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The aim of this study was to analyse the influence of acute fatigue on the asymmetry, variability, 
and complexity of the running pattern. We equipped 11 half-marathon participants with an inertial 
measurement unit (IMU) on each foot and a global navigation satellite system (GNSS)-IMU sensor 
on chest. Every 10 minutes of the race, the participant pronounced their perceived rating-of-
fatigue (ROF) on a scale of 1 to 10. We divided the race into 8 equal segments, with one ROF 
score per segment, and included only the flat running parts. Temporal gait parameters were 
extracted using validated algorithms, followed by the computation of their asymmetry, and the 
variability and complexity of the cycle time (CT). Gait asymmetry increased significantly toward 
the end of the race and at higher perceived fatigue; faster runners showed a greater increase in 
asymmetry. CT variability increased significantly at the beginning of the race and then remained 
stable for all participants, but faster runners showed up to 20% less variability. No significant 
change was observed in CT complexity. This study highlights the increase in asymmetry and 
variability due to acute fatigue, with differences between fast/slow runners, and the importance of 
simultaneously measuring perceived fatigue and gait parameters under real-world conditions. 
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INTRODUCTION: Measurement of symmetry during running can help evaluate the risk of 
overuse injury for a particular limb and test the athlete’s readiness to resume training after 
rehabilitation (Zifchock et al., 2008). 10% increase in the asymmetry in step time and contact 
time can lead to increased metabolic costs of running, up to 3.5% and 7.8%, respectively (Beck 
et al., 2018). Similarly, cycle time variability and its long-range correlations (complexity) are an 
indicator of running technique, and a potential predictor of running related injuries (RRIs) 
(Gruber et al., 2021; Meardon et al., 2011), with trained runners showing lower variability and 
higher complexity (Nakayama et al., 2010). Therefore, measuring symmetry, variability, and 
complexity of stride cycles during prolonged running may allow athletes to better understand 
their technique and optimize their pacing strategies, as well as their training plan. Acute fatigue, 
which is the onset of fatigue occurring concurrently with the activity (Apte et al., 2021), led to 
an increase in the asymmetry of kinetic and kinematic variables during running (Radzak et al., 
2017; Tabor et al., 2021), but these findings were limited to treadmill running and 50 m sprints. 
Variability and complexity of stride time varied non-linearly for amateur and experienced 
runners, during prolonged running on track (Meardon et al., 2011) and treadmill (Mo & Chow, 
2018), due to acute fatigue. However, these results were not considered in relation to the 
progression of perceived fatigue, which can enable a more in-depth understanding of exercise-
induced acute fatigue. This work aims to complement existing research by providing a 
synchronous analysis of the symmetry, variability, and complexity of gait cycles and the 
evolution of perceived fatigue during a half-marathon. These results should lead to a better 
understanding of the effects of fatigue on gait quality and thus play a role in improving 
performance and reducing risk of RRI. 
 
METHODS: The dataset used for this study is from (Prigent et al., 2022) and included 11 
healthy half-marathon participants, equipped with a GNSS-IMU sensor (Fieldwiz, ASI, 
Switzerland, IMU: 200 Hz, GNSS: 10 Hz) on the chest, an IMU sensor (Physilog 5, Gaitup SA, 
Switzerland, acc: 512 Hz, gyro: 512 Hz) on each foot. Every 10 minutes during the race, the 
participants verbally reported their perceived rate of fatigue (ROF) on a scale of 1 to 10, which 
were recorded by the smartphone. For each participant, gait velocity (v) was estimated from 
the GNSS receiver and gait parameters were extracted from foot IMU signals – contact time 
(tc) swing time (ts), cycle time (tg), peak swing velocity (ps), and duty factor (dF). To address the 
change in speed at the start/end of the race, we removed first and last 50 strides and made 
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sure the step number corresponding to both legs was identical. The five fastest and slowest 
participants were selected as the fast and the slow groups, respectively. 

 
Figure 1: Flowchart of the stride quality study, with the steps for calculating the symmetry, 

variability, and complexity of the extracted gait parameters and statistical analysis shown in 
red, green, and blue, respectively. 

