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The purpose of the study was to investigate the relationship between angular foot step-by-
step kinematics and sprint performance during a 50 metre sprint in experienced male 
sprinters. Foot kinematics were measured using IMU devices integrated with a 3-axis 
gyroscope and a laser gun. The main findings were that maximal angular velocities 
increased until strides 6-7, where it stabilised. Time from touch down to dorsal flexion 
velocity was similar over all strides, whereas time from dorsal flexion velocity to toe off 
decreased until stride 6. Plantar flexion velocities, especially in toe off, showed the greatest 
associations with sprint times, whereas maximal dorsal flexion velocity presented no 
association with sprint times. Time from dorsal flexion velocity to toe off from stride 7 
onwards determined the sprint performance and were shorter for faster sprinters.  
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INTRODUCTION: During sprinting, it is known that the work required to move the body in a 
forward direction is mostly modulated at first instance by the foot and ankle joint and thereafter 
by the hip (Schache et al., 2019), with the moment arm of the ground reaction force being the 
greatest in the foot and ankle joint (Kuitunen et al., 2002). Since sprint performance is highly 
dependent on the maximal production of power from the first step of the sprint, it has been 
hypothesised that reducing dorsiflexion with its concomitant increase in ankle plantar flexor 
moment would enhance sprint time (Bezodis et al., 2015; Charalambous et al., 2012; Kuitunen 
et al., 2002). Leg stiffness could therefore be a modulator of sprint performance since; for 
instance, a “stiffer” foot and ankle during the initial stance phase of the dorsiflexion would be a 
beneficial technical feature for the horizontal velocity and therefore for the time of the sprint 
(Bezodis et al., 2015; Charalambous et al., 2012; Schache et al., 2019).  
Earlier studies have analysed the relationship between ankle plantar flexion stiffness and sprint 
performance using dynamometers (Takahashi et al., 2018) force platforms (Charalambous et 
al., 2012; Kuitunen et al., 2002), and video analysis with motion capture systems 
(Charalambous et al., 2012; Miyashiro et al., 2019). However, those methods are expensive, 
require a confined area and take a large data processing time. Thus, more accessible 
techniques are needed to obtain such data that are not restricted to those limits. 
Wearable inertial measurement units (IMUs) have previously been used to measure kinematic 
data such as sprint times, angular velocities or sprint velocities (Struzik et al., 2016; van den 
Tillaar, 2021). For example, Struzik et al. (2016) analysed the relationship between ankle 
kinematics and sprint times using IMUs. However, to the best of our knowledge, no study has 
assessed ankle performance and foot angular velocities in the different events within the 
contact time phase of the sprint using IMUs. The ease that IMU devices provide for the 
measurement of such kinematics could be an interesting tool for professionals when it comes 
to sprint performance. 
Therefore, the purpose of the study was to investigate the relationship between angular foot 
step-by-step kinematics measured by IMUs and sprint performance during a 50 m sprint in 
experienced male sprinters. It was hypothesised that faster maximal plantar flexion velocity 
and a lower velocity change from touch down to maximal dorsal flexion velocity followed by 
faster plantar flexion again (incremental foot stiffness) would result in faster sprint times. 
 
