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ART ICLE Open Ac ce s s

Single-cell analysis reveals differences among
iNKT cells colonizing peripheral organs and
identifies Klf2 as a key gene for iNKT emigration
Jie Wang1,2, Ian Loveless1,2,3, Indra Adrianto 1,2,3, Tingting Liu1,2, Kalpana Subedi1,2, Xiaojun Wu1,2,
Md Moazzem Hossain4, Eric Sebzda4, Li Zhou1,2,4✉ and Qing-Sheng Mi 1,2,4✉

Abstract
Invariant natural killer T cell (iNKT) subsets are differentially distributed in various immune organs. However, it remains
unclear whether iNKT cells exhibit phenotypical and functional differences in different peripheral organs and how
thymic iNKT cells emigrate to peripheral organs. Here, we used single-cell RNA-seq to map iNKT cells from peripheral
organs. iNKT1 cells from liver, spleen, and lymph node appear to have distinct phenotypic profiles and functional
capabilities. However, iNKT17 transcriptomes were comparable across peripheral organs. In addition, by integrating
data with a thymic iNKT cell study, we uncovered a transient population of recent thymic emigrants, a cluster of
peripheral iNKT cells with high expression of transcription factor Kruppel-like factor 2 (Klf2). Deletion of Klf2 led to a
severe impairment of iNKT differentiation and migration. Our study revealed that iNKT subsets are uniquely distributed
in peripheral organs with some inter-local tissue variation, especially for iNKT1 cell, and identified Klf2 as a rheostat for
iNKT cell migration and differentiation.

Introduction
Invariant natural killer T (iNKT) cells are innate-like

T cells that are initially selected by CD1d and pre-
ferentially use an invariant T cell receptor (TCR) con-
sisting predominantly of the Vα14-Jα18/Vβ8 pair in
mice1–3. iNKT cells were known to develop in the thymus
through a four-stage process in mice: stage 0 (CD24+),
stage 1 (CD24−CD44−NK1.1−), stage 2 (CD44+NK1.1−),
and stage 3 (CD44+NK1.1+). During development, thymic
iNKT cells display substantial functional heterogeneity,
with three major subsets, including iNKT1, iNKT2, and
iNKT17. These three major functional subsets exhibit
distinct transcription factors and cytokine production. For
instance, iNKT1 cells are T-bet+ and mainly produce

IFN-γ; iNKT2 cells are PLZFhi and mainly produce IL-4;
and iNKT17 cells are RORγt+ and produce IL-17.
iNKT1 cells develop through all stages and finally mature
in stage 3, which also highly express cytolytic effectors
(perforin, granzyme B, granzyme A, and FAS ligand) and
specific chemokines and their receptors. However, iNKT2
and iNKT17 cells terminate at stage 2. Stage 2 iNKT cells
have a high proliferation capability, and most iNKT cells
at this stage emigrate to peripheral organs4.
After emigrating from the thymus, iNKT cells are dif-

ferentially distributed in various peripheral organs. For
instance, only a small subset of iNKT cells traffic through
the lymph nodes (0.2%–1%), with the largest iNKT cell
populations localizing to the liver (12%–30%), lung
(5%–10%), and spleen (1%–3%)5–7. Most iNKT cells are
tissue-resident and noncirculating4,8, with iNKT1 cells
being dominant in the liver, while lymph node shows
enrichment for iNKT17 cells, and spleen and lungs show
preference to iNKT2 cells. This is thought to be mediated
by the differences in chemokine receptor expression
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Fig. 1 (See legend on next page.)
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profiles in iNKT cells and tissue microenvironment9–11.
Many studies have demonstrated that iNKT cells play a
critical role in various pathological conditions, including
cancer, autoimmune disease, and infection, and
iNKT cells from different organs appear to have distinct
functional capabilities2,12,13. More specifically, recent
studies suggest that iNKT cells from spleen, thymus, and
liver exhibit different anti-tumor activity in varying tumor
models9,14, including MCA-1 sarcoma and B16F10 mel-
anoma metastasis models. However, the underlying
mechanism of iNKT functional differences in different
organs is still unclear.
iNKT cell emigration from the thymus to peripheral

organs mainly occurs at stage 2, in a Ccr7-dependent
fashion. However, Ccr7 is also a lineage-defining marker
for iNKT multipotent precursors15, which makes studying
recent thymic emigrants (RTE) difficult. In addition, RTEs
are a rare population relative to total peripheral
iNKT cells and thus the mechanisms responsible for
iNKT thymic emigration and iNKT cell distribution in
peripheral organs remain unknown.
Several pioneering studies, including our own, have

indicated that thymic iNKT cells are more plastic than
their defined iNKT1/2/17 sublineages16. However, whe-
ther the thymic iNKT clusters are conserved in peripheral
organs is still not quite clear. In this study, we extended
our analysis of subsets of iNKT cells in peripheral organs.
We performed single-cell RNA-sequencing (scRNA-seq)
of iNKT cells from liver, spleen, and lymph node and
revisited our scRNA-seq of thymic iNKT cells. We found
that there are substantial differences between iNKT cells
in the thymus and in peripheral organs. More impor-
tantly, in peripheral organs, iNKT cells from liver and
spleen showed great commonality, but iNKT cells from
lymph node showed great phenotypical differences with
iNKT from either liver or spleen, especially for
iNKT1 cells. Via integration with thymic iNKT cells, we
identified an RTE cluster among peripheral iNKT cells,
which highly express Klf2. Studies from Klf2 deletion
mouse models indicated that Klf2 is a key regulator for
iNKT cell differentiation and migration. Taken together,
our data constitute a comprehensive analysis of the
similarities and differences among functionally distinct

peripheral iNKT cells and provide a valuable resource for
future disease model studies.

