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Velocity based training (VBT) is a promising method to quantify and direct resistance training. Recent 
advances in computer science have opened the way for low-cost methods to measure VBT using video 
data from a smartphone. This work introduces and analyses the feasibility of a computer vision-based 
Python application in tracking barbell kinematics during VBT, compared against Vicon data during the 
back squat in one subject. As input into the algorithm, sagittal-plane video data is needed with the barbell 
plate in focus. Time of the concentric part of the squat and vertical barbell displacement are then 
automatically tracked using OpenCV libraries. The time parameter was accurately assessed using two 
different OpenCv Tracker, the KCF (r=0.83, SEE=0.02s) and the MOSSE (r=0.81, SEE=0.02s) tracker, 
respectively. For the vertical displacement, a lower accuracy was obtained using KCF (r=0.36, 
SEE=0.02m) and MOSSE (r=0.62, SEE=0.01m). Tracking errors could be explained by the camera set-
up, as well as differences in frame rates between the video and the Vicon data. It might be possible to 
correct these errors in future work using machine learning techniques. This pilot study shows the 
feasibility of a computer vision-based Python application to measure barbell kinematics in a low-cost 
manner and might play a part towards advancing VBT monitoring technologies for widespread use. 
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INTRODUCTION 
 
Resistance training (RT) is widely known to improve athlete performance by increasing muscle 
mass, maximal strength and power output. However, one key challenge with RT is to 
objectively monitor training intensity and actual training load for maximizing training benefits 
(González-Badillo & Sánchez-Medina, 2010). Different approaches exist to monitor training 
intensity using either objective or subjective methods. A promising objective method to quantify 
and direct RT intensity is velocity based training (VBT) (Suchomel et al., 2021). VBT covers a 
wide range of applications in strength training. It can be used to improve percentage-based 
training in form of feedback to improve motivation and competitiveness as well as a tool to 
prescribe and apply training programs. By monitoring changes in the speed of exercise 
execution, the fatigue of an athlete can be measured. Furthermore, there exists a 
demonstrated linear relationship between lifting velocity and intensity as percentage of 
maximum ability, allowing the determination of the one repetition maximum without risk of injury 
due to heavy lifting  (Weakley et al., 2021). 
In recent years, mobile activity tracking devices have emerged for RT monitoring,  representing 
the number one fitness trend today (Thompson, 2021). In particular, smartwatch and 
smartphone applications have emerged as reasonable and more convenient alternatives to 
assess kinematic parameters (e.g. position, displacement, velocity, accelerations) during VBT 
compared to so-called linear position transducers (Balsalobre-Fernández et al., 2018; 
Oberhofer et al., 2021). These advances in mobile technologies are opening the way for 
research and sports facilities with less funding to monitor VBT intensity, and thereby, playing 
a part towards creating equal opportunities in sports.  
Building on these most recent trends, the motivation for the present study was to develop a 
computer vision application that allows convenient and low-cost tracking of barbell kinematics 
for monitoring of VBT based on video data, and scientifically validate the application against 
data from marker-based optical motion capture as gold standard. The application is written in 
the Python programming language, operating system independent, free of any costs and well 
documented. To facilitate further shared development and contribution, the programming code 
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is planned to be provided via a public GitHub repository to the community. Thus, an extension 
of the present application, and alteration according to individual needs, are feasible. 

 
METHODS 
 
A motion capture algorithm for video-based analysis of barbell kinematics was developed using 
the high-level programming language Python and OpenCV libraries. As input into the 
algorithm, sagittal-plane video data is needed with the barbell plate in focus, as well as user- 
defined barbell plate diameter and plate color. Barbell displacement is then automatically 
tracked as follows: 1) Selection of region of interest (ROI), 2) computation of centre of ROI, 3) 
derivation of the centre of the barbell for each frame via OpenCV tracker and 4) smoothing of 
trajectory using a simple moving average filter (windows size 17). From the tracked barbell 
centre, the displacement and the time per concentric phase for each repetition are calculated 
by automatically segmenting the turning point and start/end points of each set. Two different 
open source trackers were considered for implementation into the Python application and 
compared in the present study, namely the KCF (Kernelized Correlation Filter) and the MOSSE 
(Minimum Output Sum of Squared Error (OpenCV Cv::Tracker Class Reference).  

One healthy subject (male, 28 years old) volunteered to perform back squats for validating the 
Python algorithm against data from marker-based optical motion capture. The participant had 
experience with free-weight training. Ethical approval for this study was given by the Kantonale 
Ethikkommission (KEK). Ten sets of 10 repetitions of back squats were performed (40kg lifting 
weight), separated by one to three minutes rest between the sets. Real-world conditions were 
applied as the participant was able to choose concentric and eccentric speed autonomously. 
However, a clear pause in the full standing position was taken between each repetition.  

