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Generalizations of Commutativity in Dihedral
Groups

By Noah Heckenlively

Abstract. The probability that two elements commute in a non-Abelian finite group is at most 5
8 . We

prove several generalizations of this result for dihedral groups. In particular, we give specific values for

the probability that a product of an arbitrary number of dihedral group elements is equal to its reverse,

and also for the probability that a product of three elements is equal to a permutation of itself or to a

cyclic permutation of itself. We also show that for any r and n, there exists a dihedral group such that the

probability that a product of n elements is equal to its reverse is r
q for some q coprime to r , extending a

known result.

1 Introduction

In a 2011 edition of Mathematics Magazine, Clifton, Guichard, and Keef [1] show the
probability that two elements commute in a dihedral group and use that to prove re-
sults about commutativity of direct products of dihedral groups. In that same edition,
Langley, Levitt, and Rower [4] find upper bounds on generalizations of commutativity
in nonabelian finite groups. Thus, it is a natural exension of both works to investigate
generalizations of cummutativity for dihedral groups.

For non-Abelian groups there exists some pair of elements that does not commute.
Consider D4, the dihedral group of the square. We’ll denote the identity and counter-
clockwise rotations of the square by r0, r90, r180, r270 and the horizontal, vertical, and two
diagonal reflections as h, v , d , and d ′, respectively, as shown in fig. 1. In table 1, a one
indicates that a pair of elements commute, a zero that the elements do not commute.

There are 40 ones among 64 entries, so 5
8 of the pairs commute. If we define Comm(G)

to be the number of commuting pairs in group G,

Comm(G) = |{(a,b) ∈ G×G|ab = ba}|,
we then can define the probability that two elements commute as

P2(G) = Comm(G)

|G|2 .
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2 Dihedral Generalized Commutativity

D4 r0 r90 r180 r270 h v d d ′

r0 1 1 1 1 1 1 1 1
r90 1 1 1 1 0 0 0 0
r180 1 1 1 1 1 1 1 1
r270 1 1 1 1 0 0 0 0

h 1 0 1 0 1 1 0 0
v 1 0 1 0 1 1 0 0
d 1 0 1 0 0 0 1 1
d ′ 1 0 1 0 0 0 1 1

Table 1: Commutativity Table for D4

It is well known that P2(G) ≤ 5
8 for non-Abelian groups [3, 5], so D4 is as commutative

as possible for a non-Abelian group. As such, dihedral groups are a natural family of
groups to study and will be the focus of this paper. Define Dm to be the dihedral group
of all rotations and reflections of an m-sided regular polygon. Clifton, Guichard, and
Keef [1] give exact values of P2(Dm) for all m:

P2(Dm) =
{

m+3
4m if m is odd

m+6
4m if m is even

(1)

In this paper, we will focus on various generalizations of this result by considering
several generalizations of commutativity. For a permutationσ in the symmetric group Sn ,
define (a1a2 · · ·an)σ to be the product of a1, a2, . . . , an with each ai in position σ(i ). For
example, (a1a2a3a4)(1,4)(2,3) = a4a3a2a1. Since the equation ab = ba can be written ab =
(ab)(1,2), when generalizing commutativity we’ll consider P(a1a2 · · ·an = (a1a2 · · ·an)σ)
for various n and σ. First, we generalize the equation ab = ba to a1a2 · · ·an = an · · ·a2a1

with each ai ∈ G. We’ll denote the probability that the product of n group elements is
equal to its reverse as

Pn(G) = |{(a1, a2, . . . , an) ∈ Gn |a1a2 · · ·an = an an−1 · · ·a1}|
|G|n .

So with n = 2 we have P(ab = ba) = P2(G). Langley, Levitt, and Rower [4] give the upper
bound

Pn(G) ≤ 1

2
+ 1

2n+1
if n is even,

Pn(G) = Pn−1(G) if n is odd.

Again, D4 realizes this upper bound. We will show the following, generalizing (1):

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



Heckenlively 3

Theorem 3.3. For m ≥ 3,

Pn(Dm) =
{

m+k(2n−1)
2n m if n is even

Pn−1(Dm) if n is odd

where k = 1 if m is odd and k = 2 if m is even.

Next, we’ll define a product of group elements a1a2 · · ·an to be rewritable if a1a2 · · ·an =
(a1a2 · · ·an)σ for some nonidentity permutation σ. For example, abc is rewritable if abc
is equal to at least one of acb, bac, bca, cab, cba. Note that ab is rewritable if ab = ba,
naturally generalizing commutativity. We define Pr ew

n (G) to be the probability that a
product a1a2 · · ·an is rewritable:

Pr ew
n (G) = |{(a1, a2, . . . , an) ∈ Gn |a1a2 · · ·an is rewritable}|

|G|n .