Results
Overview of the cell types in peripheral iNKT cells
identified by scRNA-seq
We previously studied cellular heterogeneity of mouse

thymic iNKT cells using scRNA-seq. To capture the extent
of cellular heterogeneity within mouse peripheral
iNKT cells, we applied scRNA-seq (10X genomics chro-
mium) on iNKT cells from six samples representing three
peripheral tissues, including spleen, liver, and lymph node
(Fig. 1a, b). After quality control (Supplementary Fig. S1a, b),
a total of 5570 individual iNKT cells (sample #1: 2760;
sample #2: 2810) from liver; 4850 individual iNKT cells
(sample #1: 2562; sample #2: 2288) from spleen; and 4897
individual iNKT cells (sample #1: 2408; sample #2: 2489)
from lymph node were assessed for single-cell RNA
expression. iNKT cells from three organs that we profiled in
replicates were well correlated (Spearman’s coefficient: 0.92
between liver iNKT cells; 0.89 between splenic iNKT cells,
and 0.91 between lymph node iNKT cells) (Supplementary
Fig. S1c).
After processing the sequencing data using the Cell

Ranger pipeline (10X Genomics), we performed unbiased
clustering analysis of peripheral iNKT cells with thymic
iNKT cells (over 17,000 cells) using Seurat. iNKT cells
from peripheral organs cluster uniquely from thymic
iNKT cells (Fig. 1c), reflecting substantially different
transcription programs between thymic iNKT cells and
peripheral iNKT cells. Among integrated peripheral
iNKT cells, a total of 10 clusters (C1–C10) were identified
(Fig. 1c–e), with as few as 123 cells to as many as 4474
cells per cluster (Fig. 1f, g), with some clusters (C4–C10)
shared between iNKT cells from different organs.
We used differential gene expression analysis to deter-

mine cell type-specific marker genes with highly different
transcriptional levels between clusters. The top 10 genes
from individual clusters were shown in heatmap (Fig. 1e).
Correlation analysis of marker gene signatures revealed
that similar cell types clustered together (Supplementary
Fig. S1d). For initial analysis, we found that most
iNKT cells from liver, spleen, and lymph node were

(see figure on previous page)
Fig. 1 The diversity of mouse peripheral iNKT cells. a iNKT cells collected from peripheral organs including liver, spleen, and lymph node for
scRNA-Seq analysis. b Sorting strategy of iNKT cells from liver, spleen, and lymph node post CD8+B220+ deletion enrichment. c UMAP plots from 10X
genomics scRNA-Seq dataset from sorted peripheral iNKT cells along with thymic different stages of iNKT cells collected. Displaying relationships
between iNKT cell organs origins. d UMAP plots of data identical to those in c, but color coded on iNKT cell clusters. e Heatmap of the top ten
differentially regulated genes from each cluster derived from d. Each column represents gene expression for an individual cell with color coded on
gene expression profiles. Yellow is upregulated and purple is downregulated. f Bar graph showing the cell number in each of clusters. g The fractions
of ten clusters defined in peripheral iNKT cells. h Pearson correlation matrix of the average expression profiles based on all differentially expressed
genes from all clusters analyzed.
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clearly separated, indicating that tissue location is asso-
ciated with specific transcriptomic program in these
iNKT cells (Fig. 1c), e.g., cluster C1 from liver, C2 from
spleen, and C3 from lymph node (Fig. 1d), and the simi-
larity of different clusters from different organs were
shown in Fig. 1h. These clusters were recognized as main
iNKT clusters with natural killer properties; however, we
found that the C4–C10 clusters were mixed across all
samples (Fig. 1c, d), independent of their location nature.
These data suggest that an intrinsic iNKT program is the
main determinant of the transcriptional profile of C4–C10
iNKT cells. iNKT cells from lymph node made a major
contribution to C4, which highly expressed
iNKT17 signature genes, including Rorc, Pxdc1, and Aqp3.
Cluster C5 shows high levels of Ccr7 and S1pr1 that are
associated with cell homing. C6 shows high levels of Ifit1
and Ifit3. Given that Ifit1/3 function as inhibiting viral
replication and translational initiation, we assumed that
C6 iNKT cells may be associated with anti-viral function.
C7 shows high expression level of Gzma, which is asso-
ciated with cellular cytotoxic properties. C8–C9 show a
great overlap with thymic stage 1 and 2 iNKT cells with
high expression of genes regulating the cell cycle (dis-
cussed below). Clusters identified in mRNA levels were
also verified with available antibodies at protein levels. As
shown in Supplementary Fig. S2a–c, RORγt+ iNKT17
cells (C4) in different peripheral organs showed a dra-
matical increased Aqp3 expression, while IFIT1 (C6) had
an increased expression pattern as compared with con-
ventional T cells in different peripheral organs. In addi-
tion, Gzma (C7) was identified in iNKT cells from lymph
nodes, spleen, and liver, with varying expression enrich-
ment, especially in NK1.1+ mature iNKT cells.

