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A B S T R A C T   

Grade 2 and higher radiation pneumonitis (RP2) is a potentially fatal toxicity that limits efficacy of radiation 
therapy (RT). We wished to identify a combined biomarker signature of circulating miRNAs and cytokines which, 
along with radiobiological and clinical parameters, may better predict a targetable RP2 pathway. In a prospective 
clinical trial of response-adapted RT for patients (n = 39) with locally advanced non-small cell lung cancer, we 
analyzed patients’ plasma, collected pre- and during RT, for microRNAs (miRNAs) and cytokines using array and 
multiplex enzyme linked immunosorbent assay (ELISA), respectively. Interactions between candidate bio-
markers, radiobiological, and clinical parameters were analyzed using data-driven Bayesian network (DD-BN) 
analysis. We identified alterations in specific miRNAs (miR-532, -99b and -495, let-7c, -451 and -139-3p) 
correlating with lung toxicity. High levels of soluble tumor necrosis factor alpha receptor 1 (sTNFR1) were 
detected in a majority of lung cancer patients. However, among RP patients, within 2 weeks of RT initiation, we 
noted a trend of temporary decline in sTNFR1 (a physiological scavenger of TNFα) and ADAM17 (a shedding 
protease that cleaves both membrane-bound TNFα and TNFR1) levels. Cytokine signature identified activation of 
inflammatory pathway. Using DD-BN we combined miRNA and cytokine data along with generalized equivalent 
uniform dose (gEUD) to identify pathways with better accuracy of predicting RP2 as compared to either miRNA 
or cytokines alone. This signature suggests that activation of the TNFα-NFκB inflammatory pathway plays a key 
role in RP which could be specifically ameliorated by etanercept rather than current therapy of non-specific 
leukotoxic corticosteroids.   

Introduction 

Chemoradiation (ChemoRT) followed by the immune checkpoint 
blocker (ICB) durvalumab has become the new standard of care for 
patients with locally advanced NSCLC patients [1]. Unfortunately, 
treatment of locally advanced NSCLC is complicated by the frequent 
occurrence of symptomatic (grade 2 or higher) radiation pneumonitis 

(RP) which may occur in up to 25% of patients [2–4]. Multiple recent 
reports noted a rise in symptomatic Grade 2+ pneumonitis with adju-
vant ICB [5–7]. In a nationwide cohort of more than 2,000 patients, we 
found that grade 3+ pneumonitis was the most common toxicity in 
locally advanced lung patients [8] and that it led to discontinuation of 
potentially curative durvalumab in more than 10% of “real-world” pa-
tients as compared to 3% enrolled on PACIFIC trial (which only scored 
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grade 3 RP and included only patients who successfully completed 
chemoRT without RP). High dose corticosteroids are given to symp-
tomatic patients with Grade 2+RP, but this induces leukopenia which 
may negatively impact ICB efficacy [9,10]. We have found on multi-
variate analysis that the development of immune-related Adverse Events 
(irAE) in locally advanced NSCLC patients significantly reduced overall 
survival [8]. Therefore, there is an unmet clinical need to develop im-
mune sparing RP treatment strategies. 

Lung irradiation causes the release of inflammatory cytokines and 
miRNAs that can promote early acute RP and late pulmonary fibrosis 
(PF) [11,12]. Among various cytokines, early release of TNFα plays a 
priming role in RP [13]. Thus, targeting of TNFα signaling is a possible 
strategy to develop a lung radioprotector [14]. Our preclinical data 
showed that inhibition of TNFα signaling by genetically deleting the 
receptor 1 (TNFRSF1A-null mice) or via antisense oligonucleotide (ASO) 
protects the lung from radiation toxicity [14]. We further extended our 
observation using Tristetraprolin (TTP, Zfp36 in mice) knockout mice, 
which have high basal levels of TNFα. TTP is a key negative regulator of 
TNFα by causing its mRNA degradation. These mice develop RP symp-
toms within a week post-irradiation [15]. In the TNFα-TNFR1 mediated 
inflammatory signaling, TNFα converting enzyme (TACE), also known 
as A disintegrin and metalloproteinase 17 (ADAM17), plays a key role by 
cleaving membrane-bound TNFα (mTNFα) to release soluble TNFα. In 
normal circumstances, cellular homeostasis is maintained by 
ADAM17-mediated cleavage of the membrane-bound TNFR1 (mTNFR1) 
to release its extracellular soluble form (sTNFR1), that can bind TNFα to 
block inflammation [16]. However, ADAM17 has ~100-fold higher af-
finity for the mTNFα compared to mTNFR1 [17]. ADAM17 is secreted by 
various cell types including lung cancer cells, but following RT-mediated 
tumor cell killing, the possibility exists for limiting levels of active 
ADAM17, which along with differential affinity would lead to a decrease 
in sTNFR1 yet will maintain higher levels of soluble TNFα to promote 
inflammation. Prior to the current study, the involvements of ADAM17 
in TNFα-TNFR1 mediated inflammation during RP have not been stud-
ied in detail. 

The involvements of multiple other cytokines, particularly IL-4, -8, 
-12, -13, TGF-β1, MCP-1 (CCL-2), have been described in preclinical RP 
models as well as patients showing pneumonitis [Ref. [18] and refer-
ences therein]. In addition, studies reporting the roles of circulating 
miRNA involved in RP have started to emerge. In one of the earlier 
studies, Dinh et al. identified decreased expression of miR-29a-3p and 
miR-150-5p following RT in NSCLC patients [19]. In addition, the 
polymorphism of miR-125a, which lowers its expression, has been 
linked to RP [20,21]. 

RP is a complex disease likely to involve the interaction of various 
lung cell types, resident and infiltrating immune cells and tumor cells. 
All these cells release multiple cytokines, chemokines, miRNAs and 
other factors, whose expressions are further altered following RT. 
However numerous investigations of biological markers, predominantly 
using either cytokines or miRNAs, have not produced a consensus on the 
inflammatory pathway(s) involved. Data-driven Bayesian network (DD- 
BN) computer algorithms can handle multiple parameters at once, and 
we have previously utilized such an approach to successfully predict 
local tumor control in NSCLC patients for response-adopted radio-
therapy [22]. In the current study have combined several approaches to 
analyze biological variables (circulatory cytokines and miRNAs 
collected prior to and multiple times during RT) and examine their re-
lationships to mean lung dose (MLD) and clinical parameters to identify 
a biomarker signature for NSCLC patients who may be at higher risk of 
developing RP2. 