We define a group, G, to be n-rewritable if every product of n elements of G is rewritable,
that is, Pr ew

n (G) = 1. Thus every Abelian group is n-rewritable for all n. Ellenberg
[2] shows that the analogous result to the 5

8 bound for Pr ew
3 (G) for a finite group G

is Pr ew
3 (G) = 1 or Pr ew

3 (G) ≤ 17
18 . We will show the following for dihedral groups.

Theorem 4.2. For m ≥ 3,

Pr ew
3 (Dm) = 3m2 +3km −2k2

4m2

where k = 1 if m is odd and k = 2 if m is even.

Note that substituting m = 4 and k = 2 into theorem 4.2 gives Pr ew
3 (D4) = 1, so this is

an example of a non-Abelian group that is 3-rewritable. By substituting m = 6 and k = 2,
we also see that Pr ew

3 (D6) = 17
18 , achieving the upper bound of Pr ew

3 (G) ≤ 17
18 .

For the next generalization of commutativity, we’ll define a product of group elements
a1a2 . . . an to be cyclic rewritable if it is equal to some nonidentity cyclic rearrangement
of itself, that is, a1a2 · · ·an = (a1a2 · · ·an)σ where σ= (1,2,3, . . . ,n)k for some k < n. For
example, abc is cyclic rewritable if abc is equal to cab or bca. Note that ab is cyclic
rewrtable if ab = ba, giving another natural extension of commutativity. We define
Pc yc

n (G) to be the probability that a product a1a2 . . . an is cyclic rewritable:

Pc yc
n (G) = |{(a1, a2, . . . , an) ∈ Gn |a1a2 . . . an is cyclic rewritable}|

|G|n .

Of course, any Abelian group has Pc yc
n (G) = 1. Langley, Levitt, and Rower [4] show

that for non-Abelian groups the upper bound is Pc yc
n (G) ≤ 1− 3

2n+1 , and thus Pc yc
3 (G) ≤ 13

16 .
We will show the following for dihedral groups.
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4 Dihedral Generalized Commutativity

Theorem 5.1. For m ≥ 3,

Pc yc
3 (Dm) = 3m2 +9km −4k2

8m2
= 3m3 +9km2 −4k2m

|Dm |3

where k = 1 if m is odd and k = 2 if m is even.

Note that substituting m = 4 and k = 2 into theorem 5.1 gives Pc yc
3 (D4) = 13

16 . This
achieves the upper bound of 13

16 for Pc yc
3 (G).

Next, we show two additional facts regarding Pn(Dm). Clifton, Guichard, and Keef [1]
show that if r is a positive integer, then there exists Dm such that P2(Dm) = r

q where q is
relatively prime to r . We will generalize this result for Pn(Dm):

Theorem 6.1. For all positive integers r ≥ 2, n ≥ 2, there exists Dm such that Pn(Dm) = r
q

where r and q are relatively prime.

Clifton, Guichard, and Keef [1] also show that there exists a direct product of i
dihedral groups such that

P2(Dm1 ⊕ . . .⊕Dmi ) = 1

r

for any positive integer r . The natural generalization would be that for a fixed n there
exists a direct product of i dihedral groups such that Pn(Dm1 ⊕ . . .⊕Dmi ) = 1

r for any
positive integer r . However, we will show that this generalized statement is not true.

The proofs for the above theorems in this paper heavily depend on the fact that Dm

is generated by two elements, a rotation ρ and a reflection φ, subject to the relations

ρm =φ2 = e and φρ= ρ−1φ.

The outline for the remainder of the paper is as follows. In the next section, we will
show why P2(G) ≤ 5

8 for all finite non-Abelian groups G as well as provide insight into
why D4 achieves this bound. We then prove theorem 3.3, theorem 4.2, and theorem 5.1
in the three subsequent sections. We will conclude by demonstrating that the methods
used in this paper can be extended to find formulas for other permutations of elements.

