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Abstract

Objective: To assess the feasibility of using synthetic computed tomography for treat-

ment planning of the dominant intraprostatic lesion (DIL), a high-risk region of interest

that offers potential for increased local tumor control.

Methods: A dosimetric study was performed on 15 prostate cancer patients with

biopsy-proven prostate cancer who had undergone magnetic resonance imaging. DILs

were contoured based on the turbo spin echo T2-weighted and diffusion weighted

images. Air, bone, fat, and soft tissue were segmented and assigned bulk-density HU

values of –1000, 285, –50, and 40, respectively, to create a synthetic computed tomog-

raphy. Simultaneous integrated boost (SIB) and standard treatment planswere created

for eachpatient. The total dosewas79.2Gy to thenon-boostedplanning target volume

for bothplanswith aboost of 100Gy for theDIL in theSIBplan.A radiobiologicalmodel

was created to determine individualized dose–response curves based on the patient’s

apparent diffusion coefficient maps.

Results: Mean doses to the non-boost planning target volume were 81.2 ± 0.3 Gy

with the SIB and 81.0 ± 0.4 Gy without. For the DIL, the boosted mean dose was

102.6 ± 0.6 Gy. Total motor unit was 860 ± 100 with the SIB and 730 ±100 without.

Femoral heads, rectum, bladder, and penile bulb were within established dose guide-

lines for either treatment technique. The average tumor control probability was 94%

with the SIB comparedwith 78%without boosting the DIL.

Conclusion: This study showed the feasibility of magnetic resonance imaging-only

treatment planning for patients with prostate cancer with a SIB to the DIL. DIL dose

can be escalated to 100 Gy on synthetic computed tomography, while maintaining the

original 79.2 Gy prescription dose and the organ of interest clinical dose limits.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.
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1 INTRODUCTION

Pathological studies have shown that dominant intraprostatic lesions

(DIL) play an important role in prostate cancer progression, and might

be considered the epicenter of local recurrence post-treatment.1,2

Curative options for localized prostate carcinoma, including surgery

and image-guided radiotherapy, have proven to be the standard of care

byeffectively controlling localizeddisease.Various clinical trials (RTOG

0126) have shown improved tumor control with escalated radiation

dose to the entire prostate.3,4 However, dose escalation increases the

treatment-related normal tissue complication probability (NTCP).

Multiparametric magnetic resonance imaging (MP-MRI) is an

emergent standard of care for the detection of localized prostate

cancer. MP-MRI provides superior morphological and functional

information by blending T2-weighted imaging and diffusion-weighted

imaging (DWI). The combination of T2-weighted imaging and DWI

has been shown to provide high sensitivity/specificity (performance

0.8–0.9) in DIL identification, and has been recommended in current

consensus guidelines.5,6 At the same time, the application of MRI in

radiation oncology has grown.MRI offers excellent soft tissue contrast

for target and organ delineation, and can track tumor motion during

treatment without extra radiation exposure or treatment interruption.

In addition, MRI can probe biological properties using diffusion or

perfusion imaging, and assess tumor and normal tissue response

during treatment. For example, apparent diffusion coefficient (ADC)

maps can be correlated to clonogen cell density in the tumor. The

evaluation of clonogen number changes over the treatment course

can provide insights of local tumor control over time. However, MRI

does not contain electron density information, which is essential for

dose calculation. Multiple methods have been proposed to generate

synthetic computed tomography (CT). As DIL is small, in the order of

a couple milliliters, geometric uncertainty is a key consideration in

synthetic CT generation.

The present study describes the development of a MRI-only work-

flowusing synthetic CT images generated fromMR images for prostate

treatment planning incorporating a simultaneous integrated boost

(SIB) to the MP-MRI-defined DIL, while aiming to maintain standard

prescription dose to the prostate gland (79.2 Gy) and keep the normal

tissuedoseswithin established limits. The radiobiologicalmodel is used

to compare theSIBapproachand standard careby incorporating tumor

clonogenic cell density derived from the DWI.

2 METHODS

A retrospective dosimetric study was performed with 15 biopsy-

proven prostate cancer patients that had undergone diagnostic MRI

scans. An experienced radiologist delineated the prostate andDIL con-

tours for each patient using the MP-MRI. A 5-mm margin was added

to the prostate and the DIL, to create the planning target volumes

(PTVprostate and PTVDIL).