Materials and methods 

Clinical trial design 

Samples were collected from a pilot prospective study of response- 

driven adaptive radiation therapy for patients with locally advanced 
NSCLC (NCT02492867). This study was designed to apply functional 
imaging, Fluorodeoxyglucose-Positron Emission Tomography (FDG- 
PET) ("a PET scan") and Ventilation/Perfusion Single Photon Emission 
Computerized Tomography (V/Q SPECT) ("a perfusion scan") before 
treatment and then again during treatment to study therapeutic efficacy 
and lung function. Blood samples were collected for biomarker studies 
pre-treatment, during-treatment (at day 1, 2, 5, week 2, 3, 4, 5 and 6 
during chemoradiation), and in follow-up after chemoradiation (1- 
month post-RT, and then every 3-months post-RT for the first year). 
Blood samples were immediately processed in the laboratory after 
collection, as described below. Patient were followed clinically after 
concurrent chemoradiation at 1 month and 3 months post-treatment, 
and then every 3 months for the first year, then every 6 months until 
year 3, then annually through year 5. Toxicity, including pneumonitis, 
was recorded and graded according to Common Terminology Criteria 
for Adverse Events (CTCAE v4.0). 

Radiation therapy 

Patients received radiation treatment 5 days per week, in once daily 
fractions, for 30 treatments with dose per fraction individually adapted 
over the final 9 treatments based on individual FDG-PET response and 
V/Q SPECT response during treatment [23]. The intent of delivering 
response-based treatment was to intensify the dose to active tumor while 
limiting normal tissue toxicity to an estimated RP2 rate of 15%, and 
grade 2 or greater esophagitis rate of 30% [24]. Patients also received 
concurrent chemotherapy with carboplatin and paclitaxel. Following 
completion of concurrent chemoradiation, patients received consolida-
tion chemotherapy (carboplatin and paclitaxel) or ICB (durvalumab) at 
the discretion of the medical oncologist. 

Specimen collection 

All specimens were prospectively collected under an institutional 
review board-approved protocol (HUM00098202) after receiving 
informed patient consent. Plasma samples were processed from blood 
collected in EDTA tubes (Fisher, Cat No. 02-657-32). Briefly, within one 
hour of blood draw, the blood was centrifuged at 3400 × g for 10 min at 
room temperature. The supernatant was then centrifuged at 1940 × g for 
10 min at room temperature with no brake during the deceleration. The 
resulting supernatant was then aliquoted and frozen at − 80 ◦C. 

RNA isolation from patient plasma 

Patient plasma (same time frame collected from different patients) 
was thawed at 37 ◦C for a maximum of 3 min, with a batch limit of 12 
samples handled at once. RNA was extracted utilizing the miRNeasy 
Micro Kit (Cat#217004, Qiagen) according to manufacturer’s instruc-
tion. In brief, 200 μl of plasma was mixed by vortexing with 1 mL of 
Qiazol, incubated at room temperature for 5 min, then mixed with 200 
μl of chloroform, and centrifuged. The upper aqueous phase was mixed 
with 1.5 volumes of ethanol and purified using the miRNeasy mini 
column. Isolated miRNAs were stored at − 80 ◦C until analysis. 

Quantification miRNA using OpenArray 

Isolated RNA was first reverse transcribed and pre-amplified using 
separate A and B primer pools, following the Life Technologies Open-
Array protocol (4461306 Rev. C) with modifications for low input (Life 
Tech Application Note). TaqMan OpenArray Human MicroRNA, 
QuantStudio 12K Flex Panels (part no. 4470187) and the necessary re-
agents indicated in the OpenArray protocol were provided by Life 
Technologies. The Accufill robot was used to load panels in accord with 
standard protocols (part no. 4456986 Rev. A), and the sample was 
thermally cycled immediately in the QuantStudio 12K Flex Real-Time 
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PCR instrument. Raw data (*.eds files) were exported in *.txt files for 
analysis with Microsoft Excel and other statistical R software packages. 

Multiplex cytokine analysis 

Levels of selected plasma cytokines from samples collected at pre-, 2 
and 4 weeks (represent the most complete dataset) during-treatment 
time points were quantified using Procartaplex 15-plex customized 
ELISA kit (Cat# PPX-15, Life Technologies, Grand Island, NY) according 
to manufacturer’s instruction. In brief, ProcartaPlex™ immunoassays 
use magnetic microsphere technology to detect multiple protein targets, 
here cytokines and chemokines. In the current study, based on our prior 
findings and literature summary, we selected 15 target inflammatory 
cytokines [sTNFR1 (for TNF-α), IFN-γ, IL-1α, IL-1β, IL-4, -6, -8, -15, -17α, 
-23, IP-10 (CXCL-10), MCP-1 (CCL2), PDGF-bb, CD40L, GM-CSF] to 
develop a customized assay panel. Prior to running the assay, plasma 
samples were thawed on ice and then centrifuged at 10,000 × g. The 
supernatants were assayed in duplicate per manufacturer protocol and 
analyzed on a Luminex microplate reader. 

sTNFR1 ELISA 

Plasma samples were assayed for sTNFR1 using the Quantikine 
ELISA kit (Cat#DRT100, R&D systems, Minneapolis, MN) according to 
the manufacturer’s protocol. Briefly, each plasma sample was diluted 
1:10 in the provided diluent and assayed in duplicate. The samples were 
incubated, on plate, with assay diluent for 2 h at room temperature and 
then washed 3 times with the supplied wash buffer. Human TNFR1 
conjugate was added to each well followed by another 2 h of incubation. 
Following an additional 3 washes, the substrate and stop solutions were 
added, and the plate was read on a plate reader per manufacturer pro-
tocol. Cytokine concentrations were calculated against a standard curve 
utilizing the TNFR1 protein standard supplied with the ELISA. 

ADAM17 ELISA 

Total amounts of ADAM17 present in patients’ plasma were quan-
tified using an ELISA kit (Cat # EHADAM17, Thermo Fisher) according 
to manufacturer’s instructions. In brief, 50 μl of plasma from each pa-
tient was incubated with Anti-Human TACE Strip Plate for 2.5 h in 
triplicate. The samples were processed according to the protocol, 
maintaining the incubation time, and washing steps. Following colori-
metric assay, absorbance was measured at 450 and 550 nm, and the final 
values was calculated by subtracting absorbance at 550 nm from 450 nm 
to correct for optical imperfections in the microplate. 

Immunoblotting of active ADAM17 from patient plasma 

Thawed plasma samples were first diluted 50-fold with ice-cold PBS, 
and the protein concentrations were quantified using the Bradford 
method according to manufacturer’s protocol (Cat. B6916, Sigma). 15 
ug of protein from plasma samples was loaded in a 4–12% bis-tris gel 
(Invitrogen, Cat# NP0321) and immunoblotted as standardized and 
described earlier [15]. For the detection of active ADAM17, we pur-
chased an antibody (Cat# ABT94, Sigma) at a dilution of 1: 50,000. 