2 5/8 Bound on Commutativity

In this section we discuss the 5
8 bound on commutativity, and give some background

on dihedral group structure essential to the proofs in subsequent sections. First, let
us consider a non-Abelian group G with center Z(G). For a ∈ G, let C(a) denote the
centralizer of a. We know Z(G) and C(a) are a subgroups of G. If a is not in Z(G), then

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



Heckenlively 5

Z(G) ⊊ C(a) ⊊ G. So by Lagrange’s theorem, |C(a)| ≤ |G|
2 and |Z(G)| ≤ |C(a)|

2 , implying

|Z(G)| ≤ |G|
4 for all a ∉ G. Note that Comm(G)=∑

a∈G |C(a)|, so

P2(G) = 1

|G|2
∑

a∈G
|C(a)|

= 1

|G|2
∑

a∈Z(G)
|G|+ 1

|G|2
∑

a∉Z(G)
|C(a)|

≤ 1

|G|2 · |G|
4

· |G|+ 1

|G|2 · 3|G|
4

· |G|
2

≤ 1

4
+ 3

8

≤ 5

8
.

When the center is its largest, |G|
4 , we reach this bound. Since Z(D4) = {r0,r180},

P2(D4) = 5
8 . When |Z(G)| < |G|

4 , determining exact values of P2(G) becomes difficult since

centeralizers of noncentral elements do not all have order |G|
2 . By taking advantage of the

structure of the dihedral groups, though, we can achieve precise results. As previously
mentioned in the introduction, Dm is generated by a rotation, ρ, and a reflection, φ,
under the relations ρm = φ2 = e and φρ = ρ−1φ. From this definition for Dm we can
derive the relations ρiφ=φρ−i and ρiρ j = ρ jρi to describe the behavior of the elements
in Dm . The rotation ρ has order m, so any rotation can be written as ρi for some i . The
reflection φ has order 2, and an arbitrary reflection can be written as φρi . The relations
are used to show that rotations commute with each other as well as provide the way for
rotational elements to commute through reflection elements. As a result, the elements
of Dm are the rotations e = ρ0,ρ1, . . . ,ρm−1 and the reflections φ,φρ1, . . . ,φρm−1. For
example, in D4, ρ= r90 and φ= h. Other elements can just be rewritten as combinations
of ρ and φ, such as v = ρ2φ and r270 = ρ3. The letter k will be used to denote the number
of rotations equal to their own inverse, so k = 1 for odd m and k = 2 for even m because
ρ0 and ρm/2 are the only possible such elements. These facts form the basis of the proofs
in the following sections.

3 Generalization of the Reverse

In this section we prove our first generalized commutativity result for dihedral groups,
the probability that a product of elements in Dm is equal to its reverse. We start with
two lemmas that lead to the proof of theorem 3.3. For each element ai in the product
a1a2 · · ·an , we consider the cases where ai is a rotation or a reflection. In each case, we
will move the φ’s to the right in the product using the identity ρiφ = φρ−i . Next, the
identity ρiρ j = ρ jρi is used to rearrange the rotations back into the original order for
comparison.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



6 Dihedral Generalized Commutativity

For example, consider the case that a1 and a3 are the only reflections when deter-
mining the probability that a1a2a3a4 = a4a3a2a1. We would write our rotations in the
form of ρi j and reflections of the form φρi j .

We have

a1a2a3a4 = (φρi1 )ρi2 (φρi3 )ρi4 = ρ−i1ρ−i2ρi3ρi4φ2 = ρ−i1−i2+i3+i4

and
a4a3a2a1 = ρi4 (φρi3 )ρi2 (φρi1 ) = ρi4ρ−i3ρ−i2ρi1φ2 = ρi1−i2−i3+i4 .

So

P((φρi1 )ρi2 (φρi3 )ρi4 = ρi4 (φρi3 )ρi2 (φρi1 )) = P(ρ−i1−i2+i3+i4 = ρi1−i2−i3+i4 )

= P(ρ−i1+i3 = ρi1−i3 )

= P(ρz = ρ−z)

= k

m
,

where k = 1 if m is odd and k = 2 if m is even. This is because we defined k as the number
or rotations that are equal to their inverse, and there are m rotations in Dm .

Lemma 3.1. Let σ be a permutation in Sn . In Dm , consider all products a1a2 · · ·an with
a fixed sequence of rotations and reflections. That is, for each i , ai is always a rotation
or always a reflection. If there exists an ai with an odd number of reflections to its left in
a1a2 · · ·an and an even number to its left in (a1a2 · · ·an)σ, or vice versa, then

P(a1a2 · · ·an = (a1a2 · · ·an)σ) = k

m
.

If no such ai exists, then

P(a1a2 · · ·an = (a1a2 · · ·an)σ) = 1.