Defining the distinct subsets of iNKT cells in peripheral
organs
To explore iNKT cell diversity in more detail, we

annotated 10 clusters from peripheral organs with
assumed cell-type identities based on known marker
genes derived from published expert annotation16.
Among these 10 peripheral iNKT cell clusters, we noticed
that clusters C8–C9 were mainly proliferating cells
showing high expression levels of S and G2M cell-cycle
marker genes (Fig. 2a, b; Supplementary Fig. S3a). To
avoid the possibility that proliferating genes were affecting
cellular cluster analysis, we isolated these clusters and
corrected the gene expression levels for cell cycle phase.
Subsequent unsupervised clustering analysis revealed that
cell clusters were similar to those in primary data (data
not shown), indicating that cell-cycle genes did not dis-
turb cell cluster analysis in this study.
iNKT1/2/17 subsets have been identified based on their

transcription factor and cytokine production profiles.
Although these differentiated iNKT subsets initially

emerge in the thymus, it is likely that tissue-specific fac-
tors and local environmental influences shape the phe-
notype and function after recruitment to specific tissue
sites. Therefore, we dissected peripheral iNKT cells into
transcriptionally distinct subpopulations, which could
allow us to access the transcriptional landscape in a more
detailed iNKT functional model.
Based on published lineage markers of iNKT cells

lineages16, we found that clusters C1–C3, clusters C6
(Ifit1/Ifit3), and C7 (Gzma) were categorized into
iNKT1 subsets. These cells expressed Ifng and various NK
cell lectin-like receptors, such as Klra1, Klrb1, and Klrc2,
which may regulate cytotoxic properties. In this study,
most iNKT1 cells from different organs were not clus-
tered together, e.g., C1 from liver, C2 from spleen, and C3
from lymph node, indicating that iNKT1 cells exhibit
tissue-specific variations in phenotype; clusters C8–C10
from three peripheral organs show highly expressing
Gata3, Icos, and Izumol1r (Supplementary Fig. S3b), were
assigned as iNKT2 cells; cluster C4, mainly from lymph
node, and a small fraction from spleen and liver, were
categorized into iNKT17 subset, expressing high levels of
Rorc, Il17rb, Il23r, Tmem176b, Ccr6, and Ccr8 (Fig. 2c).
Given that iNKT17 cells from all different peripheral
organs cluster together as single C4, this suggests that
unlike iNKT1 cells, iNKT17 transcriptional programs
might not be dependent on specific tissue environment.
Cells in C5 had a high expression of the homing marker,
Ccr7 (Fig. 1e). Interestingly, this cluster did not stand out
in any iNKT subsets, showing an undifferentiated status
that could represent RTE iNKT cells. In addition, we
found that iNKT17 cells were identical across different
peripheral organs and iNKT2 cells showed proliferative
activity. However, iNKT1 cells differ from organ to organ.
Ingenuity pathway analysis (IPA) data indicated that
iNKT1 from lymph nodes enriched in T cell receptor
signaling, Tec Kinase signaling, and T helper cell differ-
entiation pathways. iNKT1 from liver showed a higher
cellular proliferation status (Fig. 2d).

Comparison of transcriptomic profiles among iNKT cells
from different peripheral organs
iNKT cells in different lymphoid organs display distinct

tissue tropisms, which might be mediated by local envir-
onment. Previous studies have indicated that iNKT cells
from different organs mediate a different functional cap-
ability2,9,14. Therefore, we compared iNKT cells from
different peripheral organs. As shown in Fig. 3a–c, we
detected five distinct clusters in peripheral iNKT cells
from liver, spleen, and lymph node. Violin plots with the
indicated UMAP plot show the top two signatures of each
cluster in indicated peripheral organs; the top 10 sig-
natures for each cluster were provided in Supplementary
Fig. S4a–c. iNKT1 clusters found in all three organs
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Fig. 2 Different clusters assigned into functional subsets. a UMAP plots depicting single-cell genes expression trajectory of G1, G2/M, and S phages in
peripheral iNKT cell development. b Bar graph represents fraction of G1, G2/M, and S cells in iNKT cells clusters. c Bubble plots showing gene expression in
individual clusters (C1–C10) from aggregated iNKT cells. Gene names labeled in blue are iNKT17 signature genes, in red are iNKT1 signature genes and in green
are iNKT2 signature genes. X axis shows different clusters identified in Fig. 1d. d Bar graph showing IPA analysis of iNKT1 cells in different peripheral organs.
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Fig. 3 Comparison of transcriptomic profiles among iNKT cells from different peripheral organs. a–c UMAP plots from 10X genomics scRNA-
Seq dataset from sorted liver iNKT cell(a), spleen iNKT cell (b), and Lymph node iNKT cells (c) (left). Violin plots showing the top two cluster-specific
signatures in iNKT cells from liver (a), spleen (b), and lymph node (c). d Pearson correlation matrix of the average expression profiles based upon all
differentially expressed genes from all indicated subpopulations analyzed. e Gene list showing significant change of iNKT1 signatures among
iNKT cells from thymus, liver, spleen, and lymph node, extracted from (d).
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(Lv_C1 in liver, Spl_C1 in spleen, and Ln_C1 in lymph
node) were all assigned to iNKT1, but with different
transcriptomic profiles. Ln_C5 in lymph node, Spl_C3 in
spleen, and Lv_C4 in liver were identified as an Ifit1/3
cluster, which also showed iNKT1 characteristics; Ln_C4
in lymph node, Spl_C4 in spleen, and Lv_C3 in liver were
cell cycle clusters; Ln_C2 in lymph node, Spl_C5 in
spleen, and Lv_C5 in liver were identified as iNKT17 cells.
In addition, we observed that Lv_C2 with Gadd45b,
Icam1, Nfkbia, Irf8, Relb, and Ifng expression was found
only in liver (Supplementary Fig. S4d). Further signaling
pathway analysis indicated that besides NK cell-mediated
cytotoxicity pathway, this cluster was much more enri-
ched in NF-κB signaling pathway and T cell receptor
signaling pathway (Supplementary Fig. S4e). This result
was initially curious to us, because T cell-NF-κB is
important for IFN-γ production and plays an important
role in anti-tumor immunity17.
To test whether iNKT cells in the thymus and in dif-