Statistical analysis 

miRNA analysis 
To obtain the most reliable miRNA values and their associated 

changes, we performed three sequential steps: quality assessment, non- 
specific filtering and differential expression analysis as described in a 
recent publication [25]. In brief, a miRNA 1:4 dilution experiment was 
performed to determine which miRNAs had cycle threshold (Ct) value 
measurements consistent with the expected changes from the dilution. 
Of these reliable miRNAs, those that were not variant across samples 

were removed, as they would not be effective at predicting RP. Patients 
(n = 26) were divided into pneumonitis and non-pneumonitis groups, 
and the CT values of the remaining miRNAs were compared across 
groups using t-tests, to assess the individual significance of each miRNA. 
We used false discovery rate adjusted p-values to account for multiple 
hypothesis testing. We also sought to predict RP2 by considering mul-
tiple miRNAs simultaneously, which was performed through multivar-
iable linear regression. Models were selected via a forward selection 
process using the Akaike Information Criterion (AIC), and variables with 
high variance inflation factors were removed to address multi-
collinearity issues. This process was applied three times to create models 
using pre-treatment miRNA values, during treatment miRNA values, and 
delta (pre-treatment minus during treatment) values as predictors for 
RP. 

Cytokine analysis 
For cytokines, we applied univariate linear, multivariate linear 

regression and log transformation analyzes. Based on univariate anal-
ysis, none of the cytokines showed statistical significance. Also, due to 
small sample size (n = 39) with a larger number of variables (15 cova-
riates), Lasso was impossible to perform. For stepwise regression for 
feature selection based on AIC (Akaike Information Criterion), we first 
developed a model (Model 1) by fitting linear regression model with all 
covariates. We then conducted stepwise regression for Model 1 to get 
Model 2, followed by calculation of variance inflated factor (VIF) of 
Model 2 and deleted the variable with highest VIF. We repeated the 
above steps until all the VIFs were less than 10. 

Data-driven Bayesian network (DD-BN) analysis 

To unravel radiobiological interactions of cytokines and miRNA 
biomarkers along with the TNFα-NFκB signaling pathway in RP2 pre-
diction, our previously developed graphical DD-BN approaches were 
employed to identify the most robust radiobiological variables related to 
RP2 prediction [22,26]. A BN is a probabilistic directed acyclic graphical 
model that uses Bayesian inference to estimate conditional dependence 
of involved variables. Our DD-BN approach further allows exploring 
these variables’ potential causal-effect relationships in terms of response 
to radiation treatment through robust BN structure learning and 
parameter estimation before and during radiotherapy. As radiation 
induced lung toxicity is influenced by dose per fraction [27], for DD-BN 
modeling we decided to use gEUD [22,26] instead of mean lung dose 
(MLD), a more widely used parameter directly obtained from radiation 
therapy planning. Nested cross-validation and area under receiver 
operating characteristic (ROC) were used to evaluate the prediction 
performance of these DD-BN models. The prediction 95% confidence 
intervals were calculated using statistical resampling with 2000 strati-
fied bootstrap replicates. 

Results 

Patient characteristics 

This study included 39 locally advanced non-small cell lung cancer 
patients, and the characteristics (demographic clinical and treatment 
data) are shown in Table 1. In this cohort, we recorded 8 cases (~20%) 
of grade 2 and above radiation pneumonitis cases. 

Alteration of circulating cytokines that predict RP 

Mean lung dose (MLD) is a known confounder to consider while 
analyzing the role of cytokines and miRNA on RP [28]. To understand 
the proportion of variation explained by MLD, a linear regression model 
showed that in our dataset MLD alone was not sufficient to predict 
toxicity (p-value = 0.125 > 0.05). Therefore, we decided to include MLD 
when fitting the subsequent multivariate regression model using 
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cytokines as a biomarker. We performed a customized multiplex ELISA 
screening for 15 selected inflammatory cytokines (as described in Ma-
terials and Methods) in 39 patients’ plasma samples (with 8 reported 
toxicities). Table 2 shows the association between the lung toxicity and 
the cytokines via multivariate linear regression model. The cytokine 
levels used for analysis were either prior to radiation therapy (base line), 
or after 2- or 4-weeks during treatment. The model accuracy is shown by 
the coefficient of determination as adjusted R2. For the base line cyto-
kine values, the adjusted R2=0.222 after leave-one-out cross-validation 
(Table 2A), which included 7 cytokines (IL-4, IP-10, IL-6, IFN-γ, MCP-1, 
IL-23, and PDGF-bb). Cytokine expression differences noted at week 2 
(IL-4, -6, -1α with R2 value of 0.183) and week 4 (IP-10, IL-8 and -23 
with R2 value of 0.219) (Table 2B,C). The cytokine signature obtained 
based on the difference between week 2 and week 4 from the baseline 
and between week 4 minus week 2 are included in Table 2D–F, 
respectively. 

High basal level of sTNFR1 and its transient drop correlate with RP 

After identifying inflammatory cytokine signature as potentially 
predictive biomarkers of radiation-induced lung toxicity, we wished to 
assess the involvement of TNFα. We previously identified the impor-
tance of TNFα signaling in RP in a mouse model [15], and here our 
cytokine signature from patient samples identified a drop in sTNFR1 as 
one of the predictors of RP. Recognizing, as described in the introduc-
tion, that sTNFα, which is very labile, and sTNFR1 are in a dynamic 
balance it was of interest to quantify sTNFR1 [29] both at the base line 
and at multiple time points during RT. As shown in Fig. 1A, prior to 
radiation therapy, the average sTNFR1 level was 1334.8 ± 585.6 
pg/mL, which is significantly higher than previously reported values 
found among healthy individuals (~200 pg/mL) [30], suggesting the 
existence of basal inflammation in the majority of our lung cancer 

patients. While analyzing plasma samples collected from matched pa-
tients at multiple time points (day 1, 2, 5, week 2, 3, 4, 5 and 6) during 
RT, we noted RP symptoms in patients who showed lowering of sTNFR1 
within 2–4 weeks of RT (Fig. 1B). 

Change in ADAM17 levels in RP and non-RP patients 

Active ADAM17 is involved in shedding of both the membrane 
bound TNFα and TNFR1, but with differential affinity; ADAM17 has 
100-fold higher affinity for membrane-bound TNFα as compared to 
TNFR1 [17]. Hence, we compared the levels of ADAM17 in non-RP and 
RP patients with the hypothesis that in an ADAM17 low environment, 
sTNFR1 (anti-inflammatory) shedding may be compromised, while 
circulating TNFα (inflammatory) may remain high to promote inflam-
mation noted among RP patients (Supplementary Fig. S5). Ionizing ra-
diation is reported to activate ADAM17 [31], however, we identified 
two patterns for ELISA measuring ADAM17 protein levels in the plasma 
of NSCLC patients undergoing chemoradiation as part of this 

Table 1 
Demographic, clinical, and treatment data.  