Proof. Fix a sequence of reflections and rotations in a1a2 · · ·an . Using the identities
ρiφ=φρ−i and ρiρ j = ρ jρi , the products a1a2 · · ·an and (a1a2 · · ·an)σ can each be writ-
ten as ρ± j1± j2±...± jnφl where ai = ρ ji or ai =φρ ji and l is the number of reflection terms.
The question of P(a1a2 · · ·an = (a1a2 · · ·an)σ) is then equivalent to P(ρ± j1± j2±···± jn =
ρ± j1± j2±···± jn ), where the ± may be different on each side. If a ji term has the same
sign in both products then since φρi = ρ−iφ, there are an odd number of reflections
before ai or an even number of reflections before ai in both product. If a ji term has
opposite signs in each product, then there are an odd number of reflections before ai in
one permutation and an even number of reflections before ai in the other product. So

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



Heckenlively 7

if the number of reflections to the left of each ai has the same parity in both products,
every ji has the same sign, and therefore a1a2 · · ·an = (a1a2 · · ·an)σ. So

P(a1a2 · · ·an = (a1a2 · · ·an)σ) = 1.

If the number of reflections to the left of some ai has opposite parity in each product,
then P(a1a2 · · ·an = (a1a2 · · ·an)σ) = P(ρz = ρ−z) where z is the sum of the ji associated
with all such ai . So

P(a1a2 · · ·an = (a1a2 · · ·an)σ) = k

m
.

Lemma 3.2. Let σ be a permutation in Sn . In Dm , consider all products a1a2 · · ·an with a
fixed sequence of rotations and reflections. That is, for each i , ai is always a rotation or
always a reflection. If one of ai and ai+1 is a reflection and the other a rotation, and the
product ai+1ai appears in (a1a2 · · ·an)σ, then P(a1a2 · · ·an = (a1a2 · · ·an)σ) = k

m .

Proof. Fix a sequence of rotations and reflection in a1a2 · · ·an . First suppose ai is a
reflection and ai+1 is a rotation. In a1a2 · · ·an , either ai has an even and ai+1 has an odd
number of reflections to the left, or ai has odd and ai+1 has even number of reflections to
the left. In (a1a2 · · ·an)σ,if ai+1ai appears, then ai and ai+1 both have on odd number of
reflections or even number of reflections to their left. As a result, we know that either ai

or ai+1 has an odd number of reflections to the left in one product and an even number
of reflections to the left in the other product, so by lemma 3.1 we know that

P(a1a2 · · ·an = (a1a2 · · ·an)σ) = k

m
.

A similar argument shows the result if ai is a rotation and ai+1 is a reflection.

We are now ready to prove theorem 3.3.

Theorem 3.3. For m ≥ 3,

Pn(Dm) =
{

m+k(2n−1)
2n m if n is even

Pn−1(Dm) if n is odd

where k = 1 if m is odd and k = 2 if m is even.

Proof. We’ll determine P(a1a2 · · ·an = an · · ·a2a1) in the dihedral group Dm by looking
at three cases: every ai is a rotation, every ai is a reflection, and there exists some ai that
is a rotation and some a j that is a reflection.

Case 1: Each ai is a rotation. Since half the elements of Dm are rotations, 1
2n of the products

a1a2 · · ·an fall into this case. Since rotations commute, a1a2 · · ·an = an · · ·a2a1.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



8 Dihedral Generalized Commutativity

Case 2: At least one ai is a rotation and another is a reflection. This is 2n−2
2n of the products

because there are 2n total rotation/reflection sequences, and two of those have
every element as a rotation or every element as a reflection.

We then could find some pair of consecutive elements, ai ai+1, where one is a reflec-
tion and the other is a rotation. Since ai+1ai appears in an · · ·a2a1, by lemma 3.2
we know that P(a1a2 · · ·an = an · · ·a1a2) = k

m for these 2n−2
2n cases.

Case 3: Each ai is a reflection. This accounts for 1
2n products. Each aI has i −1 reflections

to its left in a1a2 · · ·an and n−i reflections to its left in an · · ·a2a1. If n is even, then
for each i , either n − i is even and i −1 is off, or n − i is odd and i −1 even. So
bylemma 3.1,

P(a1a2 · · ·an = an · · ·a2a1) = k

m

for this case.
If n is odd, then n − i and i −1 are both odd or both even for all i . By lemma 3.1,

P(a1a2 · · ·an = an · · ·a2a1) = 1

for this case.

