

Faculty of Manufacturing Engineering

Nur Syuhada Binti Md Nasir

Master of Science in Manufacturing Engineering

PARAMETERS OPTIMIZATION OF MICRO DRILLING PROCESS FOR CFRP USING TWO FLUTE SOLID CARBIDE DRILL BIT

NUR SYUHADA BINTI MD NASIR

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Parameters Optimization of Micro Drilling Process for CFRP Using Two Flute Solid Carbide Drill Bit" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the reward of Master of Science in Manufacturing Engineering.

DEDICATION

To my beloved husband

Mohamad Afiq Amiruddin Bin Parnon

To my awesome babies

Mohamad Ariq Rayhan Bin Mohamad Afiq Amiruddin

Nur Airis Raysha Binti Mohamad Afiq Amiruddin

To my supportive parents and parents in law

Md Nasir Bin Nordin & Norizan Binti Da

Parnon Bin Saikon & Rubiah Binti Wakiman

UNIVERSITI TEKNIKAL MALAYSIA MELAKA And my supportive family.

ABSTRACT

Today, composites material is an alternative to the metal components in the airliner bodies and structures because of its lightweight material characteristic which can contribute to reducing aircraft fuel consumption. Carbon Fibre Reinforced Polymer (CFRP) has multiple plies of material that is piled together in reinforced laminates component form with different material properties throughout the structure. Micro hole on CFRP panel is required for acoustic panel of an aircraft engine. However, drilling process for CFRP material is typically challenging due to high structural stiffness of the composite, low thermal conductivity of polymer and thermally stable of its carbon fiber. Poor resin areas between adjacent laminated plies are prone to drilling-induced damage such as delamination that compromises the material structural integrity. Delamination always related to thrust force during machining process. It can lead to lower hole accuracy of the drill hole entry and exit. Therefore, the optimum parameter for drilling process such as machine spindle speed and feed rate are essential to improve the quality of the hole as well as increase the tool life span. In order to understand the behaviour of CFRP material during machining process, tribological study using Ball-on-disk (BOD) tester was conducted to evaluate properties of CFRP material towards frictional force and wear rate. As the applied load increase, the average frictional force also increased. The result contributed to the selection of the optimum range of parameter for the micro drilling process. The thrust force during machining and hole accuracy at hole entry and exit are investigated by using variable spindle speed and feed from 8,000 to 12,000 rpm and 0.001 to 0.015 mm/rev, respectively. Hence, from the Taguchi L9 (3^2) experiment the feed rate of 0.001 mm/rev was eliminated to proceed for the optimization stage due to its' insignificant impact on the investigated variable. Based on oneway ANOVA results from Taguchi L9 (3^2) experiments, the significant parameter for thrust force was cutting feed rate with p-value = 0.004, while hole accuracy was analysed by S/N ratio, in which feed rate achieved 1st rank and spindle speed at the 2nd rank for the significant factor. The optimisation and validation of micro-drilling parameters with respect to the thrust force and hole accuracy in machining of CFRP material were subsequently investigated. The experiments were systematically carried out by 2-Level Factorial experiment. The mathematical models for thrust force, 1st hole entry accuracy, 20th hole entry accuracy, 1st hole exit accuracy and 20th hole exit accuracy were developed in this stage. In addition, analysis of variance (ANOVA) was also carried out to check the significance of the models. Three validation experiments are conducted to determine the error percentage of thrust force and hole accuracy. Based on the results, the error was less than 10% for hole accuracy measurements while for thrust force an error of 17.70% was recorded. However, since the desired response for thrust force was to "minimize", hence the value can be acceptable. The optimum conditions for minimum thrust force and high hole accuracy were found to be at spindle speed of 10,762 rpm and feed rate of 0.01 mm/rev.