MR images were acquired using an Ingenia 3.0 T magnetic

resonance system (Philips Medical Systems, Best, the Nether-

lands). Two MRI sequences were utilized to delineate the dom-

inant intraprostatic lesions: 2-D turbo spin echo T2-weighted

imaging (TE/TR= 4389/110 ms, FA = 90◦, voxel size = 0.42 ×

0.42 × 2.4 mm3) and DWI (TE/TR = 4000/85 ms, FA = 90◦,

voxel size = 1.79 × 1.79 × 0.56 mm3, with b-values = 0 and

1000 [s/mm2]).11 The 3-D GRE mDixon T1 image set (in-phase:

TE/TR = 2288/4067 ms, out-phase: TE/TR = 1116/4067 ms, FA = 12˚,
voxel size = 0.63 × 0.63 × 1.9 mm3) was used to create the synthetic

CTs for treatment planning. For three patients, the mDixon images

were rigidly registered to diagnostic CT image sets using the open-

source software, Elastix (University Medical Center Utrecht, Utrecht,

the Netherlands), to fill in the superficial fat tissue.12,13 For a patient

without a diagnostic CT, the peripheral tissue was determined by

extrapolating the boundary regions from the mDixon images. These

regions were then assigned a HU value corresponding to fat (–50HU).

The syntheticCTgeneration is basedonbulkdensityHUassignment

to soft tissue, fat, bone, and air using the mDixon images. The advan-

tage of using the mDixon technique is the ability to derive fat-only and

water-only images from the in-phase and out-phase sequences, sim-

plifying the segregation of fat and soft tissue image components. In

this approach, a k-means clustering algorithm is utilized to segment

soft tissue and fat.14 This algorithm divides n objects into k clusters

by assigning each object to the cluster with the nearest mean value.

Segmentation of bone and air in MR images is problematic due to the

relative absence of acquired signal for both structures. For this reason,

the pelvic bonesweremanually contoured by an experienced physicist.

Bulk densities were assigned to air, bone, fat, and soft tissue (–1000,

285, –50, 40HU, respectively) as seen in Figure 1.15

Treatment plans were created on synthetic CTs using Eclipse treat-

ment planning software (Varian Medical Systems, Palo Alto, CA, USA)

with two 360◦ arcs and high-definition multileaf collimator system.

Two treatment plans per patient were generated: a standard fraction-

ation prostate plan (PTVprostate 79.2 Gy in 44 fractions) and a SIB plan.

The SIB plan prescribed 79.2 Gy to the PTVprostate and 100 Gy to the

PTVDIL in 44 fractions. This fractionation scheme is based on the focal

lesion ablative microboost in prostate cancer (FLAME) clinical trial.16

Theorgans at risk (OARs), including the rectum, bladder, femoral heads,

and the penile bulb, were contoured on themDixon images.

Using dose–volume histograms (DVH), D95, D99, and the maxi-

mum dose to the DIL and PTV were analyzed to assess dose cover-

age. The OAR constraints were based on NRG/QUANTEC protocols
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F IGURE 1 (A) mDixonmagnetic resonance image and (B) synthetic computed tomography (right) with femoral (pink), pelvic (orange), and
spinal bones (blue), planning target volume (red), prostate (green), dominant intraprostatic lesion (magenta), bladder (yellow), and rectum (brown)

for both plans.17,18 Namely, V70 and V75 were analyzed for the rec-

tum, to assess the risk of late rectal toxicity. V70 and V75 were ana-

lyzed for the bladder, where observable symptoms are the end-point.

For the femoral heads, D5was calculated due to the risk of bone necro-

sis. Finally, the mean dose for the penile bulb was assessed as a result

of severe erectile dysfunction risk.

In addition to DVH comparisons, radiobiological modeling was used

to evaluate treatment outcomes. A linear Poisson tumor control proba-

bility (TCP) formulation was created and the Lyman–Kutcher–Burman

Model for NTCP was used.19,20 All calculations were performed using

BioSuite 12 (developed by Julian Uzan, NHS Clatterbridge Center for

Oncology, Birkenhead, UK).

Several studies investigated the α/β ratio for prostate cancer with

varying results.21–23 TCP values were determined using α/β = 1.93 Gy

based on the meta-analysis of Vogelius and Bentzen.24 A key aspect of

TCP modeling is the clonogen density. ADC values are known to have

a significant negative correlation with clonogen density in prostate

cancer.25 We therefore adopted a method developed by Casares-

Magaz et al. to calculate clonogen density, wherein the clonogen den-

sity for the DIL was based on average ADC values inside the lesion,

whereas the rest of the prostate was given a constant density of 105

clonogens per cm3.26 The patient ADC information, calculated clono-

gen density, and the DIL volume are tabulated in Table 1. The overall

TCP for the prostate was calculated by multiplying the DIL’s TCP with

the TCP for the remaining volume of the prostate.

