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The purpose of this study was to compare gait kinematics measured with a markerless 
motion capture system (FastMove AI 3D Analysis System) against data measured with a 
marker-based motion capture system. A sample of 14 over-ground walking trials were 
captured simultaneously with two camcorders (60Hz) and an 8-camera marker system. The 
markerless data was further processed to landmarks using markerless human movement 
automatic capture system. Body landmarks data of X and Z coordinates were highly 
consistent between the two systems, while data of Y coordinate showed low consistency. 
The Bland-Altman plots’ results showed low agreement (average of differences ranged 
from -182.5% to 109%) between individual measurements of the maximum and minimum 
of knee and ankle flexion angles from both systems against the average of the 
measurements. 
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INTRODUCTION: Kinematic data is one of the most important features of biomechanics 
research, where motion capture systems are commonly used to evaluate human motor 
function (Astephen et al., 2008). The mainstream of motion capture is the passive optical 
method, in which the markers attached to the subject’s body surface are tracked and the 
position of each part of the subject’s body can be estimated from the three-dimensional 
coordinates of such markers to provide comprehensive 3D representations and quantification 
of individuals’ movement patterns, particularly gait. However, it has several inherent issues 
that affect its ability to collect accurate and reliable measures of gait (Narayanan, 2007). This 
technology requires markers to be placed on patients’ palpable anatomical landmarks, a 
process that makes the resulting data susceptible to inaccurate and inconsistent marker 
placement (Della Croce et al., 2005). The changing collection conditions lead to inconsistent 
error levels across gait studies, demonstrating that clinically acceptable errors are possible but 
not always achieved in gait analysis (McGinley et al., 2009). In addition, marker-based motion 
capture is susceptible to errors caused by the movement of the soft tissue to which the markers 
are affixed relative to the underlying bones (Dumas et al., 2014; Leardini et al., 2005). 
Markerless motion capture has the potential to alleviate some of the technical and practical 
issues of marker-based motion analysis without sacrificing data quality by replacing physical 
palpation of bony landmarks with probabilistic estimation of segment pose by highly trained 
neural networks (Mathis et al., 2018). Beijing Sport University in collaboration with FastMove 
Technology Inc, and Chinese Athletics Association recently developed an artificial intelligence 
system for markerless human movement automatic capture, that uses 2D video data from an 
array of standard video cameras to perform 3D pose estimation on human subjects. In this 
system, landmark detection is performed by a highly trained deep neural network that applies 
rules consistently across individuals, thereby dissociating the tracking of human motion from 
the operator. lt is a tool to carry out 3D motion analysis, provide the world-leading data analysis 
content for competitive sports athletes and coaches, and supporting digital solutions for sports 
science researchers. The software can not only support real-time motion video capture by 
using ordinary high-speed cameras or industrial cameras and Direct Linear Transformation 
(DLT) calibration, but also synthesize 3D coordinates of human body landmarks by aligning 
synchronized images captured by two or more cameras.  
Thus, the aim of this study was to compare gait kinematics measured with a markerless motion 
capture system against data measured with a marker-based motion capture system. 

METHODS: Seven recreationally active participants (male, 20±2 yrs, 1.74 ± 0.09m 71.5 ± 

11.2kg) performed a test of gait. Exclusion criteria included having any neuromuscular or 
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musculoskeletal impairments that could prevent their performance of walking. Participants 
performed 2 over-ground walking trials at their comfortable walking speed on a force plate 
(Kistler 9281CA, Switzerland, 1000Hz), while each walk was simultaneously captured by both 
an 8-camera marker-based motion capture system (Motion Analysis Raptor-4, USA, 200 Hz) 
and two camcorders (60Hz). A right-handed coordinate system was defined for both systems 
by placing a Motion L-Frame in the centre of the capture volume. 
Marker-based system: 21 retro-reflective markers were placed on the participant’s bony 
landmarks according to Helen Hayes model (HH). The trajectories of the retroreflective 
markers placed on relevant anatomical landmarks of the subjects’ body were tracked using an 
8-camera marker-based system (Motion Analysis Raptor-4, USA). Markers were exported for 
further analysis in Cotex (USA). Markers were filterd using a lowpass Butterworthtfilter of 
13.3Hz. 
Markerless system: The 2D video data was collected using two camcorders (60Hz, one was 
placed directly in front of the walking direction, the other was placed on the right of the walking 
direction, and the angle between them was 90°), which were calibrated using Direct Linear 

Transformation（DLT）method. The video records of each test were digitized by human 

movement automatic capture system. Markerless human movement automatic capture system 