PENGOPTIMUMAN PARAMETER DALAM PROSES PENGGERUDIAN MIKRO UNTUK CFRP MENGGUNAKAN MATA GERUDI DUA FLUT KARBIDA PEPEJAL

ABSTRAK

Hari ini, bahan komposit adalah alternatif kepada komponen logam pada badan dan struktur kapal terbang kerana sifat bahan yang ringan dapat menyumbang kepada pengurangan penggunaan bahan bakar pesawat. Polimer Diperkuat Gentian Karbon (CFRP) mempunyai beberapa lapisan bahan yang disusun bersama dalam bentuk komponen laminasi bertetulang dengan sifat bahan yang berbeza di seluruh struktur. Lubang mikro pada panel CFRP diperlukan untuk panel akustik enjin pesawat. Walau bagaimanapun, proses penggerudian mikro pada bahan CFRP biasanya mencabar kerana kekukuhan struktur komposit yang tinggi, polimer yang berkonduksi haba rendah dan karbonnya yang berhaba stabil. Kawasan yang kurang resin antara lapisan dalam laminasi terdedah kepada kerosakan seperti delaminasi yang menjejaskan keutuhan struktur bahan. Delaminasi selalu dikaitkan dengan daya tujah semasa proses penggerudian. Ianya boleh menyebabkan ketepatan lubang yang rendah pada lubang masuk dan keluar. Oleh itu, parameter yang optimal untuk proses penggerudian seperti kelajuan gelendong mesin dan kadar suapan sangat penting untuk meningkatkan kualiti lubang serta meningkatkan jangka hayat alat. Untuk memahami sifat bahan CFRP semasa proses penggerudian, kajian tribologi menggunakan alat Bola-pada-cakera (BOD) dilakukan untuk menilai sifat bahan CFRP terhadap daya geseran dan kadar haus. Apabila beban yang dikenakan meningkat, purata daya geseran juga meningkat. Hasil kajian menyumbang dalam pemilihan julat parameter yang optimal untuk proses penggerudian mikro. Daya tujah semasa penggerudian mikro dan ketepatan lubang masuk dan keluar disiasat dengan menggunakan pemboleh ubah kelajuan gelendong mesin dan suapan pada 8,000 hingga 12,000 rpm dan 0.001 hingga 0.015 mm/putaran. Oleh itu, dari eksperimen Taguchi L9 (32) suapan 0.001 mm/putaran dihapuskan daripada tahap pengoptimuman kerana ianya memberi kesan yang tidak bermakna pada pemboleh ubah yang diselidiki. Berdasarkan hasil ANOVA sehala dari eksperimen Taguchi L9 (32), parameter yang bermakna untuk daya tujah adalah suapan pemotongan dengan nilai p = 0.004, sementara ketepatan lubang dianalisis dengan nisbah S/N, di mana untuk penilaian faktor yang bermakna suapan mencapai tempat pertama dan kelajuan gelendong pada kedudukan ke-2. Pengoptimuman dan pengesahan parameter penggerudian mikro berkenaan dengan daya tuju dan ketepatan lubang dalam pemesinan bahan CFRP kemudiannya disiasat. Eksperimen dijalankan secara sistematik dengan kaedah eksperimen Faktorial Dua Peringkat. Model matematik untuk daya tujah, ketepatan lubang masuk pertama, ketepatan lubang masuk ke-20, ketepatan lubang keluar pertama dan ketepatan lubang keluar ke-20 telah dikembangkan pada tahap ini. Selain itu, analisis varians (ANOVA) juga dilakukan untuk memeriksa kepentingan model. Tiga eksperimen pengesahan dijalankan untuk menentukan peratusan ralat daya tujah dan ketepatan lubang. Berdasarkan keputusannya, peratusan ralat kurang daripada 10% untuk pengukuran ketepatan lubang sementara untuk daya tujah peratusan ralat sebanyak 17.70% dicatatkan. Namun, kerana tindak balas yang diinginkan untuk daya tujah adalah untuk "meminimakan", maka nilainya dapat diterima. Keadaan optimal untuk daya tujah yang minimum dan ketepatan lubang yang tinggi didapati pada kelajuan gelendong 10,762 rpm dan suapan 0.01 mm/putaran.

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor, Ts. Dr. Norfariza Binti Ab Wahab from the Faculty of Mechanical and Manufacturing Technology, Universiti Teknikal Malaysia Melaka (UTeM) for her essential supervision, support, and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Associate Profesor Dr. Raja Izamshah Bin Raja Abdullah from Faculty of Manufacturing Engineering, co-supervisor of this research for his advice and suggestions in design of experiment method. Special thanks to Malaysia Ministry of Higher Education for the financial funding under Grant No. FRGS/2018/FTKMP-AMC/F00387 throughout this project.

Particularly, I would like to express my deepest gratitude to all the technicians in Faculty of Mechanical and Manufacturing Engineering Technology, Faculty of Manufacturing Engineering, and Faculty of Mechanical Engineering for their assistance and efforts during lab activities.

Special thanks to all my teammate especially Syafiq Bin Abdul Latiff and Muhammad Nabil Bin Nordin for their moral support in completing this master project. Lastly, thank you to everyone who had been associated to the crucial parts of realization of this project.