Parameters All Patients (n = 39) 

Age (years)  
Median (range) 66 (54, 81) 
Sex, n (%)  
Male 26 (66.7%) 
Female 13 (33.3%) 
Zubrod Performance Status, n (%)  
0 8 (20.5%) 
1 29 (74.4%) 
2 2 (5.1%) 
Smoking Status, n (%)  
Never 2 (5.1%) 
Former 24 (61.5%) 
Current 13 (33.4%) 
Stage Group, n (%)  
IIA 1 (2.6%) 
IIIA 18 (46.1%) 
IIIB 18 (46.1%) 
IIIB-C 1 (2.6%) 
IIIIA 1 (2.6%) 
Concurrent Chemotherapy, n (%)  
Yes 39 (100%) 
Radiation Dose, Gy  
Physical Dose  
Median (range) 67.8 (59.97, 80.40) 
EQD2  
Median (range) 69.29 (60.20, 86.30) 
BED (Gy)  
Median (range) 83.15 (72.24, 103.56) 
Mean Lung Dose (Gy)  
Median (range) 15.131 (5.745, 21.1) 
Highest Pneumonitis Grade n (%)  
0 24 (61.6) 
1 7 (17.9) 
2 7 (17.9) 
3 1 (2.6)  

Table 2 
Multivariate linear regression model showing identified cytokine signature 
those correlate with highest pneumonitis (RP) grade at the indicated time points.  

A. Fitting model between pretreatment cytokine values and highest RP grade 
(adjusted R2 = 0.222) 
Cytokines Estimate Std. Error Pr (>ItI) 

IL-4 0.645 0.237 0.011 
IP-10 0.333 0.203 0.110 
IL-6 0.422 0.187 0.031 
IFNγ − 1.354 0.247 0.00001 
MCP1 − 0.399 0.120 0.002 
IL-23 − 0.483 0.167 0.007 
PDGF-bb 0.685 0.252 0.011 
MLD 0.066 0.026 0.019 
B. Fitting model between Wk2 cytokine values and highest RP grade (adjusted R2 =

0.183) 
Cytokines Estimate Std. Error Pr (>ItI) 
IL-4 0.430 0.275 0.130 
IL-6 − 0.885 0.285 0.005 
IL-1α 0.493 0.216 0.031 
MLD 0.094 0.037 0.018 
C. Fitting model between Wk4 cytokine values and highest RP grade (adjusted R2 =

0.219) 
Cytokines Estimate Std. Error Pr (>ItI) 
IP-10 0.435 0.123 0.001 
IL-8 − 0.968 0.222 0.0001 
IL-23 0.694 0.209 0.002 
MLD 0.086 0.030 0.008 
D. Fitting model between Wk2 minus baseline cytokine values and highest RP grade 

(adjusted R2=0.183) 
Cytokines Estimate Std. Error Pr (>ItI) 
IL-8 0.698 0.312 0.035 
IL-23 − 0.440 0.263 0.108 
IL-15 0.675 0.406 0.110 
CD40L − 0.707 0.266 0.014 
PDGF-bb − 0.573 0.307 0.075 
MLD 0.088 0.038 0.032 
E. Fitting model between Wk4 minus baseline cytokine values and highest RP grade 

(adjusted R2=0.199) 
Cytokines Estimate Std. Error Pr (>ItI) 
IP-10 − 0.444 0.124 0.001 
MCP-1 0.262 0.121 0.038 
IL-1α − 0.328 0.118 0.009 
MLD 0.086 0.030 0.008 
F. Fitting model between Wk4 minus Wk2 cytokine values and highest RP grade 

(adjusted R2 = 0.3) 
Cytokines Estimate Std. Error Pr (>ItI) 
IL-1b 0.919 0.214 0.0005 
IP-10 − 0.476 0.255 0.079 
sTNFR1 − 0.581 0.197 0.009 
IFNγ 0.609 0.309 0.065 
GM-CSF − 0.561 0.246 0.036 
IL-1α − 0.195 0.153 0.220 
IL-23 − 0.575 0.208 0.013 
MLD 0.118 0.030 0.001  
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observational clinical trial. The first showed a subset of patients with 
initially very low levels of ADAM17, where <10 pg/mL average ELISA 
units were chosen as the cleanest visual threshold. These samples rep-
resented 20.5% of patients (8/39) with similar proportions in RP (3/8, 
37.5%) and no-RP (5/30,16.7%) patient groups (Fisher Exact P = 0.15; 
Fig. 2A). In these samples ADAM17 levels tended to remain low 
following irradiation, with 4 samples in particular (50%) remaining 
below the 10 pg/mL threshold for both WK2 and WK4 measures, as 
opposed to 1/5 (20%) and 3/25 (12%) in RP and non-RP high-
er-expressing groups, respectively (Fig. 2B,C). Since the ELISA we per-
formed cannot distinguish active and total protein forms, the ultra-low 
levels can be taken as low ADAM17 activity, while higher levels may not 
always correlate with higher activity as multiple factors are known to 
influence ADAM17 catalytic activity [32]. Kruskal-Wallis non-para-
metric comparisons (Dunn corrected for three sample groups) for WK2 
and WK4 time points showed no significant differences in total ADAM17 
levels between RP and non-RP groups (Fig. 2A–C). 

To focus specifically on functional ADAM17 levels, we assessed 
plasma levels for active ADAM17 using immunoblotting for 24 of the 39 
total samples and using fold change (FC) to compare band intensities for 
WK2 and WK4 to those of baseline (pre-treatment) for each available 
sample (Fig. 2D,E). When FC was considered for the three sample groups 
(low ADAM17 ELISA; n = 6; as well as RP and non-RP with higher ELISA 
levels; n = 7 and 17, respectively), there was a trend towards lower FC 
levels for RP vs non-RP samples across both weeks, with a Kruskal-Wallis 
P = 0.025 at WK2 (Fig. 2F) and P = 0.23 at WK4 (Fig. 2G). Interestingly 
FC levels for both low ELISA and non-RP sample groups showed simi-
larly high FC values, averaging over 1 (generally increased) for both 
WK2 and 4 (Fig. 2F,G), recapitulating prior data [31]. Collectively, the 

above data suggest that a subset of samples have consistently low and 
less amount of active ADAM17, while a subset with higher total 
ADAM17 levels with limited catalytic activity in the early stages of ra-
diation exposure. 