Another consideration for radiobiological modeling was tumor

regrowth. This is incorporated into the linear quadratic model by the

repopulation correction factor, which is calculated as exp(ln(2) ⋅ T∕Teff ),

where T is the total treatment duration and Teff is the effective dou-

bling time of the tumor. An onset time, Tk, is also applied, as clonogen

repopulation does not typically occur immediately. All TCP calculations

were performedwith Teff= 28 days and Tk= 30 days.26,27

For NTCP calculations, the Lyman–Kutcher–Burman model was

implemented to find the NTCP for the rectum, which is considered

the most radiosensitive organ for prostate cancer treatments per

QUANTEC.17 The values for the NTCP modeling are based on the

meta-analysis carried out byQUANTEC,wherem (slope) is 0.13, n (vol-

ume effects) is 0.09, dose where toxicity occurs in 50% of cases (TD50)

is 76.9 Gy, and α/β for the rectum is 3 Gy.17,28 Rectal NTCP values

were generated for both plans, with an end-point of grade ≥2 rectal

bleeding.

3 RESULTS

Table 2 lists the PTV and OAR dose statistics for each planning tech-

nique. The averagePTVprostate D95 for the standard andSIBplanswere

similar at 99.1%of the prescription dose. Figure 2 shows the location of

the global maximum. For the SIB plan, the average maximum dose was

(105.5± 1.2) Gy.

All OAR doses were within QUANTEC constraints for prostate

treatment. No significant difference (p > 0.05) was observed for the

dose statistics between the standard and SIB plans. The rectal V75

was (7.5 ± 2.3)% for the standard plan and (7.2 ± 2.3)% for the SIB

plan. For the bladder, the V75 was (8.9 ± 3.9)% for the standard plan

and (8.6 ± 3.8)% for the SIB plan. The maximum dose for the rectum

and bladder were <85 Gy for each plan. Figure 3 shows the DVHs for

patient 9 as a typical example. For patient 9, the D95 for the PTVwere

slightly higher for the standard plan (79.4 Gy vs. 78.7 Gy for D95). The

rectumand femoral headsDVHwere slightly lower for the SIB over the

standard plan, whereas, the bladder dose increased for SIB plan. This

was due to the shallower shoulder of the PTVprostate DVH on the SIB

plan.

Further analysis showed that patient 7 exhibited the lowest PTV

and DIL D95 for the SIB plan (DIL D95 of 99.5 Gy and PTV D95 of

77.3 Gy). This patient also received the highest rectal dose, as the DIL

was located in close proximity to the rectal interface. This led to a

high dose to the rectum in both plans, while negatively impacting the
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TABLE 1 Dominant intraprostatic lesion volume, average apparent diffusion coefficient value, and the calculated clonogen density for each
patient

Patient no.

DIL volume

(cm3)

Average ADCDIL

(10–6 mm2/s)

Standard

deviation

Clonogen density

(108 /cm3)

1 1.15 1570 92 4.4

2 0.06 814 310 10.8

3 0.88 710 108 11.6

4 0.09 1118 205 8.2

5 0.04 1343 165 6.3

6 0.01 918 228 9.9

7 0.09 746 207 11.3

8 0.22 1100 206 8.4

9 0.14 704 116 11.7

10 0.11 1337 190 6.4

11 0.11 1120 189 8.2

12 0.21 1318 230 6.5

13 0.19 1016 176 9.1

14 0.16 1250 180 7.1

15 3.19 790 194 11.0

ADC, apparent diffusion coefficient; DIL, dominant intraprostatic lesion volume.

TABLE 2 Dose statistics for the standard plan and the
simultaneous integrated boost plan

Standard SIB

PTVProstate D95 (Gy) 78.5 ± 0.6 78.5 ± 0.6

MeanDose (Gy) 81.0 ± 0.4 81.2 ± 0.3

DIL D95 (Gy) 80.8 ± 1.2 100.5 ± 0.5

MeanDose (Gy) 80.9 ± 1.2 102.6 ± 0.6

Rectum Max. Dose (Gy) 83.8 ±0.6 83.9 ± 0.7

MeanDose (Gy) 31.2 ± 5.2 30.9 ± 4.4

V70 (%) 9.9 ± 2.8 9.8 ± 3.2

V75 (%) 7.5 ± 2.3 7.2 ± 2.3

NTCP (%) 6.2 ± 2.1 5.3 ± 1.7

Bladder Max. Dose (Gy) 83.8 ± 0.8 83.7 ± 0.9

MeanDose (Gy) 36.2 ± 8.9 35.4 ± 7.8

V70 (%) 11.5 ± 4.8 11.3 ± 4.7

V75 (%) 8.9 ± 3.9 8.6 ± 3.8

Femoral heads Max. Dose (Gy) 38.5 ± 6.3 39.3 ± 9.5

D5 (Gy) 29.6 ± 6.1 29.6 ± 8.3

Penile bulb MeanDose (Gy) 7.7 ± 5.9 7.9 ± 4.9

DIL, dominant intraprostatic lesion volume; PTV, planning target volume;

SIB, simultaneous integrated boost.