.....

TABLE OF CONTENTS

LIST OF SYMBOLS

LIST OF PUBLICATIONS

CE 1.	IAPTI INT	ER RODUCTION	1
1.	11	Background of research	1
	1.1	Problem statement	3
	1.3	Objectives	4
	1.4	Scopes of research	4
	1.5	Significant of research	5
	1.6	Thesis arrangement	5
	1.7	Research gap	7
2.	LIT	ERATURE REVIEW	8
	2.1	Introduction	8
	2.2	Micro drilling process	8
	2.3	Type of machine for micro drilling process AYSIA MELAKA	10
	2.4	Drill bit geometry comparison for drilling process	10
	2.5	Application of CFRP material	14
	2.6	Parameter review for micro drilling process of CFRP	14
	2.7	Drilling performance on CFRP	16
		2.7.1 Thrust force	17
		2.7.2 Hole accuracy	21
		2.7.3 Tool wear	24
		2.7.4 Delamination	30
	2.8	Experimental method overview	34
	2.9	Design of experiment (DOE)	37
		2.9.1 Full factorial	37
	2.10	Tribological behavior of CFRP	39
		2.10.1 Tribology test overview	41
	2.11	Preliminary study of micro drilling process	45
	2.12	Summary of literature review	48
3.	ME	THODOLOGY	51
	3.1	Project flow chart	51
	3.2	Properties of CFRP material	53

xvi

xix

		3.2.1 Hardness test	54
		3.2.2 Interlaminar shear strength tests	55
		3.2.3 Flexural strength test	56
	3.3	Tribological behavior of CFRP material	56
		3.3.1 Ball-on-disc test	57
		3.3.2 Data collection of tribology test	58
		3.3.3 Surface roughness measurement	60
	3.4	Micro drilling experiment details	61
		3.4.1 Cutting tool	61
		3.4.2 Machining conditions	62
		3.4.3 Data collection	64
		3.4.4 Measurement and evaluation	70
		3.4.4.1 Thrust force	70
		3.4.4.2 Hole accuracy	71
	25	3.4.4.3 Tool analysis	78
	3.5	Design of experiment (DOE)	/8 70
		3.5.1 I wo-level factorial design	/8
4.	RES	SULTS AND DISCUSSION	81
	4.1	Properties of CFRP material	81
		4.1.1 Hardness, shear strength and flexural strength of CFRP material	82
		4.1.2 Effect of different parameter of ball-on-disk test on CFRP material	83
		4.1.2.1 Friction force	83
		4.1.2.2 Specific wear rate	87
		4.1.2.3 Surface roughness after BOD test	89
	4.2	Range of parameter optimization using Taguchi method	92
		4.2.1 Experimental result of thrust force	94
		4.2.2 Experimental result of hole accuracy	98
		4.2.2.1 Entry hole accuracy	98
		4.2.2.2 Exit hole accuracy	102
	4.0	4.2.2.3 Signal to noise (S/N) ratio analysis of hole accuracy	106
	4.3	Optimization of thrust force and hole accuracy by 2-level Factorial method	108
		4.3.1 Analysis of process parameters on hole accuracy	110
		4.5.2 Analysis of process parameters on note accuracy A 3.2.1 Entry hole accuracy	113
		4.3.2.1 Entry hole accuracy	113
		4 3 3 Tool observation from 2-Level Factorial experiment	124
	4.4	Optimization parameters of thrust force and hole accuracy of CFRP micro	121
		drilling process	126
	4.5	Validation test of optimum parameter	127
5	CON	NCI LISIONS	120
5.	5 1	Conclusions	129
	5.2	Recommendations for future work	131
	5.3	Novelty of the research	132
	5.4	Contribution of the new knowledge	133
RE	FER	ENCES	134
AP	'PENI	JICES	151

LIST OF TABLES

TABLE	TITLE					
2.1	Process parameters for machining tests	35				
2.2	Mechanical properties of a composite ply	43				
2.3	Parameter used to drill CFRP material by previous researcher	46				
2.4	Cutting parameter for preliminary test	48				
2.5	Summary of previous research on micro drilling of CFRP	50				
3.1	Ball-on-disk test parameters	58				
3.2	Parameters of machining setup by Taguchi L9 (3 ²) method	64				
3.3	Result of force exported to excel file from Dyno Ware	71				
3.4	The ranges and levels of micro drilling parameters for 2-Level Factorial Design	79				
3.5	Design of experiment using 2-Level Factorial for micro-drilling	80				
<i>A</i> 1	Interlaminar shear strength test result	87				
4.1	Elovural strongth tast result	02 82				
4.2	Pell on disk testing result for friction force	00				
4.3	Ball-on-disk testing result for friction force	86				
4.4	List of parameters used in Taguchi L9 (3 ²) experiment	93				
4.5	Result of entry hole accuracy for range of $1^{st} - 4^{th}$ holes	99				
4.6	Result of entry hole accuracy for range of $17^{\text{th}} - 20^{\text{th}}$ holes	101				
4.7	Result of exit hole accuracy for range of $1^{st} - 4^{th}$ holes	103				