Combining Cases 1, 2, and 3, if n is even we have

P(a1a2 · · ·an = an · · ·a2a1) =
(

1

2n

)(
2n −2

2n

)(
k

m

)
+

(
1

2n

)(
k

m

)
= m

2nm
+ (2n −2)k

2nm
+ k

2nm

= m + (2n −1)k

2nm

and if n is odd we have

P(a1a2 · · ·an = an · · ·a2a1) =
(

1

2n

)(
2n −2

2n

)(
k

m

)
+

(
1

2n

)
(1)

= m

2nm
+ (2n −2)k

2nm
+ m

2nm

= 2m + (2n −2)k

2nm

= m + (2n−1 −1)k

2n−1m

So for n even Pn(Dm) = m+(2n−1)k
2n m . For n odd, Pn(Dm) = m+(2n−1−1)k

2n−1m
= Pn−1(Dm).
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4 Rewritability

In this section, we will prove the formula for Pr ew
3 (Dm) given in theorem 4.2. We will

start with a lemma that will be useful for the next two theorems.

Lemma 4.1. For m ≥ 3,

P(ρi = ρ−i or ρ j = ρ− j ) = 2km −k2

m2

and

P(ρi = ρ−i or ρ j = ρ− j or ρi+ j = ρ−i− j ) = 3km −2k2

m2
.

Proof. The probability that a rotation is equal to its inverse is k
m since there are k rotations

of order less than or equal to 2 and there are m total rotations. So

P(ρi = ρ−i and ρ j = ρ− j ) = P(ρi = ρ−i )P(ρ j = ρ− j ) = k

m
· k

m
= k2

m2
.

Thus,

P(ρi = ρ−i or ρ j = ρ− j ) = P(ρi = ρ−i )+P(ρ j = ρ− j )−P(ρi = ρ−i and ρ j = ρ− j )

= k

m
+ k

m
− k2

m2

= 2km −k2

m2
.

For P(ρi = ρ−i or ρ j = ρ− j or ρi+ j = ρ−i− j ), we have an interesting situation where
either 0, 1, or 3 of the conditions are true. We can never have exactly two of the conditions
true since two of them true implies the third condition is also true. Thus we have to take
this into account when applying the inclusion-exclusion principle. Specifically, we have

P(ρi = ρ−i or ρ j = ρ− j or ρi+ j = ρ−i− j ) = P(ρi = ρ−i )+P(ρ j = ρ− j )+P(ρi+ j = ρ−i− j )

−P(ρi = ρ−i and ρ j = ρ− j )−P(ρi = ρ−i and ρi+ j = ρ−i− j )

−P(ρi+ j = ρ−i− j and ρ j = ρ− j )

+P(ρi = ρ−i and ρ j = ρ− j and ρi+ j = ρ−i− j )

= k

m
+ k

m
+ k

m
− k2

m2
− k2

m2
− k2

m2
+ k2

m2

= 3k

m
− 2k2

m2

= 3km −2k2

m2
.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



10 Dihedral Generalized Commutativity

We now turn to the proof of theorem 4.2.

Theorem 4.2. For m ≥ 3,

Pr ew
3 (Dm) = 3m2 +3km −2k2

4m2

where k = 1 if m is odd and k = 2 if m is even.

Proof. Let the rotation component of a j be ρi j . We consider the following cases to
determine when a1a2a3 is equal to a rearrangement of itself.

Case 1: All terms are rotations. Then we know that all the elements commute, so a1a2a3

equals every other rearrangement of a1, a2, and a3.

Case 2: Only a1 is a reflection. Then a1a2a3 = a1a3a2 since a2 and a3 are both rotations
and therefore commute.

Case 3: Only a2 is a reflection. Then we are not guaranteed that a1a2a3 is equal to some
other rearrangement. We’ll consider this case in more detail below.

Case 4: Only a3 is a reflection. Then a1a2a3 = a2a1a3 since a1 and a2 commute.

Case 5: Only a1 and a2 are reflections. Then a1a2a3 = a3a1a2 since a1a2 is a rotation and
therefore commutes with the rotation a3

Case 6: Only a1 and a3 are reflections. Then we are not guaranteed that a1a2a3 is equal to
some other rearrangement. We will also consider this case below.

Case 7: Only a2 and a3 are reflections. Then a1a2a3 = a2a3a1 for the same reason as Case
5.

Case 8: If all three elements are reflections, then a1a2a3 = a3a2a1 because

a1a2a3 =φρi1φρi2φρi3

= ρ−i1+i2−i3φ

= ρ−i3+i2−i1φ

=φρi3φρi2φρi1

= a3a2a1.

