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Resumen 
 
 
 

En este proyecto se abordará el problema de la desagregación del consumo eléctrico a través del diseño de 

sistemas inteligentes, basados en redes neuronales profundas, que puedan formar parte de sistemas más 

amplios de gestión y distribución de energía. Durante la definición estará presente la búsqueda de una 

complejidad computacional adecuada que permita una implementación posterior de bajo costo. En 

concreto, estos sistemas realizarán el proceso de clasificación a partir de los cambios en la corriente 

eléctrica provocados por los distintos electrodomésticos. Para la evaluación y comparación de las 

diferentes propuestas se hará uso de la base de datos BLUED. 

 

Palabras clave: Monitorización de Cargas No Intrusiva, Desagregación de Energía, Red 

Neuronal Profunda, Eficiencia Energética, Contadores inteligente, Identificación de 

Electrodomésticos. 

 

  



Resumen 

ii 
  

  



Abstract 

iii 
  

 
 
 

 

Abstract 
 
 
 

This project will address the energy consumption disaggregation problem through the design of 

intelligent systems, based on deep artificial neural networks, which would be part of broader energy 

management and distribution systems. The search for adequate computational complexity that will 

allow a subsequent implementation of low cost will be present during algorithm definition. 

Specifically, these systems will carry out the classification process based on the changes caused by 

the different appliances in the electric current. For the evaluation and comparison of the different 

proposals, the BLUED database will be used. 

 

Keywords: Non-Intrusive Load Monitoring, Energy Disaggregation, Artificial Neural Network, 

Energy Efficiency, Smart Meter, Appliance Identification. 
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Extended summary 
 
 
 

Reduction of energy consumption is one of the main focuses of interest of society in recent years. 

Regarding this problem, intelligent electricity distribution systems seek to manage consumption more 

efficiently. Likewise, the incorporation of technology in homes allows consumers to be informed about the 

specific consumption of each of the devices they have connected to the electricity grid. With this 

information, applications can be defined for the creation of consumption information reports, control of 

electrical parameters, management of consumption, and generation of alarms. 

In practice, there are two main ways of extracting this information: through the individual monitoring 

of each of the loads, which is more intrusive and expensive, and due to this, it is not usually the most 

accepted alternative; or by using Non-Intrusive Load Monitoring techniques (NILM), which obtains this 

information from the user's aggregate energy signal captured by a Smart Meter (SM). In the field of these 

non-intrusive techniques, the extraction of the individual profiles of the main household appliances from 

the consumption profile is carried out by intelligence systems, such as Artificial Neural Networks (ANNs), 

among others. 

This is the place where this Master’s Thesis takes part. This works presents three different solutions 

which are designed with the aim of classifying the different household appliances based on the on/off 

events which are extracted from the electrical current signal acquired at high frequency.  

The proposed architectures have a first stage, where the input samples are adapted to meet some 

requirements; and a second and final stage that particularly deals with the classification of the load by two 

different topologies of ANNs: a recurrent network for the first, and a convolutional network for the second 

approach. Different types of features from the samples are considered either from time or frequency 

domain. 

Experimental results show that the defined algorithms achieve a suitable classification performance 

for sixteen or seventeen appliances (or groups of appliances). This validation was carried out by using real 

data obtained from the public Building-Level fUlly labelled Electricity Disaggregation database (BLUED). 

However, the values obtained are also compared bearing in mind the computational complexity presented 

by the solutions. Finally, taking into account both criteria, the second architecture combines an adequate 

classification performance, of around 90 % for the F1 score, with the less complex network. 

Additionally, an analysis of future actions required to carry out the optimization of the proposal and 

some possible future works related to the continuation of the project will be included. 
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Chapter 1    Introduction 
 
 
 

At present, energy systems are evolving into what is known as smart grids, an electrical network that 

employs innovative intelligent monitoring, control, communication, and self-healing technologies. One of the 

crucial components of the smart grid (O. Majeed Butt et al., 2021), in many developing countries, is the 

smart home and its control systems, the so-called Home Energy Management Systems (HEMS) (B. 

Mahapatra & A. Nayyar, 2019). Their contribution is the optimization of energy consumption, allowing 

substantial savings by users, and boosting the consistency of the electricity grid by permitting the 

consumption of household appliances to be adjusted according to the demand for electrical energy, which is 

being produced in the electricity system. 

Information on energy usage is obtained thanks to the Advanced Metering Infrastructure (AMI) which 

interacts with the Smart Meters (SM) of homes (J. Zheng et al., 2013). Within an electrical context, SM are 

devices that record electrical measurements, such as voltage and current levels, and communicate this data 

to electricity suppliers and clients. Regarding the improvement of the management of consumer 

consumption behaviour, it may be interesting to know the individual consumption of each appliance. For 

that purpose, Non-Intrusive Load Monitoring (NILM) systems are defined to identify each electrical device 

through the processing of the load signals acquired at a single point at the entrance of the house; in other 

words, without the need to connect individual monitors on each home device (G. Bucci et al., 2021; G. F. 

Angelis et al., 2022; Y. Himeur et al., 2022). 

Several NILM algorithms include a classification stage which analyses the characteristics of interest of 

the input samples to determine which device is working at each time instant. In this scope, there are some 

approaches based on advanced machine learning techniques of great interest at this moment, such as 

Artificial Neural Networks (ANNs). As will be explained later, ANNs are data processing models, based on 

biological neural networks, capable of “learning” through a feedback process that compares the obtained 

result with the desired one. 

Specifically, as illustrated in Figure 1, this project seeks to design and evaluate intelligent systems based 

on different ANN topologies for the classification of the main domestic loads from the aggregate signals 

provided by the SM with the purpose of using them in intelligent energy management and distribution 

systems. 
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Figure 1. Scope of the Master’s Thesis. 

 

1.1 Context 

Essential knowledges included in the University Master’s Degree in Industrial Engineering have been 

required for the realization of the project. These skills are related to subjects of the specialty of Smart 

Energy Generation and Distribution, such as Introduction to Smart Energy grids or Distributed Generation 

and Network Quality. Additionally, this work was carried out in the GEINTRA research group, belonging to 

the Department of Electronics, within projects granted through the Ministry of Science, Innovation and 

Universities. Namely, the PoM-UAH project (PID2019-105470RA-C33), where the ultimate goal is to 

improve and promote the independent life of people with dementia, mild cognitive impairment, or people 

with psychological disorders through the use of localization techniques and minimally invasive systems; and 

the MICROCEBUS project (RTI2018-095168-B-C51), focused on indoor positioning systems. 

 

1.2 Objectives 

The proposal is focused on the evaluation of different ANN topologies for the electrical appliances 

classification stage in order to be part of a smart energy management and distribution system within the 

household. Nevertheless, several intermediate steps will be necessary until this final objective has been 

attained. Their individual aims are the following: 

• Analyse previous works and backgrounds associated with the main topic, which will be used as the 

basis for the proposal’s development. 

• Configure the appropriate experimental framework, from the selection of the database with the 

required features to carry out the validation of the algorithms. 

• Definition of intelligent systems made up of certain neural network topologies for the recognition of 

electrical household appliances within the energy disaggregation. 

• Compare the classification results of the different alternatives to determine which one offers the 

highest performance and evaluate the feasibility of implementation on platforms in real time. 

 

 



Chapter 1    Introduction 

17 
  

1.3 Structure of the document 

Down below, the structure of the remaining chapters is described to familiarize readers with the content 

of the document and help them have a better understanding of the project. 

CHAPTER 2. BACKGROUND 

This first part of the document will analyse the main concepts on which the project is based. 

Specifically, it will show not only what is meant by NILM techniques, but also their main fields of 

application and the impact of the issue. Additionally, a brief explanation of the different methods that 

exist these days for energy disaggregation will be provided. Finally, the data processing of algorithms 

based on neural networks will be studied. 

CHAPTER 3. PROPOSED ARCHITECTURES 

The alternatives developed for this project will be described in depth distinguishing between the 

neural network topology used for the classification architecture and the features of interest from the 

input samples. 

CHAPTER 4. EXPERIMENTAL RESULTS 

In this chapter, the specific characteristics of the database used for the validation of the proposed 

intelligent systems will be described. In addition, owing to the fact that several types of metrics should 

be used for the performance evaluation of the different models, their definition will be covered. 

Furthermore, the setup for the appraisal will be specified. After all, the experimental results obtained 

through the different alternatives will be compared. 

CHAPTER 5. CONCLUSION AND FUTURE WORKS 

With reference to the conclusions, the value of the study and its contribution to the current state-of-

the-art will be discussed. Secondly, not only certain improvements for the proposal presented in this 

thesis, but also several extensions in relation to the continuation of the research will be listed. Finally, 

the publications derived from this thesis will be commented. 

 

1.4 Publications derived from this thesis 

Thereupon, the publications derived from the research carried out during the period of development of 

this Master’s Thesis are listed. 

CONFERENCE PAPERS 

• R. Nieto Capuchino, L. de Diego-Otón, Á. Hernández, J. Ureña. (2020). Finite Precision Analysis for an 

FPGA-based NILM Event-Detector. In the Proceedings of the 5th International Workshop on Non-

Intrusive Load Monitoring (NILM’20), pp. 30–33. 10.1145/3427771.3427849. 

• L. de Diego-Otón, Á. Hernández Alonso, R. Nieto Capuchino, & M. C. Pérez Rubio. (2021). Evaluación 

de una Arquitectura CNN para la Identificación de Cargas en NILM. In the XXVIII Seminario Anual De 

Automática, Electrónica Industrial E Instrumentación (SAAEI’21), pp. 116-121.  

• R. Nieto, L. de Diego-Otón, Á. Hernández, & J. Ureña. (2021). Data Collection and Cloud Processing 

Architecture Applied to NILM Techniques for Independent Living. In the IEEE International 

Instrumentation and Measurement Technology Conference (I2MTC'21), pp. 1-6. 

10.1109/I2MTC50364.2021.9460010. 
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• L. de Diego-Otón, Á. Hernández Alonso, R. Nieto Capuchino, & M. C. Pérez Rubio. (2022). 

Comparison of Neural Networks for High-Sampling Rate NILM Scenario. In the IEEE International 

Symposium on Medical Measurements and Applications Proceedings (MeMeA’22). 

 

• R. Nieto Capuchino, L. de Diego-Otón, Á. Hernández, J. Ureña. Design of a SoC Architecture for High-

Sampling Non-Intrusive Load Monitoring Systems. In the IEEE Transactions on Instrumentation and 

Measurement. Submission expected in July 2022. 

 

  



Chapter 2    Background 

19 
  

 
 
 

 

Chapter 2    Background 
 
 
 

This chapter serves as a general presentation of the baseline scenario from which this project is 

established. Thus, the object of study is situated within a broader theoretical approach that includes the 

concept and applications of the NILM techniques and the operation of the algorithms used for the distinction 

of domestic loads, analysing more in depth the ANNs. 

 

2.1 NILM techniques 

As mentioned above, NILM systems are capable of identifying the specific device that is being used by 

processing the main consumption signals recorded by the SM in the house. In addition, because there is no 

need to connect individual monitors on each device, it can be said that NILM represents a low-cost and non-

intrusive alternative. The ability to distinguish is essentially since, although two devices consume the same 

total power, they may have different impedances and the effects on voltage and current signals are also 

different. As can be observed in Figure 2, the procedure required to distinguish these events consists of 

several parts involving data acquisition, feature extraction and load disaggregation. 

 

 
Figure 2. Relevant aspects of the parts of the NILM procedure. 

 

Data collection is a key aspect that influences system-wide performance and defines which applications 

or challenges can be addressed. As discussed above, the SM performs this task by measuring the voltage and 

current consumed in homes or buildings. In this stage, determining the sampling frequency is crucial. 