Asymmetry: Our dataset is based on single values of gait parameters per gait cycle, and thus 
we used discrete symmetry coefficients, though they are less sensitive than the continuous 
coefficients (Błażkiewicz et al., 2014; Tabor et al., 2021),. To quantify symmetry for spatio-
temporal parameters, four metrics (Błażkiewicz et al., 2014) have been previously used: Ratio 
Index (RI), Symmetry Index (SI), Symmetry Angle (SA), and Gait Asymmetry Index (GAI). 
However, for RI, SA and GAI, the calculation considers the ratio between the right and left limb 
values, and thus remains susceptible to influence of the dominant leg. Furthermore, results 
from (Błażkiewicz et al., 2014) suggested a high similarity between RI and SI, and their 
advantage over SA. Based on these conclusions, SI (𝑆𝐼 =  2|𝑋𝐿 − 𝑋𝑅|(𝑋𝐿 + 𝑋𝑅)−1 x 100%), where 
𝑋𝑅 and 𝑋𝐿are parameters for the right and left limbs) was selected as the metric for assessing 
symmetry. We thus used SI (Figure 1) for four gait parameters– contact time (SItc), swing time 

(SIts), duty factor (SIdf) and peak swing velocity (SIps), based on their evolution with acute 
fatigue during running (Apte et al., 2021; Prigent et al., 2022). SI was also computed for the 
gait cycle time to check its validity, as the cycle time should present a SI close to zero. 
Variability and Complexity: To characterize the variability and complexity of stride, we used the 
gait cycle time as a parameter of interest. This choice allowed comparison with results from 
previous studies (Meardon et al., 2011; Mo & Chow, 2018) on prolonged running. To assess 
the stride-to-stride variability and quality of strides over a given time, coefficient of variation 
(CV) is an efficient metric (Meardon et al., 2011). The race was therefore divided into 25 
segments of equal duration and CV of gait cycle time was computed for each of these 
segments. However, two distinct signals can show the same variance in the form of CV and 
thus we need to study them further. In order to fully capture the nature of the evolution of the 
cycle time over the race, we analysed the complexity of the stride (Mo & Chow, 2018). 
Complexity can be defined as the amount of nonlinear information that a time series conveys 
over time. A reliable metric to assess the complexity of gait is the α-DFA coefficient (Damouras 
et al., 2010), that can be computed with Detrended Fluctuation Analysis (DFA). We performed 
the DFA analysis over a sliding window of size 500 strides, with an increment of 100 strides. A 
random DFA analysis was also performed to validate the procedure by shuffling the input 
values and check that obtained vector showed no memory (alpha around 0.5). 
Statistical analysis: The race was divided into 8 equal segments, such that one ROF value 
could be assigned to each segment. The median value of the metrics and gait velocity (v) was 
computed for each segment (Figure 1). To reduce inter-subject variance, we normalized the 
values by dividing each median value by the median value of the segment with the highest 
running velocity. To analyse the effect of race progression on the metrics (‘Segment wise’), we 
compared the segments 1, 5, and 8 using the Friedman (F) test and the pairwise Wilcoxon 
Signed-Rank (WSR) test. To consider the perceived fatigue, we compared segments with the 
highest (H), medium (M), and lowest (L) ROF values. Fatigue levels of each participant were 
pooled into three different groups, which were compared with the F test and WSR tests (ROF 
wise). To overcome inter-subject variability in ROF baseline values, ΔROF was computed as 
the difference between each ROF value and the one at the first segment (baseline). We created 
three states, by combining ΔROF 1 and 2, 3 and 4, and all values ≥ 5, and compared them to 
baseline (ΔROF = 0) using WSR and F tests (ΔROF wise). Finally, we designed a 3-levels 
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Linear Mixed Effects (LME) model with the performance (FG/SG groups), the ΔROF, and the 
interaction between performance and ΔROF as the fixed effects. Then, a random effect (slope 
and intercept) was defined on the participants and the MATLAB function “fitlme” function was 
used for implementation. Further details of the statistical analysis can be found in (Prigent et 
al., 2022). All computations were performed using MATLAB 2020. 
 
RESULTS AND DISCUSSION: The overall asymmetry increased for all participants along the 
race; Figure 2A shows the trend for SItc and similar trends were observed for SIts, SIdf, and 

SIps. While the range of increase (~10%) is in accordance with the results from literature 
(Radzak et al., 2017), we have presented a full race profile for asymmetry, which complements 
the existing pre-post results. Except for SIps, all SI metrics showed a significant increase at the 
end of the race and at high perceived fatigue levels (Table 1). The increase of asymmetry is 
higher for the fast runner halfway through the race; they typically have a lower tc and df, which 
can accentuate the dominant leg effect. Only fast runners showed an increase in SItc for change 

in perceived fatigue (Figure 2D). This trend was also observable for other parameters, with SIts 
increasing significantly (Table 1) for all three ΔROF levels. Since v did not show any significant 
changes, we can conclude that acute fatigue led to the observed increase in asymmetry. 