PTVprostate and PTVDIL dose coverage in the boost plan; however, the

rectal dose was kept within theQUANTEC tolerances.

The total MU were 18% greater for the boost plans relative to the

standard plans. The averages were (730 ± 100) MU for the standard

plan, and (860 ± 100) MU for the SIB plan. This trend was expected

due to the higher dose to PTVDIL and the increased multileaf collima-

tor modulation.

The average TCP dose–response curves along with the 95% confi-

dence intervals for the prostate and DIL are shown in Figure 4. The

average TCP for the DIL was 99% at 100 Gy, compared with 83% at

79.2 Gy. The overall TCP of (94 ± 2)% for the SIB plan was a sizeable

improvement relative to the non-SIB TCP of (79 ± 9)%. Lowering the

average PTVDIL dose to 88.5 Gywould still achieve a DIL TCP of 98%.

Rectal NTCP results are tabulated in Table 2. The average rectal

NTCP was 6.2% (95% CI 5.2%–7.3%) for the standard plan and 5.3%

(95% CI 4.5%–6.5%) for the SIB plan. The maximum NTCP (9.8%) was

observed in patient 3. This is may be caused by the higher hotspot in

the PTVprostate, allowing for less dose falloff to the rectum.

4 DISCUSSION

Pilot studies have shown that the administration of a boost dose to the

DIL increases the probability of tumor control.29–33 Simultaneous dose

escalation to the DIL without an increase in the risk of late compli-

cations has the potential to improve local tumor control for prostate

cancer patients. To achieve this, it is critical to accurately delineate

the DIL, boost the dose to DIL without compromising the OARs, and

predict the clinical outcome in the early stages of planning. We devel-

oped an MRI-only workflow to define the DIL on MP-MRI images,

delineate prostate and OARs on morphological MR images, gener-

ate synthetic CT from mDixon images for dose calculation, and gen-

erate an individualized radiobiological model incorporating clonogen
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F IGURE 2 (A,B) Axial, (C,D) coronal, and (E,F) sagittal slices of the dose distribution for patient 9 (A,C,E) with and (B,D,F) without simultaneous
integrated boost

density directly derived from ADC maps to assess patient therapeutic

ratios.

Initial efforts to incorporate MRI in treatment planning used

registration to the CT simulation image set and propagation of the

MRI-derived contours to the CT images used for dose calculations.

Several approaches have been proposed to improve image registration

between MRI and CT in the pelvic region, including the thin-plate

spline algorithm, landmark method, and biomechanical models, but an

intrinsic deficiency in delineating prostate boundaries on CT images

makes deformable image registration challenging.7–10 Considering the

small DIL sizes, MRI-to-CT contour propagation based on deformable

image registration could introduce geometrical errors that compro-

mise this strategy’s efficacy. For these reasons, a method of prostatic

radiation treatment with simultaneous boost doses to the DIL solely

usingMRI would be desirable.

Approaches for developing synthetic CTs from MRI include

voxel-based conversion, atlas-based, and machine learning-based

methods.14,34,35,36 For voxel-based conversion, voxel values from MR

images are used to calculate CT voxel values. Atlas-based synthetic

CTs require a set of co-registered CT andMR images to create a set of

co-registered atlases that can be deformably registered to a patient’s

MR images. Machine learning synthetic CTs are created based on

algorithms trained from a set of MR-CT registrations. The generative

adversarial network is currently the most popular machine learning

algorithm. These methods may lead to geometrically accurate syn-

thetic CTs, but some issues are present with the approaches. One issue

for the voxel-based conversionmethod is an inability to handle the lack

of consistency between voxel values across MRI scans for a specific

tissue type. Sufficient variability between voxel values of a specific

tissue prevents adequate optimization of assigned weights, resulting

in inaccurate HU values for the synthetic CT. The use of mDixon

images results inweights that are not accurate for the entire image set,

rendering this method impractical for our approach. The atlas-based

and generative adversarial network algorithm-based methods require
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F IGURE 3 The simultaneous integrated boost (solid lines) and standard plan (dashed lines) dose–volume histograms for patient 9. DIL,
dominant intraprostatic lesion; PTV, planning target volume

