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ABSTRACT

KISSING THE ARCHIMEDEANS

By

Anthony Webb

In this paper the three dimensional kissing problem will be related to the Platonic and Archimedean

solids. On each polyhedra presented their vertices will have spheres expanding such that the

center of each of these outer spheres are the vertices of the polyhedron, and these outer spheres

will continue to expand until they become tangent to each other. The ratio will be found between

the radius of each outer sphere, and the radius of an inner sphere such that each inner sphere’s

center is the circumcenter of the polyhedron, and the inner sphere is tangent to each outer sphere.

Every Platonic and Archimedean solid has a unique outer sphere to inner sphere ratio. The cir-

cumradius of the Platonic and Archimedean solids will be found by solving for the circumradius

of the polyhedra’s vertex figure. After the circumradius is found, the relation between the edge

length of the solids, and the circumradius is converted to the radius of the outer spheres, r, and

the radius of the inner sphere, R.
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1 Introduction

Plato, the classical Greek philosopher (425-348 BCE), viewed five basic solids as divine, in

fact, he thought that they were the building blocks of all matter in the universe.2 Plato believed

that all of the secrets of the universe were contained in the geometry of these shapes. One could

argue that his beliefs have gained weight in the modern era, as these five shapes routinely appear

in the study of our world: in biology they appear as the structure of chemical compounds and

viruses,3 in mathematics and physics they appear in the study of symmetry and equations.4 These

five regular solids are widely regarded in the western world as the Platonic solids.

Despite the book on his research being lost, Archimedes, the Greek Mathematician (287-212

BCE) looked at thirteen semi-regular polyhedra.5 These thirteen semi-regular polyhedra became

known as the Archimedean solids and unlike the Platonic solids are constructed using different

polygons as their edges, but each polygon still retains the same edge length. A famous example

of an Archimedean solid would be the design of the classic soccer ball, albeit a soccer ball not

fully inflated so that the edges are flat. Despite the Archimedean solids being semi-regular, some

truly amazing symmetries and designs are present.

The kissing problem in two dimensions is a problem in which the maximum number of

congruent circles are arranged around a congruent inner circle. Imagine pennies around an inner

penny, the kissing problem asks: how many pennies could fit around that inner penny? The

answer in this case is six; six pennies fit around an inner penny. Isaac Newton (1642-1726)

examined the kissing problem in three dimensions.6 He proved that twelve is the maximum

2. Marjorie Senechal, Shaping space: exploring polyhedra in nature, art, and the geometrical imagination
(Springer New York, 2013), 53–63.

3. Stan Schein and James Maurice Gayed, “Fourth class of convex equilateral polyhedron with polyhedral
symmetry related to fullerenes and viruses,” Proceedings of the National Academy of Sciences 111, no. 8 (2014):
2920–2925.

4. Igor Dolgachev, Classical algebraic geometry: a modern view (Cambridge University Press, 2012).
5. Coxeter, Longuet-Higgins, and Miller, “Uniform polyhedra.”
6. George G. Szpiro, Kepler’s conjecture: how some of the greatest minds in history helped solve one of the

oldest math problems in the world (John Wiley & Sons, 2003), 72–81.
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number of outer spheres that fit around a congruent inner sphere.

A peculiar difference between the solution to the kissing problem in two and three dimensions

is the fact that in two dimensions the circles fit perfectly, whereas the spheres in three dimensions

do not; there are gaps between the spheres. The arrangement of these outer spheres’ centers

could construct, a Platonic solid, the icosahedron. Curiously, the arrangement of these outer

spheres’ centers could also construct, an Archimedean solid, the cubocahedron. In the icosahedral

arrangement there would be gaps between each outer sphere, but the cuboctahedron arrangement

has tangent outer spheres, but there are gaps between the spheres at the poles of the shape. This

lead to quite the debate about if a thirteenth sphere could fit into the gaps somehow, until Isaac

Newton finally proved that there was no "room" for a thirteenth.7

In this paper each vertex on the Platonic and Archimedean solids will hold the center of a

sphere that will be tangent to every other sphere on each vertex of the polyhedra, they will kiss

each other perfectly unlike the original kissing problem. Due to the equivalent edge lengths on

both the Platonic and Archimedean solids, each of these outer spheres on the vertices will be

congruent in size. Doing this will cause the central sphere to shrink, or expand, and the question

is, what is the relation between the radius of the inner sphere and the radius of the outer spheres

on all Platonic and Archimedean solids?

The next pages contains images of all the Platonic and Archimedean solids, along with other

useful information; the number of faces, edges, and vertices.