 
Figure 2: Evolution of the stride quality. Figures A, B, and C show the actual change with race 

progression for symmetry index of contact time (SItc), coefficient of variation (CV), and the 
index of detrended fluctuation analysis (α-DFA) for gait cycle time. Figures D, E, and F show 
the linear change with perceived fatigue. FG (green): group with fastest five runners and SG 

(blue) the slowest five. ‘All’ (red) shows trends for 13 participants together. 

Unlike symmetry, the variability of the gait changed non-linearly throughout the race after an 
initial reduction in CV (Figure 2B), and the values are consistent with literature (Meardon et al., 
2011). Fast group showed a consistently lower CV than slow group (up to 20%) throughout the 
race and with ΔROF (Figure 2E) but presented an increase in CV at the end of the race. This 
profile for fast runners is similar to the one observed in the lab (Mo & Chow, 2018). This is 
likely because fast runners are more experienced with managing the regularity of the gait and 
adjusting their pacing strategy accordingly (Prigent et al., 2022). Though CV did not show any 
significant changes with the race (Table 1), it showed a significant change at low perceived 
fatigue, despite no significant change in speed. The difference in results for race progression 
and ΔROF highlights the relevance of the measurement of perceived fatigue during outdoor 
running protocols. This observation is consistent with (Prigent et al., 2022), where the authors 
noted significant changes for spatiotemporal parameters at low ΔROF levels. We did not 
observe a clear distinction between groups for the evolution of α-DFA with the race progression 
(Figure 2C). The obtained values for α-DFA are in the similar range as those previously 
observed in a lab protocol (Mo & Chow, 2018). α-DFA decreased for fast and slow groups till 
around 40% of the race, followed by a sudden increase for slow group and a cyclic change for 
fast group. This change in complexity could be due to the differences in respective pacing 
strategies adopted by the fast and slow runners (Mo & Chow, 2018). This is also reflected in 
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the linear trend for ΔROF, where α-DFA is increasing for slow runners, and decreasing for fast 
runners. However, the complexity did not show any significant change during the statistical 
analysis. 
 
Table 1: Statistical analysis of all the metrics investigated using Friedman (F) test and pairwise 
Wilcoxon signed rank (WSR) test for comparison across segments, ROF and ΔROF. S1, S5, and 
S8 indicate race segments 1, 5, and 8. L, M and H for low, median, and high value of ROF. The 

significance was set at p<0.05 with * for p ∈ [0.01,0.05) and ** for p ∈ [0.001,0.01). Bolded 
numbers indicate the effect size (ES) for significant differences. 

 Race-Wise ROF-Wise ∆ROF-Wise 

 Friedman 
Test 
(ES) 

WSR Test (ES) Friedman 
Test 
(ES) 

WSR Test (ES) Friedman 
Test 
(ES) 

WSR Test (ES) 

Parameter 
S1: 
S5 

S5-
S8 

S1-
S8 

L:M M:H L:H 0-1,2 0-3,4 0-+5 

SItc 0,11 0,28 0,11 0,42* 0,32* 0,08 0,49* 0,46* 0,17 0,21 0,25 0,38* 

SIts 0,31*  0,17 0,46* 0,28* 0,23 0,40 0,49* 0,31* 0,51* 0,42* 0,47* 

SIdf 0,11 0,34 0,15 0,46* 0,17 0,12 0,45* 0,44* 0,11 0,30 0,25 0,38* 

SIps 0,03 0,36 0,13 0,30 0,08 0,46* 0,01 0,32 0,23 0,47* 0,47* 0,34 

CV 0,06 0,40 0,25 0,17 0,29* 0,45* 0,38 0,06 0,14 0,49* 0,28 0,04 

α-DFA 0,07 0,10 0,11 0,11 0,04 0,16 0,11 0,13 0,02 0,17 0,12 0,12 

v 0.08 0.25 0.32 0.21 0.03 0.08 0.05 0.10 0.06 0.10 0.16 0.10 

 
CONCLUSION: This study showed that fatigue leads to an increase in asymmetry of gait and 
influences variability and complexity of gait cycle time. Faster runners showed a lower 
variability than slower runners, but a higher increase in asymmetry with fatigue. Assessment 
with respect to perceived fatigue provided different results than that with race progression for 
gait variability. However, further studies with a larger number of runners are recommended. 
Utilization of such wearable sensor setups may further allow a more personalized approach to 
fatigue analysis and aid runners to optimize their pacing strategies by understanding their 
running technique better.  
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