F IGURE 4 Tissue complication probability (TCP) dose–response
curves for (A) the standard and (B) the simultaneous integrated boost
plans. The solid line represents themean curves and the dashed lines
represent the upper and lower 95% confidence interval. DIL,
dominant intraprostatic lesion; PTV, planning target volume

an extensive set of patients with both CT and MR images to generate

a synthetic CT atlas or MR-CT training set.35,36 If the set is not large

enough, the models will not be able to accurately generate synthetic

CTs. Another issue is registration errors between the CT-MR training

set will propagate into the models, leading to inaccuracies in the

synthetic CTs. This is one of the limitations of generative adversarial

network-based methods, as it still needs perfectly registered MRI and

CT training pairs for image synthesis, which is difficult to achieve in the

pelvic regionwith large organ deformations. Additionally, several stud-

ies have investigated the dosimetric accuracy of bulk density assigned

synthetic CTs. They showed a dose uncertainty of <1.5%.15,37,38 For

this reason, it was determined that bulk density synthetic CTs, while

not as accurate as the voxel-based conversion or atlas-based methods,

were the most viable option for treatment planning. Although we

noted that our reported method incorporated CT images to fill in the

excluded periphery of the acquired mDixon images in three patients, a

future adjustment to theMRI protocol to include skin-to-skin coverage

of all patients would mitigate this step and allow a complete MRI-only

workflowwithmore accurate synthetic CTs.

With respect to TCP, the best DIL result for the standard plan was

forpatient6,with96%TCPdue toa small lesion size. Patient6′sPTVDIL

was 1.37 cm3, the smallest treatment volume of the patient cohort. A

small lesion can result in high TCP, evenwithout boosting the dose. This

implies that although clonogen density plays a role, TCP also depends

on the lesion volume. Small lesions can be controlled more easily, inde-

pendent of clonogen density; however, the correlation between the

lesion size and clonogen density is complicated and requires further

investigation. Patient 1 had a larger lesion (1.15 cm3) than patient 3

(0.88 cm3), but did not experience lower TCP due to clonogen density

(75% TCP vs. 67% TCP for the standard plan).
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Currently, there is not a consensus on the Teff and Tk values in the

TCP modeling for prostate cancer. Previous studies have shown vari-

ability in Teff values: from as little as 0 days to 62 days.26,39–42 These

studies have shown that Teff is dependent on the cancer type and stag-

ing, and could potentially be different for individual cells of the same

cancer type. It is possible that Teff is unique for each individual, neces-

sitating the calculation of Teff for every patient.
43 Further investigation

into Teff for prostate cancer is warranted, but for the present study,

the value of 28 days was deemed accurate for ‘medium’ proliferation.

For Tk values, there is less variability among published data, where

the typical value is approximately 28–34 days.21,27,40 The chosen Tk of

30days serves as a reasonable value for biopsy-provenprostate cancer

(stage T1c).27 Some studies have incorporated immediate onset time

(Tk= 0); however, this is not considered accurate and would result in

low TCP values.21

We observed no significant difference in the rectal V70 and V75

between the standard and SIB plans. The rectal NTCP results showed

significance, but followed the same trend as the rectum DVH. This

result is unexpected with the presence of the boost dose. However,

this could be produced by slight differences in plan optimization that

do not show significance in the plan statistics, but nevertheless, affect

the NTCP. In addition, DILs more commonly occur in the peripheral

zone, often near the rectal interface, resulting in a high dose to the

rectum.44–46 Considering the present rectum DVH and NTCP results,

we showed that it is possible to produce clinically acceptableMRI-only

based treatment plans by boosting the dose to DIL, while maintaining

prescription dose coverage to the PTV and dose constraints to rectum.

5 CONCLUSION

Wehave shown a feasible implementation ofMRI-only treatment plan-

ning for prostate cancer with a SIB for DIL. The dose to the DIL can

be escalated to 100 Gy on the synthetic CTs, while maintaining the

original prescription of 79.2 Gy and remaining within clinical criteria

for the OARs. The boost dose can be lowered to approximately 90 Gy

and maintain high TCP based on the generated dose response curves.

Although the rectal NTCP shown differences between the SIB and

standardplan, this is not considered clinically significant. Further inves-

tigation into the creation andoptimizationof the syntheticCTandmar-

gin for theDIL structure iswarranted. If promising results are achieved,

a prospective study will be implemented.
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