4.8	Result of exit hole accuracy for range of $17^{th} - 20^{th}$ holes	105			
4.9	Response table for S/N ratio of hole accuracy 1				
4.10	Design of experiments and results for micro-drilling of CFRP material				
4.11	Fit statistic summary of all response variables	109			
4.12	ANOVA on thrust force for CFRP micro-drilling process	111			
4.13	Coefficient of coded factors of thrust force	113			
4.14	ANOVA on 1 st entry hole accuracy	115			
4.15	Coefficient of coded factors of 1 st entry hole accuracy 11				
4.16	ANOVA on 20 th entry hole accuracy	117			
4.17	Coefficient of coded factors of 20 th entry hole accuracy	118			
4.18	ANOVA on 1 st exit hole accuracy	120			
4.19	Coefficient of coded factors of 1 st exit hole accuracy	121			
4.20	ANOVA on 20 th exit hole accuracy	122			
4.21	Coefficient of coded factors of 20 th exit hole accuracy	123			
4.22	The goals for factors and responses to find the optimum setting of	127			
	micro-drilling parameters in 2-Level Factorial method				
4.23	Optimization parameters suggested by 2-Level Factorial method	127			
4.24	Results of validation test	128			

LIST OF FIGURES

FIGURE	TITLE				
2.1	Drills (a) twist 120°, (b) twist 85°, (c) Brad, (d) Dagger, and (e)				
	step				
2.2	Drill bit type (a) Spur, (b) R950 and (c) R415	11			
2.3	FE model of drilling of CFRP using (a) conventional twist drill and				
2.4	(b) step drill Drill bit (a) photo and (b) geometrical dimensions of a bit with a 118° point angle	13			
2.5	Ply sequence of a CFRP	18			
2.6	Example of thrust force and torque data for (a) raw and (b) filtered 19 and drift corrected				
2.7	Force signals obtained during drilling with step drill at feed of	20			
	0.045 mm/rev and frequency of rotation of 1,200 RPM for (a)				
	conventional and (b) modulation-assisted drilling				
2.8	Result of drilling CFRP for (a) surface roughness, (b) circularity	22			
	and (c) cylindricity				
2.9	Overall algorithm for analysis of hole quality	24			
2.10	Cutting edge (a) sharp (b) blunt smoothly worn	25			
2.11	SEM pictures of drill (a) uncoated carbide and (b) diamond-coated	27			
2.12	Chip formation mechanisms in CFRP machining 28				

2.13	Result of tool wear against drilled holes (a) CE profiles, (b) VB	30		
	and (c) CER			
2.14	Schematics of drilling in composite materials	31		
2.15	Schematic illustration of delamination damage during the drilling	32		
	process			
2.16	Demonstration of drilling leading to delamination at hole (a) entry	33		
	and (b) exit			
2.17	Pin-on-disc tester (a) schematic diagram and (b) specimen	42		
	placement location			
2.18	SRV-IV wear tester and the tribo pair for the frictional tests	44		
3.1	Flow chart of the research	52		
3.2	CFRP composite laminates panel	53		
3.3	Cross-sectional view of CFRP composite laminates panel	54		
3.4	Shore Durometer hardness tester 5			
3.5	Specimen fit in fixture as disc	57		
3.6	Setup of ball-on-disk test KAL MALAYSIA MELAKA	59		
3.7	Wear track thickness	60		
3.8	3D data processing using pseudo scale colour setting	60		
3.9	Image of drill bit (a) actual and (b) two-dimensional.	61		
3.10	The drawing location of drilling hole position	62		
3.11	Experimental setup	63		
3.12	Hardware setting in dyno ware software	65		
3.13	The control unit of dynamometer	65		
3.14	Edit acquisition	66		
3.15	Real time data acquisition of force at (a) Fz, (b) Fy and (c) Fx	67		