Previous works (A. S. Siddiqui & A. M. Sibal, 2020) have already shown that sampling frequencies in the kHz 

range (high frequency) are more suitable for these techniques than rates around 1Hz (low frequency). The 

main reason is that high frequencies allow deeper analysis of measurements and therefore the extraction of 

more significant features, which can help achieve a better result since they make possible to distinguish 

loads with lower energy consumption. The features of interest can be classified depending on where they 

are extracted (J. Revuelta Herrero et al., 2018). 
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• Steady State signatures 

As its name reveals, they are extracted during steady state. However, whether the sampling process is at 

high or low frequency, they can be information of waveform distortion or they can be power-related 

attributes, respectively. 

• Transient State signatures 

In this case, they are obtained from the transient state, and they have less similarity between appliances 

compared to the previous group. Nevertheless, to obtain them it is required high sampling rate. 

• Non-Traditional signatures 

These characteristics do not require large sample rates because they involve aspects such as the 

frequency of daily use or the time interval that the device can be statistically turned on. 

 

The selection of one or another feature also depends on the approach of the disaggregation stage: event-

based or eventless. First of all, in NILM an event is defined as the state transition of the aggregate electrical 

measurements. What differentiates these approaches is that: 

• Event-Based 

The method is focused on detecting events and classifying the appliances associated with the features of 

these events. 

• Eventless 

By contrast, these algorithms use the measured features in an attempt to infer the state of the different 

appliances that are operating at a given instant. 

 

However, the problem can become more complicated since the number of operating states differs 

between the electronic devices. Commonly, four types can be distinguishing, whose functionality is 

represented in Figure 3: 

• On/Off devices 

Appliances characterized by consuming a constant level during their stable state of operation. Most 

household electrical devices are included in this category. 

• Always-On devices 

They also have an almost constant consumption but operate 24 hours. 

• Multi-state devices or Finite State Machines (FSM) 

In this group the devices have more than one active state and with different levels of consumption, 

typically on a rolling basis. 

• Continuously Varying devices 

The consumption of these devices varies over time but not on a rolling basis, consequently, the set of 

states is not possible to be disaggregated. 
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Figure 3. Classification of electronic devices depending on the operating states. 

 

NILM techniques have some predominant applications directly related with the consumption (D. 

Christensen et al., 2012). For example, the most widespread application is to provide detailed bill 

information to users, which allows them to have some of the necessary tools to reduce their expenses. This 

information can also contribute to energy efficiency by allowing energy consumption to be optimized with 

simple actions such as avoiding unnecessary switching that produce unwanted consumption or selecting the 

appropriate time to use some specific devices whose consumption is determinist. In these terms, NILM is 

expected to have a significant impact in the coming years as the use of smart grids and demand response 

programs spreads. On the other hand, the monitoring of household appliances can be derived in a remote 

indirect health monitoring (A. Ruano et al., 2019; S. Dai et al., 2021; Y. H. Lin, 2022) since daily activities 

within the home are strongly connected to the use of some of these devices. From the measurements 

obtained by the SM can be inferred the ability of the person to perform what is called Activities of Daily 

Living (ADL), in other words, routine activities people do every day without assistance (S. Katz, 1983). This 

use case is and will be an intense topic of study due to the fact that the increase in life expectancy leads to a 

growth of the elderly population, and this part of the population requires special care to guarantee the best 

possible quality of life, especially in their own homes. Finally, other applications of these techniques linked 

to the previous points (B. Najafi et al., 2018) are occupancy detection which may be used by companies to 

offer an additional service without deploying any extra sensor; and illegal load detection that allows to 

identify possible energy thefts in both, public and private, buildings. 

 
2.1 Appliances Identification methods 

Once the type of disaggregation method has been selected and the features of interest have been 

extracted, it is the turn to define the algorithms used to determine the devices to which these operating 

characteristics belong. The process these intelligent systems use to distinguish objects is similar to that of 

humans. For example, the most common learning task is when a human or machine is trained to classify 

and, to do that, a set of samples along with their class labels are showed to them. However, the learning 

process can follow two principal approaches: supervised and unsupervised.  

• Supervised learning 

The algorithms make predictions about the training data by comparing it with the result and adjust their 

parameters until the correct answer is obtained. 

• Unsupervised learning 

These models work on their own to extract the unlabelled data structure. 
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In addition to this main different, and as a consequence, each approach has different principal tasks. For 

example, supervised learning is used for classification and regression problems, whereas unsupervised 

learning is applied to clustering or dimensionality reduction applications. Furthermore, unsupervised 

learning approach is greatly studied due to the fact that it requires minimal or no prior information; 

however, in general, compared to supervised disaggregation methods, they obtain lower accuracy. On the 

other hand, there is another approach that can be considered as an intermediate state between the previous 

ones, known as “semi-supervised”, and that needs to train a little amount of data at the beginning of the 

process to perform the task for which it has been defined. 

Hereinafter, the most widely applied techniques based on both supervised and unsupervised learning 

approaches, whose classification is represented in Figure 4, will be listed. In the case of the ANN, its 

description will be made in its own section due to its relevance for this Master’s Thesis. 

 
Figure 4. Classification of identification methods. 

 

Firstly, the most relevant supervised learning methods will be described below: 

• Decision tree 

Decision tree learning belongs to the supervised learning methods (M. Somvanshi et al., 2016). It is a 

predictive model, used for regression and classification, that is among the most popular machine learning 

algorithms given its intelligibility. This model allows to predict the value of the target variable by learning 

decision rules inferred from the training data. Decision rules are usually based on simple comparisons 

between the values of the new attribute with the attribute of the record. Then, the continuous division of 

the data through the different decision nodes occurs to finally reach the decision sheets, which are the 

final outcomes. Within the framework of NILM, (T. -T. -H. Le et al., 2020) proposed a method called FFT-

BDT. This structure is based on the steady-state characteristics extracted through the FFT process (“Fast 

Fourier Transform”), from the magnitude and phase of the electric current, which are used as the input of 

a bagging decision tree. Additionally, in (M. Nguyen et al., 2015) a decision tree is developed using the 

change in the measured power components calculated from the voltage and current signals. 

• Support Vector Machine  

Support Vector Machines (SVM) are a set of supervised learning methods used for classification, 

regression, and outliers’ detection (M. Somvanshi et al., 2016). Being based on static learning frameworks 

of Vapnik-Chervonenkis theory (V. Cherkassky & F. Mulier, 1999), SVMs are known as the most robust 

prediction algorithms. In this context, data points are seen as p-dimensional vectors and the goal of these 

algorithms is to construct the hyperplane, in a high-dimensional space, that can separate the classes to 
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which these data points belong. The mappings used by SVM schemes are designed to ensure that dot 

products of input data vectors pairs may be computed easily by defining them in terms of a kernel 

function (A. Patle & D. S. Chouhan, 2013). Following this methodology, hyperplanes are defined as the set 

of points whose dot product with a vector in that space is constant. Generally, there are many 

hyperplanes that could achieve the final goal, however, the best of them is the one that implies the 

greatest margin or separation between the nearest data point of any class. Moreover, although they are 

mostly used for non-probabilistic linear binary tasks, SVMs are able to perform non-linear classification 

by using different kernel functions. In (A. S. Hernandez et al., 2021) a small-scale NILM system is defined 

where a SVM is used to extract and classify loads. Moreover, the proposed system in (Y. Lin & M. Tsai, 

2011) uses a hierarchical SVM as a load identifier, which is able to identify the load operation state of 

single or multiple load operation scenarios. 

• Naïve Bayes Classifier 

Naïve Bayes classifiers are among the simplest and most effective Bayesian network models used for 

classification. The seed of these classifiers is Bayes’ Theorem (P. Schulman, 1984), however, they assume 

that the value of each of the characteristics is independent of the value of any other, given the class 

variable. The procedure consists of using Bayes’ Theorem to obtain the subsequent probability from the 

frequency data probabilities of given features. Furthermore, this type of classifiers requires a supervised 

learning training process and, although it could be useful for large datasets, it requires only a small 

number of samples to estimate the parameters necessary for classification. Regarding the NILM 

applications, (C. C. Yang et al., 2017) shows how the use of a Naïve Bayes classifier for the classification of 

disaggregated devices offers satisfactory results only for a single feature. In a more recent work, (P. Adjei 

et al., 2020), the disaggregation is obtained through the Gaussian Naïve Bayes classifier models based on 

the combination of appliances. 

• Logistic Regression 

Logistic regression (LR) (D. G. Kleinbaum & M. Klein, 2002), rather than being a regression model, is a 

statistical model used, above all, for binary classification problems. It is an effective supervised algorithm 

based on a logistic function, whose range is restricted between 0 and 1, and, compared to the linear 

algorithm, it does not require a linear relationship between the input variables and their predictions. The 

performing of this type of models is compared in (B. Bertalanic et al., 2021) with respect to other 

methods, such as the SVM, kNN, MLP and RF. However, in the context defined by the authors, the best 

results have been obtained with the SVM. 

• k-Nearest Neighbour 

The k-Nearest Neighbours (kNN) algorithm belongs to the supervised learning group, but it is non-

parametric (K. Taunk et al., 2019). It is used for both regression and classification tasks. Classification 

problems are solved by calculating the distances between a query and the rest of the data points and 

obtaining the most frequent label for a specific number k of the nearest data points, called as neighbours. 

In the case of regression problems, the average of the labels is calculated. In both cases, choosing the right 

k value is a key factor and normally this process is done by trying several values and choosing the one 

with the best results. An application example of these algorithms for energy efficiency is presented in (C. 

C. Yang et al., 2018). In this work, satisfactory results are obtained for both classifiers, kNN and Naïve 

Bayes, using a single feature and a combination of an ON-OFF based approach and the goodness-of-fit 

technique for event detection. 
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• Random Forest 

Random forest (RF), also called as random decision forest, is an ensemble supervised learning method for 

applications such as classification and regression (L. Breiman, 2001). It is built by multitude of decision 

trees combined by using the bagging or bootstrap aggregation ensemble technique. This method creates 

different subsets from the training data samples and the final result is based on the majority vote for 

classification or averaging for regression, as in the previous algorithm. In (Z. Xiao et al., 2021) a specific 

NILM application for disaggregating the cooling loads is presented. The method used is based on RF, 

although two approaches are defined depending on the availability of weather data. In a general way, (Wu 

et al., 2019) proposes a classification method which also uses RF as a learning algorithm. In this case, the 

algorithm outperforms other classification results obtained in previous works. 

 

Second, the best-known unsupervised learning methods will be presented: 

• Hidden Markov Models 

Hidden Markov Models (HMM) are statistical algorithms based on the Markov chain, which is a model 

capable of offering information about the probabilities of sequences of random variables, also called 

states or events. Furthermore, the Markov chain assumes that all that matters is the current state if the 

goal is to predict the future in the sequence, in other words, states before the current state has no impact 

on the future. However, the functionality of Markov chain is limited due to the fact that, in many cases, the 

states of interest are hidden. For instance, in NILM the visible sequence would be the aggregate 

consumption and the hidden events, the states of each device. HMMs allow working with observed events 

and hidden events, which are considered causal factors in the probabilistic model. In addition, for this 

type of models that contain hidden variables, it is critical to determine which sequence of variables is the 

underlying source of some sequence of observations. This task is called decoding task and algorithms 

such as Viterbi’s algorithm (G. D. Forney, 1973) are commonly used to perform it. In (H. Kim, 2011) an 

existing factorial HMM model and other three new models are used, with low-frequency measurements, 

with the aim of defining an effective method that would facilitate the conservation of electricity in 

residential environments. 

• Principal Component Analysis 

Principal component analysis (PCA) is an unsupervised non-parametric statistical algorithm commonly 

used in a wide variety of applications. It is based on the process of calculating the Principal Components 

(M. Bilodeau & D. Brenner, 1999), which can describe the data points using fewer dimensions. The main 

components of a set of data points are calculated vectors that, for example, explain the greatest amount of 

variance in the original data. This original data can be represented as features vectors and the PCA allows 

to represent this data as linear combinations of principal components. In the context of NILM, these types 

of algorithms are generally used to display high-dimensional data in a low-dimensional space or feature 

subset by preserving maximum information of the initial data, such as in (A. Moradzadeh et al., 2020) or 

(S. Qi et al., 2021). 