ferent peripheral organs display similar genomic profiles,
we re-visited our previous single-cell study of thymic
iNKT cells (data not published). With these data, we
carried out a scRNA-seq-based comparison between
assigned clusters among iNKT cells from indicated organs
(Fig. 3d). These data reflected the extensive tran-
scriptomic differences between iNKT cells from thymus,
liver, spleen, and lymph node. There was less overlap of
transcriptomic expression between iNKT1 from thymus
and peripheral organs (Lv_C1, Spl_C1, and Ln_C1), where
the Silhouette coefficient was −0.15 for liver iNKT1 cells,
0 for spleen iNKT1 cells, and −0.05 for lymph node
iNKT1 cells relative to thymic iNKT1 cells (Fig. 3d).
iNKT1 cells were also shown to be tissue-specific in
peripheral organs, where the Spearman’s coefficient was
0.13 between liver and spleen, 0.32 between spleen and
lymph node, and 0.09 between liver and lymph node (Fig.
3d). Interestingly, we observed that anti-apoptotic gene
Bcl2 and suppressor of cytokine signaling 2 (Socs2) were
highly expressed in iNKT cells from liver, but not in
iNKT cells from spleen and lymph node (Supplementary
Fig. S5a). The differences in Bcl2 and Socs2 expression by
iNKT cells in different organs could explain the enrich-
ment of iNKT cell population in liver. Given that the Ifit1/
3 cluster was identified in all organs, we explored their
similarity among organs, and we observed a strong cor-
respondence of Ifit1/3 clusters among peripheral organs
(Spearman’s coefficient was 0.82 between liver and spleen,
0.78 between spleen and lymph node, and 0.81 between
liver and lymph node). However, the Spearman’s coeffi-
cient between iNKT cells from the thymus and peripheral
organs varied from −0.01 to 0.02 (Fig. 3d). A similar
phenomenon was also observed in iNKT17 clusters,
namely, a high correlation in iNKT17 among peripheral
organs (Spearman’s coefficient is 0.69 between liver and

spleen; 0.74 between spleen and lymph node; and 0.67
between liver and lymph node); however, the coefficient
between thymic iNKT17 cells and peripheral iNKT17
varied from −0.06 to 0.013 (Fig. 3d). These data indicate
that iNKT17 cells exhibit a nearly identical transcriptome
in peripheral organs.
Comparison of populations in heatmaps is provided in

Supplementary Fig. S5b–d. These analyses again high-
lighted many similarities between iNKT cells from liver,
spleen, and lymph node, and showed how transcriptomes
change when iNKT cells emigrate from the thymus to
different peripheral organs. This includes genes that were
differentially expressed between iNKT1 cells from the
liver vs the thymus (Fig. 3e; Supplementary Fig. S5b).
iNKT17 cells show a lower expression ratio of Furin, Emb,
Rorc, Il17a, Avpl1, and Ly6a in peripheral organs, as
compared with those from the thymus. However, there
was no marked difference in transcriptomic profiles of
iNKT17 cells in different peripheral organs (Supplemen-
tary Fig. S5c). In addition, the Ifit1/3 cluster from per-
ipheral organs exhibits a great similarity between different
organs, but they were more pronounced in iNKT cells
from peripheral organs (Fig. 3d; Supplementary Fig. S5d).
Overall, these data indicate that iNKT cells from the
thymus exhibit a great transcriptomic difference from
those in peripheral organs, and transcriptomic profiles of
iNKT1 cells correlated poorly within different peripheral
organs; however, the transcriptional patterns were highly
correlated for iNKT17 cells and the Ifit1/3 cluster among
peripheral organs.

Homing signature profiles of iNKT cells from peripheral
organs
iNKT cells exhibit altered patterns of tissue localization,

suggesting differences in the signals regulating homing
and homeostasis. To directly investigate the iNKT cell
migration and redistribution mechanism, we integrated
different developmental stages of thymic iNKT cells with
peripheral iNKT cell (Fig. 4a). We found that cluster C5
iNKT cells from the peripheral organs included candi-
dates for newly arrived iNKT cells that share similarities
with stage 1/2 thymic iNKT cell precursors and express
high levels of Ccr715. Therefore, this cluster was anno-
tated as an RTE cluster. Consistently, we found multiple
homing markers showing similar pseudotime trajectories
with Ccr7, including S1pr1, Sell, and Klf2 (Fig. 4b). In
addition, pseudotime analysis carried out using Monocle
318–20 showed three trajectories branching from this
intermediate RTE cluster toward terminally differentiated
peripheral iNKT cells (Fig. 4c). These RTEs are the
youngest iNKT cells, showing less differentiation/matur-
ity (Fig. 2c). Consistently, we observed that T-bet+

iNKT1, PLZFhi iNKT2, and RORγt+ iNKT17 cells were
substantially underrepresented amongst RTE iNKT cells
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Fig. 4 Homing signatures profiles of iNKT cells from peripheral organs. a UMAP plots showing relationships between iNKT cells from different
peripheral organs. b UMAP plots showing multiple homing markers expression in integrated thymic and peripheral iNKT cells. c The ordering of
iNKT cells along pseudotime in a state-space defined by Monocle 3. Each color represents an iNKT cluster. d Flow cytometry showing RTEs
(CCR7+S1PR1+) and non-RTEs (CCR7–S1PR1−) from indicated organs. iNKT1(PLZFloT-bethi), iNKT2 (PLZFhiRORγt−), and iNKT17(PLZFintRORγt+) cells in
RTEs and non-RTEs from indicated organs.
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(CCR7+ S1PR1+) compared to non-RTE iNKT cells
(CCR7−S1PR1−) (Fig. 4d).
To further describe the iNKT cell migration and relo-