3.16	Export data from Dyno Ware				
3.17	Image of hole with scale under 10x magnification				
3.18	Tool observation under scanning electron microscope				
3.19	Image of drill bit under SEM with 80x magnification	69			
3.20	Graphical result of force for (a) Fz, (b) Fy and (c) Fx	70			
3.21	Menu bar interface of image J software	72			
3.22	Setting the actual scale of the image	73			
3.23	Setting the image type to 8-bit image	74			
3.24	Sharpen the image	74			
3.25	Make binary image of hole	75			
3.26	Fill holes to enhance the hole area	75			
3.27	Close- holes to sharpen the measuring area	76			
3.28	Draw the circle around the hole area	76			
3.29	Setting for analyze particles	77			
3.30	The outline of particle count and result of area 77				
4.1	Graph of friction force for applied load of (a) 5 N, (b) 10 N and (c)	85			
	15 N				
4.2	Image of CFRP specimen after BOD test for applied load of (a) 5	86			
	N, (b) 10 N and (c) 15 N				
4.3	Specific wear rate at 400 rpm	88			
4.4	Specific wear rate at 800 rpm	89			
4.5	Surface roughness after BOD tests for 400 rpm with applied load	91			
	of 5 N (a) 3D profile and (b) actual image				
4.6	Surface roughness comparison at 400 rpm and 800 rpm	92			
4.7	Result of average thrust force by Taguchi method experiment	94			

4.8	Plot for means value of thrust force	96
4.9	Signal to noise ratio plot of thrust force	97
4.10	The image of entry hole under microscope at the range of $1^{st} - 4^{th}$	100
	for run number (a) 3 and (b) 5	
4.11	The image of entry hole under microscope at the range of 17^{th} –	102
	20 th for run number (a) 3 and (b) 7	
4.12	The image of exit hole under microscope at the range of $1^{st} - 4^{th}$	104
	for run number (a) 9 and (b) 1	
4.13	The image of exit hole under microscope at the range of $17^{\text{th}} - 20^{\text{th}}$	106
	for run number (a) 8 and (b) 5	
4.14	Signal to noise ratio plot of hole accuracy	107
4.15	Thrust force result at (a) normal plot of residuals and (b) Residual	110
	vs. Predicted	
4.16	The response surface on the thrust force between spindle speed and	112
	اونيوم سيتي تيڪنيڪل مليسياfeed rate	
4.17	Normal plot of residuals for entry hole accuracy at (a) 1 st and (b)	114
	20 th	
4.18	Residual vs. Predicted of entry hole accuracy at (a) 1^{st} and (b) 20^{th}	114
4.19	The response surface on the 1 st entry hole accuracy between	116
	spindle speed and feed rate	
4.20	The response surface on the 20 th entry hole accuracy between	118
	spindle speed and feed rate	
4.21	Normal plot of residuals for exit hole accuracy at (a) 1^{st} and (b)	119
	20 th	
4.22	Residual vs. Predicted of exit hole accuracy at (a) 1^{st} and (b) 20^{th}	119

4.23	The response surface on the 1 st exit hole accuracy between spindle	
	speed and feed rate	
4.24	The response surface on the 20 th exit hole accuracy between	123
	spindle speed and feed rate	
4.25	Tool wear observation for (a) Fresh tool, (b) Run 1, (c) Run 3 and	125
	(d) Run 8	
4.26	Tool wear observation for drilled holes at (a) 200 and (b) 400	126

LIST OF APPENDICES

APPENDIX	TITLE			
А	Data Sheet: Solid Carbide HPC micro-drill +0.004 0.9 mm	151		
В	Product Data Sheet: HexPly® 8552			
С	ASTM D2240-15: Standard Test Method for Rubber Property—	161		
	Durometer Hardness			
D	ASTM D2344: Standard Test Method for Short-Beam Strength	174		
	of Polymer Matrix Composite Materials and Their Laminates			
E	Test Report: Interlaminar Shear Strength and Flexural Strength	182		
F	ASTM D790-10: Standard Test Method for Flexural Properties	188		
4	of Unreinforced and Reinforced Plastics and Electrical Insulating Materials			
G	ASTM G99-05(2010): Standard Test Method for Wear Testing	199		
	with a Pin-on-Disk Apparatus			