Now, we’ll look at Cases 3 and 6 in more depth. Let’s first look at the case where only a2

is a reflection.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



Heckenlively 11

1. To determine the conditions for a1a2a3 = a1a3a2, we have

a1a2a3 = ρi1 (φρi2 )ρi3 = ρi1−i2−i3

and
a1a3a2 = ρi1ρi3 (φρi2 ) = ρi1−i2+i3 .

So a1a2a3 = a1a3a2 if and only if ρ−i3 = ρi3 .

2. To determine the conditions for a1a2a3 = a2a1a3, we have

a1a2a3 = ρi1 (φρi2 )ρi3 = ρi1−i2−i3

and
a2a1a3 = (φρi2 )ρi1ρi3 = ρ−i1−i2−i3 .

So a1a2a3 = a2a1a3 if and only if ρ−i1 = ρi1 .

3. To determine the conditions for a1a2a3 = a2a3a1, we have

a1a2a3 = ρi1 (φρi2 )ρi3 = ρi1−i2−i3

and
a2a3a1 = (φρi2 )ρi3ρi1 = ρ−i1−i2−i3 .

So a1a2a3 = a2a3a1 if and only if ρi1 = ρ−i1 .

4. To determine the conditions for a1a2a3 = a3a1a2, we have

a1a2a3 = ρi1 (φρi2 )ρi3 = ρi1−i2−i3

and
a3a1a2 = ρi3ρi1 (φρi2 ) = ρi1−i2+i3 .

So a1a2a3 = a3a1a2 if and only if ρ−i3 = ρi3 .

5. To determine the conditions for a1a2a3 = a3a2a1, we have

a1a2a3 = ρi1 (φρi2 )ρi3 = ρi1−i2−i3

and
a3a2a1 = ρi3 (φρi2 )ρi1 = ρ−i1−i2+i3 .

So a1a2a3 = a3a2a1 if and only if ρi1−i3 = ρ−i1+i3 .

Thus we know the probability that a1a2a3 can be rewritten as some other rear-
rangement when only a2 is a reflection is equivalent to finding the probability that
ρi3 = ρ−i3 ,ρi1 = ρ−i1 ,or ρi1−i3 = ρ−i1+i3 . So, by lemma 4.1, if a2 is the only reflection, then

the probability that a1a2a3 is equal to some other rearrangement is 3km−2k2

m2 .
Now we will look at the case where only a1 and a3 are reflections.
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1. To determine the conditions for a1a2a3 = a1a3a2, we have

a1a2a3 = (φρi1 )ρi2 (φρi3 ) = ρ−i1−i2+i3

and
a1a3a2 = (φρi1 )(φρi3 )ρi2 = ρ−i1+i2+i3 .

So a1a2a3 = a1a3a2 if and only if ρ−i2 = ρi2 .

2. To determine the conditions for a1a2a3 = a2a1a3, we have

a1a2a3 = (φρi1 )ρi2 (φρi3 ) = ρ−i1−i2+i3

and
a2a1a3 = ρi2 (φρi1 )(φρi3 ) = ρ−i1+i2+i3 .

So a1a2a3 = a2a1a3 if and only if ρ−i2 = ρi2 .

3. To determine the conditions for a1a2a3 = a2a3a1, we have

a1a2a3 = (φρi1 )ρi2 (φρi3 ) = ρ−i1−i2+i3

and
a2a3a1 = ρi2 (φρi3 )(φρi1 ) = ρi1+i2−i3 .

So a1a2a3 = a2a3a1 if and only if ρ−i1−i2+i3 = ρi1+i2−i3 .

4. To determine the conditions for a1a2a3 = a3a1a2, we have

a1a2a3 = (φρi1 )ρi2 (φρi3 ) = ρ−i1−i2+i3

and
a3a1a2 = (φρi3 )(φρi1 )ρi2 = ρi1+i2−i3 .

So a1a2a3 = a3a1a2 if and only if ρ−i1−i2+i3 = ρi1+i2−i3 .

5. To determine the conditions for a1a2a3 = a3a2a1, we have

a1a2a3 = (φρi1 )ρi2 (φρi3 ) = ρ−i1−i2+i3

and
a3a2a1 = (φρi3 )ρi2 (φρi1 ) = ρi1−i2−i3 .

So a1a2a3 = a3a2a1 if and only if ρi1−i3 = ρ−i1+i3 .
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Thus we know the probability that a1a2a3 can be rewritten as some other rearrange-
ment when only a1 and a3 are reflections is equivalent to finding the probability that
ρi2 = ρ−i2 ,ρi1−i2−i3 = ρ−i1+i2+i3 ,or ρi1−i3 = ρ−i1+i3 when only a1 and a3 are reflections. Be-
cause i2+ (i1− i2− i3) = i1− i3, we can apply lemma 4.1. Thus, if a2 is the only reflection,

then the probability that a1a2a3 is equal to some other rearrangement is 3km−2k2

m2 .

