
IMPROVEMENTS IN LOWER-LIMB STRENGTH ARE ASSOCIATED WITH HIP 

CONTROL DURING LOAD CARRIAGE IN FEMALES 

The purpose of this study was to investigate the effect of lower-limb strength on lower-limb 
biomechanical responses over the duration of a load carriage march. Female civilians 
(n=12) completed a 5 km march at 5.5 km·h-1 wearing a 23 kg external load before and 
after 10 weeks of hip-focussed training. Lower-limb 3D kinematics were acquired during 
the march, with lower-limb strength measures assessed prior to pre- and post-training 
marching tasks. Significant increases in lower-limb strength were elicited after training, 
alongside moderate to strong negative correlations between strength and hip adduction 
(p<0.05). Findings indicate that strength improvements are associated with the ability to 
control the lower limbs during dynamic load carriage tasks. 
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INTRODUCTION: Soldiers in combat-related roles are required to carry heavy external loads 
and complete the same standardised employment tasks regardless of sex or stature. Females 
often display decreased physical strength and power compared with their male counterparts, 
which influence their ability to perform crucial military tasks (e.g., load carriage) (Brushøj et al., 
2008; Groeller et al., 2015). If individuals do not have the capability to meet the demands of 
load carriage, adaptive gait strategies may be adopted, potentially increasing the risk of injury. 
Moderate to heavy load carriage is known to alter lower limb gait patterns (Simpson, Munro, & 
Steele, 2012) and joint loading responses in females. For example, load carriage has been 
shown to induce changes in hip adduction and knee abduction angles (Loverro, Hasselquist, 
& Lewis, 2019). Excessive changes in such movements alters lower-limb alignment (i.e., Q-
angle) and can be indicative of poor dynamic control. Consequently, female soldiers with poor 
dynamic control may have impaired performance and higher than normal lower-limb injury risk 
when carrying military-relevant loads. 
Lower-limb strength has been identified as a key physical component required for successfully 
undertaking load carriage tasks within military roles (Sharma, Greeves, Byers, Bennett, & 
Spears, 2015). Given that load carriage ability is related to an individual’s absolute strength 
(Pandorf et al., 2003; Patterson, Roberts, Lau, & Prigg, 2005; Zatsiorsky & Kraemer, 2006), 
females may particularly benefit from specific training that targets the neuromuscular demands 
of load carriage. A program strengthening the hip joint musculature might elicit positive 
neuromuscular responses and positively influence lower-limb alignment and control during 
dynamic load carriage tasks (Baldon et al., 2012). Therefore, the purpose of this study was to 
investigate the effect of lower-limb strength on lower-limb biomechanical responses over the 
time-course of a load carriage march. It was hypothesised that; (i) 10 weeks of lower-body 
focussed training will improve lower-limb strength, and (ii), improvements in strength will 
enhance the dynamic control of the lower limbs. 
 
METHODS: Twelve recreationally active female civilians (age 21.1±1.9 years, height 
1.65±0.06 m, mass 64.7±6 kg) representative of a military recruit population (Australian 
Defence Force), volunteered to participate. All provided their written informed consent to the 
study, which was approved by the XXXX Human Research Ethics Committee approved the 
study (protocol number: XXXX). No former load carriage experience was required. Participants 
were required to meet or exceed inclusion criteria based on the Australian Army basic fitness 
standards (Australian Defence Force) for female soldiers; 18-30 years old, achieve a minimum 
of 70 sit-ups and 21 push-ups in 2 minutes each, and a minimum of level 7.5 on a multi-stage 
fitness test. 
In two separate laboratory sessions, a single load-carriage task equivalent to the Australian 
Army minimum physical employment standards for incumbents (‘All Corps Standard’; 5 km at 

5.5 km⸱h-1 with a 23 kg external load) (Australian Defence Force) was completed before and 