Alteration of circulating miRNA that predict RP 

To strengthen biomarker signature, besides cytokines we also 
quantified plasma circulating miRNA. To determine the assay sensitivity 
and to identify most reliable miRNAs, we initiated our studies by 
quantifying equimolar and ratiometric pools of chemically synthesized 
RNA oligonucleotides as described previously [25]. The raw data 
quantifying miRNA consisted of CT values for 818 miRNAs from 26 out 
of total 39 patients (2 RNA samples failed quality control and 11 others 
were collected post analysis) taken prior to RT (baseline) and at WK4 
during RT. The list of 70 reliable miRNA (Supplementary Table 1) and a 
boxplot of these un-normalized CT values is shown in Supplementary 
Fig. S1. In the dilution experiment, we analyzed RNA isolated from 3 
patients and used two replicates of 1:4 dilutions. For a reliable miRNA, 
we expected the difference in CT value from the quarter dilution sample 
to the undiluted sample to be 2. We accepted a miRNA as reliable if, for 
each run of the experiments (3 patients, 2 replicates each), the difference 
in CT value for the that miRNA was between 1 and 3. This narrowed 
down the initial pool of 818 miRNAs to 70. A boxplot consisting of the 
70 reliable miRNAs is shown in the Supplementary Fig. S2. For each 
miRNA, we calculated the variance of the delta (pre-treatment minus 
during treatment) values across all the patients and removed the miR-
NAs in the bottom 10% of delta value variances. This filtering reduced 
the number of variables to 63 miRNAs, of which 9 were U6 miRNAs; 

Fig. 1. High basal level of TNFα and a transient 
decrease in sTNFR-1 levels correlate with RP. 
(A) Soluble TNFR1 (sTNFR1) levels present in 
the patients’ plasma (n = 38) prior to RT was 
calculated using sandwich ELISA. The red 
(1334.8 ± 585.6 pg/ml) dotted line indicates 
average levels of sTNFR1 in lung cancer pa-
tients. The black dotted line indicates sTNFR1 
levels among healthy individuals as reported in 
a prior study [30]. (B) sTNFR1 levels were 
calculated in patients’ plasma collected 
pre-treatment (baseline), and after different 
time points following initiation of RT (day 2, 5, 
week 2, 4, and 6), and after 1, 3 and 6 months 
of 5-FU treatment. Log ratio relative to the 
baseline sTNFR1 [logΔ(sTNFR1)] was plotted 
against day post first fraction of RT received. A 
logistic model of predicting the occurrence of 
RP2 toxicity was fit based upon logΔTNFR1 
(14), i.e. the estimated log-ratio of sTNFR1 
comparing 14 days after the first fraction to 
pre-treatment. The assumption of these models 
is that all toxicities occurred after 2 weeks’ 
time. The blue and red thick lines give the 
group-wise (no RP2 vs RP2+, respectively) 
smoothed average with corresponding confi-
dence band. The vertical line marks day 14, 
against which the logistic models were fit.   
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thus, we had 54 miRNAs to analyze. 
For each of the 26 patients, we had an outcome of highest pneu-

monitis grade, denoted as 0, 1, 2, and 3, with 3 being the most severe 
toxicity. To create pneumonitis and non-pneumonitis groups, patients 
with the highest grade of 0 and 1 formed the non-pneumonitis group, 
while 2 and 3 formed the pneumonitis group. The histogram of the p- 
values of the delta value t-test showed potential signs of significance 

(Supplementary Fig. S3A). However, after performing false discovery 
rate calculations (q-value), all the miRNAs failed to be significant 
(Supplementary Fig. S3B). This suggested that the differences in indi-
vidual miRNA CT values between the pneumonitis and the non- 
pneumonitis groups were not significant. 

We then created models involving linear regression and stepwise 
feature selection with highest pneumonitis grade as the outcome, and 

Fig. 2. RP patients showed lowered active ADAM17 levels following RT. Total ADAM17 concentration (pg/mL) measures for 38 NSCLC patients, represented as a 
log2 scale for (A) before treatment (pre-treat), (B) at week2 (WK2) and (C) at week 4 (WK4) of radiation treatment, as described in Methods. Each datapoint 
represents the mean of 3 independent ELISA reactions on the same patient plasma sample. Samples were divided into 3 groups based on a) low initial levels (<10 pg/ 
ml) indicated by triangular symbols vs those with higher levels (>10UI/ml) circular symbols, as well as to distinguish RP2 (red symbols) from those of patients that 
did not develop RP (non-RP; blue symbols). The only significant 2 group post-hoc comparisons are shown, based on an Kruskal-Wallis non-parametric tests at WK2 
and WK4 timepoints, with Dunn adjustments for multiple testing. In WK4, the comparison between samples with low initial concentration, and the non-RP sample 
group yielded P = 0.0097. (D) Representative immunoblots of patients’ plasma collected pre-treatment, 2 and 4 weeks during treatment showing active ADAM17 
levels among non-pneumonitic and pneumonitic patients. For normalization, equal amounts of protein (as quantified using Bradford method) were loaded. (E) Band 
intensities were quantified using ImageJ considering pre-treatment active ADAM17 level as ‘1’. Representative immunoblotting and quantification were performed 
for the RP (n = 6) and non-RP (n = 18) samples showing changes in active ADAM17 levels at week 2 and week 4 during RT. Welch’s t-test was performed to calculate 
statistical significance. Analyzes of (F) WK2 and (G) WK4 fold changes (FC) relative to baseline (pre-treat) band intensities, considering 3 groups; very low baseline 
pre-pro-ADAM17 levels vs those with higher baselines that either did or did not develop RP. Data indicate a difference whereby RP samples with moderate to high 
baseline values tend to show reduced levels at WK2 (P = 0.048 vs low group and P = 0.025 vs non-RP). WK4 shows a similar, not nonsignificant trend. Meanwhile 
both non-RP, and samples with initially low pre-pro-ADAM17 levels show a similar propensity for upward trending values in WK2 and WK4. P values provided by 
Kruskal-Wallis tests with Dunn adjustment for multiple 2-group comparisons. 

T. Hinton et al.                                                                                                                                                                                                                                  



Translational Oncology 21 (2022) 101428

7

the 54 miRNAs as predictors. For the forward selection approach, we 
used the Akaike Information Criterion (AIC) to select miRNAs to predict 
pneumonitis. For the pre-treatment miRNA value model, we obtained 5 
significant miRNAs (miR-532, -451, -99b, -139-3p, and Let-7c) with an 
adjusted R2 of 0.6385 (Table 3A). For the delta value model (WK4 minus 
pre-treatment), we obtained one significant miRNA (miR-495) with an 
adjusted R2 of 0.3386 (Table 3B). Since the predictors are the CT values, 
and CT values are inversely proportional to the amount of miRNA, a 
positive coefficient represented a negative association between the 
miRNA and toxicity, and vice versa. From the above analysis we iden-
tified three miRNAs (miR-532, -495, -99b) positively correlated with 
RP2, whereas the remaining three (miR-139-3p, -451, and let-7c) were 
negatively correlated. Interestingly, reported studies on these afore-
mentioned miRNAs identified them as regulators of NFκB [33–38], a key 
mediator of multiple inflammatory signaling processes, including 
radiation-induced normal tissue toxicity [39]. 