cation properties, we characterized the basis of tissue
residency of different subsets in spleen, liver, and lymph
node by evaluating the expression of the core circulatory
and tissue-resident signatures that were reported in a
recent study21, on the basis of effector CD8 T cells. A
gradient was observed in RTEs with an increased circu-
latory signature (including Klf2, Sell, S1pr1, and S1pr4)
and a decrease of tissue residency signatures (including
Atf3, Cd244, Cd69, Fos, and Jun) (Fig. 5a). As RTEs
developed and matured in peripheral organs, they lost
circulatory signatures, but obtained residency signatures,
except cluster C7, which expressed a relative increase in
expression of Klf2, S1pr1, Klrb1c, Bin2, and Fam65b (Fig.
5a). We also found that clusters C3 and C4 of iNKT cells
from lymph node expressed high levels of most of the
tissue residency signature genes, including markers of
direct TCR activation (Jun, Fos, Junb, Jund, Dnala1,
Dnala4, Dusp1, Icos, Ppp1r15a, Prdx6, Ptp4a1, Opct,
Tnfaip3, and Zfp36l1) (Fig. 5a; Supplementary Fig. S6a).
iNKT cells from liver and spleen exhibited a higher cir-
culatory property than iNKT cells in lymph node, and this
pattern is more pronounced in liver (Fig. 5a).
To understand the preferential localization of

iNKT cells in peripheral organs, we re-clustered RTEs,
and three sub-clusters were further identified: C5_1,
C5_2, and C5_3 (Fig. 5b, c). Among these sub-clusters, we
found the following: spleen RTEs were mainly located in
C5_1, expressing high levels of Lgas1 and S100a6, liver
RTEs were mainly assigned in C5_2 with high expression
of Irf8 and Xcl1, and lymph node RTEs were mainly
located in C5_3, expressing high levels of Dapl1, Sell, and
Tsc22d3. These data indicated that RTEs, those newly
migrated out from thymus, exhibit a greatly different
transcriptomic profile. Interestingly, some immature
iNKT cells from the thymus were clustered together with
lymph node cells in C5_3. The great proximity in a UMAP
plot highlighted the similar transcriptional expression
program between thymic stage 1/2 iNKT cells and lymph
node RTEs. More precisely, we found that RTEs in lymph
node show higher levels of Ccr7 and Sell, but lower
Zbtb16 and Tbx21 expression levels relative to stage 1/2
iNKT cells. In contrast, RTEs from spleen and liver
showed a clear differentiation potential, as judged by
higher levels of iNKT subsets signatures (Supplementary
Fig. S6b).

Klf2 regulates iNKT cell migration and differentiation
The migration patterns of iNKT cells are associated

with the expression of distinct chemokine receptors, but
the underlying molecular mechanism for this regulation is
unknown. Transcription factor Klf2 has been reported to

regulate the migration of conventional αβT cells and
γδT cells by restricting chemokine receptor expression
patterns22–24. In our study, Klf2 was found to be the top
gene that was most positively associated with Ccr7 in
RTEs (C5). To test the potential role of Klf2 in iNKT cell
development and migration, we examined iNKT cell
subsets in Lck-Cre Klf2 deletion mice. We first examined
the frequency of iNKT cells in the thymus from 6- to 8-
week-old Klf2 KO and WT mice by flow cytometry. As
shown in Fig. 6a, Klf2 KO mice showed a significantly
increased frequency of iNKT cells in the thymus com-
pared to WT, even though the absolute number are
comparable. Further analysis on developmental stages
showed higher frequencies and absolute numbers of stage
0, 1, and 2 iNKT cells in Klf2 KO mice (Fig. 6b). In
contrast, stage 3 iNKT cell frequency and absolute
number were significantly reduced in Klf2 KO mice.
These data suggest that deletion of Klf2 blocked iNKT cell
development prior to terminal stage 3 maturation.
Given that immature iNKT cells with migration

potential were blocked and accumulated in the thymus of
mice with Klf2 deletion (Fig. 6b), we measured iNKT
population in peripheral organs. Consistent with a defect
in iNKT cell migration from the thymus, the frequency
and absolute numbers of iNKT cells in peripheral organs,
including spleen, liver, and lung, were dramatically
diminished in Klf2 KO mice as compared with WT con-
trols, with the notable exception of the lymph nodes (Fig.
6c, d). These data indicated that Klf2 mediates iNKT cell
migration into peripheral organs, especially for spleen,
liver, and lung. Evidence to date supports Klf2 controlling
T cell migration by directly regulating the cell surface
receptors S1P1 and CCR723,25. To test whether Klf2
controls iNKT cells emigration using a similar mechan-
ism, we measured CCR7 and S1PR1 expression patterns
in different developmental stages of iNKT cells from Klf2
KO and WT. As shown in Fig. 6e, f, CCR7 was con-
sistently reduced in immature stages of iNKT cell from
Klf2 KO mice. Interestingly, S1PR1 expression in Klf2 KO
mice was consistently reduced at stage 1/2 of iNKT cell
development but not at terminally differentiated stage 3
(Supplementary Fig. S7a). Taken together, these data
suggest that Klf2 promotes thymic egress of stage 1/2
iNKT cells by regulating homing receptor patterns.
Normally, iNKT cells proliferate and expand briskly in

