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The timely identification of concussions is essential to ensuring athlete safety. In contact 
sports, many devices are available to measure head impacts, but concerns remain 
regarding their ability to accurately estimate the number and magnitude of those impacts. 
This study measured head impacts during boxing sparring simultaneously with three 
sensors – a mouthguard, a skin patch and a headgear patch – and video analysis. The 
objective was to assess and compare the number, quality, and magnitude of impact events 
across sensor types. All sensors had issues related to decoupling from the skull, although 
the mouthguard appeared to generate better estimates than the patches of the number of 
impacts and impact-induced head kinematics.  
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INTRODUCTION: Identifying when a contact sports athlete potentially sustains a concussion 
is essential for proper care and there is a need for objective and reliable tools to assist with 
this challenging task (Mihalik et al. 2017). To meet this need, head impact sensors have been 
developed on the assumption that impact-induced head kinematics are a causative factor of 
concussion (Holbourn 1943, Ji et al. 2014). These sensors typically consist of accelerometers 
and/or gyroscopes moulded into a mouthguard or a small widget that can be adhered to the 
skin or embedded in an athlete’s headgear. Each configuration has strengths and weaknesses 
that influence a user’s instrument choice. 
A common weakness of wearable head impact sensors is their varying levels of coupling with 
the skull. The poor fit of the mouthguard, the scalp’s elasticity, and the headgear sliding on 
the head are common causes of relative motion between the sensors and the skull (Wu et al. 
2016). As a result of this relative motion, sensors overestimate the linear and angular 
accelerations of the skull (Siegmund et al. 2015, Wu et al. 2016, Kuo et al. 2018). Additionally, 
because these sensors are typically triggered using a linear acceleration threshold, 
erroneously large kinematics can also lead to spurious recordings and overestimates of the 
number of impacts sustained (Siegmund et al. 2015, Wu et al. 2016). 
An imprecise quantification of the number and magnitude of head impacts hinders the 
advancement of our understanding of concussive injury (Wu et al. 2017, Patton et al. 2020). 
Therefore, there is a need to assess the capacity of the sensors to accurately estimate 
exposure to head impacts during sports participation. This study was designed to 
simultaneously record head acceleration events using a mouthguard, a skin patch, and a 
headgear patch to assess and compare their exposure estimates during boxing sparring. 
 
METHODS: Amateur boxers (4 females, 3 males) competing under AIBA rules participated in 
this observational cohort study. The participants were observed during boxing sparring 
sessions composed of multiple 3-minute rounds of sparring against various opponents in a 
similar weight class. Each participant simultaneously wore an instrumented mouthguard 
(Hybrid from Prevent Biometrics Inc., Edina, MN; Figure 1A, sampling at 3200 Hz), a patch 
taped to the skin on their right mastoid process (CSx Systems Ltd, Auckland, New Zealand; 
Figure 1B, accelerometer sampling at 3200 Hz and gyroscope at 8000 Hz), and a similar patch 
adhered to the back of their headgear (Figure 1C). All sensors were set to record an 
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acceleration event any time the linear acceleration signal reached 10 g on any axis. 
Acceleration events recorded by the sensors outside of the sparring rounds were automatically 
excluded. All remaining events were included, irrespective of the manufacturer’s classification 
as valid or spurious.  
Sparring sessions were videoed from three angles (Figures 1D and 1E) and the footage of 
115 rounds was reviewed by a single rater (author ELF) using Nacsport Elite (Nacsport, 
Canary Islands, Spain). The rater identified all contact events to the participants’ head and 
characterised them using definitions agreed upon with a combat sports expert (SL). A subset 
of data underwent intra-rater reliability analysis (ELF and SL) using proportions of total 
agreement in sequence (Cooper et al. 2007). The same subset was used to assess the inter-
rater reliability between ELF and SL. The proportions of total agreement in sequence reached 
90.2% for ELF, 75.0% for SL, and 80.8% for ELF-SL. Additionally, the location of the impact 
on the head was categorized into bins (front, left, right, back) from the videos. 
 

  
Figure 1: (A) CSx patch and Prevent Biometrics Hybrid mouthguard; (B) location of the skin 
patch; (C) location of the headgear patch; (D) placement of cameras around the ring; (E) 
example of footage from camera 1. 

 
Video footage and sensor data were synchronised using one clearly identifiable impact, and 
a two-way video verification was conducted. If an acceleration event could be matched with a 
video event, it was marked as a true positive (TP), otherwise as a false positive (FP); video 
events not associated with an acceleration event were marked as false negatives (FN). For 
each sensor, the sensitivity [TP/(TP+FN)] and positive predictive value [PPV, TP/(TP+FP)] 
were calculated with their 95% confidence intervals (CI) and were determined as different 
when the 95% CIs did not overlap. 
For a subset of video-verified events, the raw linear acceleration and angular velocity time 
series data were assessed against a set of defined criteria to determine if they were 
representative of head motion (‘good’) or sensor motion (i.e., decoupled from the skull, ‘bad’). 
The proportions and 95% CI of ‘good’ recordings were calculated and compared. Peak linear 
and angular accelerations (PLA and PAA, respectively) at the head’s centre of gravity were 
calculated. Differences between sensors in the distribution of PLA and PAA were assessed 
with a Kruskal-Wallis analysis of variance, completed with post-hoc tests with a Dunn-Sidák 
correction. In the absence of a true gold standard, the mouthguard was considered the 
reference for any comparison.  
 