A data-driven Bayesian network (DD-BN) approach to predict RP 

We have previously developed a statistical method based on 
resampling and information theory to guide robust development of BN 
structure learning, where we integrated radiobiological variables in a 
statistical resampling framework using bootstrap generated samples of 
the data to represent their interaction graphically and allow further 
inferences [22,26]. Utilizing the candidate variables from the statistical 
analyzes, we generated stable BN structures using either miRNA, cyto-
kines or both and combined them with radiobiological and clinical pa-
rameters to best represent RP2 prediction, as shown in Fig. 3A–F and 
Supplementary Fig. S4. In these BNs, arcs with green or red color 
represent positive or negative association between any two variables in 
the graph, while arcs with gray color indicate a mixture of positive and 
negative association depending on the expression state of the involved 
variables. The area under the ROC curves (AUCs) show that the per-
formance of these BNs for RP2 prediction improved significantly when 
all parameters were combined achieving an AUC of 0.87 (95% 
0.75–0.97) on cross-validation testing. 

Discussion 

In this study, we have adopted an approach using data-driven 
Bayesian Networks to understand the multiple interactions of miRNA 
array and multiplex cytokines analysis, along with radiobiological (such 
as MLD and gEUD) and clinical data to predict RP2. We identified spe-
cific miRNAs (miR-532, -451, -99b, -139-3p, -495 and let-7c) and found 
a signature using the WK4 minus WK2 difference which included 7 cy-
tokines (IL-1β, IP-10, IL-23, sTNFR1, IFN-γ, GM-CSF, and IL-1α) 
(Fig. 2B). This signature included either regulators (TNFα and IL-1α) or 
targets of NFκB, a key downstream mediator of TNFα-driven inflam-
mation [39]. We further identified higher basal levels of sTNFR1 in 
majority of our lung cancer patients, however, surprisingly we observed 

a temporal (2-4 weeks during RT) reduction of anti-inflammatory 
sTNFR1 in RP2 patients, suggestive of a persistent inflammatory state. 
Using DD-BN analysis, we combined biological, radiobiological, and 
clinical data, which highlight the interactions between these variables as 
discussed below. 

A key finding of our work is that it required a combined assessment 
of miRNAs, cytokines along with MLD to best predict radiation induced 
lung inflammation indicating crosstalk between multiple biomarkers. 
We previously reported that lung irradiation induces early release of 
TNFα, and inhibition of TNFR1-mediated inflammatory signaling can 
radioprotect mouse lung [14]. Conversely, Tristetraprolin (TTP, Zfp36 in 
mice) knockout mice with high basal levels of TNFα were prone to RP 
[14,15,40]. Such preclinical data allowed us to predict conservation of 
the TNFα-TNFR1 pathway in clinical settings. Analysis of patients’ 
plasma using a multiplex cytokine array (Table 2) and conventional 
sandwich ELISA (Fig. 1), showed that transient loss of sTNFR1 is one of 
the contributing factors promoting RP. Besides activation of TNFα 
signaling, involvements of IL-1α and IL-6 have been reported in inde-
pendent clinical studies [41,42], which is consistent with our findings. 
In another study with NSCLC patients during and after radiotherapy, 
changes in the levels of IP-10, MCP-1 and IL-6 were found to be corre-
lated with MLD [43], similar trend was noted in our study. However, to 
better predict patients prone to develop RP, multiple biomarker analyzes 
may be required where our approach of using DD-BN analysis will be 
critical. 

A possible involvement of TNFα-NFκB signaling in RP became 
evident while analyzing miRNA data. From unbiased screening of the 
total 818 miRNAs, we identified six [6] (miR-532, -99b and -495, let-7c, 
miR139-3p and miR-451), which were correlated with RP incidence. 
Interestingly, these miRNAs were previously reported to regulate NFκB 
signaling, either as activators or inhibitors. Among activators, miR-99b 
has been reported to promote NFκB-mediated inflammation via acti-
vating expression of IL-1β, -6 and -12 [35]. Similarly, miR-495 is known 
to be involved in inflammatory diseases, particularly Crohn’s disease, 
where it regulates the expression of the nucleotide binding oligomeri-
zation domain containing protein 2 (NOD2), a key inducer of multiple 
cytokines including IL-6, -8 and TNFα (34). For expression of these in-
flammatory cytokines NOD2 is an important activator of NFκB signaling 
[44]. Although the direct role of miR-532 is not known, its connection 
with NFκB signaling results via regulation of KIFC1 expression to impact 
gankyrin/AKT signaling [45] and thus can indirectly impact NFκB; at 
the same time, the promoter of miR-532 has an NFκB1 binding site for 
direct regulatory feedback [33]. This miRNA is also aberrantly 
expressed in patients with inflammatory bowel disease [46]. In contrast, 
miR-451, -139-3p and let-7c are involved in NFκB regulation by nega-
tively impacting transcription activation. For example, miR-451 directly 
suppresses IKKβ expression, the critical kinase that inactivates the in-
hibitor of NFκB signaling, IκB, via phosphorylation to promote protea-
somal degradation [47]. This miRNA also suppresses TLR-4-mediated 
expression of inflammatory cytokines including IL-6, -1β and TNFα. 
Downregulation of this miRNA is also reported in nonalcoholic steato-
hepatitis [48]. Similarly, miR-139 is known to inhibit NFκB-mediated 
expression of IL-6, 1β and TNFα; thus, its targeted deletion promoted 
intestinal inflammation and colorectal cancer in a mouse model [36]. 
Furthermore, let-7c expression is reported to be lower in chronic 
obstructive pulmonary disease (COPD) patients [49], and its 
anti-inflammatory role in LPS-induced inflammation is mediated via 
suppression of STAT3 expression, a known collaborator of NFκB [50]. 
Taken together, the current literature supports our miRNA and cytokine 
data, which identified a signature in lung cancer patients undergoing 
thoracic radiation that resulted in the activation of TNFα-NFκB signaling 
to cause RP. 