• K-Means clustering 

K-means clustering is one of the simplest unsupervised algorithms (S. Na et al., 2010). The method works 

as follows: the first step is to randomly select some data points, which will be called centroids; with these 

initial points for each cluster, an iterative process of calculating the optimized positions of the centroids 

will be carried out; the process stops when the centroids have stabilized, or the defined number of 
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iterations has been reached. By using this method, in (P. G. Papageorgiou et al., 2021), it was possible to 

form unlabelled datasets from information on current amplitudes for the first three odd harmonic orders 

produced by different combinations of devices operating simultaneously. Furthermore, in (A. Yasin & S. A. 

Khan, 2018), by combining this methodology with and event detector and an on-off paring stage, a 

complete NILM system is proposed. 

• Singular Value Decomposition 

Singular Value Decomposition (SVD) (X. Li et al., 2019) is the last of the unsupervised learning algorithms 

detailed in this section. Essentially, SVD is the factorization of a matrix into three matrices and is used to 

extract the most relevant features from the original matrix containing the vectorized data. In order to use 

this method to solve classification or regression problems, some other algorithms are used to complete 

the process. This may be why this type of learning method has not been widely used for energy 

disaggregation in the application of NILM. 

 
2.2 Artificial Neural Networks 

Artificial Neural Networks are a subset of machine learning which is at the heart of deep learning. As 

could be observed in Figure 4, ANNs could be trained with a supervised and unsupervised learning process. 

However, before talking about the learning process, it should be clear how they work and what their 

structure is. As their name suggests, its structure is inspired by the human brain and mimics the way 

biological neurons connect to each other. These neurons will be the fundamental units of the structure. In 

this context, each of these units processes a specific input, by using a particular function, and the extracted 

information is sent to the next neuron. These neurons are arranged in layers where they work together and, 

consequently, the typical architecture of RNAs contains an input layer, one or more hidden layers, and an 

output layer. The learning process is carried out by adjusting the weights and bias that are associated with 

the connections between neurons, which makes it possible for it to adapt to the particular problem at hand. 

The training process relies on improving the accuracy over time. The evaluation of this accuracy is done by 

using a cost-loss function. The ultimate goal is to minimize this cost function hence the model makes 

adjustments through gradient descent to reach the point of convergence or local minimum. 

Neural networks can be classified into different types depending on the purpose. However, the following 

types are the most common architectures: 

• Perceptron 

The Perceptron is the oldest and simplest one, created by Frank Rosenblatt in 1958 (F. Rosenblatt, 1958), 

and is has a single neuron. It is an algorithm used for binary classifications trained by supervised learning. 

In practice, these types of neural networks are replaced by the structures detailed below. 

• Multi-Layer Perceptron 

The Multi-Layer Perceptron (MLP), also called feedforward neural network, consists of multiple layers, 

where they are interconnected in such a way that each neuron in a layer has direct connections to the 

neurons of the following layer and there are no feedback connections. MLP uses a supervised learning 

technique for training called backpropagation, which, once the results’ error has been obtained, travels 

back from the output layer to the hidden layers to adjust the weights in such a way that the error 

decreases. The process keeps repeating until the desired result is achieved. In the field of NILM, one of the 

most recent works (S. Yaemprayoon & J. Srinonchat, 2022) proposed an algorithm that recognize the load 

signatures extracted from the kurtogram technique and works well for high power consumption loads. 

Likewise, proposals have been developed that unite the use of MLP together with other statistical models, 



Chapter 2    Background 

26 
  

such as goodness of fit (A. R. Rababaah & E. Tebekaemi, 2012), to detect and classify events produced by 

residential loads. 

• Recurrent Neural Network 

Recurrent Neural Networks (RNNs) are feedforward neural networks that are extended and include 

feedback connections. These ANNs are commonly uses to process sequential data or time series data such 

as in language translation or speech recognition applications. They are distinguished by their memory, so 

the assumption that the inputs and outputs are independent of each other is no longer valid. However, 

these architectures tend to run into the vanish gradient problem. This problem is that the size of the 

gradient, which is defined as the slope of the loss function along the error curve, continuously decreases 

by updating the weight parameters until they become insignificant and therefore the algorithm can no 

longer learn. Short-Term Long Memory units (LSTMs) (S. Hochreiter & J. Schmidhuber, 1997) try to 

overcome this problem by using their forget gate that allows to decide whether or not the information 

should be forgotten and update the parameters of the model accordingly. In addition to the LSTM 

architectures there are other variants of RNNs, for instance, the Bidirectional Recurrent Neural Networks 

(BRNNs) (M. Schuster & K. Paliwal, 1997) and the Gated Recurrent Units (GRUs) (K. Cho et al., 2014). In 

relation with this last variant, in (T. Le et al., 2016) it is implemented as an energy disaggregation 

classifier with results comparable to previous work. More recently, in (H. Rafiq et al., 2020) a 

disaggregation algorithm based on a deep LSTM network has been proposed for low-frequency electrical 

measurements. 

• Convolutional Neural Network 

Convolutional Neural Networks (CNNs) (K. O'Shea & R. Nash, 2015) are similar to feedforward networks, 

but these algorithms use the principles of linear algebra, particularly matrix multiplication, to identify 

patterns within an image. For that reason, they are the most applied to analyse images in tasks such as 

image classification and object recognition. The layers of these architectures are arranged in such a way 

that the neurons cover the entire visual field of the input data, avoiding the problem of fragmentary 

processing of other neural networks. Hidden layers include multiple convolutional layers, pooling layers, 

fully connected layers, and normalization layers; which are designed to reduce processing requirements 

throughout the architecture. With regard to the application of these networks in NILM, for example in (F. 

Ciancetta et al., 2021) the proposal recognizes a device whether it works in a singular way or in 

combination with other loads with low error rates for event detection and classification. Furthermore, (H. 

Grover et al., 2022) has proposed an architecture called Mh-Net CNN to identify the energy consumption 

and time-of-use of individual appliances connected in a building microgrid. 

• Autoencoder 

Autoencoders are the benchmark unsupervised neural network (P. Baldi, 2011). They are defined as 

feedforward networks that aim to regenerate the input from the reduced dimensionality encoding by 

ignoring insignificant data, such as noise. Within this type of ANN there are variants with the aim of 

changing the useful properties that must be learned in the training process. For instance, regularized 

autoencoders (Y. Bengio et al., 2013) are effective in learning representations for subsequent 

classification tasks, and variational autoencoders (D. P. Kingma & M. Welling, 2019), with applications as 

generative models. In (S. Verma et al., 2021), where a LSTM autoencoder is proposed, NILM is presented 

for the first time as a dynamic modelling problem, while it is posed as a multi-label classification. 

Moreover, autoencoders used in NILM usually treat unconcerned devices as “noise”, such as in (X. He et 

al., 2022) where the proposed method is based on a denoising autoencoder, which is able to identify the 

consumption and the operation state. 
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The main advantage of ANN approaches over other statistical methods is that they are non-parametric 

models, this implies that they need less statistical background and can therefore be seen as simpler 

algorithms to use. Nevertheless, they have some disadvantages related to the computational cost which is 

considerable and implies long training periods, reaching even days, and the requirement to use a large 

amount of data also in this process. Additionally, ANNs are black box models that do not have the ability to 

interpret the relationship between inputs and outputs, but also, they cannot deal with uncertainties in the 

parameters of the model or in the observed data. Even so, it should be noted that ANNs represent a useful 

tool for processing data, since they have great capacity to extract the relevant information that allows to 

derive the hierarchy of the characteristics and thus be able to perform the tasks for which they were 

specifically created by training the architectures beforehand. 

 
2.3 Summary 

The current chapter has presented the available knowledge of NILM techniques, and the methods used 

for the load disaggregation stage of its procedure. The main objective is to offer the most relevant 

information on the subject on which this project is based to facilitate the understanding of the subsequent 

chapters and the reason why this thesis has been developed. For that purpose, an explanation of what the 

term NILM means has been developed, the set of actions involved in these techniques has been detailed, and 

their main applications have been presented. In addition, a review of the algorithms used for the distinction 

of household loads has been included, distinguishing between supervised and unsupervised learning 

approaches. On the other hand, the ANNs have been examined in more depth in a separate section, due to 

their relevance. In this part of the chapter, different topologies have been analysed to illustrate the variety of 

existing architectures depending on the applications. Table 1 summarizes the provided information on some 

of the most recent NILM-related work that used the methods discussed above. Finally, the chapter continues 

to present the advantages and disadvantages of ANNs compared to other methods, justifying their choice for 

the development of this Master’s Thesis.  
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Table 1. Summary of the methods proposed in previous works. 

PREVIOUS WORKS METHOD 

(T. -T. -H. Le et al., 2020) FFT-BDT 

(M. Nguyen et al., 2015) DT 

(A. S. Hernández et al., 2021) SVM 

(Y. Lin & M. Tsai, 2011) HSVM 

(C. C. Yang et al., 2017) Naïve Bayes Classifier 

(P. Adjei et al., 2020) Gaussian Naïve Bayes Classifier 

(B. Bertalanic et al., 2021) SVM, kNN, MLP, LR, RF 

(C. C. Yang et al., 2018) kNN and Naïve Bayes Classifier 

(Z. Xiao et al., 2021) RF (cooling loads) 

(Wu et al., 2019) RF 

(H. Kim, 2011) FHMM, FHSMM, CFHMM and CFHSMM 

(A. Moradzadeh et al., 2020) PCA 

(S. Qi et al., 2021) PCA 

(P. G. Papageorgiou et al., 2021) DFFT and k-Means 

(A. Yasin & S. A. Khan, 2018) Event detection, k-Means, and on-off paring 

(S. Yaemprayoon & J. Srinonchat, 2022) MLP 

(A. R. Rababaah & E. Tebekaemi, 2012) MLP and goodness of fit 

(T. Le et al., 2016) GRU network 

(H. Rafiq et al., 2020) Deep LSTM network 

(F. Ciancetta et al., 2021) CNN 

(H. Grover et al., 2022) Mh-net CNN 

(S. Verma et al., 2021) LSTM autoencoder 

(X. He et al., 2022) Denoising autoencoder 
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Chapter 3    Proposed architectures 
 
 
 

This chapter will describe the proposed architectures for the identification of the loads. Altogether, three 

different architectures have been defined: the first architecture is based on RNN and the other two, on CNN. 

However, all of them share the same processing structure, which is designed in such a way that there is a 

first stage, where the input samples are adapted for the proper function of the second and last stage, which 

deal with the classification of the load making use of neural networks.  

 

3.1 Recurrent architecture 

The following sections will explain in detail the pre-processing and load classification stage for the 

recurrent topology approach. It is worth mentioning that this first approach is based on the one presented 

for a low sampling frequency analysis in (L. de Diego Otón, 2020). 

 
3.1.1 Pre-processing Stage 

In this architecture, the measured raw electric current signal is used as a source of information about the 

use of the different household appliances by examining the effects produced in this magnitude. Although 

this signal is initially sampled at a frequency of 12kHz, to decrease the amount of data to be processed, this 

frequency is reduced to 4kHz by taking one out of every three samples. As a consequence, it is true that this 

process involves the deterioration of the accuracy of the captured waveform, as can be observed in Figure 5. 

From an analysis of the frequency components, some information is lost at frequencies above 4 kHz, 

although this information cannot be seen in the figure. Additionally, this process can be considered as an 

adaptation to the operation of commercial Analog Front-Ends (AFE), such as the one used for the 

experimental tests carried out in the context of the project to which this proposal belongs. 
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Figure 5. Effects in the time domain and frequency components analysis. 

