwidth	43
		2.5.1 Quality factor, bandwidth, and component values	46
		Impedance matching network	46
		Dielectric material	48
	2.8	Summary	52

3.	ME	THODOLOGY	53
	3.1	Process flow of the research work	53
	3.2	The state operations of a Class E power amplifier circuit system	55
	3.3	Circuit design for Class E power amplifier circuit	57
		3.3.1 Simulation works of Class E power amplifier circuit	60
		3.3.1.1 Quality factor, $Q_L = 40$	60
		3.3.1.2 Quality factor, $Q_L = 10$	64
	3.4	Experimental works for Class E power amplifier with quality factor of 10	65
	3.5	Capacitive Plates as a Platform	67
		The design of impedance matching circuit for capacitive power transfer circuit	69
		3.6.1 Simulation of circuit with an impedance matching network	74
	3.7	Enhancement of capacitive approach from capacitors to capacitive plates	76
		3.7.1 Capacitive wireless power transfer with different materials of capacitive plates	77
	3.8	Simulation-based study of the effect of capacitance values by various dielectric materials and increasing distances for low power	83
		wireless power transfer system	
		3.8.1 The effect of capacitance of different dielectric materials for different distances	85
		3.8.2 The effect of output power of the system with increasing distances	86
	3.9	Summary	88
4.	RE	SULT AND DISCUSSION	90
	4.1	Performance of simulation works Class E power amplifier circuit	90
		4.1.1 Quality factor, $Q_L = 40$	90
		4.1.2 Quality factor, $Q_L = 10$	93
		4.1.3 Comparison of simulation results for different quality factor, Q_L	95
	42	Performance of experimental works of Class E power amplifier	
		circuit with quality factor of 10	96
		4.2.1 Result of experimental works of Class E power amplifier circuit with quality factor of 10	99
	43	Aluminium plate as the capacitive plates	99
		Analysis of CPT system with the addition of impedance matching	
		circuit	100
		4.4.1 Result for simulation works of circuit with impedance matching network	105
		4.4.2 Experimental works of CPT circuit with impedance matching network	107
		4.4.3 Measuring the efficiency of CPT circuit with impedance matching network	113
		4.4.4 Comparison of the area of capacitive plates with addition of impedance matching circuit	114
	4.5	Efficiency comparison of capacitive wireless power transfer for different materials of capacitive plates	115

4.5.1 Experimental result for capacitive wireless power t with different materials of capacitive plates	transfer 115
4.5.1.1 Copper material as coupling plates	116
4.5.1.2 Zinc material as coupling plates	110
	119
4.5.1.3 Aluminium material as coupling plates	
4.5.2 Material comparison for better implementation	124
4.6 Result and analysis of simulation-based study of the ef	
capacitance values by various dielectric materials and distan	nces for 125
low power wireless power transfer system	
4.6.1 Result of capacitance values for different dielectric m for different distances	aterials 126
4.6.2 Result of output power of the system with inc	reasing 128
distances	120
4.6.3 Efficiency of the system with increasing distances	129
4.7 Summary	130
1.7 Summary	
5. CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARC	СН 133
5.1 Conclusion	133
5.2 Recommendations for Future Research Works	135
3.2 Recommendations for Future Research works	155
Strate and a state of the state	
	136
يۈم سيتي تيكنيكل مليسيا ملاك	اوذ

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE

TITLE

PAGE

2.1	Techniques of transferring power wirelessly	11
2.2	The comparison of different wireless power transfer technologies	12
2.3	Relative permittivity for different materials	50
3.1	Pre-determined specifications of Class E power amplifier circuit	60
3.2	Value of components of Class E power amplifier circuit	63
3.3	Components values of Class E power amplifier with $Q_L = 10$	64
3.4	Calculated components' values for Class E design specification with the addition of π 1a impedance matching network	74
3.5	UNIVERSITITEKNIKAL MALAYSIA MELAKA Pre-determined specifications of Class E CPT power amplifier	79
3.6	Values of components used for CPT circuit with different	79
	materials of capacitive plates	
3.7	Permittivity for some insulating materials	85
3.8	Pre-determined specifications of Class E power amplifier	87
3.9	Calculated values of components for Class E design specification	87
4.1	Comparison of results for simulation works with different quality	95
	Factors	