So, for 6
8 of the cases, we are guaranteed that a1a2a3 can be rewritten as another

rearrangement of the terms. For the other 2
8 cases, a1a2a3 can only be rewritten 3km−k2

m2

of the time. Therefore the probability is

Pr ew
3 (Dm) = 3

4
+ 1

4

(
3km −2k2

m2

)
= 3m2 +3km −2k2

4m2
.

5 Cyclic Rewritability

In this section, we will prove theorem 5.1 using lemma 4.1.

Theorem 5.1. For m ≥ 3,

Pc yc
3 (Dm) = 3m2 +9km −4k2

8m2
= 3m3 +9km2 −4k2m

|Dm |3
where k = 1 if m is odd and k = 2 if m is even.

Proof. We use the same methods as in the proof of theorem 4.2 to consider different
cases for the elements in a product a1a2a3.

Case 1: All terms are rotations. Then all the elements commute, so a1a2a3 equals every
other rearrangement of a1, a2, and a3. Thus, the probability that a1a2a3 equals
another cyclic rearrangement is 1 for the triples in this case.

Case 2: Only a1 is a reflection. Then a1a2a3 = a3a1a2 if and only if ρi3 = ρ−i3 and a1a2a3 =
a2a3a1 if and only if ρi2+i3 = ρ−i2−i3 . Thus a1a2a3 is only equal to a cyclic rearrang-

ment if ρi3 or ρi2+i3 equal their inverse. So, by lemma 4.1, 2km−k2

m2 of the triples in
this case are cyclic rewritable.

Case 3: Only a2 is a reflection. Then a1a2a3 = a3a1a2 if and only if ρi3 = ρ−i3 and a1a2a3 =
a2a3a1 if and only if ρi1 = ρ−i1 . Thus a1a2a3 is only equal to a cyclic rearrangment

if ρi1 or ρi3 equal their inverse. So, by lemma 4.1, 2km−k2

m2 of the triples in this case
are cyclic rewritable.
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14 Dihedral Generalized Commutativity

Case 4: Only a3 is a reflection. Then a1a2a3 = a3a1a2 if and only if ρi1+i2 = ρ−i1−i2 and
a1a2a3 = a2a3a1 if and only if ρi1 = ρ−i1 . Thus a1a2a3 is only equal to a cyclic

rearrangment if ρi1 or ρi1+i2 equal their inverse. So 2km−k2

m2 of the triples in this case
are cyclic rewritable.

Case 5: Only a1 and a2 are reflections. Then we are guaranteed that a1a2a3 = a3a1a2

because a1a2 is a rotation and therefore commutes with a3. Thus, the probability
that a1a2a3 equals another cyclic rearrangement is 1 for the triples in this case.

Case 6: Only a1 and a3 are reflections. Then a1a2a3 = a3a1a2 if and only if ρi1−i2−i3 =
ρ−i1+i2+i3 and a1a2a3 = a2a3a1 if and only if ρi1−i2−i3 = ρ−i1+i2+i3 . Thus a1a2a3 is
only equal to another cyclic rearrangement if ρi1−i2−i3 = ρ−i1+i2+i3 , so k

m of the
triples are cyclic rewritable.

Case 7: Only a2 and a3 are reflections. Then we are guaranteed that a1a2a3 = a2a3a1

because a2a3 is a rotation and therefore commutes with a1. Thus, the probability
that a1a2a3 equals another cyclic rearrangement is 1 for the triples in this case.

Case 8: If all three elements are reflections, then a1a2a3 = a3a1a2 if and only if ρii−i2 =
ρ−i1+i2 and a1a2a3 = a2a3a1 if and only if ρi2−i3 = ρ−i2+i3 . Thus a1a2a3 only equals

another cyclic rearrangment if ρi1−i2 or ρi2−i3 equal their inverse, so 2km−k2

m2 of the
triples are equal to another cyclic rearrangement in this case.

Hence, our probability is

Pc yc
n (Dm) = 3

8
+ 1

2

(
2km −k2

m2

)
+ 1

8

k

m

= 3m2

8m2
+ 8km −4k2

8m2
+ km

8m2

= 3m2 +9km −4k2

8m2

= 3m3 +9km2 −4k2m

8m3

= 3m3 +9km2 −4k2m

|Dm |3 .