 

The inputs for the following stage are temporal windows around the detected events captured from the 

electric signal. In practice, these events are commonly defined as state transitions which exceeds a certain 

consumption level and has a duration longer than a defined minimum interval. Moreover, this is also a way 

to detect them through an intuitive processing which considers the amplitude and length of these noticeable 

changes in the signal. It is noteworthy that, by doing so, noise and oscillations introduced into the signal due 

to the own operation of the electrical devices or the measuring instruments are filtered. On the other hand, 

and as stated above, among the electronic devices there are different types of operating states, but also, 

consumption levels vary. Hence, the effects on the current of low-power devices may be less appreciable 

compared to those with higher consumption at the classification stage. For that reason, and in order to use a 

common scale, the signal is normalized by adjusting the values between -1 and +1 within each window. This 

specific range is selected due to the fact that the units of the classification architecture use functions for the 

processing of these inputs that saturate at those limits and, therefore, vanishing gradient problems may 

appear if they are exceeded. Besides the limits on the amplitude of the signal, another important aspect that 

will characterize the input windows for the classification stage is the length. This length should be defined in 

such a way that the window provides enough information on the changes that occurred at the change of 

state and during its subsequent transient. Experimentally, its value has been set at 4096 samples. This 

length for a 4 kHz frequency constitutes a time period of 1.024 s, which contains between 51 or 62 cycles of 

the electric current signal based on the fact that the fundamental frequency of the power grid is 50 Hz or 60 

Hz, depending on the country. Regards to the above, the resulting temporary windows are seen as the 

examples shown below in Figure 6. The same events will be used for the rest of the architecture examples. 
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Figure 6. Examples of input samples for the RNN of on events of (a) refrigerator, (b) hair dryer and (c) garage door. 

 

In accordance with this section, one point that should be underlined is that, although the classification 

system does not have information about the actual amplitude of the detected events, the waveform of the 

signal will become the fundamental factor in distinguishing electrical loads. 
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3.1.2 Load Classification Stage 

In this second stage, the goal is to classify events within the current according to the device that 

produced them. For that proposed, in this first approach a recurrent topology based on LSTM cells will be 

used. Hereafter, a brief outline of the structure of these cells is included in order to properly understand 

how they are able to learn long-term dependencies over time.  

They are composed of a cell state 𝑐𝑡 which is capable of remembering values from arbitrary previous 

time intervals; a hidden state ℎ𝑡 also considered as the output vector of the LSTM unit; and three gates that 

control the data flow that enters, exits, and remains within the cell, respectively: input gate 𝑖𝑡, output gate 𝑜𝑡, 

and forget gate 𝑓
𝑡
. In addition, there is an extra cell called candidate 𝑔

𝑡
 that could be added to the state or 

not. The structure of the LSTM units is shown in Figure 7 and its operation follows the steps below: 

1) Firstly, the information to discard is selected (3.1). This decision is made by the forget gate 𝑓
𝑡
 which 

takes the previous hidden state ℎ𝑡−1, together with the current input 𝑥𝑡, and outputs a number 

between 0 and 1 using a sigmoid function 𝜎 (3.7). The meaning of this output oscillates between 

getting rid of this information and keeping it, respectively.  

𝑓
𝑡

= 𝜎(𝑊𝑓 · 𝑥𝑡 + 𝑅𝑓 · ℎ𝑡−1 + 𝑏𝑓) (3.1) 

2) The following step is to decide the new data that is going to be stored in the cell state 𝑐𝑡 where two 

contributions are combined. On the one hand, another sigmoid function that makes the choice of 

which values will be updated in the input gate 𝑖𝑡 (3.2). On the other hand, a hyperbolic tangent 

function 𝑡𝑎𝑛ℎ (3.8) in the candidate cell 𝑔
𝑡
 has the capacity of adding new values to the state (3.3). 

𝑖𝑡 = 𝜎(𝑊𝑖 · 𝑥𝑡 + 𝑅𝑖 · ℎ𝑡−1 + 𝑏𝑖) (3.2) 

𝑔
𝑡

= 𝑡𝑎𝑛ℎ(𝑊𝑔 · 𝑥𝑡 + 𝑅𝑔 · ℎ𝑡−1 + 𝑏𝑔) (3.3) 

3) Once the forget gate and the input gate are calculated, it is time to update the previous cell state 𝑐𝑡 

(3.4). In short, the values to be forgotten from the old state are removed and the new candidates are 

added, scaled by how much it is decided to update them. 

𝑐𝑡 = 𝑓
𝑡

⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔
𝑡
 (3.4) 

4) Finally, the output of the cell remains to be calculated (3.5). The cell state 𝑐𝑡 is passed through a 

hyperbolic tangent function to scale its values between -1 and 1 and them, filtered using the output 

gate 𝑜𝑡 (3.6) which is obtained by a sigmoid function. 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (3.5) 

𝑜𝑡 = 𝜎(𝑊𝑜 · 𝑥𝑡 + 𝑅𝑜 · ℎ𝑡−1 + 𝑏𝑜) (3.6) 
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Figure 7. Flow data diagram of the LSTM cell. 

 

It is important to make clear some aspects mentioned above. For instance, the symbol ⊙ represents the  

Hadamard product (G. P. H. Styan, 1973) which is a matrix binary operation, similar to matrix addition, that 

produces an array of the same dimensions as the two matrixes of operands and where the elements are the 

product of the elements of the original matrices corresponding to the same row and column. Moreover, the 

sigmoid (3.7) and hyperbolic tangent (3.8) are activation functions (J. Lederer, 2021). As has been observed, 

this type of function in the context of neural networks defines how the weighted sum of the input is 

transformed into an output, incorporating the nonlinear behaviour of the cell. Both functions have a 

characteristic S-shape, as can be observed in Figure 8 and Figure 9. Particularly, the hyperbolic tangent 

function is shifted and scaled version of the sigmoid or logistic function. 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (3.7) 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (3.8) 

 

 
Figure 8. Representation of the sigmoid function (3.7). 
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Figure 9. Representation of the hyperbolic tangent function (3.8). 

 

In addition to the LSTM layer, that has been described in detail due to its relevance for the functionality 

of this specific network, the rest of the layers will be explained hereunder together with the structure, 

shown in Figure 10. Specifically, the architecture used in this first approach is similar to the first version 

defined in (L. de Diego Otón, 2020). 

• Input Layer 

It is used as an entry point to the network. Within its parameters, the input shape matches the dimensions 

of the temporal windows. 

• LSTM 1 Layer 

This first LSTM, as well as the next, will extract the relevant information throughout the input sequence. 

In this case, the number of units corresponds to 1/20 of the length of the input sequence because after a 

set of tests this configuration produced the most outstanding results. In addition, the activation function 

by default are the ones previously described. On the other hand, another key parameter of this specific 

layer is that it has been defined so that it provides the full sequence output rather than the last output 

value to the LSTM layer below. This is in order to build a stacked LSTM configuration that adds depth in 

space to the inherent temporal depth of these types of layers. This structure was first used in (A. Graves et 

al., 2013) for its application in speech recognition. 

• LSTM 2 Layer 

As mentioned, this layer works alongside the previous one because, in addition to being able to create a 

more complex feature representation of the current input, increasing the depth of the network provides 

an alternative solution that requires fewer neurons and trains faster (A. Graves et al., 2013). Moreover, 

with respect to the previous LSTM layer, the number of units is halved to reduce the information used for 

classification. 

• Dense Layer 

It performs the classification process, so the number of units, and consequently the number of outputs, 

corresponds to the number of devices involved in the energy disaggregation. From this layer it stands out 

that the activation function in this case is the one called as SoftMax or normalized exponential function (J. 

Lederer, 2021). This is because a function that converts the information extracted from the stacked LSTM 
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layers into a probability distribution is needed for the sorting. This function is defined by the formula 

(3.9) where it is applied standard exponential function to each element 𝑥𝑖 of the vector 𝒙 and normalizes 

these values by dividing it by the sum of all the exponentials. This calculation ensures that the sum of the 

output is 1. 

𝜎(𝒙)𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐾
𝑗=1

    𝑓𝑜𝑟 𝑖 = 1, … , 𝐾 𝑎𝑛𝑑 𝒙 = (𝑥1, … , 𝑥𝐾) ∈ ℝ𝐾 (3.9) 

 
Figure 10. Structure of the proposed recurrent neural network (L. de Diego-Otón et al., 2022). 

 

3.2 Convolutional architectures 

The section will describe both stages of the two CNN-based structures differentiated by the relevant 

characteristics extracted from the input samples in the time or frequency domain, respectively. In addition, 

it should be noted that the one that works in the time domain was presented in (L. de Diego-Otón et al., 

2021). 

 
3.2.1 Pre-processing Stage 

Temporary windows used as inputs samples of the network from the first proposed architecture will 

also be used for these architectures. Nevertheless, since the neural network topology used in these 

approaches is convolutional, and they are commonly used to work with images, the temporary samples will 

be transformed into images. 

For the first CNN-based architecture, the temporal window is divided into sections with a fixed length, 

these sections are introduced into the rows of a matrix, and, eventually, this matrix is transformed into a 

grayscale image. The image creation process was presented in (L. de Diego-Otón et al., 2021). Since the total 

length of the temporal window is 4096, the time window is divided into 64 sections with a length of 64 

samples, in order to obtain squared images with dimensions of 64×64. Regarding this matter, the possibility 
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of using other lengths for the time window had been analysed, however, smaller dimensions imply not 

having enough information about the transient state, whereas higher dimensions require an unnecessary 

computation load because most of the window does not have relevant information. Furthermore, the 

possibility of use images created with overlaps between sections had also been studied to focus the 

attention on the event, downplaying the fragments before and after the event. Nonetheless, images without 

applying any overlap have only been considered in order to take these permanent regimes into account in 

the classification of loads and due to the fact that, in general, although non-overlapping can result in event 

losses if the change is between two divisions, the performance of classifiers is comparable to that obtained 

with overlapping (A. Dehghani et al., 2019). Figure 11 shows an example of the resulting images used for 

this first architecture. 

 
Figure 11. Examples of input samples for the first CNN of on events of (a) refrigerator, (b) hair dryer and (c) garage door. 

 

In the second architecture, the input images of the classification stage are obtained from the outcomes of 

the Short Time Fourier Transform (STFT) of the temporal windows (K. Gröchenig, 2001). This process 

consists of a Fourier-related transformation of local sections, which is performed to determine the 

frequency and phase content of the signal as it changes over time. It should be noted that whereas the STFT 

is used in conditions where the frequency components vary over time, the standard FTT provides the 

averaged information for the entire time interval of the signal (N. Kehtarnavaz, 2008). Moreover, STFT 

results are 2D matrices made up of complex numbers where the information is represented as frequency 

versus time, often represented as a graph called Spectrogram. However, when transforming these matrices 

into images it is sought not to lose information, so these complex numbers are divided creating two different 

matrices. With regard to this division, two different forms of division have been considered: distinguishing 
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between magnitude and phase, or between the real and imaginary part. The values of the matrices obtained 

are expressed in grayscale and divided into two because they have an absolute symmetry. For that reason, 

the resulting dimension is 320×320 and the final input images used for the classification are such as those 

shown in Figure 12. 

 
Figure 12. Examples of input samples for the second CNN of on events of (a) refrigerator, (b) hair dryer and (c) garage door. 
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3.2.2 Load Classification Stage 

For the classification of the images created in the previous stage, as has already been mentioned, a 

convolutional neural network topology will be used. The core component used in this type of algorithms is 

the convolutional layer, as its name suggests. For that reason, it will be the one to focus on before entire 

setup is described. 

As said, the convolutional layer performs an operation that gives it its name, the convolution. This 

mathematical operation performed on two functions (typically 𝑓and 𝑔) to obtain a third function. Explicitly, 

it is defined as the integral of the product of the two functions, having one of them reversed and shifted 

(3.10). The convolution operation is typically denoted with an asterisk. 