stages 1/2. To test whether Klf2 influenced the pro-
liferating capability of iNKT cells, we examined the rate of
Ki-67 expression in both Klf2 KO and WT cells. Com-
pared to WT, Klf2 KO iNKT cells exhibited a lower
proliferation status at different developmental stages in
the thymus (Fig. 6g). Interestingly, we observed that
during development from stage 1 to stage 3, Klf2 KO
iNKT cells expressed lower levels of PLZF, T-bet, and
RORγt, the master regulators for iNKT1/2/17
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Fig. 5 RTEs characters in peripheral iNKT cells. a Dot plots showing circulatory signatures and residency signature expression in the 10 clusters identified
in peripheral iNKT cells. b UMAP plots showing re-cluster analysis of C5_RTEs from Fig. 1d (top). Bar graph showing the fraction of individual clusters occupied
in iNKT cells from peripheral and thymus (Stage 0, 1, 2). c Heatmap of the top ten differentially regulated genes from each cluster derived from b. Each column
represents gene expression for an individual cell with color coded on gene expression profiles. Yellow is upregulated and purple is downregulated.
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Fig. 6 (See legend on next page.)
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differentiation (Fig. 6h), and they showed poor differ-
entiation potential (Supplementary Fig. S7b), indicating
that Klf2 is required for iNKT cell differentiation.
Therefore, not only contributing to tissue localization,
Klf2 may also play important roles in regulating iNKT cell
effector differentiation.

Discussion
In this study, we systematically analyzed iNKT cell

transcriptomic features in various peripheral organs
including liver, spleen, and lymph node. A total of ten
distinct clusters were identified in integrated peripheral
iNKT cells, and iNKT cells from different peripheral
organs showed great phenotypic and functional differ-
ences, especially iNKT1 cells. In addition, we identified a
merged undifferentiated RTE iNKT cluster with high Klf2
expression. More importantly, Klf2 was further recog-
nized as an essential regulator in iNKT migration and
differentiation.
Previous studies highlighted a great level of complexity

in thymic iNKT cells and presented a model of iNKT cell
development. By integrating scRNA-seq of thymic
iNKT cells and peripheral iNKT cells, we found that
thymic iNKT cells and peripheral iNKT cells are clearly
separated in UMAP plot, with a small RTE cluster
connecting them.
Peripheral iNKT cells exhibited substantial hetero-

geneity in their degree of maturation. In contrast to thy-
mic iNKT cells, which require CD1d for their initial
selection and maturation, iNKT cells do not require
continual CD1d interactions in the periphery to support
homeostatic proliferation, long-term survival, or to
maintain tissue distribution26. However, iNKT cells
require several chemokine receptors and integrins for
their maintenance in the specific peripheral organs and
these interactions between iNKT cells and the micro-
environment help generate organ-specific iNKT popula-
tions. For example, iNKT cells located in the spleen
partially require Cxcl13; however, Cxcl13 is not required
for iNKT cells in liver. Meanwhile, iNKT cells that home
to the liver require Cxcr3 and Itgβ2, yet these receptors do
not contribute to splenic migration4,27,28. Even though

iNKT cells have a restricted TCR profile, there were
functional differences from organ to organ. Previous
reports have shown that iNKT cells from the liver and
spleen have different anti-tumor activities14. More pre-
cisely, iNKT cells from liver, including CD4+ iNKT cells
and CD4– iNKT cells were better able to reject tumor
cells than their counterparts from the spleen or thymus.
However, the organ-specific mechanisms for iNKT cells
functional differences are still unclear9. In our study, we
revealed that transcriptome profiles of iNKT cells were
organ-specific, especially for iNKT1 cells. There was a
marked phenotypical difference between thymic
iNKT1 cells and peripheral iNKT1 cells, even among
peripheral organs, iNKT1 cells also exhibited a significant
difference. iNKT cells from liver and spleen exhibited a
higher circulatory property than iNKT cells in lymph
node, and this pattern is more pronounced in liver. In
addition, iNKT1 cells in lymph node showed great TCR
activation properties. These differences should reflect: (1)
anatomical tissue structure, e.g., iNKT cells locate at the
parenchyma in spleen, but locate at vasculature in liver29;
(2) conventional microbiota in local environment and
specific antigenic stimulation in the indicated organs30;
and (3) organ-specific antigen-presenting cells (APCs)
could also contribute to iNKT cell function and pheno-
type in local environments. Previous studies suggested
that different levels of costimulatory molecules on organ-
specific APCs cause different iNKT cell responses. APCs
in different organs may also express different tissue-
specific glycolipid ligands for iNKT cells31. For example,
APCs in the liver might capture and present exogenous
glycolipids from the alimentary tract, which could pro-
mote IFN-γ-dependent functions32,33. However, unlike
iNKT1 cells, which are organ-specific, iNKT17 cells are
very similar transcription-wise in different peripheral
organs, indicating that Rorc is the major determinant for
the iNKT17 cell phenotype.
iNKT cells first exit the thymus in a phenotypically and

functionally immature state and require a period of post-
thymic maturation before transitioning into the mature/
effector iNKT cell compartment. Here, we found that the
transcriptional program of RTEs was very different from