7. Szpiro, Kepler’s conjecture: how some of the greatest minds in history helped solve one of the oldest math
problems in the world.
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Octahedron Hexahedron Tetrahedron Icosahedron

Dodecahedron Truncated Octahedron Truncated Hexahedron Truncated Tetrahedron

Truncated Icosahedron Truncated Dodecahedron Cuboctahedron Icosadodecahedron

Small Rhombicuboctahedron Great Rhombicuboctahedron Small Rhombicosadodecahedron

Great Rhombicosadodecahedron Snub Cuboctahedron Snub Icosadodecahedron

Figure 1: Platonic and Archimedean Solids
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Polyhedra Schläfli Faces Edges Vertices

octahedron {3,4} 8 12 6

hexahedron {4,3} 6 12 8

tetrahedron {3,3} 4 6 4

icosahedron {3,5} 20 30 12

dodecahedron {5,3} 12 30 20

truncated octahedron t{3,4} 14 36 24

truncated hexahedron t{4,3} 14 36 24

truncated tetrahedron t{3,3} 8 18 12

truncated icosahedron t{3,5} 32 90 60

truncated dodecahedron t{5,3} 32 90 60

cuboctahedron {3
4} 14 24 12

icosadodecahedron {3
5} 32 60 30

small rhombicuboctahedron r{3
4} 26 48 24

great rhombicuboctahedron t{3
4} 26 72 48

small rhombicosidodecahedron r{3
5} 62 120 60

great rhombicosidodecahedron t{3
5} 62 180 120

snub cuboctahedron s{3
4} 38 60 24

snub icosadodecahedron s{3
5} 92 150 60

Figure 2: Faces, edges, and vertices of Platonic and Archimedean solids
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1.1 The Golden Ratio, ϕ , and the Pentagon

The golden ratio, ϕ , is the positive root of the equation

x2− x−1 = 0.

ϕ =
1+
√

5
2

≈ 1.6

The golden ratio ϕ satisfies the equation ϕ2−ϕ−1 = 0, and this implies a variety of other

algebraic relationships involving ϕ that we will now explore.

ϕ
2 = ϕ +1 (1)

ϕ
n = Fnϕ +Fn−1 n≥ 2 (2)

ϕ
−1 = ϕ−1 (3)

ϕ
−n = (−1)n−1Fnϕ +(−1)nFn+1 n≥ 1 (4)

The notation (Fn) refers to the Fibonacci sequence 1,1,2,3,5, ..., where we define F1 = 1,

F2 = 1 and declare that Fn = Fn−1 +Fn−2 for n > 2.

Note that equations (2) and (4) imply the following equations involving positive square roots.

ϕ
k =

√
F2k−1 +F2kϕ k ≥ 1 (5)

ϕ
−k =

√
(−1)2kF2k+1 +(−1)2k−1F2kϕ k ≥ 1 (6)
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The instances of equations (2), (4), (5), and (6) that we will use most in this paper are the

following:

ϕ
2 = ϕ +1

ϕ
2 =

√
2+3ϕ

ϕ
−2 = 2−ϕ

ϕ
−1 =

√
2−ϕ.

Now we will examine the link between the golden ration and the regular pentagon. Consider

a regular pentagon of radius 1 whose vertices are located at {1,ζ ,ζ 2,ζ 3,ζ 4}, where ζ = ei 2π

5 .

Notice that ζ satisfies the following two equations:

ζ
5−1 = 0 (7)

ζ
4 +ζ

3 +ζ
2 +ζ +1 = 0. (8)

The identity x5−1 = (x−1)(x4 + x3 + x2 + x+1) shows that (8) follows from (7).

Geometrically one can see that ζ +ζ 4 and ζ 2 +ζ 3 are real numbers (see figure 3).
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Figure 3: Regular pentagon and the relation to ζ = ei 2π

5

Using equations (7) and (8), the sum and product of the two real numbers ζ +ζ 4 and ζ 2 +ζ 3

can be calculated:

(ζ +ζ
4)+(ζ 2 +ζ

3) =−1

(ζ +ζ
4)(ζ 2 +ζ

3) =−1.

Therefore {ζ +ζ 4,ζ 2 +ζ 3} are the two roots of the quadratic x2 + x−1. We also know that

the golden ratio ϕ is a root of the quadratic x2−x−1, and therefore {ϕ,− 1
ϕ
} are the two roots of

x2− x−1. Therefore we can say that ϕ is a root of the quadratic x2 + x−1, and hence {−ϕ, 1
ϕ
}

are the two roots of the quadratic x2 + x−1. Finally, this allows us to conclude that:

ζ +ζ
4 =

1
ϕ

ζ
2 +ζ

3 =−ϕ.

An outcome of these relationships is summarized in figure 4.
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Figure 4: Regular pentagon and the relation to ϕ

The construction of the pentagon was formed by construction with circumradius of 1, this

results in an edge length of
√

ϕ+2
ϕ

. For the remainder of this paper we will be looking at pentagons

with edge length, E, thus the ζ construction of the pentagon can be scaled as follows:

Figure 5: Regular pentagon scaled to edge length, E

One truly remarkable consequence of this scaling is that the diagonal of the pentagon, or 52, is

ϕE. Next will be included useful equivalence classes based on the construction of ϕ being the

8



solution to the equation, x2− x−1 = 0. This means that:

ϕ
2−ϕ−1 = 0

From the above equations the following relationships can be formed that will be useful

whenever dealing with equations involving ϕ:

ϕ2 = ϕ +1

ϕ = ϕ2−1

1 = ϕ2−ϕ

ϕ−1 = ϕ−1

ϕ−2 = 2−ϕ

Figure 6: Common relations of ϕ

1.2 NV Notation for Diagonals of a Polygon

The term "diagonal" of a polygon is ambiguous, as the diagonal could be referring to many

different distances between vertices on a polygon. On the hexagon the term diagonal becomes

ambiguous, as diagonal could refer to the any line being formed between any two non-adjacent

vertices. Would the diagonal of a hexagon be referring to a vertex that is two away from a

selected vertice, or would it be referring to the vertex three away? As polygon’s sides grow in

number it is important to know exactly what diagonal is being used.