(FastMove) was used to automatically parse all 14 sets of test videos. Three⁃dimensional 

coordinates of 10 body landmarks were obtained. Markers were filterd using a lowpass 
Butterworthtfilter of 7.4Hz. 
Comparison: Both systems acquired data for one complete gait cycle of the participants. The 
data of the two systems is synchronized by the keyframe sync method. The correlation 
coefficient of 10 body landmarks between the marker-less system data and the marker-based 
system data were calculated. Bland-Altman plots were used to compare maximum and 
minimum knee flexion angles and maximum and minimum ankle flexion angles during one 
complete gait cycle, from both systems. 
RESULTS: The correlation coefficient of 10 body landmarks (3 coordinates, X, Y, Z) ranged 
between 0.16 to 1 (Table 1&2). Most CMCs of the X and Z coordinates were greater than 0.90, 
which means data were highly consistent between the two systems. However, CMCs of the Y 
coordinate were low, especially the Y coordinate right hip, which means data from the two 
systems have differences in Y coordinate. 
Bland-Altman plot, showing the difference between individual measurements of the maximum 
and minimum of knee and ankle flexion angles from both systems against the average of the 
measurements. Solid lines and printed values represent the bias (mean difference) obtained 
from each comparison, and dashed lines represent 95% limits of agreement (95% LoA) of the 

measurements ，the error bars are confidence intervals (Figure 1&2). Bland-Altman plot of 

knee flexion angle shows low agreement between the two systems: average of differences 
(Marker-Markerless) ranged from -182.5% to 7.8%, and the maximum of the differences 
(Marker-Markerless) ranged from -125.3%~109.0%. Bland-Altman plot of ankle flexion angle 
shows higher agreement than knee flexion angle between the two systems: average of 
differences (Marker-Markerless) ranged from -3.1%~5.5% to 7.8%, and the maximum of the 
differences (Marker-Markerless) ranged from -10.9%~22.4%. For both of knee and ankle 
flexion angles, most of the points are within 95% LoA. 

Table 1: The Multiple Correlation Coefficients of the Human Body Joint Point (Right) 

Coordinate⁃time Curve Obtained by Using Both Systems（*：can’t be calculated）

 

276

40th International Society of Biomechanics in Sports Conference, Liverpool, UK: July 19-23, 2022

https://commons.nmu.edu/isbs/vol40/iss1/67



Table 2: The Multiple Correlation Coefficients of the Human Body Joint Point (Left) Coordinate⁃

time Curve Obtained by Using Both Systems（*：can’t be calculated）

 
 

 
Figure 1: Differences between individual measurements of the maximum and minimum 

of knee flexion angles from both systems

 
Figure 2: Differences between individual measurements of the maximum and minimum 

of ankle flexion angles from both systems 
DISCUSSION: This study compared the kinematics of healthy human gait measured by a 
marker-based motion capture system and a markerless motion capture system, finding 
systematic differences between the markerless and marker technologies. Body landmarks data 
of X and Z coordinates were highly consistent between the two systems, as the curves 
demonstrated similar features and timing, leading to high CMC values, while data of Y 
coordinate showed low consistency. The Bland-Altman plots’ results showed  
 

277

40th International Society of Biomechanics in Sports Conference, Liverpool, UK: July 19-23, 2022

Published by NMU Commons, 2022



low agreement between individual measurements of the maximum and minimum of knee and 
ankle flexion angles from both systems against the average of the measurements. These 
findings are inconsistent with previous studies comparing alternatives to motion capture 
(Colyer et al., 2018), whether markerless motion capture system (FastMove) is a reliable tool 
in gait kinematics remains to be tested. 
There are several potential sources of error that could affect the measurements from both 
systems. Marker-based kinematics are susceptible to marker placement variation, kinematic 
crosstalk, soft tissue artefact, and joint position regression errors. It has been shown that skin-
mounted marker clusters move relative to the underlying bone during gait, with translations of 
up to 1.5 cm at the shank and 2.5 cm at the thigh, and rotations up to 8°. These tissue artefacts 
introduce unpredictable, subject- and task-specific errors of up to 3° in knee joint angles (Benoit 
et al.,2015). Markerless kinematics may also be affected by several factors. Firstly, during over-
ground walking, the range of the movement of the Y coordinate was small, resulting in low 
CMC. The CMC of the Y coordinate right hip is extremely low, because the hip point has no 
obvious bony landmark, which can only be judged by experience. What’s more, the participants 
wore mostly dark clothing during the test, which means dark attire provides a greater challenge 
for the markerless motion capture system due to reduced contrast. Additionally, while the 
markerless motion capture system is largely unrestricted with regards to the data collection 
environment, the data used in this study were collected in a laboratory space under poor indoor 
lighting conditions. Finally, the video data consisted of images recorded at 60 Hz, producing 
images that were somewhat low resolution and blurry at times. More appropriate video 
cameras would provide higher quality images and may improve tracking. 
Future research can compare marker-based and markerless results for a larger sample of 
participants. Future research can also compare kinetic calculations (joint forces and torques) 
between the two systems. 
CONCLUSION:  
This study indicates that the tracking of the markerless motion capture system (FastMove) yet 
is not comparable to marker-based motion capture system in gait kinematics, which needs 
further improvement. The effects including the range of the movement, clothing, the data 
collection environment and the video data are currently being examined in greater depth. New 
algorithm should be used to improve the accuracy of data acquisition and the degree of 
automation of artificial intelligence system. 
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