(see figure on previous page)
Fig. 6 Klf2 regulates iNKT cell migration and differentiation. a Representative flow plots of thymic iNKT cells from Klf2 KO and WT mice (left); bar
graphs represent means ± SD of frequency and cell number (right), n= 3 for Klf2 KO and WT controls. Data represent two independent experiments.
b Representative flow plots of different stages (stage 0: CD24+; stage 1: CD44lo NK1.1−; stage 2: CD44hiNK1.1−; stage 3: CD44hiNK1.1+) of iNKT from
Klf2 KO and WT mice (left); bar graphs represent means ± SD of frequencies and cell numbers of different developmental stages of iNKT cells in Klf2
KO and WT controls (right). c, d Representative flow plots of peripheral iNKT cells from Klf2 KO and WT mice. Bar graphs represent means ± SD of
frequencies and cells numbers of iNKT cells in indicated organs from Klf2 KO and WT controls. Data represent two independent experiments.
e Histogram showing CCR7 expression in thymic iNKT cell from WT and Klf2 KO mice. f Bar graph showing mean fluorescence intensity (MFI) of CCR7
in iNKT cells from WT and Klf2 KO mice. g Representative flow plots showing Ki-67 expression in different developmental stages of thymic iNKT cell
from WT and Klf2 KO mice. h Histogram showing PLZF, T-bet, and RORγt expression in different developmental stages of thymic iNKT cell from WT
and Klf2 KO mice.
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those of mature iNKT cells in spleen, liver, and lymph
node. For example, (1) RTEs in peripheral organs are not
well differentiated; (2) RTEs in peripheral organs exhibit
a higher proliferating activity; (3) RTEs in peripheral
organs exhibit pronounced circulatory properties; (4)
RTEs in peripheral organs express high level of homing
signatures, including transcription factor Klf2. Previous
reports have shown that Klf2 transactivates S1p1r, Ccr7,
and Sell promoters, and that deletion of Klf2 leads to
accumulation of CD4+ and CD8+ αβT cells in the thy-
mus and preferential homing to peripheral tissues24,25. In
this study, we found that Klf2 was mainly expressed by
stage 1 and 2 iNKT cells in the thymus and RTEs in
peripheral tissues. Loss of Klf2 led to a defect in iNKT
cell emigration; a result that is supported by previous
studies15. Our scRNA-seq study also offered an exciting
opportunity for mapping peripheral RTEs. Pseudotime
analysis showed that Klf2 and Ccr7 have a similar
expression trajectory and they had a fine correlation
during iNKT cell development. Deletion of Klf2 showed
severely impaired iNKT cell differentiation and migra-
tion. Consistent with this finding, Ccr7 expression was
significantly reduced in Klf2-deficient iNKT cells. A
previous report indicated that deletion of Klf2 mediated
by CD4Cre caused increased expansion or survival of
thymic PLZF+ T cells34, and therefore promoted
memory-like phenotype (CD44hi, CD122hi) CD8 T cells.
However, expressing PLZF+ T cells in mouse thymus
may include iNKT cell, γδNKT cells, and MAIT cells,
Klf2 function in iNKT cell development were not fully
explored. In our current study, we used LckCre Klf2 KO
mice, in which Klf2 was deleted in the early stage of
T cells development. We found that the frequency of
iNKT cells was increased in thymus from Klf2-deficient
mice, and most of these iNKT cells were blocked at
immature stages (stage 1 and stage 2). Interestingly,
peripheral iNKT cells from Lck Cre Klf2 KO mice were
significantly reduced. Integrating analysis with scRNA-
seq data suggested that Klf2 regulate iNKT cells migra-
tion, and deletion of Klf2 blocked thymic iNKT cells
outward migration. Therefore, our study further expands
previous study and explained the mechanism of Klf2 in
regulation thymic iNKT cells.
In addition, it is important to mention that extreme

cytotoxic cluster C7, with high levels of Gzma and Ccl5
expression, also exhibit a high expression level of Klf2 and
other circulatory signatures but fewer residency sig-
natures. Cluster C7 and C5_RTE clusters showed similar
expression programs, judged by their proximity in UMAP
plots. We therefore assumed that cluster C7 could be
relatively new iNKT cells that directly migrate from thy-
mus, rather than long-term iNKT cells that are from
super mature iNKT1 cells. However, their precise devel-
opmental trajectory is still unclear. In addition, it is not

clear whether specific organ targeting is determined in the
thymus by distinct patterns of integrin and chemokine
receptor expression or if migration to a given tissue is
stochastic, only dependent on subset-specific niches.
More important, even though our study revealed the
phenotypic differences of iNKT cells in different periph-
eral organs, we are still unclear about how these pheno-
typic differences contribute to varying function in
different disease models.
In summary, we demonstrate here that iNKT cells from

liver, spleen, and lymph node appear to have distinct
phenotypic profiles and functional capabilities, especially
for iNKT1 cells. Meanwhile, we identified Klf2 in per-
ipheral RTEs as playing a critical role in iNKT cell dif-
ferentiation and migration.

Materials and methods
Mice
C57BL/6 were purchased from Jackson Laboratory (Bar

Harbor, ME). Lck-Cre Klf2 KO mice were provided by
Prof. Eric Sebzda (Wayne University, Detroit, MI).
Briefly, mice carrying a floxed allele of Klf2 (Klf2fl/fl)35

were mated to transgenic C57BL/6 mice expressing Cre
recombinase under the guidance of a proximal Lck pro-
moter (obtained from the Jackson Laboratory), to gen-
erate Lck-cre;Klf2fl/fl conditional knockout mice (Klf2
KO). iNKT cells from peripheral organs from 5-week-old
C57BL/6 mice were utilized for scRNA-seq study; 6–8-
week-old, sex-matched mice were utilized for Klf2 func-
tion studies. All studies, protocols, and mouse handling
were approved by the Institutional Animal Care and Use
Committee.