METHODS: Seventeen experienced male sprinters (age 24.4 ± 7.8 years, body mass 77.1 ± 
7.2 kg, body height 1.82 ± 0.07 m, with best 100m times of 11.15 ± 0.60 s) performed two 50 
m sprints each on spikes with a 6–10 min rest between each sprint. Subjects initiated each 
sprint from a three-point start (one hand on the floor) in a split stance, with the hand behind the 
line. Speed measurements and distance were recorded continuously during each attempt 
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using a CMP3 Distance Sensor laser gun (Noptel Oy, Oulu, Finland), with sampling at 2.56 
KHz. Total sprint times were derived from the laser distance over 50 m. 
Angular velocities and timing of the foot kinematics for each step throughout the sprint were 
derived from using using a wireless 9 dof IMU, which included a 3-axis gyroscope, attached 
on top of the shoelaces of the spikes of each foot with tape. The sampling rate of the gyroscope 
was 500 Hz, with a maximal measurement range of 2000°·s-1 ± 3% (Ergotest Technology AS, 
Langesund, Norway).  
The angular foot kinematics were measured by the two IMUs during the entire sprint and 
detected at three events: plantar flexion velocity at first foot contact (touch down), maximal 
dorsal flexion velocity and plantar flexion velocity at toe off with the timing between the three 
events. The laser gun and IMUs were synchronised with the MuscleLab v10.202 (Ergotest 
Technology AS, Langesund, Norway). The step kinematics were evaluated for the first thirteen 
strides (one left and right step) as all participants had at least that many strides to cover the 50 
m distance. 
To investigate the correlations between the sprint times and foot kinematics Pearson’s 
correlation was used with threshold values for interpretation 0.1–0.3 (trivial), 0.3–0.5 
(moderate), 0.5–0.7 (large), and 0.7–0.9 (very large). To compare the 50 m sprint times, foot 
kinematics between the eight fastest and the slowest sprinters, two-way ANOVA with repeated 
measured (strides) was used on these parameters. Effect size was evaluated with eta squared 
(η2) where 0.01 < η2 < 0.06 constituted a small effect, 0.06 < η2 < 0.14 a medium effect, and η2 
> 0.14 a large effect (Cohen, 1988). The level of significance was set at p < 0.05, and all data 
are expressed as mean ± standard deviation (SD). Analysis was performed with SPSS 
Statistics for Windows, version 27.0 (IBM Corp., Armonk, NY, USA). 
 
RESULTS:  

 
Figure 1: Comparison of the angular plantar and dorsal flexion velocities at touch down and toe 
off and at maximal dorsal flexion velocity (left) and time variables (right) for each stride 
between faster men and slower men. 
* Indicates a significant difference between faster and slower men for this stride (p<0.05). 
† Indicates a significant difference between faster and slower men for each stride (p<0.05). 

 
Maximal angular dorsal flexion and plantar flexion velocity at touch down and toe off increase 
significantly every stride (p≤0.001, η2 ≤ 0.41) until stride 6-7, where they stabilise (Figure 1). 
The time from touch down to maximal dorsal flexion velocity did not change significantly over 
the strides (p=0.092, η2=0.11), while the times from maximal dorsal flexion velocity to toe off 
significantly decreased each stride for the first 6 strides (p<0.001, η2 = 0.87, Figure 1).  
When comparing the eight faster sprinters to the eight slower some kinematic differences were 
noted. Evidently, sprint times significantly differed (p<0.001) between fast and slow sprinters 
(5.82±0.13 s vs. 6.39±0.28 s), Furthermore, the faster sprinters presented higher touch down 
plantar flexion velocity during stride 1 (p=0.011, η2=0.20), and higher toe off velocities during 
all strides (p≤0.025, ηp

2≥0.156) compared to the slower sprinters. Times between maximal 
dorsal flexion velocity to toe off during strides 8 to 13 and total contact time – from touch down 
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to toe off – during strides 8 to 13 (p≤0.014, η2≥0.186) were significantly shorter for the faster 
men in comparison to the slower men (Figure 1). 
Pearson’s correlation coefficients showed moderate to large associations between sprint time 
and foot kinematics when all strides taken together (averaged) for most variables except not 
for maximal dorsal flexion velocity, and time from touch down to maximal dorsal flexion velocity 
(Table 1).  
When analysing relationships between sprint time and foot kinematics per stride, touch down 
and toe off velocity correlated moderately to well for almost each step. This also resulted in 
significant moderate to large positive correlations for stride 7 onwards in the time from maximal 
dorsal flexion velocity to toe off and the total contact time (touch down-toe off) (Table 1).  
 
Table 1: Pearson´s bivariate correlations analysis evaluating associations between velocities 
and timing variables with sprint times per stride. 
Grey means a significant correlation on a p<0.05 level. dip: maximal dorsal flexion velocity 
 