One of the major strengths of this study is the use of DD-BN 
modeling, which combined biological data (miRNAs and cytokines) 
with radiobiological parameters, such as lung generalized equivalent 
uniform dose (gEUD) [51]. As shown in Fig. 3, such an approach 

Table 3 
Linear regression and stepwise selection with highest Pneumonitis grade iden-
tified selected miRNAs pre-treatment (in A) and Wk4 during treatment (in B) 
signature using Akaike Information Criterion (AIC).  

A. Fitting model between pre-treatment miRNA values and highest RP grade (R2 =

0.6385) 
miRNA Estimate Std. Error Pr(>ItI) 

miR-532 − 0.133 0.040 0.003 
miR-451 0.316 0.075 0.0004 
miR-99b − 0.405 0.083 0.00009 
Let-7c 0.222 0.059 0.001 
miR-139-3p 0.099 0.055 0,08 
B. Fitting model between pre-treatment miRNA values and highest RP grade (R2 =

0.3386) 
miRNA Estimate Std. Error Pr(>ItI) 
miR-495 − 0.377 0.086 0.0002  
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identified specific cytokines and miRNAs that showed either positive, 
negative or mixed correlation and strengthened our RP2 prediction 
ability both at the pre-treatment and during treatment (WK4) time 
points as evidenced by the improvement of AUC values. Such data 
further identified that besides increasing lung dose and loss of sTNFR1, 
increases in IL-4 and MCP-1, at WK4 of treatment, positively correlated 

with subsequent RP2 occurrence. A previous study using a rat model for 
RP showed increase in IL-4 following a single dose of 20 Gy thoracic 
irradiation [52]. Furthermore, a recent study identified association of 
IL-4 genetic variation (single nucleotide polymorphism, SNP) with 
prevalence of RP in lung cancer patients [53]. Similarly supportive, 
MCP-1 (also called CCR2) is known to be altered in multiple 

Fig. 3. Pre- and during-treatment DD-BN for improved pre-
diction of RP2. (A–C) Left panels represent pre-treatment BN 
models using cytokines (in A), miRNAs (in B) and both (in C) 
along with dosimetry parameter (lung_gEUD). Right panels 
show corresponding ROC curves of pre-treatment DD-BN based 
on internal cross-validation. (D-F) Left panels represent 4 
weeks during-treatment BN models as above using cytokines, 
miRNAs and both respectively and right panels show respec-
tive ROC curves similarly analyzed and validated as above.   
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inflammatory diseases, particularly following thoracic irradiation [54]. 
Thus, the DD-BN analysis helped us better understand the cross-talks 
between different biological mediators, and their association with 
lung dose to predict RP2. Such findings may have both predictive and 
therapeutic value, as they suggest testing of anti-TNFα agents to prevent 
RP2. 

ICB therapy following RT has become the standard-of-care for lung 
cancer patients, yet the use of high dose corticosteroids to treat RP may 
be counterproductive due to their leukotoxicity and known negative 
impacts on ICB efficacy. In a recent preclinical study, early blockade of 
NFκB signaling using Thalidomide was shown to mitigate chronic 
inflammation in radiation-induced urinary bladder dysfunction [55]. 
Our data suggest that an anti-TNF/NFκB agent may be an ideal 
replacement. Thus, our signature biomarker will not only be useful in 
identifying patients prone to RP, but it also suggests a new therapeutic 
strategy to treat RP2. Such a strategy is further strengthened by recent 
reports and our unpublished data that demonstrate prophylactic TNFα 
blockade may potentiate ICB efficacy at least in preclinical models [56]. 
Although a recent retrospective study of patient outcomes from a Dutch 
National Registry identified worse outcomes in patients whose ICB 
toxicity was managed using anti-TNFα agent, particularly Infliximab 
[57], in an associated commentary, certain shortfalls were also noted 
with respect to data interpretation [58]. Thus, we are cautiously opti-
mistic and believe the prevalence of data suggest that a detailed pre-
clinical study using an anti-TNFα agent is warranted. 

Another interesting finding from our study is the indication of a 
transient reduction of sTNFR1 level between 2-4 weeks associated with 
subsequent RT. sTNFR1 is the protease-cleaved extracellular domain of 
TNFR1, which has the ability to bind and neutralize TNFα, thus acting as 
an anti-inflammatory factor [59]. TNFα is initially synthesized as a 
membrane-bound inactive form (mTNFα), which, following an insult 
such as RT, undergoes processing by a metalloproteinase, called TNFα 
converting enzyme (TACE, also cells ADAM17) [17]. ADAM17 is also 
the protease for TNFR1; however, its enzymatic affinity is 100-fold 
higher for TNFα as compared to TNFR1 [17]. Thus, in an ADAM-17 
limited state, an inflammatory signal may persist due to increased 
presence of soluble TNFα compared to sTNFR1. ADAM17 is initially 
produced in its high molecular weight inactive pro-form, which can be 
converted to an active-form [60]. Using immunoblotting, we noted 
reduced levels of active ADAM17 in patients with RP2 between 2-4 
weeks during RT, suggesting a time-sensitive limit in functional 
ADAM17. It is interesting to note that we also found sTNFR1 shows a 
similar drop in RP samples at WK2. These data provide preliminary 
mechanistic insight (Supplementary Fig. S5), requiring more detailed 
temporal sample collection and analysis. 

We recognize that this study has some limitations. Most importantly, 
the modest sample size (n = 39) and lack of validation cohort somewhat 
restrict our inferences. Another potential weakness is overfitting of our 
data, but we used statistical rigor to avoid this. Additionally, we 
recognize that the direct quantification of TNFα poses a persistent 
challenge to the field, which we have approached indirectly by 
measuring sTNFR1 [29] and ADAM17. 

In summary, we have utilized both miRNA and cytokines and using 
DD-BN modeling combined biological data with radiobiological pa-
rameters to identify signature biomarkers predictive of RP2, which 
emphasized the role of TNFα-NFκB signaling in causing lung toxicity. As 
both TNFα and NFκB are known mediators of various inflammatory 
diseases, there are already multiple agents and FDA approved drugs 
targeting these molecules, which can be repurposed for possible lung 
radioprotection. 

Data availability 

All miRNA and multiplexed cytokine data generated for this study 
are included under Supplementary Table and Figures. The raw data will 
be made available by the authors, without reservation to anyone 

requesting. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work is supported in part by grants from the National Institutes 
of Health P01 CA059827 (to RTH and TSL). We also thank Dr. Mary 
Davis for editorial and Steven Kronenberg for graphic assistance. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.tranon.2022.101428. 

References 

[1] S.J. Antonia, A. Villegas, D. Daniel, D. Vicente, S. Murakami, R. Hui, et al., Overall 
survival with durvalumab after chemoradiotherapy in stage III NSCLC, N. Engl. J. 
Med. 379 (24) (2018) 2342–2350, https://doi.org/10.1056/NEJMoa1809697. 