RESULTS: Over 115 rounds of sparring for individual participants (~6 hours of activity), there 
were 695 mouthguard, 1578 skin patch, 1690 headgear patch, and 2960 video events. As a 
result, the sensors’ sensitivity to contacts to the head was 21.8% for the mouthguard, 47.3% 
for the skin patch, and 50.6% for the headgear patch. All sensors were more likely to be 
triggered when contact to the head was made to the side where the sensor was located (Table 
1); this was particularly evident for the patches. Totals of 2, 9, and 12 events from the 
mouthguard, skin patch, and headgear patch, respectively, were false positive events, 
resulting in a positive predictive value over 99.2% for all sensors.  
For each sensor, 442 events (26-64% of each dataset) were assessed for quality. Large 
proportions, particularly for the patches, exhibited evidence of skull/sensor decoupling (Table 
2). Additionally, for all sensors, impacts landing on the sensor’s side of the head also led to 
higher proportions of such ‘bad’ signals (Table 2). For all video-verified head impacts assessed 
as ‘good’ (N = 235 for the mouthguard, 89 for the skin patch, and 113 for the headgear patch), 

  C   
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the distribution and median PLA and PAA differed between sensors (Figure 2). 
 
Table 1: Sensitivity values and 95% confidence intervals for each sensor at various head 
impact locations, as determined from video analysis. The skin patch was located on the right 
side, the headgear patch at the back.  

  Sensitivity (95% CI)  
 Mouthguard Skin patch Headgear patch 

All events (N = 2960) 21.8% (20.3 - 23.3) 47.3% (45.5 - 49.1) 50.6% (48.8 - 52.4) 
Front (N = 2028) 19.6% (17.9 – 21.4) 42.6% (42.3 – 52.3) 45.8% (43.6 – 48.0) 
Left (N = 398) 28.3% (24.1 – 33.1) 47.2% (42.3 – 52.3) 59.5% (54.5 – 64.4) 
Right (N = 461) 26.0% (22.1 – 30.3) 64.0% (59.4 – 68.3) 59.6% (55.0 – 64.1) 
Back (N = 73) 19.2% (11.2 – 30.2) 74.0% (62.2 – 83.4) 78.1% (66.6 – 86.8) 

 
Table 2: Proportions of ‘good’ acceleration events and 95% confidence intervals for each 
sensor at various head impact locations, as determined from video analysis.  

 Proportions of ‘good’ events (95% CI) 
 Mouthguard Skin patch Headgear patch 

All events (N = 442) 53.2% (48.4 – 57.8) 20.1% (16.6 – 24.2) 25.6% (21.6 – 29.9) 
Front (N = 260) 40.0% (34.0 – 46.2) 24.2% (19.2 – 30.0) 36.1% (30.4 – 42.3) 
Left (N = 84) 70.2% (59.1 – 79.6) 25.0% (16.5 – 35.7) 11.9% (6.2 – 21.0) 
Right (N = 88) 73.9% (63.2 – 82.5) 5.7% (2.1 – 1.3) 10.2% (5.1 – 18.7) 
Back (N = 10) 70.0% (35.4 – 93.5) 0.0% (0.1 – 2.7) 0.0% (0.9 – 26.8) 

 

 
Figure 2: Distribution of peak linear and angular accelerations for a subset of ‘good’ events 
representative of head motion. Asterisks indicate differences between sensors (**p < 0.001). 

 
DISCUSSION: The patches, whether attached to the skin on the mastoid process or to the 
boxers’ headgear, recorded the same number of events, with comparably low proportions of 
valid signals and similar distributions of PLA values. The patches were twice as sensitive (48-
52%) to contacts to the head as the mouthguard (23%), but also more sensitive to the location 
of the impact. However, both patches showed that only a small proportion (20-26%) of 
recordings reflected good coupling between the skull and the sensor, against 53% for the 
mouthguard. 
Consistent with the literature (Siegmund et al. 2015, Wu et al. 2016), we observed evidence 
of physical decoupling in the case of the skin and headgear patches and visualised the 
independent motion of the sensor on the raw kinematic traces for all three sensors. Our results 
suggest that the number of head impacts may be overestimated as a sensor moves at a faster 
rate than the skull, triggering a recording while a better-fitted sensor may have measured sub-
threshold accelerations. The number of impacts may be particularly inflated for impact 
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locations close to the sensor, creating over-estimates in the dataset. 
Overall, for the analysis of acute exposure to head impacts in boxing, the mouthguard was the 
best option out of the three sensors, as our results suggested it was better coupled to the skull, 
when compared to the patches. However, the mouthguard’s ability to record all potentially 
injurious head impacts in boxing requires further investigation. Furthermore, its moderate 
proportion of recordings with issues, associated with the frequency of impacts to a boxer’s 
face, suggests it should not be used as a “black box” for boxing head impacts.  
The patches did not provide enough data of acceptable quality to validate their use for the 
analysis of head impact kinematics in boxing. Considering the consistency of our findings with 
the recent literature regarding skin-based sensors coupling issues (Rooks, Dargie, and 
Chancey 2019), caution is warranted for the use of patches and interpretation of patches’ 
kinematic data in exposure analyses. Nonetheless, the headgear patch could be used as an 
impact counter in boxing because of its high sensitivity to head impacts and its ease of use 
(interchangeable, no issues with adherence due to sweat). As impacts to the back of the head 
are not legal blows and only represented 2.5% of all events, the patch’s location at the back 
of the headgear limits the effects of its sensitivity to impact location. 
 
CONCLUSION: Tight coupling of the sensor to the skull is key to a sensor’s ability to measure 
the number, magnitude, and direction of impacts to the head. Further work is needed to 
continue refining these tools so that they more accurately record the number and magnitude 
of head impacts. In the meantime, instrumented mouthguards appear to be better than skin or 
headgear patches for studying boxing head impacts. 
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