DISCUSSION: The purpose of the current study was to investigate the relationship of angular 
foot step-by-step kinematics and sprint performance during a 50 m sprint in experienced 
sprinters. The main findings were that maximal angular velocities increased until strides 6–7, 
where it stabilised. Moreover, the time from touch down to maximal dorsal flexion velocity was 
constant over strides, whereas the time from maximal dorsal flexion velocity to toe off 
decreased until stride 6. Plantar flexion velocities showed the greatest associations with sprint 
times, especially toe off velocity, whereas maximal dorsal flexion velocity showed no 
association with sprint times. Time from maximal dorsal flexion velocity to toe off from stride 7 
onwards determined sprint performance and differentiated between faster and slower 
sprinters. 
A negative significant association between toe off maximal plantar flexion velocity and sprint 
times was shown which followed our hypothesis. The higher toe off velocities is explained by 
the greater ankle plantar flexor impulse that faster sprinters display (Bezodis et al., 2015; 
Schache et al., 2019; Takahashi et al., 2018). The higher plantar flexion velocity at toe off gives 
faster athletes the ability to create more propulsive force which results in faster sprints.  
The plantar flexion velocity at touch down showed the highest correlation to sprint times at the 
first stride, which is in accordance with previous studies showing that better sprint performance 
was associated with greater propulsive impulse at the initial acceleration phase of the sprint 
(Bezodis et al., 2019). This higher velocity at the first stride enables good early acceleration 
due to the exertion of the maximal force from the beginning of the sprint. Therefore, a 
successful sprint start, with its concomitant peak touch down and toe off velocity in the initial 
strides, would facilitate a shorter sprint time by reaching the maximal sprint velocity earlier 
(Murphy et al., 2003).  
Another key finding was the absence of significant moderate/strong correlations for maximal 
dorsal flexion velocity and time from touch down to maximal dorsal flexion velocity (braking 
phase) with sprint times. Despite the faster plantar flexion shown in faster sprinters, this 
unexpectedly showed no connection to a reduced dorsal flexion velocity, so the previous theory 

  Correlations with 50m sprint times 

 Stride 1  2   3  4  5  6  7  8  9  10  11  12  13 All 

Touch down 
velocity -.65 -.36 -.57 -.61 -.19 -.51 -.37 -.48 -.47 -.40 -.38 -.43 -.18 -.51 

Maximal dorsal 
flexion velocity .13 .18 -.01 .03 -.03 -.15 -.13 .00 -.04 -.10 -.01 .05 -.18 -.06 

Toe off velocity -.47 -.48 -.54 -.59 -.48 -.51 -.59 -.61 -.62 -.64 -.66 -.52 -.53 -.63 
Time from touch 

down to dip -.43 -.22 -.31 -.17 -.25 -.01 .33 -.08 -.06 -.05 -.18 -.34 -.27 -.28 
Time from dip to 

toe off .27 .27 .43 .35 .27 .25 .42 .56 .64 .63 .59 .70 .47 .46 
Time from touch 
down to toe off .19 .21 .38 .32 .24 .26 .46 .55 .64 .64 .56 .62 .42 .42 
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relating stiffer feet to faster sprinters did not explain the best sprint times. Such parameters are 
similar between faster and slower sprinters, and foot/ankle stiffness during this phase remains 
apparently constant throughout the strides for all sprinters, based on angular velocities and 
times. An explanation for this finding could be that from touch down to maximal dorsal flexion, 
muscles need to resist an overload of the body weight driving in a forward direction plus the 
gravity component. As for any stretch-shortening cycle (SSC), the spring-like motion of the foot 
is also modulated by the range of motion of the lever arm of the involved joints, so the sprinter 
would need to overtake such load within a specific range of motion (Murphy et al., 2003). 
However, it is likely that better sprinters might elicit optimised pro-active and reactive motor 
strategies, anticipating the motor response simultaneously to the touch down moment. 
Eventually, due to the anticipation mechanism, better sprinters seem to be capable of exerting 
a greater linear impulse despite having a similar braking phase in terms of time and the change 
in velocity (Helm et al., 2019). This is most visible once the maximal velocity of the sprint was 
reached (around stride 7 onward) as times from the maximal dorsal flexion velocity to the 
maximal plantar flexion velocity at toe off stabilises and more strongly determines the sprint 
performance. The significant correlations to sprint time draw a distinction between the faster 
and slower sprinters, explainable by the higher plantar flexion velocity of the better sprinters, 
resulting in a shorter time to move through the same range of motion as the slower sprinters. 
 
CONCLUSION: Foot kinematics during the contact phase of a sprint for each stride provides 
useful information on the foot performance during the actual sprint. The analysis of such 
variables reports essential information that may help to enhance the quality and efficiency of 
the sprint cycle by giving detailed information of each single stride of the sprint. Furthermore, 
emerging methods that could make it easier to analyse and interpret such variables, by 
developing an algorithm that automatically can detect these parameters, might be elaborated 
in further research. 
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