[2] R.P. Abratt, GW. Morgan, Lung toxicity following chest irradiation in patients with 
lung cancer, Lung Cancer 35 (2) (2002) 103–109. 

[3] C.B. Simone, Thoracic radiation normal tissue injury, Semin. Radiat. Oncol. 27 (4) 
(2017) 370–377, https://doi.org/10.1016/j.semradonc.2017.04.009. 

[4] V. Mehta, Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung 
cancer: pulmonary function, prediction, and prevention, Int. J. Radiat. Oncol. Biol. 
Phys. 63 (1) (2005) 5–24, https://doi.org/10.1016/j.ijrobp.2005.03.047. 

[5] P.F. Cui, J.X. Ma, F.X. Wang, J. Zhang, H.T. Tao, Y. Hu, Pneumonitis and 
pneumonitis-related death in cancer patients treated with programmed cell death-1 
inhibitors: a systematic review and meta-analysis, Ther. Clin. Risk Manag. 13 
(2017) 1259–1271, https://doi.org/10.2147/TCRM.S143939. 

[6] N. Shaverdian, M. Thor, A.F. Shepherd, M.D. Offin, A. Jackson, A.J. Wu, et al., 
Radiation pneumonitis in lung cancer patients treated with chemoradiation plus 
durvalumab, Cancer Med. 9 (13) (2020) 4622–4631, https://doi.org/10.1002/ 
cam4.3113. 

[7] J.D. Schoenfeld, M. Nishino, M. Severgnini, M. Manos, R.H. Mak, FS. Hodi, 
Pneumonitis resulting from radiation and immune checkpoint blockade illustrates 
characteristic clinical, radiologic and circulating biomarker features, 
J. Immunother. Cancer 7 (1) (2019) 112, https://doi.org/10.1186/s40425-019- 
0583-3. 

[8] K. Sankar, A.K. Bryant, G.W. Strohbehn, L. Zhao, D. Elliott, D. Moghanaki, et al., 
Real world outcomes versus clinical trial results of durvalumab maintenance in 
veterans with stage III non-small cell lung cancer, Cancers 14 (3) (2022), https:// 
doi.org/10.3390/cancers14030614 (Basel). 

[9] E.Y. Pan, M.Y. Merl, K. Lin, The impact of corticosteroid use during anti-PD1 
treatment, J. Oncol. Pharm. Pract. 26 (4) (2020) 814–822, https://doi.org/ 
10.1177/1078155219872786. 

[10] B. Mahata, J. Pramanik, L. van der Weyden, K. Polanski, G. Kar, A. Riedel, et al., 
Tumors induce de novo steroid biosynthesis in T cells to evade immunity, Nat. 
Commun. 11 (1) (2020) 3588, https://doi.org/10.1038/s41467-020-17339-6. 

[11] C. Herskind, M. Bamberg, HP. Rodemann, The role of cytokines in the development 
of normal-tissue reactions after radiotherapy, Strahlenther. Onkol. 174 (Suppl 3) 
(1998) 12–15. Organ der Deutschen Rontgengesellschaft [et al]. 

[12] C.J. Johnston, J.P. Williams, P. Okunieff, JN. Finkelstein, Radiation-induced 
pulmonary fibrosis: examination of chemokine and chemokine receptor families, 
Radiat. Res. 157 (3) (2002) 256–265. 

[13] A.J. Franko, J. Sharplin, A. Ghahary, MH. Barcellos-Hoff, Immunohistochemical 
localization of transforming growth factor beta and tumor necrosis factor alpha in 
the lungs of fibrosis-prone and "non-fibrosing" mice during the latent period and 
early phase after irradiation, Radiat. Res. 147 (2) (1997) 245–256. 

[14] M. Zhang, J. Qian, X. Xing, F.M. Kong, L. Zhao, M. Chen, et al., Inhibition of the 
tumor necrosis factor-alpha pathway is radioprotective for the lung, Clin. Cancer 
Res. 14 (6) (2008) 1868–1876, https://doi.org/10.1158/1078-0432.CCR-07-1894. 

[15] P.M. Krishnamurthy, S. Shukla, P. Ray, R. Mehra, M.K. Nyati, T.S. Lawrence, et al., 
Involvement of p38-betaTrCP-Tristetraprolin-TNFalpha axis in radiation 
pneumonitis, Oncotarget 8 (29) (2017) 47767–47779, https://doi.org/10.18632/ 
oncotarget.17770. 

[16] M.L. Moss, D. Minond, Recent advances in ADAM17 research: a promising target 
for cancer and inflammation, Mediat. Inflamm. 2017 (2017), 9673537, https://doi. 
org/10.1155/2017/9673537. 

[17] M.J. Mohan, T. Seaton, J. Mitchell, A. Howe, K. Blackburn, W. Burkhart, et al., The 
tumor necrosis factor-alpha converting enzyme (TACE): a unique 
metalloproteinase with highly defined substrate selectivity, Biochemistry 41 (30) 
(2002) 9462–9469, https://doi.org/10.1021/bi0260132. 

T. Hinton et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.tranon.2022.101428
https://doi.org/10.1056/NEJMoa1809697
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0002
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0002
https://doi.org/10.1016/j.semradonc.2017.04.009
https://doi.org/10.1016/j.ijrobp.2005.03.047
https://doi.org/10.2147/TCRM.S143939
https://doi.org/10.1002/cam4.3113
https://doi.org/10.1002/cam4.3113
https://doi.org/10.1186/s40425-019-0583-3
https://doi.org/10.1186/s40425-019-0583-3
https://doi.org/10.3390/cancers14030614
https://doi.org/10.3390/cancers14030614
https://doi.org/10.1177/1078155219872786
https://doi.org/10.1177/1078155219872786
https://doi.org/10.1038/s41467-020-17339-6
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0011
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0011
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0011
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0012
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0012
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0012
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0013
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0013
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0013
http://refhub.elsevier.com/S1936-5233(22)00087-0/sbref0013
https://doi.org/10.1158/1078-0432.CCR-07-1894
https://doi.org/10.18632/oncotarget.17770
https://doi.org/10.18632/oncotarget.17770
https://doi.org/10.1155/2017/9673537
https://doi.org/10.1155/2017/9673537
https://doi.org/10.1021/bi0260132


Translational Oncology 21 (2022) 101428

10

[18] A. Lierova, M. Jelicova, M. Nemcova, M. Proksova, J. Pejchal, L. Zarybnicka, et al., 
Cytokines and radiation-induced pulmonary injuries, J. Radiat. Res. 59 (6) (2018) 
709–753, https://doi.org/10.1093/jrr/rry067. 
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