4.2	Values of components used for experimental work of Class E	96
	power amplifier circuit	
4.3	Results comparison made towards the calculation, simulation,	98
	and the experimental work	
4.4	Details for the results of CPT circuitry system with capacitive	103
	plates	
4.5	Values of components used for CPT circuit with $\pi 1a$ impedance	112
	matching network	
4.6	Results of CPT circuitry system with π 1a impedance matching	113
	network	
4.7	Output voltage for copper up to ten sheets of paper	116
4.8	Output voltage for Zinc up to ten sheets of paper	119
4.9	Output voltage of aluminium up to 10 sheets of paper	122
4.10	Values of capacitance for different dielectric materials for	126
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA various distances	
4.11	Output value for different distance measured for paper as the	128
	dielectric material	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Overview of wireless power transfer	2
2.1	Block diagram of wireless power transfer (WPT)	8
2.2	Basic diagram of WPT system	13
2.3	WPT applications	14
2.4	Block diagram of MPT system	15
2.5	Overview of the LPT system	18
2.6	Samsung charging station and RAVpower wireless Qi charging pad	19
2.7	Simple concept of inductive power transfer SIA MELAKA	20
2.8	Basic diagram of IPT system	21
2.9	The architecture of APT system	23
2.10	Schematic of a series resonant converter circuit constructed around	24
	the coupling capacitors C	
2.11	Proposed CPT System	25
2.12	A simplified circuit schematic of a CPT system	26
2.13	Class B and Class A power amplifier circuit configuration	28
2.14	Class B waveforms	29

2.15	Class C waveforms	30
2.16	Class D half-bridge RF power amplifier with a voltage mirror	31
	driver	
2.17	Class D half-bridge RF power amplifier with a series-resonant	31
	circuit and a pulse transformer driver	
2.18	Basic circuit configuration of Class E wireless power transfer	33
	System	
2.19	Basic Class E circuit configuration	33
2.20	Class E zero-voltage-switching inverter	34
2.21	Switching waveform at $D = 0.5$	36
2.22	Class F power amplifier circuit with third harmonic configuration	39
2.23	Class F amplification waveforms	39
2.24	ZVS waveform condition	41
2.25	Class E ZVS inverter. (a) circuit and (b) equivalent circuit	42
2.26	Bode plot for band pass filter with frequency (Hz), amplitude	44
	(dB), and the frequency bandwidth (BW)	
2.27	The relationship between Q factor and bandwidth	45
2.28	Band-pass filter peaking vs. Q for various increasing values of Q	45
2.29	Block diagram of the Class E amplifier with an impedance	47
	matching network	
2.30	Different types of impedance matching networks introduced by	47
	Marian et.al.	
3.1	Research methodology flowchart	54

3.2	Circuit of Class E zero-voltage-switching RF power amplifier	55
3.3	Research flowchart for determining the quality factor, Q_L	58
3.4	Research flowchart for determining the ZVS	59
3.5	Complete Class E circuit built using MATLAB Simulink	63
3.6	Class E power amplifier circuit for $Q_L=10$	65
3.7	Experimental work of Class E power amplifier circuit	66
3.8	Basic capacitive power transfer system with dipoles configuration	67
3.9	Top view of a basic Class E circuit system before the series	68
	capacitor is replaced with the capacitive plates	
3.10	Basic Class E and MOSFET driver circuit with series capacitors of	69
3.11	dipoles configuration Research flowchart for frequency tuning process using $\pi 1a$ impedance matching network	71
3.12	CPT system consisting of Class E inverter with $\pi 1a$ impedance matching network	71
3.13	Simulation diagram for a complete CPT system including $\pi 1a$	75
	impedance matching network	
3.14	Research flowchart for CPT system with different types of	78
	material for capacitive plates	
3.15	Experimental setup for the CPT system	80
3.16	Different types of capacitive plates for aluminium, zinc, and	81
	copper	

3.17	Sheets of A4 paper overlaid in between the capacitive plates (in	82
	dotted circle)	
3.18	Research flowchart for simulation-based circuit design and	84
	analysis for different capacitance values for different dielectric	
	materials, and different distances of a specific dielectric material	
3.19	Design of Class E power amplifier used for the simulation work.	86
4.1	Zero-voltage-switching of Class E power amplifier with QL: 40	91
4.2	Output voltage of Class E power amplifier with Q_L : 40	92
4.3	Input and output current of the circuit for QL: 40	92
4.4	Simulation results for ZVS waveform and the output voltage for	94
	Class E power amplifier circuit with Q _L =10	
4.5	Output voltage of Class E power amplifier circuit with $Q_L=10$	94
4.6	ZVS of experimental work of Class E power amplifier circuit	97
4.7	Output voltage of the experimental work for Class E power	97
	amplifier circuit TEKNIKAL MALAYSIA MELAKA	
4.8	V_{gs} and V_{ds} of the built CPT system	99
4.9	Output voltage of the system	100
4.10	Class E power amplifier circuit together with the resistive load, $R_{\rm L}$	101
4.11	Complete circuit configuration including capacitive plates as the	101
	coupling material	
4.12	Zero-voltage switching condition of the CPT system with	102
	capacitive plates	