Thus, the NV notation will be used when referring to diagonals of a polygon, where N will

refer to the number of sides the polygon has, and V will refer to how many vertices away from

any given vertex the diagonal will connect to. For example 62 will refer to the distance from one

vertex on a hexagon to another vertex that is two vertices away. Whereas, 63 would refer to the

distance from one vertex on a hexagon to another vertex that is three vertices away, or the vertex

9



on the opposite end of the hexagon.

It is important to note a few more things about the NV notation. On N1 the edge of the polygon

is being referred to. Also Ni = NN−i, such that i < N, an example of this would be that 64 = 62 as

they refer to the same diagonal length, despite connecting two different vertices on the hexagon.

The next figure will demonstrate all the NV representations of the diagonals of polygons that are

used in this paper.

Triangle Square Pentagon

Hexagon Octagon Decagon

Figure 7: NV Representation of the Diagonals of Polygons

It is worth noting that for the remainder of this paper only N1 or N2 will be used in the

calculations. These values will be defined below for future reference, where E is the length of an

edge:

N1 = E 42 =
√

2E 52 = ϕE 62 =
√

3E 82 =
√

2+
√

2E 102 =
√

2+ϕE

Where ϕ = 1+
√

5
2

10



2 The Circumradius of Platonic and Archimedean Solids

To find the circumradius, C, of the Platonic and Archimedean solids several different ap-

proaches could be taken. For example, the Platonic solids are relatively straight forward due to

their symmetries, and the Pythagorean Theorem could be used to find the circumcenter. Another

method could involve looking at relations with the Platonic’s dihedral angles. In which the

dihedral angle is the angle between the faces of the solid. Both of these methods illuminate some

truly beautiful mathematics but, regrettably, when moving from the regular Platonic solids to

the semi-regular Archimedean solids these methods become quite complex, and tedious. This

complexity is due to the fact that Archimedean solids no longer have congruent faces on the

polyhedra. Also, several of the Archimedean solids have different dihedral angles depending on

which faces meet. Thus, we move onto another method of finding the circumcenter which will

involve the circumradius of the vertex figure.

The vertex figure is first found by picking any arbitrary vertex on the polyhedra. A vector can

be done constructed from the circumcenter to the vertex, then a plane perpendicular to the vector

can be constructed. Pressing this plane down through the polyhedra until the plane intersects

another vertex results in our vertex figure. This plane will cross through the other vertices that

are joined to the arbitrary vertex by an edge, and result in a cyclic polygon. It is worth noting that

the vertex figure will be regular if the polyhedra are regular.8 Thus, the five Platonic Solids have

regular vertex figures, whereas the thirteen Archimedean solids do not. All eighteen Platonic and

Archimedean solids have equivalent vertex figures for every vertex on the polyhdra. Next will be

a chart of the vertex figures on each Platonic and Archimedean solid.

8. Coxeter, Longuet-Higgins, and Miller, “Uniform polyhedra.”

11



Octahedron Hexahedron Tetrahedron Icosahedron

Dodecahedron Truncated Octahedron Truncated Hexahedron Truncated Tetrahedron

Truncated Icosahedron Truncated Dodecahedron Cuboctahedron Icosadodecahedron

Small Rhombicuboctahedron Great Rhombicuboctahedron Small Rhombicosadodecahedron

Great Rhombicosadodecahedron Snub Cuboctahedron Snub Icosadodecahedron

Figure 8: Platonic and Archimedean Solid’s Vertex Figures
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Next we will look at the angle subtended at any edge, E, of these polyhedra. This angle we

will denote as 2θ . An example will be given of the subtended angle of the hexahedron.

Figure 9: The subtended angle, 2θ , of the hexahedron

If the subtended angle, 2θ , is bisected, it can also be seen that the the circumradius of the

polyhedra forms the hypotenuse of a right triangle in which we have θ as an angle.