(𝑓 ∗ 𝑔)(𝑡): = ∫ 𝑓(𝜏) · 𝑔(𝑡 − 𝜏) 𝑑𝜏

∞

−∞

 (3.10) 

In the context of neural networks or image processing, the convolutional operation involves the 

multiplication of an array of input data with a filter or kernel, which is defined as a two-dimensional array of 

weights, obtaining a feature map. The process is represented in Figure 13. However, some convolutional 

neural networks in machine learning libraries are actually implemented using cross-correlation (P. Bourke, 

1996) instead of convolution. The main difference is that in convolutional operation the kernel is flipped 

before sliding it through the image, whereas in cross-correlation the filter is used directly. The only reason 

to flip the kernel is to get the commutative property, which is usually not of great relevance in the 

implementation of a neural network because this does not change the model’s performance, but weights are 

just learned flipped and, therefore, cross-correlation is used. The size and values of the filter determine the 

transformation effect of the convolution process. Making the kernel smaller than the input, the network has 

sparse interaction which means that the memory requirements are reduced. Another important aspect 

related to storage requirements is that each kernel member is used at each position of the input, so instead 

of learning a separate set of parameters for each location, only one set is learned. In addition, this specific 

form of parameter sharing causes that the convolutional layer also has the property called equivariance, in 

other words, the output change in the same way as the input (I. Goodfellow et al., 2016). 

 
Figure 13. Convolutional operation graphical representation. 

 

As in the recurrent case, the configuration of the neural network, shown in Figure 15, and the rest of the 

layers will be defined thereupon. However, since there are two approaches to the pre-processing stage, two 

different neural networks were also created. For the first configuration that works in the time domain, the 

layers that form it are: 

• Input Layer 

It is used to introduce the images into the neural network and its shape corresponds to the images’ 

dimensions, which is 64×64. 
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• Convolutional 2D 1 Layer 

This first convolutional layer, as well as the next one, processes the images in order to extract the main 

characteristics of the localized events. Within the configuration, the kernel used is of 3×3 and the output 

space dimensionality is 16, since this is the number of filters that are used in this layer. 

• Max Pooling 1 Layer 

After each convolutional layer, there will be a pooling layer that will operate on top of the feature maps to 

create new smaller ones. As a result, this process also makes it possible to reduce the subsequent layers. 

The window size is 2×2 which means that each dimension is halved. In addition, this process involves the 

selection of the pooling operation and, as the name suggests, in this case, it will calculate the maximum 

value for each patch of the feature map. 

• Convolutional 2D 2 Layer 

As can be derived, there is more than one convolutional layer not only to improve the ability of extracting 

features, but also to obtain more complex characteristics. In this case, the dimensionality of the output 

space is 32, with again a kernel size of 3×3. 

• Max Pooling 2 Layer 

As mentioned, this layer is used to reduce the size of each feature map, also in this case, by a factor of 2 

because the size of the pooling filter is 2×2, prevailing the relevant characteristics of the images. 

• Flatten Layer 

This layer is used to transform the multidimensional input into a one-dimensional output whose shape is 

equal to the total number of elements contained in the feature map. Commonly used in the transition from 

the convolutional layer to the full connected layer, as on this occasion. 

• Fully connected Layer 

The flattened high-level features extracted from the previous layers are fed into the Fully Connected layer. 

Within this layer, each neuron has a connection with each of the next sub-layer, that is, there is a flow of 

information between each element of the feature map and this layer is able to extract the relation 

between all of them. Regarding the design of this layer, the number of units corresponds to the number of 

devices used in the classification process, and the activation function is the Rectified Linear Unit (ReLU). 

This function is defined as the positive part of its argument (3.11) and represented by a ramp whose slope 

starts in zero, as shown in Figure 14 (A. F. Agarap, 2018). 

𝑓(𝑥) = max(0, 𝑥) = 𝑥+ (3.11) 
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Figure 14. Representation of the Rectified Linear Unit function (3.11). 

• Dense Layer 

As in the recurrent architecture, the last layer that is responsible for classifying events is a dense one 

whose activation function is the SoftMax. 

 

 

 
Figure 15. Structure of the convolution neural network proposed for time domain inputs (L. de Diego-Otón et al., 2022). 

 

 

On the other hand, and as can be observed in Figure 16, the second configuration is made up by two 

branches based on the previous structure but with three stages for the characteristic extraction. The reason 

for including an extra stage is that the input images are much larger than in the previous case. Moreover, a 

concatenate layer is included in order to used jointly the processed information obtain in each branch from 

each pair of images. Be that as it may, the layers forming the neural network are: 

• Input 1 Layer and Input 2 Layer 

The input size corresponds to 320×320 which is the size of the STFT images. 
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• Convolutional 2D 1 Layer 

The kernel used in this architecture has the same dimension as in the previous case, this is to say, 3×3 in 

all the convolutional layers. Additionally, the number of filters for this first layer is 16, and through the 

successive layers this parameter will increase by 2. 

• Max Pooling 1 Layer 

The size of the filter will be 2×2 in this layer and the next two, because the goal is to divide in half the size 

of each feature map. 

• Convolutional 2D 2 Layer 

As mentioned earlier, the filter number is twice that of the first convolutional layer, which is the same as 

an output spatial dimensionality of 32. 

• Max Pooling 2 Layer 

As stated above, the dimensions of the filter are 2×2. 

• Convolutional 2D 3 Layer 

In the same way as before, in this layer the dimensionality of the output space increases to double with a 

number of filters of 64. 

• Max Pooling 3 Layer 

Following the same definition, 2×2 is the filter size in this layer. 

• Concatenate Layer 

This layer, as indicated above, is used to connect both branches to use the relevant characteristics of both 

images together in the final layers. 

• Flatten Layer 

It resizes the output dimension of the previous layer so that this information can be entered into the Fully 

Connected layer. 

• Fully connected Layer 

This layer has the capacity of extracting the relation between the elements of the features maps flattened 

through the interconnections of its units. In this case, the number of units does not correspond to the 

number of classes of devices used in the classification process because the trials indicate that it was a 

value too low for the transition. For that reason, it was defined for the value squared, 256. 

• Dense Layer 

Classification is performed on this layer using the SoftMax activation function. One aspect that may catch 

the reader's attention is that, in this case, the dimension is not 17, but is 16. This is because for 

classification one of the device classes is discarded, as will be explained in detail in the next chapter. 
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Figure 16. Structure of the convolution neural network proposed for frequency domain inputs (L. de Diego-Otón et al., 2022). 

 
3.3 Summary 

For the load identification stage, three different solutions have been presented. All of them use 

processed sections around the on/off events of the current signal, sampled at high frequency, as input to the 

neural networks that are included in the architectures. From these portions of the signal the information of 

interest of the time domain was extracted, except in the last case that uses the frequency domain features. 

Regarding the type of neural network, the first architecture contains a recurrent one based on LSTM layers, 

whereas for the other two solutions the topology is the convolutional one. Furthermore, all the layers 

functionalities and configurations were commented in detail. 
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In this chapter, the main findings will be presented and interpreted in order to show its significance to 

the research objectives. In addition, there will be an introductory section where contextual aspects will be 

addressed to better understand the achievement of these results. 

 

4.1 Context 

Validation of the algorithms discussed above will be performed using residential electricity usage 

samples provided by public databases due to the time-consuming process of making a real-world data 

collection. Table 2 compares the most renowned databases in terms of NILM. It is worth mentioning that, in 

this field, residential measurements are dominant against industrial datasets. 

The dataset used for this project is BLUED (“Building-Level fUlly labelled Electricity Disaggregation”). 

Among the great variety of this type of publicly available databases, this one has been chosen specifically 

due to its characteristics. The measured variables are the aggregated current-voltage pair sampled at a 

frequency of 12 kHz, considered high frequency, obtained from a single-family residence in Pittsburgh, 

Pennsylvania, U.S. Furthermore, the measurements were performed for a week. Based on aggregated 

captured signals, active and reactive power have been calculated at a rate of 60 Hz and included in this 

dataset. In addition, ground-truth is provided by labelling and time-stamping each state transition, or 

events, of the loads in the house thanks to plug-level meters, environmental sensors, and circuit panel 

meters. In this particular dataset, events are defined as changes of more than 30 Watts in power 

consumption that last, at least, 5 seconds. 

As discussed at the beginning of Chapter 3, inputs for the classification stage in all approaches were 

based on temporal windows around detected events. The exact location of events through the captured 

signal is carried out using the provided ground-truth, taking into account the down-sampling process 

implemented at the beginning of the pre-processing stage. Within the temporal windows the timestamp of 

each event will be located in the first quartet since it is necessary to include also its subsequent transient. 

Regarding the appliances, Table 3 shows the list of the specific electrical devices monitored during the 

data acquisition stage and the reorganization carried out to use them for the experimental testing of the 

approaches. In short, there are seventeen classes whose labels are those in the right column: lights and 

lamps of all rooms in the house (00), subcircuits of the distribution panel (01), garage door (02), kitchen aid 

chopper (03), refrigerator (04), A/V system of the living room (05), computer 1 (06), laptop 1 (07), 

basement receiver/DVR/Blu-ray Player (08), air compressor (09) LCD monitor 1 (10), television (11), 

printer (12), hair dryer (13), iron (14), empty socket of the living room (15), and monitor 2 (16). The total 

number of events per class obtained from the database is presented in Table 4. 

It is worth mentioning that labels 00 and 01 involve the events of different electrical devices, as can be 

observed in Table 3. In the case of lights and lamps, they are categorized together in this way because their 

consumption can be considered similar and, when distinguishing these loads separately, their classification 

can become more complex. On the other hand, devices that were not easily measured with plug meters or 
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environmental sensors were included in the database through the five distribution circuits. These 

subcircuits are all together because they represent a specific part of the electrical infrastructure, and due to 

the fact that the devices they comprise are not known. An important aspect to mention is that this lack of 

knowledge may negatively influence on the results of these approaches due to their supervised nature; 

however, a future unsupervised solution could solve this problem by grouping each event separately. 

 

Table 2. Comparison between NILM Datasets. 

NAME CITATION DATE COUNTRY 
SAMPLING 

FREQUENCY 
DURATION GROUND TRUTH 

ACS-Fl  (C. Gisler et al., 2013) - Switzerland 10 seconds 
2 sessions of 1 

hour each 
Plug-meters 

AMPds  
(S. Makonin et al., 

2016) 
2015 Canada 1 minute 2 years Submeter channels 

BLOND  
(T. Kriechbaumer & H. 

Jacobsen, 2018) 
2018 Germany 

50 kHz to 250 
kHz 

50 to 213 days 
Individual 
appliances 

BLUED  
(K. D. Anderson et al., 

2012) 
2012 US 12 kHz /60 Hz 8 days Labelled events 

COMBED  (N. Batra et al., 2014) - India 30 seconds 1 month - 

COOLL  (T. Picon et al., 2016) 2016 France 100 kHz 
840 waveforms 

(of 6 s each) 
Individual 
appliances 

Dataport  
(O. Parson et al., 

2015) 
2013 US 1 Hz to 1 minute 4 years Submeter channels 

ECO  (C. Beckel et al., 2014) - Switzerland 1 second 8 months Submeter channels 

GREEND  
(A. Monacchi et al., 

2014) 
2014 Austria, Italy 1 Hz 3-6 months - 

HES  
(J. P. Zimmermann et 

al., 2012) 
2012 UK 2 minutes 

1 year /1 
month 

Submeter channels 

HFED  (M. Gulati et al., 2014) 2015 - 10 kHz to 5 MHz - - 

iAWE  (N. Batra et al., 2013) 2013 India 1 Hz 73 days Submeter channels 

IHEPCDS  
(K. Bache & M. 