For the data collection, one video recording device (Galaxy S7 Samsung, Seoul South Korea) 
was placed perpendicular to the weight plates. The video data was transferred to a computer 
(MacBook Air, Apple Inc., Cupertino, CA, USA) for further analysis. The recording device was 
placed in a way as it would most probably be placed in a gym setup (perpendicular, slightly 
upwards facing). Sampling rate for the video recording device was 30 Hz. Simultaneously, six 
infrared cameras (Vantage 5, Vicon Motion Systems Ltd., Oxford, UK) were placed around the 
participant to record the motion of the barbell. Six reflective markers were fixated on the left 
end, and seven markers (for better detection of the barbell orientation) on the right end, 
respectively. The Vicon cameras were controlled from an Antec WorkBoy desktop (Antec, 
Taipei, Taiwan) running Vicon Nexus software (version 2.9, Vicon Motion Systems Ltd., 
Oxford, UK). Sampling rate for the motion capture data was 100 Hz.  

For validation purposes, the position and displacement of the midpoint of the barbell was 
determined based on the Vicon data and compared against the results from the Python 
application. All data was filtered with a simple moving average filter (window size 5), and then, 
the displacement and time of concentric phase was determined for each repetition. Concentric 
phases were automatically segmented at the beginning and end of areas with a vertical velocity 
threshold of 0.05 m/s. The segmentation of each set was visually assessed for quality control.  

For statistical analysis of the results, according to (Hopkins, 2000), the validity of the 
measurements was assessed by calculating the Pearson’s correlation coefficient (r), a 
calibration equation and the standard error of estimate (SEE). In particular, the accuracy was 
assessed using the calibration equation and SEE; while precision was assessed using the 
Pearson’s correlation coefficient. In addition, the Intraclass correlation coefficient (ICC 2.1) was 
chosen according to (Koo & Li, 2016) to test the level of agreement between both measurement 
methods. Values between 0.5 to 0.75 were considered as moderate, from 0.8 to 0.9 as good, 
and above > 0.9 as excellent (Koo & Li, 2016). For the calibration equation an ordinary least 
product (OLP) regression was used based on (Ludbrook, 1997). SEE was calculated as 
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𝑆𝐸𝐸 =  √
1

𝑛−2
∗ ∑ [𝑌𝑖 − (𝑎 + 𝑏𝑋𝑖)]2𝑛

𝑖=1                                                                                   ( 1 ) 

whereby Xi and Yi are the individual device and criterion data points, respectively, while a and 
b are the intercept and slope from the OLP regression (Siegel, 2016). 

RESULTS 

A total of 100 repetitions of back squats were recorded and compared. In Table 1 the results 
of the statistical analysis are listed. 
 
Accuracy:  For the time parameter, the calibration equation shows a higher accuracy than for 
the vertical displacement parameter. Both parameters show signs of proportional and fixed 
bias observed in the mean and in the calibration equation with a SEE of 2.15% for the time 
parameters and 1.94-2.88% for the vertical displacement, respectively. 
Precision: The Pearson's r coefficient shows the better correlation for the time parameter, while 
the vertical displacement is weakly correlated. In particular, the KCF tracker shows a weak 
correlation. These results are supported by the ICC values, with ICC=0.600 for MOSSE and 
ICC=0.326 for KCF, respectively (Table 1).  
 
Table 1: Comparison of the predicted time and displacement parameters between Vicon and the Python application, 

using the KCF and the MOSSE tracker, respectively. The mean  parameter describes the actual mean difference 
between the Vicon data and the Python data for all the recorded repetitions of the back squat (i.e. 100 repetitions).  

DISCUSSION 
 
The time of the concentric phase of the squat was slightly underestimated using the Python 
application compared to Vicon as gold standard. Low discrepancies between the Python 
application and the Vicon data were expected as the time parameter does not depend on the 
magnitude of barbell displacement. However, the sampling rate of the videos is 30 frames per 
second (fps) which leads to a resolution of around 0.03s and is of the factor 3 larger than the 
fixed bias. This could explain the difference in the time parameter between the Python 
application with video data of 30 fps and Vicon with 100. The underestimation error in the 
prediction of vertical displacement using the Python application is likely originating from the 
positioning of the camera with respect to the barbell. A well-known error is introduced in the 
reconstruction of vertical barbell displacement if the camera is not aligned perpendicular to the 
sagittal plane of exercise execution. However, ensuring ideal alignment of the camera with 
respect to the sagittal plane of motion is difficult in the real-world training-specific scenario. 
Moreover, the optimal alignment is likely dependent on exercise type and distance from the 
recording device to the athlete. Part of the error could also be due to discrepancies between 
the motion of the barbell’s midpoint (Vicon) and its outer extremity (video). Fritschi et al. 2021 
found the order of these errors to be around 3–5% which implies the need for a more detailed 
investigation.  
Thus, one might ask how accurate mobile activity trackers must be in a real-world setting, and 
which parameters are needed, for best assisting athletes during VBT. While further 
investigation is needed into how good a 4% error in vertical barbell displacement is, particularly 
if speed is to be derived as the first derivative, the resulting time parameter with an accuracy 
of around 1.2% can already provide valuable feedback to athletes in terms of changes in 