4.13	Output voltage of the CPT system with capacitive plates as the	103
	coupling material	
4.14	Simulation results for ZVS waveform and the output voltage for	105
	circuit with π 1a matching network	
4.15	(a) and (b): measurement reading for V_{ds} and V_{gs} of class $E\ CPT$	106
	circuit with impedance matching circuit	
4.16	(a): Waveform of the output voltage of the system	106
	(b): Value of the output voltage	107
4.17	(a) and (b): Circuit representation of CPT system with addition of	109
	π 1a impedance matching network	
4.18	Waveform of ZVS condition for experimental works of CPT	110
	system with $\pi 1a$ impedance matching circuit	
4.19	Output voltage and output current for the experimental work of	111
	CPT system with impedance matching circuit	
4.20	Comparison of couplings plates' size between CPT circuit (a)	115
	without $\pi 1a$ impedance matching network and (b) with the circuit	
	with $\pi 1a$ impedance matching network	
4.21	Series of diagrams indicating the outcomes of CPT system using	117
	copper as the capacitive plates	
4.22	Exponential decrease of output voltage over distance for copper	118
4.23	Series of diagrams indicating the outcomes of CPT system using	120
	zinc as the capacitive plates	

4.24	Linear decrease of output voltage over distance for Zinc	121
4.25	Series of diagrams indicating the outcomes of CPT system using	123
	aluminium as the capacitive plates	
4.26	Linear decrease of output voltage over distance for aluminium	124
4.27	Output voltage over distance for different materials	125
4.28	Graph of capacitance over distances for different materials	127
4.29	Graph of output power for increasing distance	129
4.30	Graph of efficiency of the system	130

LIST OF ABBREVIATIONS

AC	- Alternating Current
AET	- Acoustic Energy Transfer
APT	- Acoustic Power Transfer
CPT	- Capacitive Power Transfer
DC	- Direct Current
FET	- Field-Effect Transistor
FKEKK	Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
FRGS	Fundamental Research Grant Scheme
IPT	- Inductive Power Transfer
LPT	اونيوم سيتي نيڪنيةLaser Power Transfer
MATLAB	Matrix Laboratory (Software)
MOSFET	- Metal Oxide Semiconductor Field Effect Transistor
MPT	- Microwave Power Transfer
PCB	- Printed Circuit Board
PIC	- Peripheral Interface Controller
PIM	- Passive Impedance Matching
PLL	- Phase-locked Loop
PWM	- Pulse Width Modulator
RAGS	- Research Acculturation Grant Scheme

aka

LIST OF SYMBOLS

- A Area of capacitive plate
- *C* Capacitor
- I Current
- *d* Distance
- D Duty cycle
- η Efficiency L - Inductor
- P_i Input power
- Vi Input voltage
- Po Output power ulu olugi
- Vo Output voltage TI TEKNIKAL MALAYSIA MELAKA
- π Pi
- Q_L Quality factor
- ε Relative permittivity/dielectric constant of a material
- *R* Resistance
- W Watt

LIST OF PUBLICATIONS

The research papers produced and published during the course of this research are as follows:

 Rahman, F.K.A., Saat, S., Yusop, Y., Husin, H., and Aziz, Y., 2017. Design and Analysis of Capacitive Power Transfer System with and without Impedance Matching. *International Journal of Power Electronics and Drive Systems* (*IJPEDS*), 8 (3), pp.1260–1273.

MALAYSIA

- Rahman, F.K.A., Saat, S., Yusop, Y., Husin, S.H., and Ludin, S., 2017. Simulation-based Study of Capacitance Values Affected by Various Dielectric Materials and Distances for Low Power Wireless Power Transfer System. In: Malaysia Technical Scientist Association (MALTESAS), Advancement Research in Circuits and Systems International Conference (ARECAS), Langkawi Island, Kedah, 20-22 Dec 2016. Malaysia.
- 3. **Rahman, F.K.A.,** and Saat, S., 2016. Design and Simulation of Class-E Power Amplifier for Capacitive Power Transfer System. MALTESAS Multi-Discliplinary Research Journal (MIRJO), 1 (1), pp.14–23.
- Rahman, F.K.A., Saat, S., Zamri, L.H., Husain, N.M., Naim, N.A., and Padli, S. A., 2016. Design of Class-E Rectifier with DC-DC Boost Converter, *Journal of Telecommunication, Electronic and Computer Engineering (JTEC)*, 8 (1), pp.89–95.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Wireless power transfer (WPT) research has begun at the early 20th century. Yet, the progress of WPT researches has not been promising due to the lacking of applications that utilises wireless. Thus WPT ended prematurely, and not explored in detail. However, the advancements of technology have made WPT attracted high attention by many researchers in electronics field, especially, since the field is expanding widely. This is because wireless power transfer (WPT) technologies have been developed to supply power to the movable loads such as electric vehicles, implantable medical devices, mobile phones, and other applications without direct electrical contacts. This leads the applications become more flexible and portable.

In general, the wireless power transfer can be divided into three major types including inductive power transfer (IPT), capacitive power transfer (CPT), and the acoustic energy transfer (AET) as shown in Figure 1.1.