Lichman, 2013) 
- France 1 minute 4 years - 

LIT  
(D. P. Renaux et al., 

2020) 
- Brazil 15 kHz 30s to hours 

Individual 
appliances + 

labelled events 

PLAID  (J. Gao et al., 2014) 2014 US 30 kHz 
1094 

waveforms 
(of 1 s each) 

Individual 
appliances 

RAE  
(S. Makonin et al., 

2018) 
2018 Canada 1 Hz 72 days Submeter channels 

RBSA  (B. Larson et al., 2014) - 
Pacific 

Northwest, 
USA 

15 minutes 27 months Submeter channels 

REDD  
(J. Kolter & M. 

Johnson, 2011) 
2011 US 16,5 kHz /1 Hz 119 days Submeter channels 

REFIT  
(D. Murray et al., 

2017) 
2017 UK 8 seconds 2 years Submeter channels 

Smart*  (J. Schultz et al., 2000) 2012 US 1 Hz 3 months - 

SustDataED  
(M. Ribeiro et al., 

2016) 
2016 Portugal 12.8 kHz 10 days 

Individual 
appliances 

SynD  
(C. Klemenjak et al., 

2020) 
2020 Austria 5 Hz 180 days - 

Tracebase  
(A. Reinhardt et al., 

2012) 
2014 Germany 1 Hz 1 day 

Individual 
appliances 

UK-DALE  
(J. Kelly & W. 

Knottenbelt, 2015) 
2015 UK 16 kHz /1 Hz 2 years Submeter channels 

WHITED  (M. Kahl et al., 2016) 2016 Multiple 44 kHz 
5123 

waveforms 
(of 5 s each) 

Individual 
appliances 
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Table 3. Electrical devices monitored. 

NAME LABEL  

Living Room Desk Lamp 00 (1) 

Living Room Tall Desk Lamp 00  

Garage Door 02  

Kitchen Music -  

Kitchen Aid Chopper 03  

Refrigerator 04  

Living Room, A/V System 05  

Sub-Woofer LR -  

Computer 1 06  

Laptop 1 07  

Basement Receiver/DVR/Blu-ray Player 08  

Sub-Woofer Basement -  

Air Compressor 09  

LCD Monitor 1 10  

TV 11  

Hard Drive -  

Printer 12  

Hair Dryer 13  

Iron 14  

Living Room Empty Socket 15  

Monitor 2 16  

Backyard Lights 00  

Washroom Lights 00  

Office Lights 00  

Closet Lights 00  

Upstairs hallway Lights 00  

Hallway stairs Lights 00  

Kitchen hallway Lights 00  

Kitchen overhead Lights 00  

Bathroom upstairs Lights 00  

Dining Room overhead Lights 00  

Bedroom Lights 00  

Basement Lights 00  

Circuit 4 01 (2) 

Circuit 7 01  

Circuit 9 01  

Circuit 10 01  

Circuit 11 01  

   

(1) Class 00 called as “Lamps and Lights”.  

(2) Class 01 called as “Distribution Circuits”.  
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Table 4. Distribution of database events per classes. 

LABEL CLASS NAME NUMBER OF EVENTS 

00 Lights and lamps 1255 

01 Subcircuits 1550 

02 Garage door 34 

03 Kitchen aid chopper 16 

04 Refrigerator 1212 

05 A/V system of the living room 24 

06 Computer 1 105 

07 Laptop 1 16 

08 Basement receiver/DVR/Blu-ray Player 79 

09 Air compressor 42 

10 LCD monitor 1 199 

11 Television 151 

12 Printer 364 

13 Hair dryer 8 

14 Iron 107 

15 Empty socket of the living room 4 

16 Monitor 2 481 

TOTAL 5647 

 

Additionally, although there are some devices that have better features to recognize daily routines that 

can be modified in order to improve consumption efficiency, such as the devices that are used frequently 

and operated manually, it has been considered that being able to identify all of them would allow to discard 

the less significant ones in a later process. The recognition of daily routines is one of the tasks proposed to 

continue the present study as discussed in Chapter 5. 

 

Apart from that, for the validation of the model its quality must be measured. In the field of classification 

problems, and specifically those based on supervised learning algorithms, the confusion matrix is a 

representation of the model performance that can provide this information visually and effortlessly 

understood. The structure of the matrix has two dimensions: each row corresponds to a real class and each 

column corresponds to a predicted class. To fill out the resulting matrix, the correct and incorrect estimate 

counts are entered so that the prediction numbers are placed in the expected row and the column predicted 

for that class value. Listed below are the metrics of the confusion matrix. 

• True Positive (TP) 

The number of predictions where the classifier correctly predicts the corresponding class.  

• True Negative (TN) 

The number of estimates in which the classifier correctly predicts the rest of the classes. 

• False Positive (FP) 

The number of estimates in which the classifier incorrectly predicts the rest of the classes that are not 

considered as the class under study. 
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• False Negative (FN) 

The number of predictions in which the classifier incorrectly predicts the corresponding class as another 

class that is not being considered in this iteration. 

Figure 17 shows an example of an N-class classification problem. In this case, it is necessary to calculate 

the TP, TN, FP, and FN for each individual class. For instance, looking at a specific class Ct, the green element 

of the matrix represents the TP, whereas the orange elements correspond to the FP, the TN are coloured 

with magenta, and the FN with blue. 

 
Figure 17. Confusion matrix for multi-class classification. 

 

Although confusion matrix may describe the complete performance of the defined models, certain 

performance metrics of the models have been used to express it with numbers, which would be compared 

easily in the discussion section. Some of the most common performance metrics are: 

• Accuracy 

The accuracy relates the number of correctly classified to the overall number of predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∈ [0,1] (4.1) 

It is worth mentioning that it is a predominant metric, however, it may produce misleading results if in 

the dataset the number of samples from different classes varies greatly; in other words, when it is 

unbalanced. In those cases, the 𝐹𝛽-score works in a more appropriate way (G. M. Weiss, 2013). 

• Precision 

The precision expresses the classifier’s certainty of correctly predicting a given class relating the amount 

of truly positive predicted samples to the total where this specific class was predicted: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∈ [0,1] (4.2) 
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• Recall 

The recall, also called sensitivity, is similar to precision, but in this case, it compares the truly positive 

predicted samples with the total predictions where the class actually results: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∈ [0,1] (4.3) 

• 𝑭𝜷-score 

The 𝐹𝛽-score presents the classifier’s ability to predict a given class taking into consideration both 

precision and recall: 

𝐹𝛽 = (1 + 𝛽2) ·
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
∈ [0,1] (4.4) 

The typical values of 𝛽 are 1, 2 or 0,5. For the following tests a value of 1 is used for 𝛽. 

 

On another note, this type of classification algorithms requires large amounts of data for a proper 

training, as will be discussed later. For this reason and taking into account that there may not be enough 

events for certain devices, and this can lead to an overfit, data augmentation techniques are used. In this 

case, introduction of noise has been used to include synthetic data and thus increase the size of the dataset. 

Furthermore, by doing so and using these new synthetic inputs together with the real ones obtained from 

the public database, the network could achieve a more generalized behaviour. The selected process is the 

introduction of noise due to the fact that the baseline data are time series, and this is the usual procedure for 

this type of data. For instance, there are other procedures such as introducing an offset value or displacing 

the point of interest through the temporal axis. These procedures had been discarded because, on the one 

hand, the offset value could conflict with the normalization process of the pre-processed stage or, if 

previously, would have no effect; and, on the other hand, the displacement would affect the position of the 

event within the temporal window but not the information that could be extracted from the signal. 

As for the type of noise, the one selected was white Gaussian noise, which is a special case of Gaussian 

noise. In general, this type of noise is statistical, which means that its values follow a normal distribution, 

also called the Gaussian distribution. The specification, introduced by the colour white, refers to the power 

distribution, which in this case is uniform in a certain frequency band. For the process of the introduction of 

this noise the power of the signal is assumed to be 0 dBW. The signal-to-noise ratio (SNR), defined as the 

ratio between signal strength and noise power (A. B. Carlson, 2002), is set within the range between 1 dB 

and 40 dB. Likewise, to determine the appropriate noise level based on the value of SNR, the signal level is 

computed. In particular, the signals or samples to which this noise is introduced are some of the less 

numerous classes (all this to balance the distribution of samples). Table 5 presents the distribution of events 

per classes for each architecture after all the processing performed in the pre-processing stage and the 

creation of synthetic signals for data augmentation. Marked in orange are the values that differ from the 

number of events obtained from the database. As can be observed, some modifications have been 

introduced in the data augmentation process during the validation of the different architectures due to the 

final influence of this noise on the input samples of the ANNs. In addition, the distribution is not yet 

balanced, however, this mismatch could be solved with other variations that will be discussed later. 
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Table 5. Distribution of events per classes after data augmentation. 

LABEL 

NUMBER OF EVENTS 

Recurrent based on LSTM 
Convolutional 

Time Sequence Images STFT Images 

00 6324 1255 1255 

01 1550 1550 1550 

02 152 1740 716 

03 60 800 336 

04 6152 1212 1212 

05 120 1248 504 

06 576 5324 105 

07 72 760 336 

08 336 4116 79 

09 220 2100 884 

10 952 9992 199 

11 728 7720 151 

12 1908 18768 364 

13 48 392 168 

14 548 5400 107 

15 24 204 0 

16 2392 24600 481 

TOTAL 22036 87148 8452 

 

The total set of events, whether captured in temporal window or in grayscale images, has been divided 

into three different subsets with its own use, in order to prepare an algorithm to make predictions. 

• Training data 

Training data is used for the learning process. This subset includes a vector or scalar that represents the 

corresponding output for each input. This value will be compared with the one obtained in order to learn. 

In this case, this value is the class tag of the event. The model evaluates the data repeatedly while 

adjusting its own parameters in different ways depending on the result of the comparison and the specific 

learning algorithm used. The term “parameters” refers to the coefficients of the model, that is to say, the 

weight and bias of the different activation functions and kernels. 

• Validation data 

During training, validation data is used to evaluate each adjusted model with new data, so it can be 

considered as a first test against unseen data to provide an evaluation of the model, while optimizing its 

hyperparameters. In this other case, the concept of hyperparameter corresponds to other elements of the 

model whose value is established before starting the learning process. For instance, some of the 

hyperparameters used in deep learning are: the number of hidden layers or neurons of the neural 

network; the Learning Rate, which refers to the step of backpropagation; the activation functions located 

at any point in the neural network; the batch size corresponds to the size of the sample which is training 

the model with, the number of epochs or times the algorithm will be training on the whole dataset; among 

others. Some of them had been mentioned before, and the others will be discussed later. Furthermore, it 
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should be noted that this data is not always used, although it may prevent the algorithm from memorizing 

inputs and outputs during training; in other words, it will help avoid overfitting. This last concept will be 

explained thereupon. 

• Test data 

Once the model is built, the test data validates that it can predict with enough performance, confirming 

that the neural network was trained effectively. Unlike validation data, this subset provides the final 

assessment. In addition, whereas training and validation data includes labels that will contribute to 

monitoring model’s performance metrics, test data should not be labelled. 

 

The distribution of the events (Figure 18) of the large initial dataset has been made so that 50 % of the 

available data will be used for the training process, half of the rest (25 %) corresponds to the validation data 

and the other half (25 %) will be used as test data. The division was carried out without repeating any 

events within the same subset or within others. 

 
Figure 18. Distribution of the dataset. 

 

It is important to note that the size of the dataset and its quality have some relevance during model 

training. The effects on model performance and its interaction with model capacity are summarized below: 

• Underfitting 

When the performance on the training data is poor since the capacity of the model is not enough to 

correctly perform its functionality and, in addition, it is not able to generalize to new data. The reason is 

that the degree of non-linearity in the data is higher than the amount of non-linearity the model is capable 

of capturing. An easy way to detect the underfitting (Figure 19) is by plotting the training and validation 

errors. Those values will closely follow each other and flatten around a large error value over a growing 

number of epochs. To solve this problem, the key idea is to increase the capacity of the model. To do this, 

there are several alternatives: increase the complexity of the model, change the regularization parameters 

or the Learning Rate or, finally, improve the quality of the data. 