6 Generalizations for Properties of Dihedral Comutativity

In this section, we prove theorem 6.1 and demonstrate why the Pn(Dm1 ⊕·· ·⊕Dmi ) = 1
r

result does not generalize from n = 2 to arbitrary n. Recall that Clifton, Guichard, and
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Koef [1] show that for any positive integer r , there exists a Dm such that P2(Dm) = r
q for

some q relatively prime to r . Theorem 6 generalizes this for Pn(Dm).

Theorem 6.1. For all positive integers r ≥ 2, n ≥ 2, there exists Dm such that Pn(Dm) = r
q

where r and q are relatively prime.

Proof. Since Pn(Dm) = Pn−1(Dm) if n is odd, we will assume n is even. Let m = (2n −
1)(2nr −1). Then m is odd, so k = 1 in theorem 3.3. Therefore

Pn(Dm) = m +k(2n −1)

2nm

= (2n −1)(2nr −1)+ (2n −1)

2n(2n −1)(2nr −1)

= (2nr −1)+1

2n(2nr −1)

= 2nr

2n(2nr −1)

= r

2nr −1
.

So we can set q = 2nr −1, which is relatively prime to r because it differs from a multiple
of r by 1. Therefore, we can use m = (2n −1)(2nr −1) to find a Pn(Dm) with numerator of
r relatively prime to denominator q .

Clifton, Guichard, and Koef [1] also show there exists a direct product of i dihe-
dral groups such that P2(Dm1 ⊕·· ·⊕Dmi ) = 1

r for any positive integer r . A generalized
statement would be that for a fixed n there exists a direct product of i dihedral groups
such that Pn(Dm1 ⊕·· ·⊕Dmi ) = 1

r for any positive integer r . However, this generalized
statement is not true.

Proof. By taking n = 4 and r = 3, we would be looking for P4(Dm1 ⊕·· ·⊕Dmi ) = 1
3 . Recall-

ing the upper bound Pn(G) ≤ 1
2 + 1

2n+1 if n is even, we have P4(G) ≤ 17
32 . So P4(G1)P4(G2) ≤(17

32

)2 < 1
3 . Therefore, since Pn(G1 ⊕G2) = Pn(G1)Pn(G2), we have P4(Dm1 ⊕Dm2 ) < 1

3 . So
for the statement to be true, we would have to find a single Dm such that P4(Dm) = 1

3 .

From Theorem 1, P4(Dm) = m+15k
16m . Setting this equal to 1

3 gives

1

3
= 15k +m

16m
16m = 45k +3m

13m = 45k

m = 45k

13
,
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16 Dihedral Generalized Commutativity

which is impossible since m must be an integer. Therefore we have shown that for r = 3
and n = 4, there cannot exist a Dm such that P4(Dm) = 1

3 , so the generalizaed statement
does not hold.

7 Further Consideration

As we have seen, for a given permutation σ, we can determine how often a1a2 · · ·an

equals (a1a2 · · ·an)σ by checking each fixed sequence of rotations and reflections. Using
lemma 3.1 for each such sequence, we can find a generalization of theorem 3.3 to show
P(a1a2 · · ·an = (a1a2 · · ·an)σ). For example, if we define a word, w , of length n to be a
product of n consecutive group elements and use the notation w R to denote the reverse
of word w , then we can use this method to findPx

n(G) = P(w1w2 · · ·wx = w R
1 w R

2 · · ·w R
x )

where each word has length n.
By following a similar structure to the proof of theorem 3.3, and using its result as a

base case, it can be shown that

Px
n(Dm) =

{
m+k(2xn−1)

2xn m if n is even

Px
n−1(Dm) if n is odd.

Furthermore, by letting n = 2, we can use that result to show that

P(a1b1a2b2 · · ·axbx = b1a1b2a2 · · ·bx ax) = (4x −1)k +m

4xm
.

Because D4 often reaches the upper bound of P(a1a2 · · ·an = (a1a2 · · ·an)σ), this can
be used to gain insight into a permutation’s upper bound when investigating other
generalizations of commutativity.
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1 2
4 3

r0 1 2
4 3

1 2
4 3

r90 2 3
1 4

1 2
4 3

r180 3 4
2 1

1 2
4 3

r270 4 1
3 2

1 2
4 3

h 2 1
3 4

1 2
4 3

v 4 3
1 2

1 2
4 3

d 1 4
2 3

1 2
4 3

d ′ 3 2
4 1

Figure 1: Elements of D4
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