after the 10-week training program. The march was conducted on a force-instrumented 
treadmill (AMTI force-sensing tandem treadmill, MA, USA), with simultaneous three-
dimensional motion capture and ground reaction force data acquired for 30 seconds at the 
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beginning (0 km, pre-march) and end (5 km, post-march) of the load carriage task. Hip, knee, 
and ankle joint angles were estimated using a generic full-body scaled OpenSim model 
(Rajagopal et al., 2016) from inverse kinematics, which were used to assess changes in lower-
limb biomechanics. Lower-limb strength was assessed via maximal force output using a 
Fitness Technology Isometric Mid-Thigh Pull (IMTP) rack (FT700 Ballistic Measurement 
System, Fitness Technology, Adelaide, Australia), and was conducted on a portable force plate 
sampling at 1000 Hz (400-series, Fitness Technology, Adelaide, SA, Australia). 
Participants completed a 10-week lower-limb strength training program, which targeted 
muscles surrounding the hip. Up to three resistance training sessions (supervised) and two 
load carriage training sessions (self-directed) were performed per week. Loads prescribed 
were based on individual participant ability and progressively increased during the 10 weeks 
of training. Load, distance, and speed load carriage training sessions incrementally increased. 
A paired samples t-test was conducted on pre- and post-training IMTP maximal force. 
Pearson’s correlation coefficient assessed associations between IMTP, and lower-limb 
kinematics collected during pre- and post-training load carriage marches. Statistical 
significance was set at the p < 0.05 level. All data were analysed using Microsoft Excel 2010 
(Microsoft Corporation, WA, USA) and IBM SPSS version 25 software for Windows (IBM Corp 
Armonk, NY, USA). 
 
RESULTS: Absolute strength and body mass were strongly correlated before (p<0.01, r =.846) 
and after training (p<0.01, r =.845). IMTP maximal force output increased by 6.8% (1732 ± 225 
to 1851 ± 270; t(11) =-2.624, p<0.05) after training compared to before training (Figure 1). 

 

Figure 1. Pre- and Post-Training Isometric Mid-Thigh Pull maximal force output. * Indicates a 
significant difference between pre- and post-training tests (p<0.05). 

Before training, a significant negative correlation was found between IMTP maximal force 
output and peak hip adduction angle during for the pre-march measurement (r = -.599, p<0.05), 
but not during the post-march measurement (r =-.472, p>0.05) (Figure 2A and 2B). 

* 
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After training, a significant (p>0.05) negative correlation was found between IMTP maximal 
force output and peak hip adduction angle during loaded marching (Figure 2C and 2D). Hip 
adduction values at the pre-march demonstrated a strong association (r =-.803, p<0.05), and 
the post-march measure showed a moderate association (r =-.696, p<0.05). 

Figure 2. Correlation between Isometric Mid-Thigh Pull maximal force output and hip adduction. 
A) Hip adduction pre-march, pre-training, B) Hip adduction post-march, pre-training, C) Hip 
adduction pre-march, post-training, D) Hip adduction post-march, post-training. * Indicates a 
significant correlation (p<0.05). 

 
DISCUSSION: The purpose of this study was to investigate the effect of lower-limb strength 
on lower-limb biomechanical responses over the time-course of a load carriage march. Lower-
limb strength significantly increased after training and significant correlations were found 
between IMTP maximal force output and frontal plane hip kinematics. Associations suggest 
lower-limb strength is important in maintaining hip control during load carriage marching tasks. 
Improvements in IMTP measures after training demonstrates an enhanced capacity of the 
lower limbs to produced maximal force, which was a goal of the current training program. IMTP 
lower-body strength significantly correlated with peak hip adduction. However, before training, 
it appears that hip control decreased over the march duration (0-5 km), as evidenced by the 
lack of correlation observed at the post-march measure. A decreased capacity to control 
movement under external load during dynamic tasks (i.e., load carriage) is suggested to 
increase the risk of injury through increased joint loading (i.e., tibiofemoral or patellofemoral 
joint) (Baldon et al., 2012). Comparatively, after training, moderate to strong correlations were 
found for pre-post hip adduction measures. These findings indicate that as strength increased 
so did the ability to maintain hip adduction angle over the duration of the loaded march which 
may be an indicator of improved joint control. 
As observed in previous work, the specificity of the current study (i.e., hip-focussed resistance 
training and load carriage training) may have enhanced limb coordination and overall efficiency 
of movement patterns (Beattie, Kenny, Lyons, & Carson, 2014). Consequently, improvements 
in overall mechanical efficiency (Balsalobre-Fernández, Santos-Concejero, & Grivas, 2016; 
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Støren, Helgerud, Støa, & Hoff, 2008) may have translated towards an enhanced capacity to 
meet load carriage task demands. 
CONCLUSION: Results indicate that improved lower-limb strength is strongly associated with 
hip adduction angle, which may suggest an improved ability to control the lower limb kinematics 
during dynamic load carriage tasks in females. Moreover, the current results confirm the 
effectiveness of a 10-week specific training program can improve lower-limb strength, which 
may assist military organisations to successfully integrate females into physically demanding 
combat-related roles. 
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