 
Figure 19. Example of how underfitting can be detected. 
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• Overfitting 

When the model gets a low training data error, whereas the results in the validation data are poor. So, the 

performance in the training data is good, but the generalization to other data is poor. To illustrate the 

detection of overfitting, training and validation accuracies will be plotted (Figure 20). The accuracy of the 

training will increase with the number of epochs while the validation accuracy will diverge and stabilize 

at a much lower value, which will open a large gap between the two curves. In this case, more data should 

be included or, if this is not feasible, the model capacity should be reduced in order to adjust it to the data, 

or regularization should be used to compensate for the lack of data. 

 
Figure 20. Example of how overfitting can be detected. 

 

Lastly, it is turn for the training parameters settings. These factors will be used to control the training 

process and certain properties of the resulting model. A summary of the most relevant is listed below. 

• Initialization method 

The first step that must be considered is the initialization of parameters (M. V. Narkhede et al., 2022). 

Through this process, the shortest time will be used to optimize the performance of the structure. There 

are some techniques generally used to this issue, such as Zero initialization or Random initialization. 

However, those methods present certain problems associated with the training duration and the 

vanishing gradient problem. In order to solve these issues, other approaches had been proposed: for 

instance, He initialization or Xavier Initialization. As a default, Xavier or Glorot initialization is used for 

weights, whereas Zero initialization is used for bias. 

o Zero Initialization 

This method sets all bias to zeros. 

o Xavier Initialization or Glorot Initialization 

Xavier proposed a method (X. Glorot & Y. Bengio, 2010) that is calculated as a random number 

with a uniform probability distribution 𝑈 between the specific range shown in (4.5), where 𝑛 is 

the number of inputs to the node. In this method the weights such as the variance of the 

activations are the same across every layer. This will prevent the gradient from exploding or 

vanishing. 

𝑊 = 𝑈 [−
1

√𝑛 
,

1

√𝑛 
] (4.5) 
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• Learning Rate 

The Learning Rate is acknowledged to be the most important hyperparameter due to the fact that, in 

general, an appropriate value for this parameter will maximize the model capacity. However, the problem 

is that if it is set to a large value, the training error can increase; while if set to a small value, it can cause 

the gradient descent to get stuck at a non-optimal point and, in addition, a slowdown in the training 

process. Thus, the best way to set a value for this parameter is to use a large value in the initial stages and 

reducing the Learning Rate as the system approaches the minimum. In this case, the initial Learning Rate 

is 0.0001, which will be varied during the process using a decay rate of 10-6.  

• Learning algorithm 

Another strategy that is usually put into practice in this type of systems is to adapt the Learning Rate for 

each parameter thanks to the so-called learning algorithms (S. Ruder, 2016), such as Momentum, 

Nesterov Momentum, Adagrad, RMSProp or Adam. Specifically, Adagrad, RMSProp and Adam algorithms, 

as the training progresses they automatically adapt the effective Learning Rate; whereas Momentum, 

Nesterov Momentum and Adam algorithms are able to improve the convergence speed. Finally, since 

Adam algorithm combines both features, it is the one used in these approaches. 

o Adaptive Moment Estimation (Adam) 

The Adam algorithm equations (D. P. Kingma & J. Ba, 2015) are explained hereafter. 

1) Firstly, the sequence 𝛬(𝑛) is used to provide “Momentum” to the updates (4.6). This equation 

allows to obtain the values of the first moment estimation. In this equation, 𝑛 is the number 

of iterations, 𝑔(𝑛) is the gradient evaluated and the exponential decay rate 𝛽1 ∈ [0,1) is 

usually defaulted to 0.9. 

𝛬(𝑛) = 𝛽1 · 𝛬(𝑛 − 1) + (1 − 𝛽1) · 𝑔(𝑛) (4.6) 

2) Secondly, the sequence Δ(𝑛) customizes the effective Learning Rate with respect to each 

parameter so that the rates for parameters with larger gradients equal those for parameters 

with smaller gradients (4.7). With this equation the values of the second moment are 

obtained. In this case, the exponential decay rate 𝛽2  ∈ [0,1) is usually defaulted to 0.999. 

Δ(𝑛) = 𝛽2 · Δ(𝑛 − 1) + (1 − 𝛽2) · 𝑔(𝑛)2 (4.7) 

3) Additionally, to counteract that both sequences are initialized as vectors of 0, bias-corrected 

estimates are calculated (4.8 – 4.9). 

�̂�(𝑛) =
𝛬(𝑛)

1 − 𝛽1
𝑛 (4.8) 

Δ̂(𝑛) =
Δ(𝑛)

1 − 𝛽2
𝑛  (4.9) 

4) Finally, the parameter update equation is presented (4.10) where the step-size 𝜂 is set to 0.1 

and 𝜀, which is used to avoid the division by zero, is usually defaulted to 10-8. 



Chapter 4    Experimental results 

53 
  

𝜃(𝑛 + 1) = 𝜃(𝑛) − 𝜂 ·
�̂�(𝑛)

√Δ̂(𝑛) + 𝜀
 (4.10) 

In the approaches presented in this Master’s Thesis, the values by default for𝛽1, 𝛽2, 𝜂 and 𝜀 are used. 

• Regularization techniques 

These methods are used to avoid overfitting. The way these algorithms work is to reduce the effectiveness 

of the models because in these situations it exceeds the requirements of the problem. The most common 

techniques (J. Kukačka et al., 2017) are Early Stopping, L2 Regularization, L1 Regularization, Dropout 

Regularization, Data Augmentation, and Batch Normalization. Among all of them, some data augmentation 

procedures have been used, as discussed above, but also early stopping techniques will also be used. 

o Early Stopping 

The idea is to stop the training process when a monitored metric has stopped improving (Figure 

21). At that point it is assumed that the model begins to overfit to the training data. The quantity 

to be monitored is validation loss, which is computed at the end of each training epoch. In 

practise, it is common to wait until loss has stopped decreasing for a number of epochs before 

stopping and establish a minimum change in the monitored quantity to qualify as an 

improvement. In this case, the selected number of epochs is five, but no minimum change is 

determined. 

 
Figure 21. Example of how the early stopping can be represented. 

• Number of epochs 

During the training process each complete presentation of all the samples belonging to the training set is 

called an epoch. This concept specifies how many times it is necessary to present all the samples of the 

training set to adjust the parameters of the neural network. As stated above, one of the most critical issues 

is overfitting and, to solve it, early stopping is implemented, so the “number of epochs” parameter  refers 

to the maximum. This ensures that, at least, the formation process will not be infinite if convergence does 

not occur. For each architecture this value will be different since they work with different samples that 

make the process of extracting information differ from each other (Table 6). 

 

 



Chapter 4    Experimental results 

54 
  

Table 6. Maximum number of epochs for each architecture. 

ARCHITECTURE EPOCHS 

Recurrent based on LSTM 200 

Convolutional 
Time Sequence Images 200 

STFT Images 600 

 

• Batch size 

Training process will be carried out through iterations where a subset of the training set called batch or 

minibatch will be used. Minibatch size is a key factor that influences the system performance. For 

instance, large lots can provide a more accurate estimate, whereas small batches can offer a regularization 

effect. Nevertheless, large batches are limited by the hardware used to process the information, or at least 

this hardware achieves a better runtime with specific array sizes, whereas some deep architectures are 

underutilized by extremely small batches. Due to all these factors, the number of samples per batch was 

obtained experimentally and the optimize value was defined to one-hundredth of the amount of the 

training data. 

• Shuffling 

Another crucial aspect is that the minibatches must be selected at random so that not only the samples 

are independent within this set, but also subsequent minibatches are independent from each other. In 

practice, it is enough to shuffle the samples. Overall, this process does not appear to have a significant 

detrimental effect; however, not shuffling in any way can seriously reduce the effectiveness of the 

algorithm. In these approaches, training data is shuffled before each epoch. 

 

4.2 Results of the recurrent architecture 

For the recurrent architecture different tests have been performed in order to extract the possible 

limitations of the model: 

• Adding class weights 

First of all, as discussed above, since there is an imbalance in the number of samples that can affect the 

performance of the algorithm, different weights will be provided during training for the different classes. 

These weights work, so the highest value will be for the minority class and for the majority, the opposite.  

• Modifying the size of the structure 

Secondly, some structure size modifications have been made by varying the number of neurons in the 

layers of the ANN in order to see if it is possible to improve its performance. Specifically, increasing the 

size of the first LSTM layer by multiplying by 20 the number of units or reducing this size by dividing by 

20. 

• Discard Class 01 

The last test involves discarding Class 01 samples. The reason is that within this class, which contains 

information about the distribution circuits, there could be events produced by other devices already 

present in the classification or even unknows.  
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Table 7 compares the results of the performance metrics obtained from the test stage, after training and 

validation. As this table shows, the different tests present similar results, so it can be concluded that the 

modifications do not represent a significant improvement. Specifically, for example, discarding circuits 

seems to improve metrics except accuracy, whereas the opposite happens when class weights are added. In 

addition, as for the modifications of the structure, a decrease in size implies a decrease in all metrics, 

whereas almost all improve by increasing the size. 

 

Table 7. Experimental results of the recurrent architecture comparing different test. 

CONFIGURATION ACCURACY PRECISION RECALL F1-SCORE 

Main structure 99.75% 95.24% 97.41% 96.11% 

Adding class weights 99.76% 94.97% 97.54% 95.97% 

Increasing structure size 99.77% 96.79% 97.17% 96.93% 

Reducing structure size 99.68% 90.66% 96.12% 92.50% 

Discard Class 01 99.67% 96.29% 97.67% 96.93% 

 

Furthermore, in order to visualize the results, Figure 22 represents the confusion matrix of the main 

structure. In this confusion matrix it can be perceived that most errors are concentrated in the rows and 

columns that refer to classes 00 and 01, which involve sets of several loads. Moreover, in the case of class 00, 

these events can occur at the same time as other devices of higher consumption and, therefore, the 

predominant event that will be recognized is that of the other device. Other mistakes, but less numerous, 

appear for classes 06, 07, 08 and 10. 

 
Figure 22. Confusion matrix of the recurrent architecture using the main structure of the network. 
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4.3 Results of the convolutional architectures 

For the first convolutional architecture, instead of performing different tests, other versions of the 

network were previously defined, as shown in Figure 23. As reported below, the architecture defined in 

Chapter 3 was obtained as a result of the modifications made to these preceding versions. 

• Version 1 

The differences are that the number of filters used in convolutional layers is four times greater; that is, 

instead of 16 there are 64 and in the case of 32 they are 128; in addition, the dimensions of the cores are 

not odd; and finally, the Max Pooling layer is not included between the two convolutional layers.  

The change to odd dimension is due to the fact that the use of odd size filters symmetrically divides the 

previous layer around the output pixel, avoiding possible distortions between the layers if this symmetry 

did not exist. Likewise, the goal of the interspersed Max Pooling layer is that, through the reduction of the 

size of the images filtered by the first convolution, the following layers reduce their size. 

• Version 2 

For this second version, the number of filters is reduced, and odd-sized cores are used. 

• Version 3 

This last version corresponds to the ANN described in Chapter 3. For this version the Max Pooling layer is 

introduced. 

 
Figure 23. Structure of the proposed CNNs: (a) Version 1, (b) Version 2, and (c) Version 3 (L. de Diego-Otón et al., 2021). 

 

In this case, the performance metrics resulting from these three versions are compared in Table 8. 

According to these results, Version 2 is the one that has obtained the best result, followed by Version 3 and, 

at the end, Version 1. Taking into account that the structure of Version 3 presents a reduction in the size of 

its layers with respect to Version 2, the conclusion reached is that the network offers results of great 

accuracy and precision, being smaller. 
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Table 8. Experimental results of the first convolutional architecture comparing different versions. 