Figure 10: Relation of θ and C

We can see that we can define:

sinθ =
E
2
C

C sinθ =
E
2

C =
E
2

cscθ

Now that C has been defined in terms of θ we can look at our vertex figure. Below is a

generic example of a vertex figure from one of the eighteen Platonic or Archimedean solids. We

introduce ρ as the circumradius of the vertex figure:

13



Figure 11: Relation of θ and ρ

Keeping in mind that sin2θ = 2sinθ cosθ it can be seen from the above picture that:

ρ

C
= sin2θ

ρ =C sin2θ

ρ =

(
E
2

cscθ

)
(2sinθ cosθ)

ρ =
E sinθ cosθ

sinθ

ρ = E cosθ

Now the process to finding the circumradius of each Platonic and Archimedean solid is reduced

to finding the circumradius of each vertex figure, ρ . Once ρ is found it is a straightforward

calculation to convert cosθ into cscθ .

2.1 Circumradius of the Vertex Figure

Three types of polygons are formed by constructing vertex figures on the Platonic and

Archimedean solids. We have triangles, quadrilaterals, and pentagons. Not all of these vertex

figures are regular, thus a generic formula can be used to find all the circumradii of the vertex

figures.

14



For a given triangle with side lengths: a,b,c we can use the following formula:9

ρ =
abc√

(a+b+ c)(−a+b+ c)(a−b+ c)(a+b− c)
(9)

For a given cyclic quadrilateral with side lengths a,b,c,d and with semiperimeter s = a+b+c+d
2

we can use the following formula:10

ρ =
1
4

√
(ab+ cd)(ac+bd)(ad +bc)
(s−a)(s−b)(s− c)(s−d)

(10)

One Platonic solid, the icosahedron, and two of the Archimedean solids, the snub cuboctahe-

dron, and snub icosadodecahedron, have vertex figures that are pentagons. These formulas will

be reserved for later due to their complexity. Therefore, the above formulas can be used to find

fifteen of the eighteen Platonic and Archimedean solids.

There are numerous formulas for finding circumradii of equilateral, and isosceles triangles, or

rectangles. We will use formulas (9) and (10) for the remainder of paper for consistency sake.

Now that the equations for finding ρ have been defined, as has the NV notation, we will look

at examples of several of the Platonic and Archimedean solids and find their cirucumradii.

9. Shuichi Moritsugu, “Computing Explicit Formulae for the Radius of Cyclic Hexagons and Heptagons,”
Bulletin of JSSAC 18, no. 1 (2011): 3–9.

10. Moritsugu.
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2.1.1 Hexahedron

The circumradius, C, of the hexahedron, commonly called the cube, will be found.

=⇒

Figure 12: Hexahedron and vertex figure

The vertex figure of the hexahedron can be seen in Figure 12. The vertex figure is a triangle

with each side being that of 42 =
√

2E. Now we will solve for ρ given our equation (9) for

solving for any triangle with side lengths a,b,c. Because it is equilateral a,b,c =
√

2E.

ρ =

√
2E
√

2E
√

2E√
(
√

2E +
√

2E +
√

2E)(
√

2E +
√

2E−
√

2E)(
√

2E +
√

2E−
√

2E)(
√

2E +
√

2E−
√

2E)

ρ =
2
√

2E3√
(3
√

2E)(
√

2E)(
√

2E)(
√

2E)

ρ =
2
√

2E3

2
√

3E2

ρ =

√
2√
3

E

Now that ρ has been found, we can set ρ = E cosθ :

√
2√
3

E = E cosθ

√
2√
3
= cosθ
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To convert our cosθ into cscθ we will look to a right triangle representation of cosθ :

Figure 13: Representation of hexahedron’s θ

Using the Pythagorean Theorem we can find our missing side, x:

x2 +(
√

2)2 = (
√

3)2

x2 +2 = 3

x2 = 1

x = 1

Using our formula that C = E
2 cscθ we see that:

C =

√
3

2
E

2.1.2 Icosahedron

The circumradius, C of the icosahedron will now be found.

=⇒

Figure 14: Icosahedron and vertex figure
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Referring back to Figure (5) we find ρ , and we can set ρ = E cosθ :

ϕ√
2+ϕE

= E cosθ

ϕ√
2+ϕ

= cosθ

To convert our cosθ into cscθ we will look to a right triangle representation of cosθ :

Figure 15: Representation of Icosahedron’s θ

Using the Pythagorean Theorem we can find our missing side, x:

(
√

2+ϕ)2−ϕ
2 = x2

2+ϕ− (ϕ +1) = x2

1 = x2

1 = x

Using our formula that C = E
2 cscθ we see that:

C =
E
2

√
2+ϕ
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2.1.3 Great Rhombicuboctahedron

The circumradius, C, of the great rhombicuboctahedron will now be found.

=⇒

Figure 16: Great rhombicuboctahedron and vertex figure

The great rhombicuboctahedron and its vertex figure is shown in Figure 16. It is interesting

that this vertex figure results in a scalene triangle. We will refer to equation (9), and a,b,c as the

following; a =
√

2E, b =
√

3E, c =
√

2+
√

2E.