Tracker Parameter Mean  (std) Slope Intercept Pearson’s r ICC SEE (%) 

KCF time [s] 0.02(0.016) 1.153 -0.141 0.829 0.806 0.017(2.15%) 

MOSSE time [s] 0.018(0.016) 
 

1.124 -0.116 0.812 0.799 0.017(2.15%) 

KCF displacement [m] 0.025(0.016) 
 

1.559 -0.384 0.361 0.326 0.019(2.88%) 

MOSSE displacement [m] 0.018(0.011) 1.378 -0.261 0.619 0.600 0.012(1.94%) 
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execution speed during different sets and repetition cycles to monitor progress in VBT. 
Furthermore, novel approaches in machine learning and artificial intelligence are emerging, 
which may help to apply a correction factor for offsetting displacement errors in future work.  
 
CONCLUSION 
 
Despite some remaining challenges, this work shows promising results of a video-based 
Python application to monitor barbell kinematics during the back squat in one subject. While 
the displacement outcome parameters must currently be interpreted with caution, the accuracy 
in the time parameter is promising. Further validation of the proposed application in more 
subjects and different strength exercises is planned. Also, the derivation of velocity parameters 
based on barbell displacement will help to gain further insights into the validity and usefulness 
of the proposed application. As VBT represents a rather new method to measure training load, 
its full potential might still be undiscovered. However, as the market around VBT devices 
grows, it has to be ensured that any new device or method is scientifically validated before 
using it in the training-specific environment, as the results are not trustworthy otherwise. Here, 
the results of the present study might play a part towards advancing state-of-the-art technology 
for science-based, low-cost VBT monitoring.   

REFERENCES 
 
Balsalobre-Fernández, C., Marchante, D., Muñoz-López, M., & Jiménez, S. L. (2018). Validity and 
reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-
press exercise. Journal of Sports Sciences, 36(1), 64–70. 
https://doi.org/10.1080/02640414.2017.1280610 
Fritschi, R., Seiler, J., & Gross, M. (2021). Validity and Effects of Placement of Velocity-Based 
Training Devices. Sports, 9(9), 123. https://doi.org/10.3390/sports9090123 
González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement Velocity as a Measure of Loading 
Intensity in Resistance Training. International Journal of Sports Medicine, 31(05), 347–352. 
https://doi.org/10.1055/s-0030-1248333 
Hopkins, W. G. (2000). A New View of Statistics: Measures of Validity. 
https://www.sportsci.org/resource/stats/precision.html 
Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation 
Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155–163. 
https://doi.org/10.1016/j.jcm.2016.02.012 
Ludbrook, J. (1997). SPECIAL ARTICLE COMPARING METHODS OF MEASUREMENT. Clinical 
and Experimental Pharmacology and Physiology, 24(2), 193–203. https://doi.org/10.1111/j.1440-
1681.1997.tb01807.x 
Oberhofer, K., Erni, R., Sayers, M., Huber, D., Lüthy, F., & Lorenzetti, S. (2021). Validation of a 
Smartwatch-Based Workout Analysis Application in Exercise Recognition, Repetition Count and 
Prediction of 1RM in the Strength Training-Specific Setting. Sports, 9(9), 118. 
https://doi.org/10.3390/sports9090118 
OpenCV cv::Tracker Class Reference. (n.d.). Retrieved December 1, 2022, from 
https://docs.opencv.org/3.4/d0/d0a/classcv_1_1Tracker.html 
Siegel, A. F. (2016). Correlation and Regression. In Practical Business Statistics (pp. 299–354). 
Elsevier. https://doi.org/10.1016/B978-0-12-804250-2.00011-0 
Suchomel, T. J., Nimphius, S., Bellon, C. R., Hornsby, W. G., & Stone, M. H. (2021). Training for 
Muscular Strength: Methods for Monitoring and Adjusting Training Intensity. Sports Medicine, 
51(10), 2051–2066. https://doi.org/10.1007/s40279-021-01488-9 
Thompson, W. R. (2021). Worldwide Survey of Fitness Trends for 2021. ACSM’S Health & Fitness 
Journal, 25(1), 10–19. https://doi.org/10.1249/FIT.0000000000000631 
Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., & Garcia-Ramos, A. (2021). Velocity-
Based Training: From Theory to Application. Strength & Conditioning Journal, 43(2), 31–49. 
https://doi.org/10.1519/SSC.0000000000000560 
 

12

40th International Society of Biomechanics in Sports Conference, Liverpool, UK: July 19-23, 2022

https://commons.nmu.edu/isbs/vol40/iss1/2


	tmp.1648814353.pdf.7xRKM