CONFIGURATION ACCURACY PRECISION RECALL F1-SCORE 

Version 1 99,01 % 68,75 % 77,44 % 70,78 % 

Version 2 99,71 % 92,99 % 92,82 % 92,85 % 

Version 3 99,70 % 92,17 % 91,78 % 91,91 % 

 

With respect to the confusion matrix, shown in Figure 24, the same as in the previous case, most of the 

errors are found for classes 00 and 01. Moreover, although some other events are misclassified, the largest 

FN and FP values are for those classes. 

 
Figure 24. Confusion matrix of the definitive version of the first convolutional architecture. 

 

For the convolutional architecture which works with the frequency features, the distinction of the two 

ways of representing the information obtained from the STFT of the images could be contrasted and in 

Table 9 these metrics are represented. Between both configurations, the alternative of using magnitude and 

phase presents better results, in general, than the real and imaginary part option. However, with respect to 

the results discussed above, this second convolutional architecture reaches the worst values for the 

performance metrics. Moreover, it is worth to highlighting that, with regard to the electrical devices of the 

classification, the empty socket of the living room (class 15) has been excluded because the information 

provided by its events was considered irrelevant. 
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Table 9. Experimental results of the second convolutional architecture comparing the information of different input samples. 

CONFIGURATION ACCURACY PRECISION RECALL F1-SCORE 

Magnitude and Phase 97,17 % 79,93 % 66,39 % 70,34 % 

Real and Imaginary part 96,91 % 73,03 % 67,07 % 68,45 % 

 

In this case, both confusion matrices, Figure 25 and Figure 26, are included in the manuscript. In them it 

can be observed that not only the classes 00 and 01 have great number of errors, but also other classes such 

as 02, 03, 05, 07, 10, 13 or 16 have some misclassified events. 

 
Figure 25. Confusion matrix of the second convolutional architecture distinguishing between magnitude and phase. 
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Figure 26. Confusion matrix of the second convolutional architecture distinguishing between real and imaginary part. 

 

4.4 Discussion 

After having detailed the classification performance of each of the proposed architectures, it is time to 

make a comparison between them. To do so, not only the values of the performance metrics are important, 

but it is also worth considering the computational complexity, as has already been commented slightly in 

some comparison in the previous section. Analyzing network complexity is a key part of the design process 

because this dimensionality can affect learning ability. However, it is even more important for 

implementation because, before it can be used in any application, it is necessary to take this into account to 

assess the required storage. This concept will be represented by the internal configuration of the model that 

can be measured through the number of learning parameters which in turn depends on the number and 

dimensions of the layers. The contribution of each layer and the total number of learning parameters for 

each approach is provided in Figure 27. As can be observed, the recurrent architecture has the highest 

number of learning parameters, whereas the parameters of convolutional structures are even less than a 

quarter of that number. Between convolutional structures, the size of the input images and the structure 

itself causes the difference of the values. 
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Figure 27. Number of learning parameters for all three architectures1. 

 

On the other hand, for a further and more detailed evaluation of the classification performance, Figure 

28 represents the experimental metrics of all the proposed architectures. It should be underlined that this 

comparison takes into account the two ways of representing the images resulting from the STFT process. 

This graph shows that, whereas the recurrent method obtains better results in all metrics, followed by the 

convolutional that uses time sequence images, the architecture that uses the images resulting from the STFT 

process achieves the lowest values. As a conclusion, all these arguments show that the architecture that 

used the convolutional network to classify the time sequence images has more interesting features: the high 

classification performance along with the lowest complexity. 

 
1 Keep in mind that the recurrent structure has four layers, convolutional structure which works with temporal sequence images has eight 
layers and, finally, the other convolutional one has eleven layers. 
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Figure 28. Comparison of the performance metrics of all the architectures (L. de Diego-Otón et al., 2022). 

 

Finally, some considerations concerning the electrical devices and samples used in the classification will 

be discussed. Firstly, with regard to the devices of the classification, the distribution circuits, which have 

been discarded on occasion due to their strong negative influence on the results, will be excluded together 

with the empty plugs. Only events from well-defined electrical devices will be used. Furthermore, in 

previous works, such as (F. Ciancetta et al., 2021) or (S. Houidi et al., 2020), the classification is carried out 

by considering that there are different state transitions for each device, such as switching on and off. This 

distinction can benefit the results because they would be treated as distinct classes. However, the problem is 

when the device has multiple modes of operation since there should be a class for each transition change 

between them. 

Furthermore, regarding to the data augmentation, the definition of a specific process which allows to 

obtain synthetic samples of great value will be sought. In parallel, other databases where there are more 

houses should be used since the BLUED dataset only contains one household. This should help the 

generalization of neural networks. 
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Through this chapter, the objectives will be reviewed to explore the extent to which they have been 

achieved and how this research has contributed to the current state-of-art. After this, some of the open 

issues out of the scope of this thesis, which deserve further research, will be presented.  

 

5.1 Conclusions 

In this Master’s Thesis, it is addressed the problem of the classification of domestic loads on the basis of 

information about the aggregate consumption of a residence. One of the main contributions of this work is 

to propose methods to solve it based on ANNs. Specifically, a comparative evaluation of the disaggregation 

capacity of three different defined architectures has been provided, considering as a signal of interest the 

electric current sampled at high frequency. 

In order to do so, it was essential to carry out a previous study of the topic related backgrounds. The 

objective of this analysis was to define the bases that would allow to choose, between the multiple 

algorithms, those alternatives that, although capable of offering high performance, present the least possible 

computational complexity to be implemented in low-cost hardware platforms. Apart from the theoretical 

basis, a fundamental element was the conformation of the proper experimental framework. This ranges 

from the selection of the database that contains the necessary information to carry out the validation of the 

algorithms to the configuration of the training parameters that will influence certain properties of the 

resulting model. 

The proposed architectures were defined as event-based supervised solutions where the electrical signal 

is not only processed, but also the input samples of the ANNs are captured around the position of the events 

located in this treated signal. These samples conform temporal windows that could be used directly, as in 

the first approach, or they must be transformed into images, as in the cases of the second and third 

algorithms. For the second one, images are constructed by creating the rows of a matrix from divisions of 

that temporal window; and for the third one, they are obtained by using the STFT process. In other words, 

for the creation of the images, both the time and frequency domain have been considered. Furthermore, the 

intelligent algorithms included in those architectures are: for the first approach, an RNN based on LSTM 

cells; and for the second approach, a CNN. 

From an experimental point of view, the validation was performed using the data provided by the public 

database called BLUED. The measurement variables have been collected at a frequency of 12 kHz for a week. 

Results show that the proposals which use the recurrent topology and the convolutional one, whose inputs 

are time sequence images, obtain better results than the convolutional architecture that classifies based on 

the characteristics of the frequency domain. These differences in the results have been also compared 

considering the computational complexity of the alternatives which will give an idea of the feasibility of 

implementation on real-time platforms. In this context, the second architecture, namely the one that used 
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the convolutional network to classify the time sequence images, achieves adequate classification 

performance whereas its complexity is the lowest. 

On the other hand, in collaboration with other members of the GEINTRA Research Group, a smart meter 

prototype has been developed (R. Nieto et al., 2021). The proposal consists of a System-on-Chip (SoC) 

architecture based on a Xilinx-7000 Zynq FPGA (“Field-Programmable Gate Array“). It has been tested in the 

laboratory, where different appliances such as a fan heater, a hair dryer, a coffee machine, and a microwave 

are monitored. The acquisition process is carried out at 4 ksps using the ADE9153A integrated circuit 

(Analog Devices, 2018). However, for the identification of the load and the final dissemination of the results, 

it is used a remote server that has been implemented in a Raspberry Pi 2, which integrates a Quad-Core 

ARM Cortex-A7 (R. Reed et al., 2015). The communication in this smart meter is provided by the Wi-Fi 

adapter (Digilent, 2016). Additionally, it is worth mentioning that only the data related to each event is sent 

upstream to this cloud server, so a reduction in the bandwidth required in cloud communication is made. 

Lastly, the load identification results are published on the Thingspeak™ platform. 

 
5.2 Future Works 

Future works concern deeper analysis in some specific developments to improve and support the 

proposed architecture, likewise, it is also included the real time implementation and the routines extraction 

algorithm definition. These last points, since they exceed the scope of this Master’s Thesis, have not been 

discussed in the manuscript, but they are part of the initial focus of the research project. 

• Unsupervised architectures 

This Master’s Thesis has been mainly focused on supervised learning architecture, but it could be 

interesting to become closer to a real situation, where the useful life of appliances is limited, and they are 

often replaced. For that reason, unsupervised learning architectures seem to be more useful because they 

are able to learn without prior information, so the replacement of appliances would not involve a 

retraining process. 

• Higher sampling frequencies 

Increasing the sampling rate would allow the system to be able to detect switched-mode power 

supplies which operate at frequencies ranging from several hundred kHz to several MHz. Specifically, 

these power supplies are widely used in a variety of electronic equipment, including computers and other 

sensitive systems, which require a stable and efficient power supply. 

• Real-time implementation 

The implementation of the current proposal in real time and with low-cost hardware platforms is a 

point in which work is being done and will be worked on within the research project. 

• Behavioural routines 

Last but not least, one of the lines for which the research project, discussed at the beginning of this 

manuscript, will continue is the creation of algorithms capable of extracting behavioural routines from 

the detection of the use of different electrical devices. With information on the consumption behaviour of 

consumers, personal optimization of their energy consumption could be offered in order to allow 

substantial savings, as well as the other applications commented in Chapter 2. 
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Appendix A    Budget 
 
 
 

This chapter will describe the theoretical cost of the whole proposal. These accounts include material 

costs of the software and hardware tools and professional fees. All this information is presented in the 

following tables (from Tables 10 to 12). 

 

A.1 Material cost 

This section details the cost of the different materials used (including VAT). 

 

Table 10. Material costs. 

ITEM CONCEPT AMORTIZATION UNIT COST TIME TOTAL COST 

Hardware 
Window PC i7 

3.6 GHz 
Desktop 

laboratory PC 
4 years (26 % lineal) 

390,00 
€/year 

0,75 year 292,50 € 

Software 

MATLAB© 
R2020b 

Signal 
processing 

- 
489,002 
€/year 

0,75 year 366,75 € 

Python 3.8.3 
Deep Learning 

design 
- 0,00 € - 0,00 € 

Windows 10 
Pro 

Operating 
System 

- 
259,002 
€/year 

0,75 year 194,25 € 

Office 365 
Document 

preparation 
- 

134,162 
€/month 

0,125 year 16,77 € 

MATERIAL TOTAL COST 870,27 € 

 
 

A.2 Professional fees 

In this section, the different professional fees are calculated as gross income (excluding VAT). These 

include all the professional activities related to the project where an industrial profit of around 6 % has 

already been taken into account. 

 

Table 11. Professional fees. 

TASK COST TIME TOTAL COST 

Junior engineering design 60,00 €/hour 720 hours 43.200,00 € 

Typing 25,00 €/hour 240 hours 6.000,00 € 

PROFESSIONAL FEES TOTAL COST 49.200,00 € 

 

 
2 Standard annual license price. This product provides the right to use the software for a fixed duration of one year. 
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A.3 Total costs 

The budget calculations for this Master’s Thesis end adding the total costs of materials and the total costs 

of professional fees, including other costs associated with the application of VAT, stipulated at 21 %, based 

on the budget of execution by contract. 

 

Table 12. Total costs. 

CONCEPT COST 

Material total cost 870,27 € 

Professional fees total cost 49.200,00 € 

VAT of professional fees (21%) 10.332,00 € 

TOTAL COST 60.402,27 € 

 

The final estimated budget for the completion of this Master’s Thesis amounts to a total of 60.402,27 € 

(sixty thousand four hundred and two euros and twenty-seven cents). 
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