The following formula to find ρ is quite lengthy. Some beautiful relations are found in the

computation, even in the first steps. One can notice that in the denominator a difference of

squares illuminates itself, not just once, but twice! Through more calculations another difference

of squares becomes apparent. Noticing the difference of squares significantly cuts back on the

amount of distribution needed, and helps show the beauty of using the vertex figure to solve for

the circumradius.
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ρ =

√
2E
√

3E
√

2+
√

2E√
(
√

2E +
√

3E +
√

2+
√

2E)(−
√

2E +
√

3E +
√

2+
√

2E)(
√

2E−
√

3E +
√

2+
√

2E)(
√

2E +
√

3E−
√

2+
√

2E)

ρ = E3

√√√√ 12+6
√

2

E4((
√

2+
√

3)+
√

2+
√

2)((
√

2+
√

3)−
√

2+
√

2)(
√

2+
√

2− (
√

2−
√

3))(
√

2+
√

2+(
√

2−
√

3))

ρ = E

√
12+6

√
2

((
√

2+
√

3)2− (2+
√

2))(2+
√

2− (
√

2−
√

3)2)

ρ = E

√
12+6

√
2

(2+2
√

6+3−2−
√

2)(2+
√

2−2+2
√

6−3)

ρ = E

√
12+6

√
2

(2
√

6+(3−
√

2)(2
√

6− (3−
√

2))

ρ = E

√
12+6

√
2

24− (3−
√

2)2

ρ = E

√
12+6

√
2

24−9+6
√

2−2

ρ = E

√
12+6

√
2

13+6
√

2

ρ = E

√√√√(12+6
√

2
13+6

√
2

)(
13−6

√
2

13−6
√

2

)

ρ = E

√
84+6

√
2

97

Now that ρ has been found, we can set ρ = E cosθ :

E

√
84+6

√
2

97
= E cosθ√

84+6
√

2
97

= cosθ
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To convert our cosθ into cscθ we will look to a right triangle representation of cosθ :

Figure 17: Great rhombicuboctahdron’s θ

Using the Pythagorean Theorem we can find our missing side, x:

(
√

97)2−
(√

84+6
√

2
)2

= x2

97−84−6
√

2 = x2

13−6
√

2 = x2√
13−6

√
2 = x

Using our formula that C = E
2 cscθ we see that:

C =
E
2

√
97

13−6
√

2

C =
E
2

√√√√( 97
13−6

√
2

)(
13+6

√
2

13+6
√

2

)

C =
E
2

√
97(13+6

√
2)

97

C =
E
2

√
13+6

√
2
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2.1.4 Small Rhombicuboctahedron

The Circumradius, C, of the small rhombicuboctahedron will now be found.

=⇒

Figure 18: Small rhombicuboctahedron and vertex figure

The vertex figure for the small rhombicuboctahedron is shown above. The vertex figure results

in an isosceles trapezoid in which sides a,b,c,d as the following; a = E and b,c,d =
√

2E. We

can use the formula to solve for ρ given any quadrilateral, equation (10) as follows, but first we

must define the semi perimeter, s = 1+3
√

2
2 E.

ρ =
1
4

√√√√ (E2
√

2+2E2)(E2
√

2+2E2)(E2
√

2+2E2)

(1+3
√

2
2 E−E)(1+3

√
2

2 E−
√

2E)(1+3
√

2
2 E−

√
2E)(1+3

√
2

2 E−
√

2E)

ρ =
1
4

√√√√√ E6(2+
√

2)3

E4
(

1+3
√

2−2
2

)(
1+3
√

2−2
√

2
2

)3

ρ =
E
4

√
24(2+

√
2)3

(−1+3
√

2)(1+
√

2)3

ρ = E

√
20+14

√
2

(−1+3
√

2)(7+5
√

2)

ρ = E

√√√√(20+14
√

2
23+16

√
2

)(
23−16

√
2

23−16
√

2

)

ρ = E

√
12+2

√
2

17
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Now that ρ has been found, we can set ρ = E cosθ :

E

√
12+2

√
2

17
= E cosθ√

12+2
√

2
17

= cosθ

To convert our cosθ into cscθ we will look to a right triangle representation of cosθ :

Figure 19: Small rhombicuboctahedron’s θ

Using the Pythagorean Theorem we can find our missing side, x:

(
√

17)2−
(√

12+2
√

2)
)2

= x2

17−12−2
√

2 = x2

5−2
√

2 = x2√
5−2

√
2 = x
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Using our formula that C = E
2 cscθ we see that:

C =
E
2

√√√√( 17
5−2

√
2

)(
5+2

√
2

5+2
√

2

)

C =
E
2

√
17(5+2

√
2)

17

C =
E
2

√
5+2

√
2

2.1.5 Snub Cuboctahedron and Snub Icosadodecahedron

The circumradius, C, of the snub cuboctahedron and snub icosadodecahedron will now be

solved for.