LIST OF ABBREVIATIONS

AE	-	Acoustic emissions
ANOVA	-	Analysis of variance
ASTM	-	American standard test method
BOD	-	Ball-on-disk
CER	-	Cutting edge radius
CFRP	- MP	Carbon fibre reinforced polymer
COF	Kuller	Coefficient of friction
CP-T	TI TE	Cutting process tribometer
DF	- SAN	Delamination factor
DOE	alte	Design of experiment
FE	_	Finite element
FRP	UNIVE	RSITI TEKNIKAL MALAYSIA MELAKA Fibre reinforced polymer
FTIR	-	Fourier transformed infrared
GA	-	Genetic algorithm
HSS	-	High speed steel
min	-	Minutes
mm	-	Millimetre
MRR	-	Material removal rate
PCD	-	Pitch circle diameter
PKAC-E	-	Palm kernel activated carbon-epoxy
rpm	-	Revolution per minutes

RSM	-	Response surface methodology
SEM	-	Scanning electron microscope
SN	-	Signal to noise
Std	-	Standard
TFL	-	Transfer film layers
TiAlN	-	Titanium aluminium nitride
TiN	-	Titanium nitride
TWR	-	Tool wear rate
VB	-	Tool wear
WC	-	Woven CFRP
	TEKNIF	

_A

4

...

ىتى

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

اونيق

LIST OF SYMBOLS

%	-	Percentage
0	-	Degree of angle
°C	-	Degree Celsius
μ	-	micron
А	-	area of circle
a	-	wear track thickness
b	-	measured specimen width in mm
C_{f}	-	Uncut fiber level criterion
C_i	-	Circularity error
C_y	-	Cylindricity error
d	-	depth of the specimen
E_{x}	-	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Effect of X
F	-	Contact force
f	-	feed rate
F	-	friction force
F ^{sbs}	-	short beam strength
Fa	-	Axial force
F _d	-	Delamination level criterion
F_x	-	force at x-direction
F_y	-	force at y-direction
Fz	_	force at z-direction

GPa	-	Giga Pascal
Н	-	Hardness of material
h	-	height
h	-	measured specimen thickness in mm
K	-	Archard's wear coefficient
k	-	kilo
Κ	-	specific wear rate
kg	-	kilogram
L	-	Cutting length
L	-	sliding distance
L	-	support span
L _c	-	Contact length
Ν	-	applied load
N	-	Newton
Ø	-	اونيوم سيتي تيڪنيڪل مليسيdiameter
Р	-	load at a given point on the load deflection curve
P _m	-	maximum load observed during the test
r	-	radius of circle
r	-	radius of the ball bearing
R	-	radius of the wear track
\mathbb{R}^2	-	Coefficient of determination
Ra	-	Surface roughness
T_{g}	-	Glass transition temperature
v	-	spindle speed
V_{loss}	-	volume loss

- W applied load
- W Volumetric wear of the material
- y_x - Average response of X at low level
- $y_{x+} \quad \ \ \qquad \ \ Average\ response\ of\ X\ at\ high\ level$
- П pi = 3.142
- $\sigma_{\rm f}$ stress in the outer fibers at midpoint in MPa

LIST OF PUBLICATIONS

<u>Journal</u>

- Nur Syuhada Nasir, Norfariza Ab Wahab, Badri Bin Sofian, Raja Izamshah, Hiroyuki Sasahara, 2021. Experimental Investigations Towards Hole Accuracy in Micro-drilling of Carbon Fibre Reinforced Polymer Material. *Manufacturing Technology*, ISSN: 1213-2489. (Scopus) (Published)
- N. Syuhada Nasir, N. Ab Wahab, R. Izamshah, H. Sasahara Hassan, M H., 2019. Optimization of CFRP Micro Drilling Parameter Using 2-Level Factorial Method Towards Thrust Force. *International Journal of Engineering and Advanced Technology* (*IJEAT*), ISSN: 2249-8958, Volume 9, No. 2, pp. 4487–4491. (Published)
- Wahab, N Ab, Shiradzi Bin Basharudin, Hambali Bin Boejang, E Ruslan, D A Hadi, and N. Syuhada Nasir, 2019. Optimization of Square Shape Portable Vacuum Clamping (Square) Based on Machining Parameter. *ARPN Journal of Engineering and Applied Sciences*, ISSN: 1819-6608, Volume 14, No. 13, pp. 2433–2436. (Scopus) (Published)
- N. Ab Wahab, Syafiq Abd Latiff, H. Sasahara, R. Izamshah and N. Syuhada Nasir, 2020. The Behaviour of CFRP Material in Micro Drilling Process Towards Thrust Force. *International Journal of Mechanical and Production Engineering Research and Development*, ISSN: 2249-8001, Volume 10, No. 3, pp. 10195–10204. (Scopus) (Published)