Flow cytometry gating strategy and antibodies
Single-cell suspensions were washed twice with FACS

staining buffer (1× PBS, 2% FBS) and incubated with Fc
block (clone 2.4G2). Cells were stained with anti-mouse
PBS57-loaded CD1d-tetramer (provided by the NIH
Tetramer Core Facility). The following fluorescence
conjugated antibodies were used: anti-TCRβ (H57-597),
anti-CD24 (M1/69), anti-CD44 (IM7), anti-NK1.1
(PK136), anti-RORγt (B2D), anti-PLZF (Mags.21F7),
anti-T-bet (eBio4B10 (4B10)), anti-Ki-67 (520914), anti-
CCR7 (4B12), anti-S1PR1 (JM10-66), anti-IFIT1
(OTI3G8), anti-Aqp3 and anti-Gzma (GzA-3G8.5). Cell
surface staining was performed with staining buffer;
intranuclear staining was performed with eBioscience
Fixation/permeabilization buffer. The flow cytometry
assay was performed through BD FACSCelesta and data
were analyzed using FlowJo V10.2 software. Gating
strategy: after gating on lymphocyte, doublets were
excluded by using forward scatter (FSC) and side scatter
(SSC), mouse iNKT cells were further identified as
TCRβ+ CD1d-tetramer+.
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Mouse iNKT cell enrichment and sorting
Mouse iNKT cell enrichment and sorting strategy was

described previously36. Briefly, peripheral organs from
mouse, including spleen, liver, and lymph nodes were
harvested from 5-week-old C57BL/6 mice. For the
enrichment of iNKT cells, total cells were stained with
biotin-conjugated anti-mouse CD8 Ab, anti-mouse B220
Ab, and anti-biotin magnetic beads (eBioscience). Nega-
tively selected CD8− and B220− cells were then stained
with anti-mouse TCRβ, CD1d-tetramer Abs. iNKT cells
of whole population were further sorted from C57BL/6
mouse spleen, lymph node, and liver using FACSAria II
Usage, cells collected with purity > 97%.

scRNA-seq library generation
scRNA-seq library generation was described in our

previous published study37. Two biological repeats for
each samples (including iNKT cells from spleen, liver, and
lymph node) of scRNA-seq libraries were generated using
the 10X Genomics Chromium Single Cell 3′ Reagent Kit
(v2 Chemistry) and Chromium Single Cell Controller as
previously described38.

scRNA-seq data analysis
Sequence reads from scRNA-seq libraries were demul-

tiplexed and aligned to the mm10 mouse reference, bar-
code processed, and UMI counted using the 10X Genomics
Cell Ranger (V3.1.0) pipeline38. Estimated number of cells
captured per sample was between 2646 and 2867 with
60,622–70,044 mean reads per cell, 1788–1388 median
genes per cell, and 1468–3597 median UMI counts per cell.
A total of 16,587 cells with 2179 UMI counts/cell in
average were selected via Cell Ranger for further analysis
for all of six samples. Datasets were subsequently analyzed
using the R Seurat package39,40. Principle Component
Analysis (PCA) was employed to analyze combined sam-
ples. Quality control metrics employed are as follows. We
employed two strategies to identify potential doublets.
First, cells expressing both Xist and Y chromosome genes
(Kdm5d, Eif2s3y, Gm29650, Uty, and Ddx3y) were exclu-
ded from the dataset. Second, cells expressing unchar-
acteristically high numbers of genes (> 4000) were
excluded. Low-quality cells were excluded based on a low
number of genes detected (<300) and/or having high
mitochondrial genetic content (> 15%). A total of 14,986
genes in 15,317 cells passed these quality control measures.
Genes removed include ribosomal structural proteins (as
identified by gene ontology term GO: 0003735 and the
Ribosomal Protein Gene (RPG) database 4), non-coding
rRNAs, Hbb, and genes not expressed in ≥ 3 cells. A total
of 14,986 genes in 15,317 cells passed these quality control
measures.
A global-scaling normalization method “LogNormalize”

in Seurat was employed to normalize gene expression

measurements of each cell by the total expression, mul-
tiplying this by a factor of 10,000, followed by log-
transformation. Highly variable genes in each data ana-
lysis were identified, and the intersecting top 3000 genes
in each dataset were used for clustering and downstream
analyses. Datasets underwent scaling and regressing on
the number of detected molecules per cell (nUMI) and the
percentage of mitochondrial gene content (pct.mito). The
number of principal components (PCs) used to cluster
cells was determined by manual inspection of the scree
plot. After identifying the number of PCs to be included
for downstream analyses (20 PCs), a graph-based clus-
tering approach implemented in Seurat was used to
iteratively cluster cells into groups, based on similarities of
those components among cells. The UMAP method was
utilized to visualize resulting clusters. To assess the effects
of cell cycle heterogeneity, cell cycle phase scores (G2/M
and S phases) were calculated based on canonical markers
and used to regress out the data41. The FindAllMarkers
function in Seurat was then implemented to identify dif-
ferentially expressed genes between clusters with a fold-
change of >2 and a Bonferroni adjustment of P value <
0.05 as a statistical significance threshold. To determine if
differentially expressed genes belong to identifiable
groups, pathway analysis was carried out using the Inge-
nuity Pathway Analysis (IPA, Qiagen Bioinformatics,
Redwood City, CA).

Statistical analysis
For comparison between groups, statistical analysis was

performed by unpaired t test with GraphPad Prism 8.0.
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