=⇒
Snub Cuboctahedron

=⇒
Snub

Icosadodecahedron

Figure 20: The "snubs" and their vertex figures

The vertex figure for the snub cuboctahedron and snub icosadodecahedron respectively are

shown above. They have very similar vertex figures. Both make a pentagon in which four of the

sides are E, and the remaining fifth side is
√

2E in the snub cuboctahedron and ϕE in the snub

icosadodecahedron. To solve for ρ we will refer to Figure 21.
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Noting that 4α
′
+β

′
= 2π

Figure 21: Pentagon with 4 congruent edges

It can be seen that:

x
2
ρ
= sin

(
α
′

2

)

x = 2ρ sin

(
α
′

2

)

We can also see:

y
2
ρ
= sin

(
β
′
)

y
2ρ

= sin

(
2π−4α

′

2

)

y = 2ρ sin(π−2α
′
)

y = 2ρ sin(2α
′
)
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Next we will look at the ratio of y
x to define an equation that will allow us to find ρ . Knowing

that sin(2α
′
) = 2sin(α

′
)cos(α

′
) and that cos(2α

′
) = 2cos2(α

′
)−1 :

y
x
=

2ρ sin(2α
′
)

2ρ sin
(

α
′

2

)
y
x
=

2sin(α
′
)cos(α

′
)

ρ sin
(

α
′

2

)
y
x
=

4sin
(

α
′

2

)
cos
(

α
′

2

)
cos(α

′
)

sin
(

α
′

2

)
y
x
= 4cos

(
α
′

2

)(
2cos2

(
α
′

2

)
−1

)

If we let Z = cos
(

α
′

2

)
we can make the following equation:

y
x
= 8Z3−4Z

8Z3−4Z− y
x
= 0

We will now define the solution to this equation as k, i.e. that k = Z, when Z = 0. We can see

the following, because Z = cos
(

α
′

2

)
, and recall the fact that sin

(
α
′

2

)
=

√
1−
(

α
′

2

)2
:

x = 2ρ sin

(
α
′

2

)

ρ =
x

2sin
(

α
′

2

)
ρ =

x

2
√

1− cos2
(

α
′

2

)
ρ =

x

2
√

1− k2
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Now that ρ has been found, we can set ρ = E cosθ :

x

2
√

1− k2
= E cosθ

x

2E
√

1− k2
= cosθ

Next, we will refrain from looking at the right triangle representation of our equation, and

stick to a more algrebraic approach, knowing that sinθ =
√

1− cos2 θ we can see:

C =
E
2

cscθ

C =
E

2sinθ

C =
E

2
√

1− cos2 θ

C =
E

2

√
1−
(

x
2E
√

1−k2

)2

C =
E

2
√

1− x2

4E2(1−k2)

Now that C has been defined let us look back to the vertex figure of both the snub cuboctahe-

dron, and snub icosadodecahedron. We can see that our x = E in both cases, and that in the snub

cuboctahedron y =
√

2E, and that in the snub icosadodecahedron y = ϕE. It is worth noting that

because in both the "snubs" 4 of the sides are equivalent that we can substitute x = E into our

equation for the circumradius:

C =
E

2
√

1− E2

4E2(1−k2)

C =
E

2
√

1− 1
4(1−k2)
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Next, we will recall our definition of k to be the solution to the equation, 8Z3−4Z− y
x
= 0,

and because we have established x = E, and using our respective y values for our "snubs" we see

that:

8Z3−4Z− y
x
= 0 8Z3−4Z− y

x
= 0

8Z3−4Z−
√

2E
E

= 0 8Z3−4Z− ϕE
E

= 0

8Z3−4Z−
√

2 = 0 8Z3−4Z−ϕ = 0

Snub Cuboctahedron Snub Icosadodecahedron

Solving for the above cubic equations yield unique k values which can then be substituted into

C = E
2
√

1− 1
4(1−k2)

to solve for C. These are the only two polyhedra that will not be listed with

exact numerical solutions due to their complexity.

2.1.6 List of Circumradii

Now that several examples have been looked at the rest can be found by similar approaches

and applications of the formulas for ρ of both the triangle and quadrilateral. A chart of the vertex

figure, and circumradius for each Platonic and Archimedean solid will follow:
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Polyhedra Vertex Figure cosθ C

Hexahedron
√

2√
3

√
3

2
E

Octahedron
√

2
2

√
2

2
E

Tetrahedron
1√
3

√
6

4
E

Icosahedron
ϕ√

2+ϕ

√
2+ϕ

2
E

Dodecahedron
ϕ√

3
ϕ
√

3
2

E

Truncated

Hexahedron

2+
√

2√
7+4

√
2

√
7+4

√
2

2
E

Truncated

Octahedron

3√
10

√
10
2

E

Truncated

Tetrahedron

3√
11

√
22
4

E

Truncated

Icosahedron

3√
11−ϕ

ϕ
√

11−ϕ

2
E

Truncated Do-

decahedron

2+ϕ√
7+4ϕ

√
11+15ϕ

2
E

Figure 22: ρ values and approximations
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Polyhedra Vertex Figure cosθ C

Cuboctahedron
√

3
2

E

Icosidodecahedron
√

2+ϕ

2
ϕE

Small Rhom-

bicuboctahedron

√
12+2

√
12

17

√
5+2

√
2

2
E

Great Rhom-

bicuboctahedron

√
84+6

√
2

97

√
13+6

√
2

2
E

Small Rhombi-

cosadodecahedron
ϕ

√
4+2ϕ

7+8ϕ

√
7+8ϕ

2
E

Great Rhombio-

cadodecahedron

√
12+6ϕ

14+5ϕ

√
19+24ϕ

2
E

Snub Cuboctahedron
1

2
√

1−κ2

E

2
√

1− 1
4(1−κ2)

Snub Icosado-

decahedron

1
2
√

1−ω2

E

2
√

1− 1
4(1−ω2)

Figure 23: ρ values and approximations
where κ is the solution to 8x3−4x−

√
2 = 0

where ω is the solution to 8x3−4x−ϕ = 0
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3 Kissing Problem

3.1 Two-Dimensional Kissing Problem

To begin to understand the kissing problem in its entirety it is important to first look at a

straightforward approach: How many pennies fit around another penny? Or, more in general:

How many same-sized circles fit around another circle of congruent size?

It is strongly encouraged to try this problem just by experimentation, that is why pennies

were an example. Through brief trial and error, we can see that six pennies fit around another

penny. More general, six same-sized circles fit perfectly around a circle of congruent size. This

is demonstrated below in the next figure:

Figure 24: Solution to the traditional kissing problem

Thus, in the traditional kissing problem, the answer would be six. The arrangement of the

outer circles result in a hexagon, which is constructed of six equilateral triangles. It is a relatively

straightforward problem with a quickly found answer, but an interesting question could then be

asked: What if only five congruent circles were tangent, how big would the inner circle be? Or,

what if we used eight congruent outer circles, how big would the inner circle be?
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Figure 25: Variations on the traditional two-dimensional kissing problem

If we were to connect a line through the center of each outer circle, we would construct an

n-gon, with n being the number of congruent outer circles. We will now denote the radius of

these outer circles to be r. Next, we can extend lines from the center of the newly constructed

n-gon out to the center of the outer circles. Lastly, it can be seen that the center of the inner circle

is the center of the n-gon, and this inner circle’s radius will be denoted R.

Figure 26: Examples when n = 5 and n = 8

Our n-gons are regular, which means that we can denote 2α = 2π

n . If another line is drawn

from the center of the n-gon to the points of tangency of the outer circles, we see that we bisect

2α . This means that α = π

n . The following figure will demonstrate how we can solve for the

size of R in terms of r, and n.
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Figure 27: R, and r relations on an n-gon

It can be seen from the above diagram that we can solve for R, noting that α = π

n :

sin
(

π

n

)
=

r
R+ r

R+ r = r csc
(

π

n

)
R = r(csc

(
π

n

)
−1)

On our variation of the two dimensional kissing problem, if given the number of outer circles,

and the size of the outer circles we can find radius of the inner circle. This calculation is relatively

straightforward and leads to an elegant formula. Although, this process is not as straightforward

in three dimensions. This is because of the numerous ways outer spheres could be arranged

around an inner sphere. Next, we will look how to look at the three dimensional kissing problem

in terms of the Platonic and Archimedean solids.

3.2 Three-Dimensional Kissing Problem

Now that the circumcenter for each Platonic and Archimedean solid has been found we can

begin to solve for the ratio between the radius of the outer spheres to that of the inner sphere on

all eighteen of the Platonic and Archimedean solids.

Figure 28 is an example of how the kissing problem can be different from the original question

which was looked at by Isaac Newton. The traditional kissing problem had all outer spheres and
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the inner sphere being congruent. In our case we do not need the inner sphere to be congruent to

that of the outer sphere. This inner sphere’s radius can change so that it is tangent to that of the

outer spheres.

Figure 28: Icosahedon’s kissing arrangement

The icosahedron was used in the above figure because Isaac Newton had found the relation

between the congruent spheres to be equivalent to placing all the outer spheres in an icosahedral

arrangement, but they did not touch.11 Now, though, we look at all the following polyhedra

and can visualize the process of blowing up a sphere centered around each vertex so that the

spheres become tangent. If the outer spheres are allowed to expand, and kiss each other, that

means that the inner sphere must shrink. This shrinking, or expanding of the inner sphere to

accommodate for the tangency of the outer spheres is different from the approach of the original

three-dimensional kissing problem.

The question can be asked of the above icosahedral figure, how big is the inner sphere? We

will call the radius of the central sphere R, and the radius of the outer spheres r. More specifically

it can be asked, what is the ratio of R to r? To answer this question we will first have to set up

some relations between the circumradius, C, edge length, E, R, and r.

11. Szpiro, Kepler’s conjecture: how some of the greatest minds in history helped solve one of the oldest math
problems in the world.
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3.3 Circumradius Relations

The circumradii of the Platonic and Archimedean solids, denoted C, have all been solved for

in terms of their edge length E. The original problem proposed in this paper was to find the

relationship between the radius R of the central sphere, surrounded by outer spheres of radii r.

See the figure below:

Figure 29: Relation of C,E, to R,r

It can be seen that:

C = R+ r

E = 2r.

If we declare the following variables:

ε =
C
E

%=
R
r

ε
′ =

E
C

%′=
r
R
,

Then one can verify the following relationships:

ε =
1
2
+

1
2
% %= 2ε−1

ε
′ =

2 %′

%′ +1
%′=

ε ′

−ε ′+2
.
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We can now calculate our ratio of the radius of the outer spheres to the inner sphere by

calculating %. To do this first we find ε for each of the eighteen Platonic and Archimedean solids

by dividing C by E, then we can use %= 2ε−1 to calculate the ratio.

Figure 30 lists % for each of the Platonic and Archimedean solids, along with approximations

for visualization’s sake. Interestingly, only four of the solids have a % value that is less than 1,

and they are all Platonic solids. This means for those four shapes the radius of the inner sphere is

smaller than that of the outer spheres. There is even one Archimedean solid, the cuboctahedron,

that has a % value equal to 1. It would be easy to think that the answer to the kissing problem in

three dimensions would clearly be the cuboctadron arrangement of spheres. Commonly, though,

the icosahedral arrangement is traditionally looked at. Perhaps, the icosahedral arrangement is

usually used for ascetics and because it is closer to a total covering of the inner sphere. As the

traditional kissing problem was originally looked at in hopes of finding a covering of spheres

that left minimal, and equal spaces between all the outer spheres.

Referring back to Figure 2 we see that despite several solids having the same number of

vertices they have varying % values. This is why the three dimensional kissing problem is much

more complicated to generalize into a single formula like the two dimensional kissing problem.

The arrangement of the outer spheres presents unique % values. Yet, this paper shows there is a

process for finding % for the Platonic and Archimedean solids which are the building blocks to

more complicated Equilateral Spherical Polyhedra, or ESPs.
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4 Conclusion

Polyhedra % ≈

octahedron
√

2−1 ≈ 0.41

hexahedron
√

3−1 ≈ 0.73

tetrahedron
√

6
2 −1 ≈ 0.22

icosahedron
√

2+ϕ−1 ≈ 0.90

dodecahedron ϕ
√

3−1 ≈ 1.80

truncated octahedron
√

10−1 ≈ 2.16

truncated hexahedron
√

7+4
√

2−1 ≈ 2.56

truncated tetrahedron
√

22
2 −1 ≈ 1.35

truncated icosahedron ϕ
√

11−ϕ−1 ≈ 3.96

truncated dodecahedron
√

11+15ϕ−1 ≈ 4.94

cuboctahedron 1 1

icosadodecahedron 2ϕ−1 ≈ 2.24

small rhombicuboctahedron
√

5+2
√

2−1 ≈ 1.80

great rhombicuboctahedron
√

13+6
√

2−1 ≈ 3.64

small rhombicosidodecahedron
√

7+8ϕ−1 ≈ 3.47

great rhombicosidodecahedron
√

19+24ϕ−1 ≈ 6.60

snub cuboctahedron
1√

1− 1
4(1−κ2)

−1 ≈ 1.34

snub icosadodecahedron
1√

1− 1
4(1−ω2)

−1 ≈ 3.31

Figure 30: % values and approximations
where κ is the solution to 8x3−4x−

√
2 = 0

where ω is the solution to 8x3−4x−ϕ = 0

37



REFERENCES

Coxeter, H.S.M., M.S. Longuet-Higgins, and J.C.P Miller. “Uniform polyhedra.” The Royal

Society 246, no. 916 (1954): 401–450.

Dolgachev, Igor. Classical algebraic geometry: a modern view. Cambridge University Press,

2012.

Moritsugu, Shuichi. “Computing Explicit Formulae for the Radius of Cyclic Hexagons and

Heptagons.” Bulletin of JSSAC 18, no. 1 (2011): 3–9.

Schein, Stan, and James Maurice Gayed. “Fourth class of convex equilateral polyhedron

with polyhedral symmetry related to fullerenes and viruses.” Proceedings of the National

Academy of Sciences 111, no. 8 (2014): 2920–2925.

Senechal, Marjorie. Shaping space: exploring polyhedra in nature, art, and the geometrical

imagination. 53–63. Springer New York, 2013.

Szpiro, George G. Kepler’s conjecture: how some of the greatest minds in history helped solve

one of the oldest math problems in the world. 72–81. John Wiley & Sons, 2003.

38


	Kissing the Archimedeans
	Recommended Citation

	List of Figures
	Symbols and Abbreviations
	Introduction
	The Golden Ratio, , and the Pentagon
	NV Notation for Diagonals of a Polygon

	The Circumradius of Platonic and Archimedean Solids
	Circumradius of the Vertex Figure
	Hexahedron
	Icosahedron
	Great Rhombicuboctahedron
	Small Rhombicuboctahedron
	Snub Cuboctahedron and Snub Icosadodecahedron
	List of Circumradii


	Kissing Problem
	Two-Dimensional Kissing Problem
	Three-Dimensional Kissing Problem
	Circumradius Relations

	Conclusion
	References

